JP4346404B2 - Non-heat treated steel for fracture separation at low temperature and fitting member made of this non-heat treated steel - Google Patents
Non-heat treated steel for fracture separation at low temperature and fitting member made of this non-heat treated steel Download PDFInfo
- Publication number
- JP4346404B2 JP4346404B2 JP2003356201A JP2003356201A JP4346404B2 JP 4346404 B2 JP4346404 B2 JP 4346404B2 JP 2003356201 A JP2003356201 A JP 2003356201A JP 2003356201 A JP2003356201 A JP 2003356201A JP 4346404 B2 JP4346404 B2 JP 4346404B2
- Authority
- JP
- Japan
- Prior art keywords
- less
- impact value
- present
- heat treated
- fitting member
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/42—Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21K—MAKING FORGED OR PRESSED METAL PRODUCTS, e.g. HORSE-SHOES, RIVETS, BOLTS OR WHEELS
- B21K1/00—Making machine elements
- B21K1/76—Making machine elements elements not mentioned in one of the preceding groups
- B21K1/766—Connecting rods
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/34—Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/60—Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/02—Hardening articles or materials formed by forging or rolling, with no further heating beyond that required for the formation
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Heat Treatment Of Steel (AREA)
- Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)
Description
本発明は、鍛造後に二個以上の部品に破断分離して用いる勘合部材などに適した−60℃以下のシャルピー衝撃値が5J/cm 2 以下である破断分離用非調質鋼及びこの非調質鋼からなる−60℃以下で破断分離するエンジン用コンロッドなどの勘合部材に関する。 The present invention relates to a non-tempered steel for fracture separation having a Charpy impact value of −60 ° C. or lower and 5 J / cm 2 or lower, which is suitable for a fitting member used by breaking and separating into two or more parts after forging. The present invention relates to a fitting member such as a connecting rod for an engine, which is made of quality steel and breaks and separates at −60 ° C. or less .
従来、エンジン用コンロッド(コネクティングロッド)のような鍛造後に二個の部品に分離してクランクシャフトに連接する部品等のような勘合部材では、最終形状に一体鍛造後、仕上げの機械加工を施し、その後機械加工によって二個に分割して使用していた。しかし、この製造方法は、切断部分に切り代として余分な材料を要するとともに、切断後に分離面を切削加工し、研磨などによって仕上げる必要があるため、コストの上昇の原因となっている。 Conventionally, for fitting members such as parts that are separated into two parts after forging, such as connecting rods for engines (connecting rods) and are connected to the crankshaft, the final shape is integrally forged and then subjected to finishing machining. After that, it was divided into two parts by machining. However, this manufacturing method requires an extra material as a cutting allowance at the cut portion, and it is necessary to cut the separation surface after cutting and finish it by polishing or the like, which causes an increase in cost.
これらの問題を解決するため、コンロッドの場合には、コンロッドを最終形状に加工した後、破断分離によって分割する方法が提案されている。この破断分離は、図1(A)に示すようにコンロッド1の大端部2に切り欠き溝4を形成した後に室温で荷重を加えることにより図1(B)に示すように大端部をキャップ部5とロッド部6に破断させて分割する方法である。この方法を実施するためには、破断分離時の変形を抑制するとともに容易に分割できるようにするため、室温で低延性の材料が要求されている。この要求を満たすためにSi、V及びPの含有量を調整して室温の靱延性を抑制させた材料(図2の室温で破断分離する鋼参照)が開発されている(例えば、特許文献1及び特許文献2参照。)。
In order to solve these problems, in the case of a connecting rod, a method has been proposed in which the connecting rod is processed into a final shape and then divided by fracture separation. As shown in FIG. 1 (A), the fracture end is formed by forming a
しかし、一般にコンロッドのような部品を上記切り欠き溝を形成しただけで変形せず容易に破断できるような鋼で設計、加工する場合には、存在する僅かな切り欠などの欠陥の影響を十分考慮しなければならず、結果として重量増を招くという問題がある。また高価なVを多量に添加する必要があるため、コストを低減するメリットが減少するという問題もある。 However, in general, when a part such as a connecting rod is designed and processed with steel that can be easily broken without deforming just by forming the above-mentioned notch groove, the effect of defects such as slight notches is sufficient. There is a problem that it has to be taken into account and results in an increase in weight. Further, since it is necessary to add a large amount of expensive V, there is a problem that the merit of reducing the cost is reduced.
そこで、合金の成分組成によらず、鋼の低温脆性現象を利用して低温で破断分離する方法が提案されている(例えば、特許文献3参照。)。この方法によればコンロッドの使用温度では十分な靱性を有し、破断分離時のみコンロッドを脆化させることが可能である。 しかし、通常の鉄鋼材料では破断分離を実施するためには−130℃以下に冷却をする必要があり(図2参照)、その冷却のための冷媒として液体窒素(−196℃)を用いる必要があるので、冷却するためのコストが非常に高くなるという問題がある。
本発明は、使用温度範囲内では適度な靱性を有し、従来の低温で破断するものが必要とした液体窒素冷却等による極低温領域はもちろんのこと、安価に到達可能な低温領域で破断分離が容易な非調質鋼及び低温で破断分離する勘合部材を提供することを課題としている。 The present invention has moderate toughness within the working temperature range, and breaks separation in a low temperature region that can be reached inexpensively, as well as a cryogenic region such as liquid nitrogen cooling that is required for conventional ones that break at low temperatures. It is an object of the present invention to provide a non-heat treated steel that is easy to break and a fitting member that breaks and separates at low temperatures.
上記課題を解決するため、本発明者らは、コンロッドなどの破断分離して使用する機械部品に必要な靱性値、変形なく容易に破断分離することができる靱性値、これらの靱性値を満たし、かつ液体窒素より高い温度の冷媒で冷却しても破断分離が容易な鋼の成分組成などについて鋭意研究したところ、─60℃以下で変形なく容易に破断分離することができれば、冷媒としてドライアイス+エタノール寒剤を用いることができるので、コストが低くかつ冷却が容易であること、コンロッドなどの破断分離して使用する機械部品に必要な靱性は、シャルピー衝撃値(2mmVノッチの試験片によるもの、以下同じ。)で10J/cm2 以上であること、変形なく容易に破断分離することができる靱性は、シャルピー衝撃値で5J/cm2 以下であること、これらの衝撃値を満たし、かつ─60℃以下で変形なく容易に破断分離をすることができる鋼の成分組成は、C,Si,P,Mn,Cr,Cu及びNi含有量を特許請求の範囲に記載したように適正にすることによって達成できること等の知見を得た。
本発明は、これらの知見に基づいて発明をされたものである。
In order to solve the above-mentioned problems, the present inventors satisfy the toughness value necessary for mechanical parts such as connecting rods to be used after breaking and separation, the toughness value that can be easily broken and separated without deformation, and satisfy these toughness values, In addition, as a result of diligent research on the component composition of steel that can be easily separated even when cooled with a refrigerant having a temperature higher than that of liquid nitrogen, if it can be easily separated without deformation at -60 ° C or lower, dry ice + Since ethanol cryogen can be used, the cost is low and the cooling is easy, and the toughness required for mechanical parts such as connecting rods to be used after breaking and separating is determined by Charpy impact value (2 mmV notch test piece, below the same.) it is 10J / cm 2 or more, toughness can be easily broken separated without deformation, der 5 J / cm 2 or less in a Charpy impact value The component composition of steel that satisfies these impact values and can be easily fractured and separated without deformation at -60 ° C or lower is patented for C, Si, P, Mn, Cr, Cu and Ni contents. The knowledge that it can achieve by making it appropriate as described in the claim was acquired.
The present invention has been made based on these findings.
すなわち、本発明の−60℃以下のシャルピー衝撃値が5J/cm 2 以下である破断分離用非調質鋼においては、C:0.15〜0.35%、Si:0.5〜2.0%、Mn:0.5〜1.5%、P:0.03〜0.15%、S:0.01〜0.15%、Cu:0.01〜0.5%、Ni:0.01〜0.5%、Cr:0.01〜1.0%、s−Al:0.001〜0.01%、N:0.005〜0.035%、Ca:0.0001〜0.01%及びO:0.001〜0.01%を含有し、更に必要に応じてTi:0.02%以下、Zr:0.02%以下、Pb:0.3%以下及びBi:0.3%以下のうらの1種又は2種以上を含有し、また下記式1及び式2を満たし、残部をFe及び不可避不純物からなるものとすることである。
式1・・・0.6≦Ceq≦0.85
ただし、Ceq=C+0.07×Si+0.16×Mn+0.61×P
+0.19×Cu+0.17×Ni+0.2 ×Cr
式2・・・0≦TTr≦1.5
ただし、TTr=(C+0.8 ×Si+5 ×P)−0.5×(Mn+Cr+Cu+Ni)
That is, in the non-heat treated steel for fracture separation having a Charpy impact value of −60 ° C. or less of the present invention of 5 J / cm 2 or less , C: 0.15 to 0.35%, Si: 0.5 to 2. 0%, Mn: 0.5 to 1.5%, P: 0.03 to 0.15%, S: 0.01 to 0.15%, Cu: 0.01 to 0.5%, Ni: 0 0.01-0.5%, Cr: 0.01-1.0%, s-Al: 0.001-0.01%, N: 0.005-0.035%, Ca: 0.0001-0 .01% and O: 0.001 to 0.01%, further Ti: 0.02% or less, Zr: 0.02% or less, Pb: 0.3% or less, and Bi: 0 if necessary. It is intended to contain one or more of 3% or less of back, satisfy the following
However, Ceq = C + 0.07 x Si + 0.16 x Mn + 0.61 x P
+ 0.19 × Cu + 0.17 × Ni + 0.2 × Cr
However, T Tr = (C + 0.8 × Si + 5 × P) −0.5 × (Mn + Cr + Cu + Ni)
また、本発明の−60℃以下で破断分離する勘合部材においては、使用する非調質鋼をC:0.15〜0.35%、Si:0.5〜2.0%、Mn:0.5〜1.5%、P:0.03〜0.15%、S:0.01〜0.15%、Cu:0.01〜0.5%、Ni:0.01〜0.5%、Cr:0.01〜1.0%、s−Al:0.001〜0.01%、N:0.005〜0.035%、Ca:0.0001〜0.01%及びO:0.001〜0.01%を含有し、更に必要に応じてTi:0.02%以下、Zr:0.02%以下、Pb:0.3%以下及びBi:0.3%以下のうらの1種又は2種以上を含有し、また下記式1及び式2を満たし、残部をFe及び不可避不純物からなるものとすることである。
式1・・・0.6≦Ceq≦0.85
ただし、Ceq=C+0.07×Si+0.16×Mn+0.61×P
+0.19×Cu+0.17×Ni+0.2 ×Cr
式2・・・0≦TTr≦1.5
ただし、TTr=(C+0.8 ×Si+5 ×P)−0.5×(Mn+Cr+Cu+Ni)
Moreover, in the fitting member which fractures and separates at −60 ° C. or less according to the present invention, the non-heat treated steel used is C: 0.15-0.35%, Si: 0.5-2.0%, Mn: 0 0.5 to 1.5%, P: 0.03 to 0.15%, S: 0.01 to 0.15%, Cu: 0.01 to 0.5%, Ni: 0.01 to 0.5 %, Cr: 0.01-1.0%, s-Al: 0.001-0.01%, N: 0.005-0.035%, Ca: 0.0001-0.01% and O: Containing 0.001 to 0.01%, and if necessary, Ti: 0.02% or less, Zr: 0.02% or less, Pb: 0.3% or less, and Bi: 0.3% or less 1 type or 2 types or more are included, the following
However, Ceq = C + 0.07 x Si + 0.16 x Mn + 0.61 x P
+ 0.19 × Cu + 0.17 × Ni + 0.2 × Cr
However, T Tr = (C + 0.8 × Si + 5 × P) −0.5 × (Mn + Cr + Cu + Ni)
本発明の−60℃以下のシャルピー衝撃値が5J/cm 2 以下である破断分離用非調質鋼及び−60℃以下で破断分離する勘合部材は、上記構成にしたことにより、次のような優れた効果を奏する。
(1)図2の本発明鋼に示すように通常の使用温度範囲内ではコンロッドなどの機械部品に必要な靱性(シャルピー衝撃値で10J/cm2 )より高くなるとともに、破断分離するために冷却する温度の−60℃以下では変形なく容易に破断分離することができる靱性(シャルピー衝撃値で5J/cm2 )より低くなる。
(2)従来提案されているものより高い温度の−60℃以下で破断分離が変形なく容易に実施することができる。
(3)高価を元素を含有していないので、安価である。
The non-refined steel for fracture separation having a Charpy impact value of −60 ° C. or less of the present invention of 5 J / cm 2 or less and the fitting member that fractures and separates at −60 ° C. or less have the following configuration. Excellent effect.
(1) As shown in the steel of the present invention in FIG. 2, the toughness required for mechanical parts such as connecting rods (Charpy impact value of 10 J / cm 2 ) is increased within the normal operating temperature range, and it is cooled to break and separate. to lower than (5 J / cm 2 in Charpy impact value) toughness which can be easily broken separated without deformation below -60 ° C. temperature.
(2) Breaking separation can be easily performed without deformation at a temperature of -60 ° C. or lower, which is higher than that conventionally proposed.
(3) It is inexpensive because it does not contain expensive elements.
次に、本発明の−60℃以下のシャルピー衝撃値が5J/cm 2 以下である破断分離用非調質鋼及び−60℃以下で破断分離する勘合部材の成分組成、Ceq及びTTrを上記のように特定している理由を説明する。
C:0.15〜0.35%
Cは、強度を高くするとともに、最適な衝撃遷移曲線を得るために必要な元素である。C含有量が低い鋼では図3に示すように上部棚エネルギーと下部棚エネルギーの差が大きく、その遷移も急激であるが、遷移温度は低くなる。他方、C含有量が高い鋼では上部棚エネルギーと下部棚エネルギーの差が小さく、その遷移も緩やかであるが、遷移温度は上昇する。本発明のように−60℃以下に冷却して破断分離を行う場合には、上部棚エネルギーはできるだけ高く、−10〜−60℃で急激に衝撃値が低下し、−60℃以下では下部棚エネルギーとなっている必要がある。そのため、本発明ではC含有量の上限を0.35%とする。他方、C含有量を低下させ過ぎると十分な強度が得られないので、その下限を0.15%とする。
Next, the component composition, Ceq, and T Tr of the non-heat treated steel for fracture separation having a Charpy impact value of −60 ° C. or less of the present invention of 5 J / cm 2 or less and the fitting member that fractures and separates at −60 ° C. or less are described above. Explain why it is specified.
C: 0.15-0.35%
C is an element necessary for increasing the strength and obtaining an optimal impact transition curve. In steel with low C content, as shown in FIG. 3, the difference between the upper shelf energy and the lower shelf energy is large, and the transition is rapid, but the transition temperature is low. On the other hand, in steel with a high C content, the difference between the upper shelf energy and the lower shelf energy is small and the transition is slow, but the transition temperature rises. When the fracture separation is performed by cooling to −60 ° C. or lower as in the present invention, the upper shelf energy is as high as possible, the impact value decreases rapidly at −10 to −60 ° C., and the lower shelf at −60 ° C. or lower. It needs to be energy. Therefore, in the present invention, the upper limit of the C content is set to 0.35%. On the other hand, if the C content is too low, sufficient strength cannot be obtained, so the lower limit is made 0.15%.
Si:0.5〜2.0%
Siは、鋼溶製時において脱酸作用を有しているとともに、Vの代替元素としてフエライト中に固溶し、破断分離時の塑性変形の主な原因である軟質相であるフエライトの強度、耐力及び疲労強度を向上させて破断分離時の変形を抑制し、破断面の密着性を向上させる元素である。また遷移温度を上昇させて低温での破断分離特性を向上させる元素でもある。それらの作用効果を得るためには0.5%以上含有させる必要があるが、多くなり過ぎると硬さが著しく増加して被削性を低下させるので、その上限を2%とする。
Si: 0.5 to 2.0%
Si has a deoxidizing action when steel is melted, dissolves in ferrite as an alternative element of V, and the strength of ferrite, which is a soft phase, which is the main cause of plastic deformation during fracture separation, It is an element that improves the yield strength and fatigue strength, suppresses deformation at break separation, and improves the adhesion of the fracture surface. It is also an element that raises the transition temperature and improves the fracture separation characteristics at low temperatures. In order to obtain these effects, it is necessary to contain 0.5% or more. However, if the amount is too large, the hardness is remarkably increased and the machinability is lowered, so the upper limit is made 2%.
Mn:0.5〜1.5%
Mnは、基地に固溶して強度を高めるとともに、衝撃遷移温度を低下させて室温での靱性を向上させるので、そのために含有させる元素である。本発明では、Si、Pによる衝撃遷移温度の大きな上昇を抑制する働きがあるものである。これらの作用効果を得るためには0.5%以上含有させる必要があるが、多くなり過ぎると鍛造後にベイナイトが生成し、硬さが著しく増加して被削性を低下させるので、その上限を1.5%とする。
Mn: 0.5 to 1.5%
Mn is an element to be contained because Mn is dissolved in the matrix to increase the strength and lower the impact transition temperature to improve the toughness at room temperature. In the present invention, there is a function of suppressing a large increase in impact transition temperature due to Si and P. In order to obtain these functions and effects, it is necessary to contain 0.5% or more. However, if the amount is too large, bainite is generated after forging, the hardness is remarkably increased and the machinability is lowered. 1.5%.
P:0.03〜0.15%
Pは、不可避な不純物であり、粒界に偏析して靱性を低下させるので、できるだけ低く抑えるのが一般的であるが、破断分離を行う本発明では破断時の変形を抑制し、破断面の密着性を向上させるために非常に有効であるので、積極的に含有させる元素である。またPは、Siと同様にVの代替元素としてフェライト中に固溶してフェライトの強度を向上させることによって耐力及び疲労強度を向上させるのに有効であり、また衝撃遷移温度を大きく上昇させるので、それらのためにも含有させる元素でもある。それらの作用効果を得るためには0.03%以上含有させる必要があるが、多くなり過ぎると室温での衝撃値も著しく低下させるので、その上限を0.15%とする。
P: 0.03-0.15%
P is an inevitable impurity and segregates at the grain boundary to reduce toughness. Therefore, it is generally kept as low as possible. However, in the present invention in which fracture separation is performed, deformation at break is suppressed, and Since it is very effective for improving the adhesion, it is an element that is actively included. P, like Si, is effective in improving the strength and fatigue strength by dissolving in ferrite as a substitute element for V and improving the strength of the ferrite, and also greatly increases the impact transition temperature. It is also an element to be included for them. In order to obtain these effects, it is necessary to contain 0.03% or more, but if it is too much, the impact value at room temperature is also significantly reduced, so the upper limit is made 0.15%.
S:0.01〜0.15%
Sは、Mnと硫化物を生成して被削性を改善するので、そのために含有させる元素である。その作用効果を得るためには0.01%以上含有させる必要があるが、多くなり過ぎると熱間加工性を劣化せさるので、その上限を0.15%以下とする。
S: 0.01 to 0.15%
S is an element to be contained for generating Mn and sulfide to improve machinability. In order to acquire the effect, it is necessary to contain 0.01% or more, but if it increases too much, hot workability will deteriorate, Therefore The upper limit shall be 0.15% or less.
Cu:0.01〜0.5%、Ni:0.01〜0.5%
CuとNiは、Mn、Crと同様に室温の衝撃値を向上させるとともに、遷移温度を低下させるので、それらのために含有させる元素である。それらの作用効果を得るには0.01%以上含有させる必要があるが、多くなるとコストが高くなる(Mn及びCrに比較して高価であるため)ので、その上限を0.5%とする。なお、スクラップを主原料とする電気炉溶解材は、Cu及びNiが0.05〜0.2%混入しているので、この範囲で使用するのが、コスト的には有利である。
Cu: 0.01 to 0.5%, Ni: 0.01 to 0.5%
Cu and Ni are elements included for improving the impact value at room temperature and lowering the transition temperature in the same manner as Mn and Cr. In order to obtain these effects, it is necessary to contain 0.01% or more, but if it increases, the cost increases (because it is more expensive than Mn and Cr), so the upper limit is made 0.5%. . In addition, since the electric furnace melting material which uses a scrap as a main raw material contains 0.05 to 0.2% of Cu and Ni, it is advantageous in terms of cost to use within this range.
Cr:0.01〜1.0%
Crは、基地に固溶し強度を高めるとともに、衝撃遷移温度を低下させて室温での靱性を高くするので、それらのために含有させる元素である。本発明では、Si、Pによる衝撃遷移温度の大きな上昇を抑制する働きがある。これらの作用効果を得るためには0.01%以上含有させる必要があるが、多くなり過ぎると鍛造後にベイナイトが生成し、硬さが著しく増加して被削性を低下させるので、その上限を1.0%とする。
Cr: 0.01 to 1.0%
Cr is an element to be contained for Cr because it dissolves in the base to increase the strength and lowers the impact transition temperature to increase the toughness at room temperature. In the present invention, there is a function of suppressing a large increase in impact transition temperature due to Si and P. In order to obtain these functions and effects, it is necessary to contain 0.01% or more, but if it increases too much, bainite is generated after forging, the hardness increases remarkably and machinability decreases, so the upper limit is set. 1.0%.
s−Al:0.001〜0.01%
s−Al(酸可溶性Al)は、鋼溶製時において脱酸作用を有しているとともに、微細な窒化物を形成して熱間鍛造時の結晶粒の粗大化を抑制し、強度を向上させるので、それらのために含有させる元素である。それらの作用効果を得るためには0.001%以上含有させる必要があるが、多くなり過ぎるとその効果が飽和するので、その上限を0.01%とする。
s-Al: 0.001 to 0.01%
s-Al (acid-soluble Al) has a deoxidizing action during steel melting and forms fine nitrides to suppress coarsening of crystal grains during hot forging and improve strength. Therefore, it is an element to be contained for them. In order to obtain these functions and effects, it is necessary to contain 0.001% or more, but if the amount is too large, the effect is saturated, so the upper limit is made 0.01%.
N:0.005〜0.035%
Nは、不可避な不純物でもあるが、Alと化合して微細な窒化物を形成して鋼中に分散することにより熱間鍛造時の結晶粒の粗大化を抑制する元素である。この作用効果は0.005%以下でもあるが、0.005%以下にすることは経済でないのでその下限を0.005%とする。また、多量に含有させると鋳造欠陥の原因となるので、その上限を0.035%とする。
N: 0.005 to 0.035%
N is an inevitable impurity, but is an element that suppresses coarsening of crystal grains during hot forging by combining with Al to form fine nitrides and dispersing in steel. Although this effect is 0.005% or less, since it is not economical to make it 0.005% or less, the lower limit is made 0.005%. Moreover, since it will cause a casting defect when it contains abundantly, the upper limit shall be 0.035%.
Ca:0.0001〜0.01%
Caは、MnS中のMnの一部と置換してCaが固溶したMnSを形成し、これが切削加工時の工具に付着して被削性を改善するので、そのために含有させる元素である。その作用効果を得るためには0.0001%以上含有させる必要があるが、多量に添加しても効果が飽和するので、その上限を0.01%とする。
Ca: 0.0001 to 0.01%
Ca is part of Mn in MnS to form MnS in which Ca is dissolved, which adheres to the tool during cutting and improves the machinability. Therefore, Ca is an element to be contained. In order to obtain the effect, it is necessary to contain 0.0001% or more, but even if added in a large amount, the effect is saturated, so the upper limit is made 0.01%.
O:0.001〜0.01%
上記Caが固溶したMnSを得るためには隣接してCaの酸化物が存在する必要がる。Oは、不可避な不純物でもあるが、上記Caの酸化物を生成するために必要な元素である。その作用効果を得るためには0.001%以上含有させる必要があるが、多くなり過ぎると酸化物系の介在物が多くなって熱間加工時の割れを発生し易くなるので、その上限を0.01%とする。
O: 0.001 to 0.01%
In order to obtain MnS in which Ca is dissolved, Ca oxide needs to be present adjacently. O is an inevitable impurity, but is an element necessary for producing the Ca oxide. In order to obtain the effect, it is necessary to contain 0.001% or more. However, if the amount is too large, oxide inclusions increase and cracking during hot working is likely to occur. 0.01%.
Ti:0.02%以下、Zr:0.02%以下
TiとZrは、MnSの分布状態を微細化し、機械加工時の切り屑の破砕性を向上させるので、そのために含有させる元素である。しかし、過剰に含有させても効果が飽和するとともに経済的に不利となるので、その上限を0.02%とする。
Ti: 0.02% or less, Zr: 0.02% or less Ti and Zr are elements to be contained for the purpose of refining the distribution state of MnS and improving chip crushability during machining. However, even if contained excessively, the effect is saturated and disadvantageous economically, so the upper limit is made 0.02%.
Pb:0.3%以下、Bi:0.3%以下
PbとBiは、いずれも被削性を向上させるので、被削性をさらに向上させる場合に必要に応じて含有させる元素である。しかし、過剰に含有させると強度や熱間加工性を低下させるので、その上限を0.3%以下とする。
Pb: 0.3% or less, Bi: 0.3% or less
Since both Pb and Bi improve machinability, they are elements that are included as necessary when further improving machinability. However, since an excessive content reduces strength and hot workability, the upper limit is made 0.3% or less.
0.6≦Ceq≦0.85
ただし、Ceq=C+0.07×Si+0.16×Mn+0.61×P
+0.19×Cu+0.17×Ni+0.2 ×Cr
Ceqは、非調質鋼の鍛造後硬さを指標する値であり、この値を調節することにより鍛造後の硬さを管理することができるものである。このCeqを0.6以上にするのは、0.6未満では硬さが低過ぎるて強度が不足するとともに、衝撃遷移温度が低下して−60℃以下での破断分離特性が低下するからである。またその上限を0.85とするのは、Ceqが高過ぎると室温での靱性が低下するとともに、硬くなり過ぎて被削性も低下するからである。
0.6 ≦ Ceq ≦ 0.85
However, Ceq = C + 0.07 x Si + 0.16 x Mn + 0.61 x P
+ 0.19 × Cu + 0.17 × Ni + 0.2 × Cr
Ceq is a value indicating the post-forging hardness of the non-tempered steel, and the post-forging hardness can be managed by adjusting this value. The reason why Ceq is 0.6 or more is that if it is less than 0.6, the hardness is too low and the strength is insufficient, and the impact transition temperature is lowered and the fracture separation characteristics at −60 ° C. or less are lowered. is there. Further, the upper limit is set to 0.85 because if Ceq is too high, the toughness at room temperature is lowered, and it is too hard and the machinability is also lowered.
0≦TTr≦1.5
ただし、TTr=(C+0.8 ×Si+5 ×P)−0.5×(Mn+Cr+Cu+Ni)
衝撃遷移温度は、上記のように硬さだけでなく合金元素の影響を受けて変化するものであり、C、Si及びPの含有量の増加によって上昇し、Mn、Cr、Cu及びNiの増加によって低下するものである。TTrを0以上にするのは、0未満では衝撃遷移温度が低下して─60℃以下で破断分離特性が低下するからである。すなわち、シャルピー衝撃値が5J/cm2 以下にならないからである。またその上限を1.5とするのは、TTrが高過ぎると衝撃遷移温度が高くなり過ぎて室温での靱性が低下するからである。すなわちシャルピー衝撃値が10J/cm2 以上にならないからである。
0 ≦ T Tr ≦ 1.5
However, T Tr = (C + 0.8 × Si + 5 × P) −0.5 × (Mn + Cr + Cu + Ni)
The impact transition temperature changes as a result of the influence of not only the hardness but also the alloy element as described above, and increases with an increase in the contents of C, Si and P, and increases in Mn, Cr, Cu and Ni. It is lowered by. The reason why T Tr is made 0 or more is that if it is less than 0, the impact transition temperature is lowered and the fracture separation characteristic is lowered at −60 ° C. or less. That is, the Charpy impact value does not become 5 J / cm 2 or less. The upper limit is set to 1.5 because if T Tr is too high, the impact transition temperature becomes too high and the toughness at room temperature decreases. That is, the Charpy impact value does not become 10 J / cm 2 or more.
本発明の−60℃以下のシャルピー衝撃値が5J/cm 2 以下である破断分離用非調質鋼及び−60℃以下で破断分離する勘合部材は、上記理由により上記成分組成の範囲内であり、かつ上記2つの式を満たし、残部をFe及び不可避不純物とすものである。 The non-heat treated steel for fracture separation having a Charpy impact value of −60 ° C. or less of the present invention of 5 J / cm 2 or less and the fitting member that breaks and separates at −60 ° C. or less are within the range of the above component composition for the above reasons. And the above two formulas are satisfied, and the balance is Fe and inevitable impurities.
次に、本発明の実施例を説明する。
実施例1
下記表1に示す成分組成の本発明例及び比較例の鋼を溶製したのち造塊し、熱間鍛造を行って50mm角の鍛造素材とし、これを1200℃で60分加熱した後直径22mmの丸棒に熱間鍛造を行い、重ね合わないように適当な間隔をおいて床に放置して室温まで冷却した。この丸棒より硬さ試験片、平行部径8mmの小野式回転曲げ疲労試験片及びJIS4号衝撃試験片を切り出し試験に供した。
Next, examples of the present invention will be described.
Example 1
The steels of the present invention and comparative examples having the composition shown in Table 1 below are melted and then ingot, hot forged to give a 50 mm square forged material, which is heated at 1200 ° C. for 60 minutes and then has a diameter of 22 mm. The forged bar was hot forged and left on the floor at an appropriate interval so as not to overlap, and cooled to room temperature. From this round bar, a hardness test piece, an Ono type rotary bending fatigue test piece with a parallel part diameter of 8 mm, and a JIS No. 4 impact test piece were cut out and used for the test.
硬さは、鍛造した22mmの丸棒の1/2R部の硬さをロックウェル硬度計を用いて室温で測定した。その結果を表2に示す。
疲労試験は、上記試験片を用いて小野式回転曲げ疲労試験機を用いて室温で実施した。その結果を表2に示す。
衝撃試験は、上記試験片を用いてシャルピー衝撃試験機を用いて室温と−60℃で実施した。その結果を表2に示す。
The hardness was measured at room temperature using a Rockwell hardness meter for the 1 / 2R part of a forged 22 mm round bar. The results are shown in Table 2.
The fatigue test was performed at room temperature using the Ono rotary bending fatigue tester using the above test piece. The results are shown in Table 2.
The impact test was performed at room temperature and −60 ° C. using a Charpy impact tester using the above test piece. The results are shown in Table 2.
表2の結果によると、本発明例は、硬さが97.3〜103.3HRB、疲れ限度が411〜559MPa、またシャルピー衝撃値(以下、「衝撃値」という。)が室温で13〜20J/cm2 、−60℃で2〜5J/cm2 であった。これらは、いずれも硬さが100HRB前後であり、疲れ限度が410MPa以上であり、また衝撃値がコンロッドなどに必要な室温の衝撃値である10J/cm2 以上であり、かつ−60℃で変形なく容易に破断分離できる5J/cm2 以下であった。 According to the results in Table 2, the inventive example has a hardness of 97.3-103.3HRB, a fatigue limit of 411-559 MPa, and a Charpy impact value (hereinafter referred to as “impact value”) of 13-20 J at room temperature. / cm 2, and 2~5J / cm 2 at -60 ℃. All of these have a hardness of around 100 HRB, a fatigue limit of 410 MPa or more, an impact value of 10 J / cm 2 or more, which is an impact value at room temperature required for a connecting rod, etc., and deformation at −60 ° C. And it was 5 J / cm 2 or less that could be easily broken and separated.
これに対して、C又はSi含有量が本発明より少ない比較例A及びCは、室温での衝撃値が本発明例より高いが、硬さ及び疲れ限度が本発明例より低く、また−60℃での衝撃値が変形なく容易に破断分離できる衝撃値(5J/cm2 )より高い8J/cm2 又は9J/cm2 であった。
C含有量が本発明より多く、Ceqが本発明より高い比較例Bは、硬さ及び疲れ限度が本発明例と同程度であり、−60℃での衝撃値が変形なく容易に破断分離できる衝撃値以下であったが、室温での衝撃値がコンロッドなどに必要な衝撃値(10J/cm2 )以下の9J/cm2 であった。
In contrast, Comparative Examples A and C, which have a lower C or Si content than the present invention, have higher impact values at room temperature than the present invention examples, but have lower hardness and fatigue limits than the present invention examples, and -60 The impact value at 8 ° C. was 8 J / cm 2 or 9 J / cm 2 , which is higher than the impact value (5 J / cm 2 ) that can be easily broken and separated without deformation.
Comparative Example B, which has a higher C content than the present invention and a higher Ceq than the present invention, has the same hardness and fatigue limit as the present invention example, and the impact value at -60 ° C. can be easily broken and separated without deformation. Although it was below the impact value, the impact value at room temperature was 9 J / cm 2 below the impact value (10 J / cm 2 ) required for the connecting rod and the like.
Si又はP含有量が本発明より多く、Ceq及びTTrが本発明より高い比較例D及びGは、硬さ及び疲れ限度が本発明例より高く、−60℃での衝撃値が変形なく容易に破断分離できる衝撃値以下であったが、室温での衝撃値がコンロッドなどに必要な衝撃値以下の8J/cm2 又は9J/cm2 であった。
Mn又はCr含有量が本発明より多い比較例E及びIは、硬さが本発明例より高く、組織がベイナイトであるため、硬さが高く、また被削性も著しく低下するので、コンロッドなどの機械部品には適していなことが明らかであるので、疲れ限度及び衝撃値を測定しなかった。
Comparative Examples D and G, which have a higher Si or P content than the present invention and have higher Ceq and T Tr than the present invention, have higher hardness and fatigue limit than the present invention examples, and the impact value at −60 ° C. is easy without deformation. However, the impact value at room temperature was 8 J / cm 2 or 9 J / cm 2 , which is less than the impact value required for the connecting rod or the like.
In Comparative Examples E and I having a Mn or Cr content higher than that of the present invention, the hardness is higher than that of the present invention example, and the structure is bainite. Therefore, the hardness is high and the machinability is remarkably reduced. Fatigue limits and impact values were not measured as it was apparent that they were not suitable for these machine parts.
P含有量が本発明より少ない比較例Fは、硬さが本発明例と同程度であり、室温での衝撃値が本発明例より高いが、疲れ限度が本発明例より低く、また−60℃での衝撃値が変形なく容易に破断分離できる衝撃値より高い12J/cm2 であった。
S含有量が本発明より多い比較例Hは、硬さが本発明例と同程であり、また室温での衝撃値がコンロッドなどに必要な衝撃値以上であり、かつ−60℃で変形なく容易に破断分離できる衝撃値以下であったが、疲れ限度が本発明例より低かった。
Comparative Example F, which has a lower P content than the present invention, has a hardness similar to that of the present invention example, has a higher impact value at room temperature than the present invention example, but has a lower fatigue limit than the present invention example, and -60 The impact value at ° C. was 12 J / cm 2 , which is higher than the impact value at which breakage and separation can be easily performed without deformation.
Comparative Example H, which has a higher S content than the present invention, has a hardness similar to that of the present invention example, and the impact value at room temperature is not less than the impact value required for the connecting rod, etc., and there is no deformation at −60 ° C. Although it was below the impact value at which it can be easily broken and separated, the fatigue limit was lower than that of the examples of the present invention.
s−Al又はN含有量が本発明より少ない比較例J及びKは、硬さが本発明例と同程であり、−60℃での衝撃値が変形なく容易に破断分離できる衝撃値以下であったが、疲れ限度が本発明例より低く、また室温での衝撃値がコンロッドなどに必要な衝撃値以下の9J/cm2 又は8J/cm2 であった。
TTrが本発明より高い比較例Lは、硬さ及び疲れ限度が本発明例と同程度であり、また−60℃での衝撃値が変形なく容易に破断分離できる衝撃値以下であったが、室温での衝撃値がコンロッドなどに必要な衝撃値以下の8J/cm2 であった。
Comparative Examples J and K having less s-Al or N content than the present invention have the same hardness as the present invention example, and the impact value at -60 ° C is less than the impact value at which it can be easily broken and separated without deformation. However, the fatigue limit was lower than that of the example of the present invention, and the impact value at room temperature was 9 J / cm 2 or 8 J / cm 2 , which is lower than the impact value required for the connecting rod or the like.
Comparative Example L having a higher T Tr than that of the present invention has the same hardness and fatigue limit as those of the present invention, and the impact value at −60 ° C. was below the impact value at which it can be easily fractured and separated without deformation. The impact value at room temperature was 8 J / cm 2 below the impact value required for connecting rods and the like.
TTrが本発明より低い比較例Mは、室温での衝撃値がコンロッドなどに必要な衝撃値以上であったが、硬さ及び疲れ限度が本発明例より低く、−60℃での衝撃値も変形なく容易に破断分離できる衝撃値以上の10J/cm2 であった。
C含有量が高く、O含有量が本発明例より少なく、Caを含有しない従来鋼(JIS S45C) の比較例Nは、室温での衝撃値がコンロッドなどに必要な衝撃値以上であり、硬さが本発明例と同程度であったが、疲れ限度が本発明例より低く、また−60℃での衝撃値が変形なく容易に破断分離できる衝撃値以上の8J/cm2 であった。
In Comparative Example M in which T Tr is lower than that of the present invention, the impact value at room temperature was higher than the impact value required for the connecting rod or the like, but the hardness and fatigue limit were lower than those of the present invention example, and the impact value at −60 ° C. Was 10 J / cm 2 , which is more than the impact value at which it can be easily broken and separated without deformation.
Comparative Example N of conventional steel (JIS S45C), which has a higher C content, a lower O content than the present invention example, and does not contain Ca, has an impact value at room temperature that is higher than the impact value required for connecting rods, etc. However, the fatigue limit was lower than that of the example of the present invention, and the impact value at −60 ° C. was 8 J / cm 2 , which is equal to or greater than the impact value at which it can be easily fractured and separated without deformation.
TTrが本発明より低く、Vを含有し、またCaを含有しない従来鋼(S35VC)の比較例Oは、室温での衝撃値がコンロッドなどに必要な衝撃値以上であり、また硬さも本発明例と同程度であったが、疲れ限度が本発明例より低く、また−60℃での衝撃値が変形なく容易に破断分離できる衝撃値以上の11J/cm2 であった。 Comparative Example O of conventional steel (S35VC), which has a lower T Tr than that of the present invention, contains V, and does not contain Ca, has an impact value at room temperature that is higher than the impact value required for connecting rods, etc. The fatigue limit was lower than that of the invention example, and the impact value at −60 ° C. was 11 J / cm 2 , which is equal to or higher than the impact value at which it can be easily fractured and separated without deformation.
実施例2
本発明例1及び比較例Oの非調質鋼を用いてコンロッドを熱間鍛造をした後、機械加工で製品に仕上げ、大端部の破断分離させる位置に深さ0.5mm、先端R0.2mm、ノッチ角度60°の切り欠きを設けて液体窒素温度、−60℃及び室温で破断分離を実施し、その前後で測定した真円度の変化を表3に示す。
Example 2
After hot forging the connecting rod using the non-heat treated steel of Invention Example 1 and Comparative Example O, the product was finished by machining and the depth R0. Table 3 shows the change in roundness measured before and after performing break separation at a liquid nitrogen temperature, −60 ° C. and room temperature with a notch having a notch angle of 2 mm and a notch angle of 60 °.
本発明例11は、液体窒素温度はもちろんのこと、−60℃での破断分離でも真円度変化は非常に小さかった。さらに室温では靱性が向上しているため今回付与したようなノッチでは容易に分離することができず、真円度変化は大きかった。これに対して、比較例Pは、液体窒素温度まで冷却しても破断分離後の真円度変化が大きく、室温では破断しなかった。 In Example 11 of the present invention, not only the liquid nitrogen temperature but also the rupture separation at −60 ° C. showed very little change in roundness. Furthermore, since the toughness was improved at room temperature, it was not possible to separate easily with the notches provided this time, and the change in roundness was large. On the other hand, Comparative Example P had a large change in roundness after fracture separation even when cooled to liquid nitrogen temperature, and did not fracture at room temperature.
本発明の非調質鋼及び勘合部材は、冷媒として安価なドライアイス+エタノール寒剤を用い冷却することができる─60℃以下で冷却後破断分離することができるため、冷却のコストが大幅に低下し、産業上利用することができるようになった。 The non-heat treated steel and fitting member of the present invention can be cooled using inexpensive dry ice + ethanol cryogen as a refrigerant. And can be used industrially.
1 熱間鍛造コンロッド
2 大端部
3 小端部
4 切り欠き溝
5 キャップ部
6 ロッド部
1 Hot Forged Connecting
Claims (7)
式1・・・0.6≦Ceq≦0.85
ただし、Ceq=C+0.07×Si+0.16×Mn+0.61×P
+0.19×Cu+0.17×Ni+0.2 ×Cr
式2・・・0≦TTr≦1.5
ただし、TTr=(C+0.8 ×Si+5 ×P)−0.5×(Mn+Cr+Cu+Ni) % By mass (hereinafter the same), C: 0.15-0.35%, Si: 0.5-2.0%, Mn: 0.5-1.5%, P: 0.03-0.15 %, S: 0.01 to 0.15%, Cu: 0.01 to 0.5%, Ni: 0.01 to 0.5%, Cr: 0.01 to 1.0%, s-Al: 0.001 to 0.01%, N: 0.005 to 0.035%, Ca: 0.0001 to 0.01% and O: 0.001 to 0.01%, and the following formula 1 and A non-tempered steel for fracture separation having a Charpy impact value of −60 ° C. or less of 5 J / cm 2 or less, characterized by satisfying Equation 2 and the balance being Fe and inevitable impurities.
Formula 1 ... 0.6 ≦ Ceq ≦ 0.85
However, Ceq = C + 0.07 x Si + 0.16 x Mn + 0.61 x P
+ 0.19 × Cu + 0.17 × Ni + 0.2 × Cr
Formula 2 ... 0 ≦ T Tr ≦ 1.5
However, T Tr = (C + 0.8 × Si + 5 × P) −0.5 × (Mn + Cr + Cu + Ni)
式1・・・0.6≦Ceq≦0.85
ただし、Ceq=C+0.07×Si+0.16×Mn+0.61×P
+0.19×Cu+0.17×Ni+0.2 ×Cr
式2・・・0≦TTr≦1.5
ただし、TTr=(C+0.8 ×Si+5 ×P)−0.5×(Mn+Cr+Cu+Ni) C: 0.15-0.35%, Si: 0.5-2.0%, Mn: 0.5-1.5%, P: 0.03-0.15%, S: 0.01- 0.15%, Cu: 0.01-0.5%, Ni: 0.01-0.5%, Cr: 0.01-1.0%, s-Al: 0.001-0.01% , N: 0.005 to 0.035%, Ca: 0.0001 to 0.01% and O: 0.001 to 0.01%, and satisfy the following formulas 1 and 2, with the balance being Fe And a fitting member that breaks and separates at −60 ° C. or less , characterized by comprising inevitable impurities.
Formula 1 ... 0.6 ≦ Ceq ≦ 0.85
However, Ceq = C + 0.07 x Si + 0.16 x Mn + 0.61 x P
+ 0.19 × Cu + 0.17 × Ni + 0.2 × Cr
Formula 2 ... 0 ≦ T Tr ≦ 1.5
However, T Tr = (C + 0.8 × Si + 5 × P) −0.5 × (Mn + Cr + Cu + Ni)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003356201A JP4346404B2 (en) | 2002-11-20 | 2003-10-16 | Non-heat treated steel for fracture separation at low temperature and fitting member made of this non-heat treated steel |
US10/716,512 US20040131494A1 (en) | 2002-11-20 | 2003-11-20 | Microalloyed steel easy to separate by fracture splitting at low temperature and fitting member produced through separation by fracture splitting at low temperature |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002336047 | 2002-11-20 | ||
JP2003356201A JP4346404B2 (en) | 2002-11-20 | 2003-10-16 | Non-heat treated steel for fracture separation at low temperature and fitting member made of this non-heat treated steel |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004183094A JP2004183094A (en) | 2004-07-02 |
JP4346404B2 true JP4346404B2 (en) | 2009-10-21 |
Family
ID=32684168
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003356201A Expired - Fee Related JP4346404B2 (en) | 2002-11-20 | 2003-10-16 | Non-heat treated steel for fracture separation at low temperature and fitting member made of this non-heat treated steel |
Country Status (2)
Country | Link |
---|---|
US (1) | US20040131494A1 (en) |
JP (1) | JP4346404B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102006041146A1 (en) * | 2006-09-01 | 2008-03-06 | Georgsmarienhütte Gmbh | Steel and processing methods for the manufacture of high-strength fracture-breakable machine components |
CN104492907A (en) * | 2014-12-17 | 2015-04-08 | 中国兵器科学研究院宁波分院 | Efficient cryogenic expansion breaking processing method used for positioning faces of connecting rod cover and connecting rod body of high-strength high-toughness steel connecting rod |
KR101561008B1 (en) * | 2014-12-19 | 2015-10-16 | 주식회사 포스코 | Hot dip galvanized and galvannealed steel sheet having higher hole expansion ratio, and method for the same |
CN108474068A (en) * | 2015-12-25 | 2018-08-31 | 新日铁住金株式会社 | Steel |
CN106223190A (en) * | 2016-08-31 | 2016-12-14 | 中铁第四勘察设计院集团有限公司 | A kind of bridge steel support without the resistance to sea atmosphere corrosion of application |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2742448B1 (en) * | 1995-12-14 | 1998-01-16 | Ascometal Sa | STEEL FOR THE MANUFACTURE OF SECABLE MECHANICAL PARTS AND OBTAINED PART |
-
2003
- 2003-10-16 JP JP2003356201A patent/JP4346404B2/en not_active Expired - Fee Related
- 2003-11-20 US US10/716,512 patent/US20040131494A1/en not_active Abandoned
Also Published As
Publication number | Publication date |
---|---|
US20040131494A1 (en) | 2004-07-08 |
JP2004183094A (en) | 2004-07-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2019178405A (en) | Production method of steel wire | |
JPH0717986B2 (en) | Alloy tool steel | |
JP4415219B2 (en) | Age hardened steel | |
JP6614393B2 (en) | Non-tempered steel bar | |
JP5023410B2 (en) | Non-tempered steel for hot forging with easy fracture separation | |
JP2636816B2 (en) | Alloy tool steel | |
JP4346404B2 (en) | Non-heat treated steel for fracture separation at low temperature and fitting member made of this non-heat treated steel | |
JPH09111412A (en) | High strength, high yield ratio, low ductility non-heat treated steel | |
JP3235442B2 (en) | High strength, low ductility non-heat treated steel | |
JPS62211351A (en) | Tool steel having superior machinability | |
JP2009221590A (en) | Fracture split connecting rod, and non-heat treated steel used therefor | |
JP6617852B2 (en) | Steel bar for hot forging | |
JP2008144211A (en) | Non-tempered steel containing V | |
JP2001192731A (en) | Manufacturing method of high strength shaft parts | |
JPS5945752B2 (en) | Strong precipitation hardening austenitic heat resistant steel | |
JP3887271B2 (en) | High-strength non-tempered steel that can be separated by breakage and intermediate products | |
US5993571A (en) | Steel for machine structural use and machine parts made from such steel | |
JPH09176786A (en) | High strength / low ductility non-heat treated steel | |
JP3456375B2 (en) | High strength, low ductility non-heat treated steel | |
JPH08291373A (en) | High strength non-heat treated steel for hot forging easily capable or breaking separation | |
JPH07150244A (en) | Method for producing ferritic stainless steel for cold working | |
JP2017179475A (en) | Molding component for breaking separation type connecting rod, connecting rod and manufacturing method of the connecting rod | |
JPH09202938A (en) | Chrome-molybdenum cast steel with excellent machinability | |
JP3713806B2 (en) | Manufacturing method of high-strength connecting rod made of non-tempered steel and easy to break and separate | |
JPH09227990A (en) | Hot work tool steel with excellent high temperature strength and fracture toughness |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20060815 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060825 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20060815 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20060815 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090330 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090407 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090522 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090714 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090714 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120724 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120724 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130724 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140724 Year of fee payment: 5 |
|
LAPS | Cancellation because of no payment of annual fees |