JP4352480B2 - Liquid crystal optical element and manufacturing method thereof - Google Patents
Liquid crystal optical element and manufacturing method thereof Download PDFInfo
- Publication number
- JP4352480B2 JP4352480B2 JP29862498A JP29862498A JP4352480B2 JP 4352480 B2 JP4352480 B2 JP 4352480B2 JP 29862498 A JP29862498 A JP 29862498A JP 29862498 A JP29862498 A JP 29862498A JP 4352480 B2 JP4352480 B2 JP 4352480B2
- Authority
- JP
- Japan
- Prior art keywords
- liquid crystal
- optical element
- crystal optical
- voltage
- mixture
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Liquid Crystal (AREA)
- Liquid Crystal Substances (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、電界の印加/非印加により、素子の透過、散乱、反射状態を制御し、調光素子や表示素子、光学シャッター等に利用可能な液晶光学素子に関する。
【0002】
【従来の技術】
液晶と透明な高分子とを複合して、高分子と液晶、または液晶内部(微小領域間)の屈折率差を生じせしめた透過−散乱型の光学素子が提案された。液晶/高分子複合体素子、液晶/樹脂複合体素子あるいは分散型液晶素子などと呼ばれている。この素子は原理的に偏光板を必要としないので、光の吸収損失が少なく、かつ高い散乱性能が得られ、素子全体における光の利用効率が高いことが大きな利点となっている。
【0003】
この特性を生かして、調光ガラス、光シャッター、レーザー装置および表示装置などに用いられている。電圧非印加で散乱状態、電圧印加で透明状態のものが商用化された。
【0004】
さらに、従来例1(USP5188760)では、液晶と重合性の液晶を用いた素子が開示された。この従来例1は、電圧非印加時において素子内の液晶と重合された液晶とが同じ配向方向を有しているので、素子をどの方向から見ても透明状態を呈する。そして、電圧印加時には、素子内の液晶の配向が電界によって制御され、液晶分子の配列方向が微小領域においてさまざまに変化することにより、素子は散乱状態を呈する。
【0005】
また、カイラル剤を添加して初期配向にヘリカル構造を設けることで、コントラスト比が向上することが開示された。この素子は、「異方性ゲル」または「液晶ゲル」と呼ばれている。この従来例1ではアクリロイル基を末端に持つメソゲンモノマーが使用された。
【0006】
また、従来例2(国際特許公開WO92/19695)にも同様の構成を持つ素子が開示された。従来例1と同様の動作モードであって、カイラルネマチック液晶中に微量の高分子を分散させ、電圧非印加時に透明状態、電圧印加時に散乱状態を得る。この素子はPSCT(ポリマー・スタビライズド・コレステリック・テクスチャー)と呼ばれている。この従来例2にもアクリロイル基を末端に持つメソゲンモノマーが開示された。
【0007】
【発明が解決しようとする課題】
液晶と未硬化の硬化性化合物よりなる混合物を準備し、その硬化性化合物を硬化させることで液晶/硬化物複合体層を形成して得られた液晶光学素子の特性は、その液晶/硬化物複合体の構造に大きく依存する。さらに、用いる未硬化の硬化性化合物の分子構造は形成された液晶/硬化物複合体の構造に大きな影響を与える。
【0008】
一般にビフェニル構造などのメソゲン構造を含む硬化性化合物は、両端の硬化部位が結合し、硬化した後の弾性率は大きく、かつ、得られる高分子のガラス転移温度も高いことが報告されている。
【0009】
一方このことは、硬化途中の硬化性化合物の分子運動や自由体積に制限を与えるものであり、硬化過程の後期においては、硬化部位の反応性が抑制される可能性があり、硬化反応が充分行われない、または、非常に長時間の硬化時間が必要となるといった問題点が生じている。
【0010】
また、従来例の液晶光学素子は、複数回の電界印加駆動により素子の電圧透過率曲線に変化が生じたり、電界印加/非印加時のコントラストもまだ低いものであった。
【0011】
本発明では、複数回の電界印加/非印加の駆動によっても素子の電圧透過率曲線がほとんど変化せず、信頼性が高く、高いコントラストの液晶光学素子を提供する。また、容易に、かつ安定して高い歩留で液晶光学素子を製造できる製造方法を提供する。
【0012】
【課題を解決するための手段】
すなわち、本発明の第1の態様は、少なくとも一方が透明な一対の電極付き基板に垂直配向用ポリイミド薄膜を形成し、前記基板間に誘電異方性が負のネマチック液晶と未硬化の硬化性化合物との混合物を挟持し、前記硬化性化合物が式(1)の化合物を含有し、前記混合物が液晶相を示し、前記垂直配向用ポリイミド薄膜が前記ネマチック液晶に接するようにした状態で前記硬化性化合物を光露光により硬化させて液晶/硬化物複合体層を形成する液晶光学素子の製造方法を提供する。
【0013】
【化2】
【0014】
A1、A2:それぞれ独立にアクリロイル基、メタクリロイル基
R1、R2:それぞれ独立に炭素数2〜6のアルキレン基
Z:2価のメソゲン構造部である4,4'−ビフェニレン基
n、m:それぞれ独立に1〜4の整数
【0015】
また、第2の態様は上記の製造方法において、n=m=1である製造方法を提供する。
【0019】
また、第3の態様は上記の製造方法において、前記混合物に微量の硬化触媒を含有する製造方法を提供する。
【0020】
また、第4の態様は上記の製造方法において、電極間の距離を4〜50μmとする製造方法を提供する。
【0022】
また、第5の態様は上記の製造方法で製造した液晶光学素子を提供する。
【0023】
【発明の実施の形態】
本発明においては、未硬化の硬化性化合物中のメソゲン構造部と硬化部位との間に分子運動性の高いオキシアルキレン構造を導入することで、硬化過程における硬化部位の分子運動性を向上させ、短時間の硬化反応においても、電界印加/非印加時の状態が安定で信頼性が高く、かつコントラストも高い液晶光学素子が得られる。図1に本発明の液晶光学素子の製造方法の一例のフローチャートを示す。
【0024】
式(1)の硬化部位(A1 、A2 )としては、一般に硬化触媒とともに光硬化、熱硬化可能な上記の官能基であればいずれでもよいが、なかでも、硬化時の温度を制御できることから光硬化に適するアクリロイル基、メタクリロイル基が好ましい。
【0025】
式(1)のオキシアルキレン部のR1 およびR2 の炭素数については、その運動性から2〜6が好ましく、さらに炭素数2のエチレン基の連鎖および炭素数3のプロピレン基が好ましい。
【0026】
式(1)のメソゲン構造部(Z)としては、1、4−フェニレン基が2個以上連結した2価のポリフェニレンが好ましい。また、このポリフェニレン基中の一部の1,4−フェニレン基が1,4−シクロヘキシレン基で置換された2価の有機基であってもよい。
【0027】
これらポリフェニレン基や2価の有機基の水素原子の一部または全部は炭素数1〜2のアルキル基、ハロゲン原子、カルボキシル基、アルコキシカルボニル基などの置換基に置換されていてもよい。本発明において、Zは、1,4−フェニレン基が2個連結したビフェニレン基(以下、4,4’−ビフェニレン基という。)、3個連結したターフェニレン基、およびこれらの水素原子の1〜4個が炭素数1〜2のアルキル基、フッ素原子、塩素原子もしくはカルボキシル基に置換された2価の有機基である。最も、好ましいZは置換基を有しない4,4’−ビフェニレン基である。
【0028】
式(1)のn、mはあまり大きいと液晶との相溶性が低下するため、それぞれ独立に1〜10であり、硬化後の素子特性を考慮すると1〜4がさらに好ましい。
【0029】
液晶と未硬化の硬化性化合物の混合物が硬化触媒を含有していてもよく、光硬化の場合、ベンゾインエーテル系、アセトフェノン系、フォスフィンオキサイド系などの一般に光硬化樹脂に用いられる光重合開始剤を使用できる。
【0030】
熱硬化の場合は、硬化部位の種類に応じて、パーオキサイド系、チオール系、アミン系、酸無水物系などの硬化触媒を使用でき、また、必要に応じてアミン類などの硬化助剤も使用できる。
【0031】
硬化触媒の含有量は、含有する未硬化の硬化性化合物の20wt%以下が好ましく、硬化後の硬化物の高い分子量や高い比抵抗が要求される場合、1〜10wt%とすることがさらに好ましい。
【0032】
液晶と未硬化の硬化性化合物の混合物中の未硬化の硬化性化合物は、液晶との相溶性を向上させるために、式(1)でn、mの異なる複数の未硬化の硬化性化合物を含んでいてもよく、それによりさらにコントラストを改善することができる。
【0033】
一方、液晶と未硬化の硬化性化合物の混合物は、混合後均質な溶液であることが好ましい。また、液晶と未硬化の硬化性化合物の混合物は、電極付き基板に挟持されるとき、液晶相を示すものを用いる。
【0034】
液晶と未硬化の硬化性化合物の混合物は、硬化されるとき、液晶相を示すようにする。液晶と未硬化の硬化性化合物の混合物を挟持する電極付き基板の電極表面に樹脂の薄膜を設ける。
【0035】
【0036】
電極間の距離は、スペーサー等で保持することができ、間隔は4〜50μmが好ましく、さらには5〜30μmが好ましい。電極間隔は小さすぎるとコントラストが低下し、大きすぎると駆動電圧が上昇する。図2に本発明の液晶光学素子の模式的断面図を示す。
【0037】
ガラス基板1A、1B、電極2A、2B、配向膜3A、3B、液晶/硬化物複合体層4が備えられた液晶光学素子10である。電圧非印加で透明状態、電圧印加で散乱状態を呈する素子である。図3には本発明の液晶光学素子を自動車の窓ガラスに用いる状態を模式的に示したものである。斜め方向における透過率が高いという利点を備えている。
【0038】
電極を支持する基板は、ガラス基板でも樹脂基板でもよく、またガラス基板と樹脂基板の組み合わせでもよい。また、片方がアルミニウムや誘電体多層膜の反射電極であってもよい。
【0039】
フィルム基板の場合、連続で供給される電極付き基板を2本のゴムロール等で挟み、その間に、スペーサーを含有分散させた液晶と未硬化の硬化性化合物との混合物を供給し、挟み込み、その後連続で硬化させることができるので生産性が高い。
【0040】
ガラス基板の場合、電極面内に微量のスペーサーを散布し、対向させた基板の4辺をエポキシ樹脂等のシール剤で封止セルとし、2カ所以上の設けたシールの切り欠きの一方を液晶と未硬化の硬化性化合物の混合物に浸し、他方より吸引することでセル内に混合物を満たし、硬化させ液晶光学素子を得ることができる。また、真空注入法を用いることもできる。
以下、例7(実施例)および例1〜6、A〜E(比較例)について詳細に説明する。
【0041】
【実施例】
(例1)
シアノ系ネマチック液晶(メルク社製 BL−006、誘電異方性は正)95部、式(2)の未硬化の硬化性化合物5部、ベンゾインイソプロピルエーテル0.15部の混合物(混合物A)を調製した。
【0042】
【化3】
【0043】
この式(2)の化合物は、式(1)でA1 、A2 がアクリロイル基で、R1 、R2 がエチレン基で、Zのメソゲン構造部が4,4’−ビフェニレン基で、n、mがともに1である場合に相当する。
【0044】
この混合物Aを、透明電極上に形成したポリイミド薄膜を一方向にラビングした一対の基板をラビング方向が直交するように対向させ、直径が13μmの樹脂ビーズを微量散布し、この樹脂ビーズを介して、四辺に幅約1mmで印刷したエポキシ樹脂により張り合わせて作製した液晶セルに注入した。
【0045】
この液晶セルを25℃に保持した状態で、主波長が約365nmのHgXeランプにより、上側より3mW/cm2 、下側より同じく約3mW/cm2 の紫外線を10分間照射し、液晶光学素子を製造した。
【0046】
この液晶光学素子に、矩形波50Hz、50Vrmsの電圧を10分印加後電圧を除去する操作を10回繰り返した。その後、530nmを中心波長とした半値幅約20nmの測定光源を用いた透過率測定系(光学系のF値11.5)で液晶セルの透過率を測定したところ、電圧を印加しない状態で79%、50Vrms印加した状態で23%であり、電圧印加時と非印加時の透過率の差は56%であった。
【0047】
(例A)
未硬化の硬化性化合物として、式(2)の化合物の代わりに、式(3)の未硬化の硬化性化合物(4,4’−ビスアクリロイルオキシビフェニル)を用いた以外は例1と同様にして液晶光学素子を得た。
【0048】
【化4】
【0049】
この式(3)の化合物は、式(1)中でA1 、A2 がアクリロイル基、Zのメソゲン構造部が4,4’−ビフェニレン基で、n、mがともに0である場合に相当する。
【0050】
この液晶光学素子に例1と同様に、電圧を印加した。その後、例1と同じ測定系で透過率を測定したところ、電圧を印加しない状態で72%、50Vrms印加した状態で29%であり、電圧印加時と非印加時の透過率の差は43%であった。
【0051】
(例2)
例1で調製した混合物Aに、カイラル剤(メルク社製 S−811とメルク社製 C15の重量比1:1の混合物)を2.5wt%溶解した混合物(混合物B)を調製した。
【0052】
この混合物Bを、例1と同じ液晶セルに注入し、25℃に保持した状態で、例1と同じ主波長が約365nmのHgXeランプにより、上側より3mW/cm2 、下側より同じく約3mW/cm2 の紫外線を3分間照射し、液晶光学素子を得た。
【0053】
この液晶光学素子に矩形波50Hz、50Vrmsの電圧を10分印加後電圧を除去する操作を10回繰り返した。その後、530nmを中心波長とした半値幅約20nmの測定光源を用いた透過率測定系(光学系のF値11.5)で透過率を測定したところ、電圧を印加しない状態で78%であり、この値を50Vrms印加した時の透過率で割ったコントラストの値は33であった。
【0054】
(例3)
未硬化の硬化性化合物として、式(2)の化合物の代わりに、式(4)の未硬化の硬化性化合物を用いた以外は例2と同様にして液晶光学素子を得た。
【0055】
【化5】
【0056】
この式(4)の化合物は、式(1)でA1 、A2 がアクリロイル基で、R1 、R2 がプロピレン基で、Zのメソゲン構造部が4,4’−ビフェニレン基で、n、mがともに1である場合に相当する。
【0057】
この液晶光学素子に例2と同様に電圧を印加後、同じ測定系で透過率を測定したところ、電圧を印加しない状態で80%であり、この値を50Vrms印加した時の透過率で割ったコントラストの値は28であった。
【0058】
(例B)
未硬化の硬化性化合物として、式(2)の化合物の代わりに、式(3)の化合物を用いた以外は例2と同様にして液晶光学素子を得た。この液晶光学素子に例2と同様に電圧を印加後、同じ測定系で透過率を測定したところ、電圧を印加しない状態で61%であり、この値を50Vrms印加した時の透過率で割ったコントラストの値は17であった。
【0059】
(例4)
シアノ系ネマチック液晶(メルク社製 BL−009)に、例2にて使用したカイラル剤を2.5wt%均一に溶解したものを97部、式(2)の未硬化の硬化性化合物3部、ベンゾインイソプロピルエーテル0.09部の混合物(混合物C)を調製した。
【0060】
この混合物Cを、例1と同じ液晶セルに注入し、25℃に保持した状態で、例1と同じ主波長が約365nmのHgXeランプにより、上側より3mW/cm2 、下側より同じく約3mW/cm2 の紫外線を30分間照射し、液晶光学素子を得た。
【0061】
この液晶光学素子に矩形波50Hz、20Vrmsの電圧を10分印加後電圧を除去する操作を10回繰り返した。その後、530nmを中心波長とした半値幅約20nmの測定光源を用いた上記と同様の透過率測定系で透過率を測定したところ、電圧を印加しない状態で82%であり、この値を20Vrms印加した時の透過率で割ったコントラストの値は11であった。
【0062】
さらに、この液晶光学素子に矩形波50Hz、30Vrmsの電圧を10分印加後電圧を除去する操作を10回繰り返した後、同様に透過率を測定したところ、電圧を印加しない状態で82%であり、この値を30Vrms印加した時の透過率で割ったコントラストの値は40であった。
【0063】
(例5)
シアノ系ネマチック液晶(メルク社製 BL−009)に、例2にて使用したカイラル剤を2.5wt%均一に溶解したもの97部、式(2)の未硬化の硬化性化合物2部、式(5)の未硬化の硬化性化合物1部、ベンゾインイソプロピルエーテル0.09部の混合物(混合物D)を調製した。
【0064】
【化6】
【0065】
この式(5)の化合物は、式(1)でA1 、A2 がアクリロイル基でR1 、R2 がエチレン基で、Zのメソゲン構造部が4,4’−ビフェニレン基でnが2、mが3の場合に相当する。
【0066】
この混合物Dを、例1と同じ液晶セルに注入し、25℃に保持した状態で、例1と同じ主波長が約365nmのHgXeランプにより、上側より3mW/cm2 、下側より同じく約3mW/cm2 の紫外線を30分間照射し、液晶光学素子を得た。
【0067】
この液晶光学素子に矩形波50Hz、20Vrmsの電圧を10分印加後電圧を除去する操作を10回繰り返した。その後、530nmを中心波長とした半値幅約20nmの測定光源を用いた、上記と同様の透過率測定系で透過率を測定したところ、電圧を印加しない状態で82%であり、この値を20Vrms印加した時の透過率で割ったコントラストの値は28であった。
【0068】
(比較例C)
未硬化の硬化性化合物として、式(2)の化合物の代わりに、式(3)の化合物を用いた以外は例4と同様にして液晶光学素子を得た。この液晶光学素子に矩形波50Hz、20Vrmsの電圧を10分印加後電圧を除去する操作を10回繰り返した。
【0069】
その後、530nmを中心波長とした半値幅約20nmの測定光源を用いた上記と同様の透過率測定系で透過率を測定したところ、電圧を印加しない状態で57%であり、この値を20Vrms印加した時の透過率で割ったコントラストの値は10であった。
【0070】
さらに、この液晶光学素子に矩形波50Hz、30Vrmsの電圧を10分印加後電圧を除去する操作を10回繰り返した。その後、上記と同様に透過率を測定したところ、電圧を印加しない状態で49%であり、この値を30Vrms印加した時の透過率で割ったコントラストの値は6であった。
【0071】
(例6)
シアノ系ネマチック液晶(メルク社製 BL−006)65部に、カイラル剤(メルク社製 R−811とメルク社製 CB15の重量比1:1の混合物)を35部、式(2)の未硬化の硬化性化合物3.1部、ベンゾインイソプロピルエーテル0.09部の混合物Eを調製した。
【0072】
この混合物Eを、例1と同じ液晶セルに注入し、25℃に保持した状態で、例1と同じ主波長が約365nmのHgXeランプにより、上側より3mW/cm2 、下側より同じく約3mW/cm2 の紫外線を30分間照射し、液晶光学素子を得た。
【0073】
この液晶光学素子に矩形波50Hz、50Vrmsの電圧を10分印加後電圧を除去する操作を10回繰り返した。その後、530nmを中心波長とした半値幅約20nmの測定光源を用いた反射率測定系(光学系のF値8.2)において、光をほぼ反射しない黒い紙の上に液晶光学素子を載せて反射率を測定したところ、電圧を印加しないときが23%、50Vrms印加したときが8%であり、電圧印加時と非印加時との反射率の差は15%であった。
【0074】
(例D)
未硬化の硬化性化合物として、式(2)の化合物の代わりに、式(3)の化合物を用いた以外は例6と同様にして液晶光学素子を得た。この液晶光学素子に例5と同様に電圧を印加後、同じ測定系で反射率を測定したところ、電圧を印加しないときが16%、50Vrms印加したときが9%であり、電圧印加時と非印加時との反射率の差は7%であった。
【0075】
(例7)
誘電異方性が負であるネマチック液晶(Tc =98℃、Δε= −5.6、Δn=0.220)95部、式(2)で示される未硬化の硬化性化合物5部、ベンゾインイソプロピルエーテル0.15部の混合物(混合物F)を調製した。
【0076】
この混合物Fを、透明電極上に垂直配向用ポリイミド薄膜を形成した一対の基板をポリイミド薄膜が対向するように、微量の6μmの樹脂ビーズを介して、四辺に幅約1mmで印刷したエポキシ樹脂により張り合わせて作製した液晶セルに注入した。
【0077】
このセルを25℃に保持した状態で、主波長が約365nmのHgXeランプにより、上側より3mW/cm2 、下側より同じく約3mW/cm2 の紫外線を10分間照射し、液晶光学素子を得た。
この液晶光学素子に矩形波50Hz、30Vrmsの電圧を10分印加後電圧を除去する操作を10回繰り返した。
【0078】
その後、530nmを中心波長とした半値幅約20nmの測定光源を用いた透過率測定系(光学系のF値11.5)で透過率を測定したところ、電圧を印加しない状態で86%、50Vrms印加した状態で24%であり、電圧印加時と非印加時の透過率の差は62%であった。
【0079】
(例E)
未硬化の硬化性化合物として、式(2)の化合物の代わりに、式(3)の化合物を用いた以外は例7と同様にして液晶光学素子を得た。この液晶光学素子に例7と同様に電圧を印加後、同じ測定系で透過率を測定したところ、電圧を印加しない状態で64%、30Vrms印加した状態で20%であり、電圧印加時と非印加時との透過率の差は44%であった。次の表1に各例の結果をまとめて示す。
【0080】
【表1】
【0081】
本発明の液晶光学素子は、透明時の透過率が高く、電界の印加/非印加時の透過率差やコントラストが高いため、透明時に高い光の透過性が要求される調光ガラスや光シャッター等に好適である。
【0082】
反射型の液晶光学素子とした場合も電圧非印加時の反射率が高く、電界の印加/非印加時のコントラストを高くできる。
【0083】
また、液晶光学素子への電界の印加/非印加時操作の繰り返しによる素子の電圧−透過率曲線または電圧−反射率曲線の変動が小さいため、信頼性の高い液晶光学素子を提供することができる。
【図面の簡単な説明】
【図1】本発明の液晶光学素子の製造方法の一例を示すフローチャート。
【図2】本発明の液晶光学素子の一例の模式的断面図。
【図3】本発明の液晶光学素子の使用の一例を示す模式図。
【符号の説明】
1A、1B:ガラス基板
2A、2B:電極
3A、3B:配向膜
4:液晶/硬化物複合体層
10:液晶光学素子[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a liquid crystal optical element that can be used for a light control element, a display element, an optical shutter, and the like by controlling transmission, scattering, and reflection states of the element by applying / not applying an electric field.
[0002]
[Prior art]
A transmission-scattering type optical element has been proposed in which a liquid crystal and a transparent polymer are combined to cause a difference in refractive index between the polymer and the liquid crystal, or inside the liquid crystal (between microregions). It is called a liquid crystal / polymer composite element, a liquid crystal / resin composite element, or a dispersed liquid crystal element. Since this element does not require a polarizing plate in principle, it has a great advantage that light absorption loss is small, high scattering performance is obtained, and light use efficiency in the entire element is high.
[0003]
Taking advantage of this characteristic, it is used for light control glass, optical shutters, laser devices, display devices and the like. Those in a scattering state when no voltage was applied and in a transparent state when a voltage was applied were commercialized.
[0004]
Furthermore, Conventional Example 1 (USP 5188760) disclosed an element using liquid crystal and polymerizable liquid crystal. In this conventional example 1, since the liquid crystal in the element and the polymerized liquid crystal have the same orientation direction when no voltage is applied, the element is transparent when viewed from any direction. When a voltage is applied, the orientation of the liquid crystal in the element is controlled by an electric field, and the arrangement direction of the liquid crystal molecules changes variously in a minute region, whereby the element exhibits a scattering state.
[0005]
It has also been disclosed that the contrast ratio is improved by adding a chiral agent to provide a helical structure in the initial orientation. This element is called “anisotropic gel” or “liquid crystal gel”. In Conventional Example 1, a mesogenic monomer having an acryloyl group at the terminal was used.
[0006]
Also, a device having the same configuration is disclosed in Conventional Example 2 (International Patent Publication WO92 / 19695). The operation mode is the same as in Conventional Example 1, and a small amount of polymer is dispersed in a chiral nematic liquid crystal to obtain a transparent state when no voltage is applied and a scattering state when a voltage is applied. This element is called PSCT (Polymer Stabilized Cholesteric Texture). This conventional example 2 also disclosed a mesogenic monomer having an acryloyl group at its terminal.
[0007]
[Problems to be solved by the invention]
The characteristics of the liquid crystal optical element obtained by preparing a mixture of liquid crystal and an uncured curable compound and curing the curable compound to form a liquid crystal / cured material composite layer are the liquid crystal / cured material. It depends greatly on the structure of the complex. Furthermore, the molecular structure of the uncured curable compound to be used greatly affects the structure of the liquid crystal / cured product composite formed.
[0008]
In general, it has been reported that a curable compound containing a mesogenic structure such as a biphenyl structure has a cured portion bonded at both ends, has a large elastic modulus after curing, and a high glass transition temperature of the resulting polymer.
[0009]
On the other hand, this restricts the molecular motion and free volume of the curable compound in the middle of curing, and in the latter stage of the curing process, the reactivity of the cured site may be suppressed, and the curing reaction is sufficient. There is a problem that it is not performed or a very long curing time is required.
[0010]
Further, in the liquid crystal optical element of the conventional example, the voltage transmittance curve of the element changes due to the electric field application driving a plurality of times, and the contrast when the electric field is applied / not applied is still low.
[0011]
The present invention provides a liquid crystal optical element with high reliability and high contrast, in which the voltage transmittance curve of the element hardly changes even when the electric field is applied / not applied multiple times. Further, the present invention provides a manufacturing method capable of manufacturing a liquid crystal optical element easily and stably with a high yield.
[0012]
[Means for Solving the Problems]
That is, according to the first aspect of the present invention, a vertical alignment polyimide thin film is formed on a pair of substrates with electrodes at least one of which is transparent, and a nematic liquid crystal having a negative dielectric anisotropy between the substrates and an uncured curable property. sandwiching the compound and mixtures, containing pre-title compound in the curable compound has the formula (1), wherein the mixture shows a liquid crystal phase, in a state in which the polyimide film for vertical alignment is in contact with the nematic liquid crystal Provided is a method for producing a liquid crystal optical element, wherein the curable compound is cured by light exposure to form a liquid crystal / cured product composite layer.
[0013]
[Chemical formula 2]
[0014]
A 1 , A 2 : each independently an acryloyl group, methacryloyl group R 1 , R 2 : each independently an alkylene group having 2 to 6 carbon atoms Z: a 4,4′-biphenylene group n which is a divalent mesogen structure part, m: integers independently 1-4 [0015]
Moreover, a 2nd aspect provides the manufacturing method which is n = m = 1 in said manufacturing method.
[0019]
Moreover, a 3rd aspect provides the manufacturing method in which a trace amount hardening catalyst is contained in the said mixture in said manufacturing method.
[0020]
Moreover, a 4th aspect provides the manufacturing method which makes the distance between electrodes 4-50 micrometers in said manufacturing method.
[0022]
The fifth aspect provides a liquid crystal optical element manufactured by the above manufacturing method .
[0023]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, by introducing an oxyalkylene structure having high molecular mobility between the mesogen structure portion and the cured site in the uncured curable compound, the molecular mobility of the cured site in the curing process is improved, Even in a short-time curing reaction, a liquid crystal optical element can be obtained in which the state during application / non-application of the electric field is stable and reliable, and the contrast is high. FIG. 1 shows a flowchart of an example of a method for producing a liquid crystal optical element of the present invention.
[0024]
The curing site (A 1 , A 2 ) of formula (1) may be any of the above functional groups that can be photocured and thermally cured together with a curing catalyst, and in particular, the temperature during curing can be controlled. To acryloyl group and methacryloyl group suitable for photocuring.
[0025]
The number of carbon atoms of R 1 and R 2 in the oxyalkylene moiety of formula (1) is preferably 2 to 6 because of its mobility, and more preferably a chain of ethylene groups having 2 carbon atoms and a propylene group having 3 carbon atoms.
[0026]
As the mesogen structure part (Z) of the formula (1), divalent polyphenylene in which two or more 1,4-phenylene groups are linked is preferable. Further, a divalent organic group in which a part of the 1,4-phenylene group in the polyphenylene group is substituted with a 1,4-cyclohexylene group may be used.
[0027]
Some or all of the hydrogen atoms of these polyphenylene groups and divalent organic groups may be substituted with substituents such as alkyl groups having 1 to 2 carbon atoms, halogen atoms, carboxyl groups, and alkoxycarbonyl groups. In the present invention, Z represents a biphenylene group in which two 1,4-phenylene groups are linked (hereinafter referred to as 4,4′-biphenylene group), a terphenylene group in which three 1,4-phenylene groups are linked, and 1 to 2 of these hydrogen atoms. Four are divalent organic groups substituted by an alkyl group having 1 to 2 carbon atoms, a fluorine atom, a chlorine atom or a carboxyl group. Most preferred Z is a 4,4′-biphenylene group having no substituent.
[0028]
If n and m in the formula (1) are too large, the compatibility with the liquid crystal is lowered. Therefore, each is independently 1 to 10, and 1 to 4 is more preferable in consideration of element characteristics after curing.
[0029]
A mixture of liquid crystal and an uncured curable compound may contain a curing catalyst. In the case of photocuring, a photopolymerization initiator generally used for photocuring resins such as benzoin ether, acetophenone, and phosphine oxide. Can be used.
[0030]
In the case of thermosetting, a curing catalyst such as peroxide, thiol, amine, or acid anhydride can be used depending on the type of curing site, and if necessary, curing aids such as amines can also be used. Can be used.
[0031]
The content of the curing catalyst is preferably 20 wt% or less of the uncured curable compound to be contained, and more preferably 1 to 10 wt% when a high molecular weight or high specific resistance of the cured product after curing is required. .
[0032]
In order to improve the compatibility with the liquid crystal, the uncured curable compound in the mixture of the liquid crystal and the uncured curable compound includes a plurality of uncured curable compounds having different n and m in the formula (1). May be included, thereby further improving the contrast.
[0033]
On the other hand, the mixture of the liquid crystal and the uncured curable compound is preferably a homogeneous solution after mixing. Mixtures of curable compound in the liquid crystal and uncured, when it is sandwiched in the substrate with electrode, used as shows the liquid crystal phase.
[0034]
Curable compound mixture of liquid crystal and uncured, when cured, the liquid crystal phase shows Suyo. The liquid crystal and the mixture electrode surfaces of the electrode substrate with sandwiching the curable compound uncured providing a thin film of resin.
[0035]
[0036]
The distance between the electrodes can be held by a spacer or the like, and the distance is preferably 4 to 50 μm, more preferably 5 to 30 μm. When the electrode interval is too small, the contrast is lowered, and when it is too large, the drive voltage is increased. FIG. 2 is a schematic cross-sectional view of the liquid crystal optical element of the present invention.
[0037]
The liquid crystal optical element 10 includes glass substrates 1A and 1B, electrodes 2A and 2B, alignment films 3A and 3B, and a liquid crystal / cured
[0038]
The substrate that supports the electrodes may be a glass substrate or a resin substrate, or a combination of a glass substrate and a resin substrate. Alternatively, one may be a reflective electrode made of aluminum or a dielectric multilayer film.
[0039]
In the case of a film substrate, a substrate with electrodes to be continuously supplied is sandwiched between two rubber rolls, and a mixture of a liquid crystal containing a spacer and dispersed therein and an uncured curable compound is interposed between the substrates, and then continuously inserted. Productivity is high because it can be cured with
[0040]
In the case of a glass substrate, a small amount of spacers are scattered on the electrode surface, and the four sides of the opposed substrate are sealed with a sealing agent such as epoxy resin, and one of the cutouts of the seals provided at two or more locations is liquid crystal A liquid crystal optical element can be obtained by immersing in a mixture of curable compound and uncured curable compound and sucking from the other to fill the cell with the mixture and cure. A vacuum injection method can also be used.
Hereinafter, Example 7 (Example), Examples 1 to 6, and A to E (Comparative Examples) will be described in detail.
[0041]
【Example】
(Example 1)
Cyano-based nematic Ji click crystal (manufactured by Merck BL-006, dielectric anisotropy positive) 95 parts of a curable compound 5 parts of uncured formula (2), a mixture of 0.15 parts of benzoin isopropyl ether (mixture A) was prepared.
[0042]
[Chemical 3]
[0043]
This compound of the formula (2) is a compound of the formula (1) in which A 1 and A 2 are acryloyl groups, R 1 and R 2 are ethylene groups, and the mesogenic structure of Z is 4,4′-biphenylene group, n , M are both 1.
[0044]
A pair of substrates obtained by rubbing a polyimide thin film formed on a transparent electrode in one direction with this mixture A are opposed so that the rubbing directions are orthogonal to each other, and a small amount of resin beads having a diameter of 13 μm are sprayed, Then, it was injected into a liquid crystal cell produced by bonding together with an epoxy resin printed with a width of about 1 mm on four sides.
[0045]
While maintaining the liquid crystal cell 25 ° C., the dominant wavelength of about 365nm of HgXe lamp, 3 mW / cm 2 from the upper side, the same about 3 mW / cm 2 UV than the lower irradiation for 10 minutes, the liquid crystal optical element Manufactured.
[0046]
An operation of removing the voltage after applying a voltage of 50 Hz and 50 Vrms for 10 minutes to the liquid crystal optical element was repeated 10 times. Thereafter, the transmittance of the liquid crystal cell was measured with a transmittance measurement system (F value 11.5 of the optical system) using a measurement light source having a half wavelength width of about 20 nm with 530 nm as the center wavelength. %, 23% when 50 Vrms was applied, and the difference in transmittance between when the voltage was applied and when it was not applied was 56%.
[0047]
(Example A)
As in Example 1, except that the uncured curable compound of formula (3) (4,4′-bisacryloyloxybiphenyl) was used as the uncured curable compound instead of the compound of formula (2). Thus, a liquid crystal optical element was obtained.
[0048]
[Formula 4]
[0049]
This compound of formula (3) corresponds to the case where A 1 and A 2 are acryloyl groups, the mesogenic structure of Z is 4,4′-biphenylene group, and n and m are both 0 in formula (1) To do.
[0050]
A voltage was applied to the liquid crystal optical element in the same manner as in Example 1. Thereafter, the transmittance was measured using the same measurement system as in Example 1. The transmittance was 72% when no voltage was applied, and 29% when 50 Vrms was applied. The difference in transmittance between when the voltage was applied and when the voltage was not applied was 43%. Met.
[0051]
(Example 2)
A mixture (mixture B) was prepared by dissolving 2.5 wt% of a chiral agent (a mixture of S-811 manufactured by Merck and C15 manufactured by Merck) in the mixture A prepared in Example 1.
[0052]
The mixture B was injected into the same liquid crystal cell as in Example 1 and kept at 25 ° C., and the same dominant wavelength as in Example 1 was about 365 nm, and the same main wavelength as in Example 1 was 3 mW / cm 2 from the upper side and about 3 mW from the lower side. A liquid crystal optical element was obtained by irradiating UV light of / cm 2 for 3 minutes.
[0053]
The operation of removing the voltage after applying a rectangular wave voltage of 50 Hz and 50 Vrms for 10 minutes to this liquid crystal optical element was repeated 10 times. Thereafter, the transmittance was measured with a transmittance measurement system (F value 11.5 of the optical system) using a measurement light source with a center wavelength of 530 nm and a half-value width of about 20 nm, and it was 78% with no voltage applied. The value of contrast divided by the transmittance when 50 Vrms was applied was 33.
[0054]
(Example 3)
A liquid crystal optical element was obtained in the same manner as in Example 2 except that the uncured curable compound of formula (4) was used as the uncured curable compound instead of the compound of formula (2).
[0055]
[Chemical formula 5]
[0056]
The compound of the formula (4) is represented by the formula (1), wherein A 1 and A 2 are acryloyl groups, R 1 and R 2 are propylene groups, the mesogenic structure of Z is 4,4′-biphenylene group, n , m corresponds to the case are both 1.
[0057]
After applying a voltage to this liquid crystal optical element in the same manner as in Example 2, the transmittance was measured with the same measurement system. As a result, it was 80% when no voltage was applied, and this value was divided by the transmittance when 50 Vrms was applied. The contrast value was 28.
[0058]
(Example B)
A liquid crystal optical element was obtained in the same manner as in Example 2 except that the compound of formula (3) was used instead of the compound of formula (2) as an uncured curable compound. After applying a voltage to this liquid crystal optical element in the same manner as in Example 2, the transmittance was measured with the same measurement system. As a result, it was 61% when no voltage was applied, and this value was divided by the transmittance when 50 Vrms was applied. The contrast value was 17.
[0059]
(Example 4)
Cyano-based nematic Ji click crystal (manufactured by Merck BL-009), 97 parts of a solution obtained by dissolving in 2.5 wt% uniform chiral agent used in Example 2, the curable compound of uncured formula (2) A mixture of 3 parts and 0.09 part of benzoin isopropyl ether (mixture C) was prepared.
[0060]
The mixture C was injected into the same liquid crystal cell as in Example 1 and maintained at 25 ° C., and the same main wavelength as in Example 1 was about 365 nm, and the same main wavelength as in Example 1 was about 3 mW / cm 2 from the upper side and about 3 mW from the lower side. Irradiated with / cm 2 of ultraviolet rays for 30 minutes, a liquid crystal optical element was obtained.
[0061]
The operation of removing the voltage after applying a rectangular wave of 50 Hz and a voltage of 20 Vrms for 10 minutes to this liquid crystal optical element was repeated 10 times. Thereafter, the transmittance was measured with a transmittance measuring system similar to the above using a measuring light source having a half-width of about 20 nm with a center wavelength of 530 nm. As a result, it was 82% with no voltage applied, and this value was applied to 20 Vrms. The contrast value divided by the transmittance at the time was 11.
[0062]
Further, after repeating the operation of removing the voltage after applying a rectangular wave of 50 Hz and a voltage of 30 Vrms for 10 minutes to this liquid crystal optical element, the transmittance was measured in the same manner. As a result, the transmittance was 82% with no voltage applied. The value of the contrast obtained by dividing this value by the transmittance when 30 Vrms was applied was 40.
[0063]
(Example 5)
Cyano-based nematic Ji click crystal (manufactured by Merck BL-009), 97 parts obtained by dissolving a chiral agent used in Example 2 to 2.5 wt% homogeneity, curable compound of uncured formula (2) 2 Part, 1 part of an uncured curable compound of formula (5) and 0.09 part of benzoin isopropyl ether were prepared (mixture D).
[0064]
[Chemical 6]
[0065]
The compound of the formula (5) has the formula (1), wherein A 1 and A 2 are acryloyl groups, R 1 and R 2 are ethylene groups, the mesogenic structure part of Z is 4,4′-biphenylene group and n is 2 , M corresponds to 3.
[0066]
The mixture D was injected into the same liquid crystal cell as in Example 1 and kept at 25 ° C., and the same main wavelength as in Example 1 was about 365 nm, and the same main wavelength as in Example 1 was about 3 mW / cm 2 from the upper side and about 3 mW from the lower side. Irradiated with / cm 2 of ultraviolet rays for 30 minutes, a liquid crystal optical element was obtained.
[0067]
The operation of removing the voltage after applying a rectangular wave of 50 Hz and a voltage of 20 Vrms for 10 minutes to this liquid crystal optical element was repeated 10 times. Thereafter, the transmittance was measured with a transmittance measuring system similar to the above using a measuring light source having a half-width of about 20 nm with 530 nm as the center wavelength. As a result, it was 82% without applying voltage, and this value was 20 Vrms. The contrast value divided by the transmittance when applied was 28.
[0068]
(Comparative Example C)
A liquid crystal optical element was obtained in the same manner as in Example 4 except that the compound of formula (3) was used instead of the compound of formula (2) as an uncured curable compound. The operation of removing the voltage after applying a rectangular wave of 50 Hz and a voltage of 20 Vrms for 10 minutes to this liquid crystal optical element was repeated 10 times.
[0069]
Thereafter, the transmittance was measured with a transmittance measuring system similar to the above using a measurement light source having a half-width of about 20 nm with a center wavelength of 530 nm. As a result, it was 57% with no voltage applied, and this value was applied to 20 Vrms. The contrast value divided by the transmittance at the time of measurement was 10.
[0070]
Furthermore, the operation of removing the voltage after applying a rectangular wave of 50 Hz and a voltage of 30 Vrms for 10 minutes to this liquid crystal optical element was repeated 10 times. Thereafter, the transmittance was measured in the same manner as described above. As a result, it was 49% when no voltage was applied, and the contrast value obtained by dividing this value by the transmittance when 30 Vrms was applied was 6.
[0071]
(Example 6)
Cyano-based nematic Ji click liquid crystal (manufactured by Merck BL-006) 65 parts of a chiral agent (weight of Merck R-811 and manufactured by Merck CB15 ratio of 1: 1 mixture of) and 35 parts of formula (2) A mixture E of 3.1 parts of the uncured curable compound and 0.09 part of benzoin isopropyl ether was prepared.
[0072]
The mixture E, was injected into the same liquid crystal cell as in Example 1, while holding the 25 ° C., the same dominant wavelength of about 365nm to HgXe lamp as in Example 1, 3mW / cm 2 than the upper, likewise about 3mW than the lower Irradiated with / cm 2 of ultraviolet rays for 30 minutes, a liquid crystal optical element was obtained.
[0073]
The operation of removing the voltage after applying a rectangular wave voltage of 50 Hz and 50 Vrms for 10 minutes to this liquid crystal optical element was repeated 10 times. Subsequently, in a reflectance measurement system (F value 8.2 of the optical system) using a measurement light source having a center wavelength of 530 nm and a half width of about 20 nm, a liquid crystal optical element is placed on black paper that hardly reflects light. When the reflectance was measured, it was 23% when no voltage was applied and 8% when 50 Vrms was applied, and the difference in reflectance between when the voltage was applied and when it was not applied was 15%.
[0074]
(Example D)
A liquid crystal optical element was obtained in the same manner as in Example 6 except that the compound of formula (3) was used instead of the compound of formula (2) as an uncured curable compound. After applying a voltage to this liquid crystal optical element in the same manner as in Example 5, the reflectance was measured using the same measurement system. The reflectance was 16% when no voltage was applied, and 9% when 50 Vrms was applied. The difference in reflectance from the applied voltage was 7%.
[0075]
(Example 7)
Nema Ji click crystal dielectric anisotropy is negative (T c = 98 ℃, Δε = -5.6, Δn = 0.220) 95 parts of curable compounds uncured represented by the formula (2) 5 A mixture (mixture F) of 0.15 parts of benzoin isopropyl ether was prepared.
[0076]
This mixture F is made of an epoxy resin printed on a side with a width of about 1 mm through a small amount of 6 μm resin beads so that the polyimide thin film faces a pair of substrates on which a polyimide thin film for vertical alignment is formed on a transparent electrode. It injected into the liquid crystal cell produced by bonding.
[0077]
While maintaining the cell 25 ° C., the dominant wavelength of about 365nm of HgXe lamp, 3 mW / cm 2 from the upper side, the same about 3 mW / cm 2 UV than the lower irradiation for 10 minutes, to obtain a liquid crystal optical element It was.
The operation of removing the voltage after applying a rectangular wave of 50 Hz and a voltage of 30 Vrms for 10 minutes to this liquid crystal optical element was repeated 10 times.
[0078]
Thereafter, the transmittance was measured with a transmittance measurement system (F value 11.5 of the optical system) using a measurement light source with a center wavelength of 530 nm and a half-value width of about 20 nm. As a result, 86%, 50 Vrms without applying voltage. The applied state was 24%, and the difference in transmittance between when the voltage was applied and when it was not applied was 62%.
[0079]
(Example E)
A liquid crystal optical element was obtained in the same manner as in Example 7 except that the compound of formula (3) was used instead of the compound of formula (2) as the uncured curable compound. After applying a voltage to this liquid crystal optical element in the same manner as in Example 7, the transmittance was measured with the same measurement system. As a result, it was 64% when no voltage was applied and 20% when 30 Vrms was applied. The difference in transmittance from the time of application was 44%. Table 1 below summarizes the results of each example.
[0080]
[ Table 1 ]
[0081]
The liquid crystal optical element of the present invention has a high transmittance when transparent, and a high transmittance difference and contrast when an electric field is applied / not applied. Therefore, a light control glass and an optical shutter that require high light transmittance when transparent It is suitable for etc.
[0082]
Even in the case of a reflective liquid crystal optical element, the reflectance when no voltage is applied is high, and the contrast when an electric field is applied / not applied can be increased.
[0083]
In addition, since the fluctuation of the voltage-transmittance curve or the voltage-reflectance curve of the element due to the repetition of the operation during application / non-application of an electric field to the liquid crystal optical element is small, a highly reliable liquid crystal optical element can be provided. .
[Brief description of the drawings]
FIG. 1 is a flowchart showing an example of a method for producing a liquid crystal optical element of the present invention.
FIG. 2 is a schematic cross-sectional view of an example of a liquid crystal optical element of the present invention.
FIG. 3 is a schematic view showing an example of use of the liquid crystal optical element of the present invention.
[Explanation of symbols]
1A, 1B: Glass substrate 2A, 2B: Electrodes 3A, 3B: Alignment film 4: Liquid crystal / cured product composite layer 10: Liquid crystal optical element
Claims (5)
前記基板間に誘電異方性が負のネマチック液晶と未硬化の硬化性化合物との混合物を挟持し、前記硬化性化合物が式(1)の化合物を含有し、前記混合物が液晶相を示し、前記垂直配向用ポリイミド薄膜が前記ネマチック液晶に接するようにした状態で前記硬化性化合物を光露光により硬化させて液晶/硬化物複合体層を形成する液晶光学素子の製造方法。
R1、R2:それぞれ独立に炭素数2〜6のアルキレン基
Z:2価のメソゲン構造部である4,4'−ビフェニレン基
n、m:それぞれ独立に1〜4の整数 Forming a polyimide thin film for vertical alignment on a pair of substrates with electrodes at least one of which is transparent;
Dielectric anisotropy between the substrates sandwiching a mixture of a curable compound having a negative nematic liquid crystal and an uncured, pre Symbol curable compound contains a compound of formula (1), wherein the mixture shows a liquid crystal phase A method for producing a liquid crystal optical element, wherein the curable compound is cured by light exposure in a state in which the polyimide thin film for vertical alignment is in contact with the nematic liquid crystal to form a liquid crystal / cured material composite layer.
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29862498A JP4352480B2 (en) | 1998-10-20 | 1998-10-20 | Liquid crystal optical element and manufacturing method thereof |
US09/807,425 US6723393B1 (en) | 1998-10-20 | 1999-10-09 | Liquid crystal optical element and method for preparing the same |
DE69932358T DE69932358T2 (en) | 1998-10-20 | 1999-10-19 | Liquid crystalline material, optical element and method for the production thereof |
EP06010704A EP1690918B1 (en) | 1998-10-20 | 1999-10-19 | Liquid crystal optical element and method for its production |
DE69939501T DE69939501D1 (en) | 1998-10-20 | 1999-10-19 | Liquid crystalline optical element and process for its preparation |
EP99947972A EP1154006B1 (en) | 1998-10-20 | 1999-10-19 | Liquid crystal optical element and method for preparing the same |
PCT/JP1999/005765 WO2000023539A1 (en) | 1998-10-20 | 1999-10-19 | Liquid crystal optical element and method for preparing the same |
US10/780,643 US7011870B2 (en) | 1998-10-20 | 2004-02-19 | Liquid crystal optical element and method for its production |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29862498A JP4352480B2 (en) | 1998-10-20 | 1998-10-20 | Liquid crystal optical element and manufacturing method thereof |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2000119656A JP2000119656A (en) | 2000-04-25 |
JP2000119656A5 JP2000119656A5 (en) | 2005-05-19 |
JP4352480B2 true JP4352480B2 (en) | 2009-10-28 |
Family
ID=17862150
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP29862498A Expired - Fee Related JP4352480B2 (en) | 1998-10-20 | 1998-10-20 | Liquid crystal optical element and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4352480B2 (en) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5019087B2 (en) * | 2003-03-31 | 2012-09-05 | Dic株式会社 | Poly (oxyalkylene) substituted compounds |
JP4595362B2 (en) * | 2004-03-22 | 2010-12-08 | 旭硝子株式会社 | Liquid crystal display element |
JP2005345567A (en) * | 2004-05-31 | 2005-12-15 | Asahi Glass Co Ltd | Liquid crystal optical element and method for manufacturing the same |
JP2006143895A (en) * | 2004-11-19 | 2006-06-08 | Semiconductor Energy Lab Co Ltd | Liquid crystal composition and electrooptic device |
ATE526384T1 (en) | 2006-06-27 | 2011-10-15 | Asahi Glass Co Ltd | LIQUID CRYSTALLINE COMPOSITION, LIQUID CRYSTALLINE OPTICAL ELEMENT AND METHOD FOR PRODUCING A LIQUID CRYSTALLINE OPTICAL ELEMENT |
CN101490603B (en) | 2006-07-14 | 2011-04-20 | 旭硝子株式会社 | Liquid crystal optical device and process for manufacturing the same |
KR101065916B1 (en) * | 2007-05-22 | 2011-09-19 | 주식회사 엘지화학 | Polymerizable liquid crystal composition and optical film and device using same |
TW200944918A (en) * | 2008-03-19 | 2009-11-01 | Asahi Glass Co Ltd | Image display with function for transmitting light from subject to be observed |
EP2692828B1 (en) | 2011-03-28 | 2019-12-04 | Mitsubishi Chemical Corporation | Liquid crystal element and liquid crystal composition |
JP2017003668A (en) | 2015-06-05 | 2017-01-05 | 旭硝子株式会社 | Liquid crystal optical element |
JP6808915B2 (en) | 2015-08-06 | 2021-01-06 | Agc株式会社 | Liquid crystal composition and liquid crystal optical element |
CN108138049A (en) | 2016-03-01 | 2018-06-08 | 东洋橡胶工业株式会社 | Liquid crystal compounds, thermo-responsive material and its manufacturing method |
JP7047885B1 (en) * | 2020-11-13 | 2022-04-05 | 凸版印刷株式会社 | Dimming sheet |
-
1998
- 1998-10-20 JP JP29862498A patent/JP4352480B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2000119656A (en) | 2000-04-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6723393B1 (en) | Liquid crystal optical element and method for preparing the same | |
JP4132424B2 (en) | Manufacturing method of liquid crystal optical element | |
US7499125B2 (en) | Method of fabricating electro-optical devices with polymer-stabilized liquid crystal molecules | |
JP4510023B2 (en) | Display element and display device | |
JP4352480B2 (en) | Liquid crystal optical element and manufacturing method thereof | |
US7038743B2 (en) | Electro-optical devices from polymer-stabilized liquid crystal molecules | |
JP5242390B2 (en) | Liquid crystal optical element and method for manufacturing liquid crystal optical element | |
JP2001004986A5 (en) | ||
JP2000119656A5 (en) | ||
JPWO2018025996A1 (en) | Material for liquid crystal device and liquid crystal device | |
JP5240486B2 (en) | Polymer stabilized liquid crystal display element composition and polymer dispersed liquid crystal display element | |
WO2008007715A1 (en) | Liquid crystal optical device and process for manufacturing the same | |
JP2008276197A (en) | Polymer-stabilized ferroelectric liquid crystal composition and liquid crystal display device | |
JP3890841B2 (en) | LCD light control window for vehicles | |
JP2003255315A (en) | Liquid crystal dimmer element and method for manufacturing the same | |
CN102667600B (en) | TN liquid crystal element, and method for producing same | |
JP2000119655A5 (en) | ||
JP2000119655A (en) | Liquid crystal optical element and manufacture thereof | |
JP5136597B2 (en) | Liquid crystal optical element and manufacturing method thereof | |
JP4595362B2 (en) | Liquid crystal display element | |
JP2001072976A (en) | Liquid crystal cell and its preparation | |
JP2000119654A5 (en) | ||
JP2880361B2 (en) | Liquid crystal display device and method of manufacturing the same | |
JPH09329781A (en) | Light-scattering liquid crystal device and manufacturing method thereof | |
JP2000119654A (en) | Preparation of liquid crystal optical element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040714 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040716 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20071211 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080208 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20080208 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090707 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090720 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120807 Year of fee payment: 3 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120807 Year of fee payment: 3 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120807 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130807 Year of fee payment: 4 |
|
LAPS | Cancellation because of no payment of annual fees |