[go: up one dir, main page]

JP4346259B2 - Reinforced concrete seismic column - Google Patents

Reinforced concrete seismic column Download PDF

Info

Publication number
JP4346259B2
JP4346259B2 JP2001156469A JP2001156469A JP4346259B2 JP 4346259 B2 JP4346259 B2 JP 4346259B2 JP 2001156469 A JP2001156469 A JP 2001156469A JP 2001156469 A JP2001156469 A JP 2001156469A JP 4346259 B2 JP4346259 B2 JP 4346259B2
Authority
JP
Japan
Prior art keywords
core material
concrete
reinforced concrete
disposed
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001156469A
Other languages
Japanese (ja)
Other versions
JP2002349011A (en
Inventor
雅敬 木下
浩和 家村
良和 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Engineering Co Ltd
Original Assignee
Nippon Steel Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Engineering Co Ltd filed Critical Nippon Steel Engineering Co Ltd
Priority to JP2001156469A priority Critical patent/JP4346259B2/en
Publication of JP2002349011A publication Critical patent/JP2002349011A/en
Application granted granted Critical
Publication of JP4346259B2 publication Critical patent/JP4346259B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Joining Of Building Structures In Genera (AREA)
  • Rod-Shaped Construction Members (AREA)
  • Reinforcement Elements For Buildings (AREA)
  • Bridges Or Land Bridges (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、耐震性に優れたRC(鉄筋コンクリート)製柱状部材の構造に関する。
【0002】
【従来の技術】
高い耐震性を持つ柱状部材としては、従来、例えばPC(プレストレストコンクリート)製の柱状部材が知られており、これはプレストレス(予加応力)を与えて柱状物の実質的な耐力および剛性を上げておくことで、残留変位を小さくしようとするものである。しかし、PC製の柱状部材は、プレストレスによりコンクリートに常時、外力を打ち消す方向の応力が負荷されているため、コンクリートの圧壊によって定義される耐力相当の変形が、通常のRC製の柱状部材よりも小さくなり、変形性能が減少するという欠点を有する。
【0003】
一方、従来、各種強度の鉄筋を混用したRC製の柱状部材も知られており、これは異なった降伏強度を有する鉄筋を導入し、それらの鉄筋が順次降伏することにより荷重−変形関係に二次剛性を付与することを目的としている。ただし、大変形時には、全ての鉄筋が降伏するため、弾性的な復元力を確保することができず、残留変形の低減も困難である。
【0004】
一般の耐震設計では、比較的頻度の高いレベルIの地震動に対しては強度設計を行い、頻度は低いが強烈なレベルIIの地震動に対しては部材の塑性領域を含め変形性能を評価する保有水平耐力照査を行う、二段階設計を行っているが、例えば橋脚については、大地震後も比較的早期に修復可能なものとするために、残留変形が橋脚高さの1/100であることをも同時に要求している。
【0005】
すなわち、耐震性に富む橋脚とは、レベルIの地震動に対しては高い耐力を備え、レベルIIの地震動に対しては大きな靭性と小さな残留変形という性能を兼ね備えた橋脚といえるが、特にレベルIIの地震動における大きな靭性と小さな残留変形との要求項目は相反する要求であり、従来のRC橋脚では実現することが極めて困難であった。
【0006】
【発明が解決しようとする課題】
そこで、本発明は、柱状部材の大変形時に弾性的に対応可能に強化し、塑性変形域における靭性の強化および残留変位の低減を目的とする。
【0007】
【課題を解決するための手段】
前記課題を解決するために、本発明は次のように構成する。
【0008】
請求項1に記載の発明は、立設されたコンクリート躯体と、前記コンクリート躯体の長手方向に延びて埋設された構造用主鉄筋と、前記構造用主鉄筋よりも高強度を有し主鉄筋の内側にほぼ平行に延びて埋設された芯材とを備える鉄筋コンクリート製柱状部材において、前記芯材を鞘管等のアンボンド層により周囲のコンクリート躯体と隔てて配設すると共に、当該芯材の上下両端部または下端部をコンクリート躯体に当接し、この芯材の当接端部と前記アンボンド層端部に配設の定着部材との間を可縮性部材配設区間とし、当該区間に配設した可縮性部材の圧縮により芯材一端部側へコンクリート躯体が相対変位可能とし、柱状部材の大変形時における可縮性部材の圧縮代解消により、芯材の弾性的作用が前記定着部材を介してコンクリート躯体に伝達されて外力に抵抗することを特徴とする。
【0009】
請求項2に記載の発明は、請求項1に記載の発明において、前記可縮性部材がゴムまたはコイルばねまたは皿ばね等からなることを特徴とする。
【0010】
請求項3に記載の発明は、請求項1または2に記載の発明において、前記可縮性部材の圧縮代が前記コンクリート躯体および主鉄筋の降伏点変位を考慮して設定されることを特徴とする。
【0011】
請求項4に記載の発明は、請求項1〜3の何れかに記載の発明において、前記芯材の上下両端部または下端部を、コンクリート躯体に埋設の可動定着部材ユニットに定着し、この可動定着部材ユニットは、所定の間隔を離して配設した上下の定着板と、両板の間に挟まれて固着されたケーシングと、定着板の開口を通してケーシング内に進入し、端部が定着板に当接し、この端部に押圧プレートを固着した芯材端部と、押圧プレートと定着板との間の可縮性部材配設区間Sに配設した可縮性部材とから構成されていることを特徴とする。
【0012】
【作用】
本発明によると、柱状部材が引張外力を受けた場合、まずコンクリートおよび主鉄筋が外力を負担し変位する。これと同時に芯材下端部の可縮性部材が圧縮される。芯材は可縮性部材が圧縮されつつある間は引張力を負担しないが、例えば、主鉄筋の引張降伏点変位を越える塑性変位区間に入ると、可縮性部材の圧縮代はなくなり、高強度の芯材が定着部材を介してコンクリート躯体に負担メンバーとして加わる。こうして、柱状部材の塑性域において芯材の作用が付加され、芯材が弾性的に抵抗するため、柱状部材の靭性は増大し、弾性的な復元力の付与により残留変位が小さくなる。反対に、柱状部材が圧縮外力を受けた場合は、芯材の下端がコンクリート躯体と当接していることで、当該芯材が抵抗し、本来圧縮に強いコンクリートの圧縮強度が芯材によって一層補強される。
【0013】
また、芯材の上下両端部に可縮性部材を配置した場合には、柱状部材が引張力、圧縮力のいずれの外力を受けた場合にも、外力に対する芯材の同様の作用が得られる。
【0014】
【発明の実施の形態】
〔第1実施形態〕
本発明の第1実施形態について図1〜図11を参照して説明する。
【0015】
図1は本実施形態の鉄筋コンクリート(RC)製橋脚の構造を模式的に示す構造図である。図2、図3と図4はそれぞれ図1のA−A断面図、B−B断面図、C−C断面図である。図5〜図8は要部の構造についての説明図である。また、図9〜図11は負荷時の特性を示す説明図である。
【0016】
図1〜図4に示すように、柱状部材の一例として示す、鉄筋コンクリート(RC)製橋脚1は、従来の通常のRC製橋脚と同様に、コンクリート躯体1aと、そのコンクリート躯体1aの表面付近にその長手方向に延びて埋設された構造用主鉄筋1bと、長手方向に直交して主鉄筋1bを囲むように埋設された横拘束鉄筋1cを主要素として構成され、これに加えて鞘管3と共に、主鉄筋1bの内側に基礎部分1dから橋脚1の中間部分まで延びて配置された複数(ここでは4本)の高強度の芯材2が付加されて構成されている。
【0017】
芯材2は、例えば高弾性鋼棒で構成されると共に、図1に示すように、前記の鞘管3はアンボンド層を形成する部材の一例として示され、芯材2の外部にその略全長に亘って嵌合され、この鞘管3を介して、芯材2が周囲のコンクリート躯体1aから隔てられて配置されることで、アンボンド区間Dが設けられている。芯材2と鞘管3との隙間は芯材2の座屈防止のために小さく抑えられている。
【0018】
芯材2の上端部2aは、橋脚1の中間部分の内部において、通常の構造の定着部4により、コンクリート躯体1aに定着されているが、芯材2の下端部2bは、コンクリート躯体1aに埋設された可動定着部材ユニット5により、後述の可縮性部材7の圧縮を介して、当該芯材2を伸長する方向の外力を負担するように構成されている。
【0019】
可動定着部材ユニット5は、詳細を図5に示すように、所定の間隔を離して平行配設した上下の定着板6a、6bと、両定着板6a、6bの間に挟まれ両端が閉塞されるようにして両板に固着された筒状のケーシング10と、上部定着板6aの開口11を通してケーシング10内に進入した芯材2の下端部2bと、この下端部2bに螺着したナット2eからなる押圧プレート2cと、ケーシング10内において、押圧プレート2cと上部定着板6aの間の可縮性部材配設区間Sに配設した可縮性部材の一例として示す、コの字状縦断面を有するゴム部材7から構成されている。
【0020】
前述の構成において、橋脚1が引張り外力を受けた場合に、図5(a)、(b)に示すように、芯材2はゴム部材7の圧縮により上方への変位が許容されている。ゴム部材7の圧縮代S1の設定は、例えば橋脚1が引張り外力を受けて主鉄筋1bが降伏し、塑性域に入るときの変位量よりも若干小さい値に圧縮代S1を設定するなど調整可能に設定する方法がとられる。これにより、主鉄筋1bが塑性変形域(橋脚1が大変形領域)に入っても、芯材2が引張り外力に対して弾性的に挙動する開始時期を調整することが可能となる。
【0021】
この弾性挙動を示すようにするため、芯材2には主鉄筋1bよりも高強度の材料、例えば既述の高弾性鋼棒や、高強度鉄筋、アラミド繊維等の新素材が用いられている。また、芯材2の全長の設定は、橋脚1の大変形領域において、例えば芯材2が降伏せずに弾性的伸び量にて振舞うことができるように設定する。
【0022】
このように、橋脚1の耐震機能が効果的に発揮されるためには、高強度の芯材2が橋脚1の大変形時においても弾性挙動しなければならない。そのため前記のように、芯材2には構造用主鉄筋1bよりも高強度のものを用い、かつこの芯材2は構造用主鉄筋1bよりも変位の少ない内部に配置し、芯材2とコンクリート躯体1aとが付着しないアンボンド区間Dを設けることにより、図9(b)に示すように、芯材2の変位(歪み)はその全長に亘って均一化される。図9(a)は、比較のために芯材2が配設されていない通常のRC製橋脚の場合を示す。
【0023】
なお、可動定着部材ユニット5の可縮性部材配設区間Sに配設する可縮性部材としては、前述のゴム部材7に代えて、図6、図8にそれぞれ示すコイルばね8、皿ばね9を配設させる構成をとっても勿論よい。図6、図8(a)は、ばね8,9の取り付け状態を示し、図6、図8(b)は圧縮された状態を示す。
【0024】
このような構成により、図10(a)に示すような通常のRC製橋脚の変位−復元力関係に、同図(b)に示すような芯材2の弾性的な変位−復元力関係を付加することができるので、同図(c)に示すように、RC製橋脚1の変位−復元力関係の塑性域において芯材2の復元力(二次剛性)を付与することができ、これにより、RC製橋脚1の塑性域における靭性の増大と残留変形の低減が得られる。
【0025】
図11(a)〜(c)は、残留変位の低減の原理を示す。すなわち、通常の鉄筋コンクリート構造を持つRC製橋脚のみでは、図10(a)に示すように塑性域における剛性が極めて低いことから、図11(a)に示すように大地震後の残留変位が大きなものとなる。しかし、図10(b)および図11(b)に示すような高強度の芯材2をアンボンド区間Dおよびゴム部材7の圧縮代(不感帯)S1を設けて付加することで、 図11(c)に示すように、変位がゴム部材7の圧縮代S1より小のときはRC製橋脚のみの場合と同じ履歴を呈し、変位が大きくて圧縮代S1がなくなると芯材2の弾性的な復元力が付与されて、RC製橋脚のみの場合よりも残留変位が小さくなる。
【0026】
[第2実施形態]
本発明の第2実施形態について図11、図12を参照して説明する。図12は本実施形態の鉄筋コンクリート(RC)製橋脚1e(柱状部材)の構造を模式的に示す構造図である。
【0027】
本実施形態は、芯材2の上下両端部2a,2bにゴム部材7等の可縮性部材を設けている点が、前記第1実施形態(下端部2bのみ)と相違する。その構成は同じであるので、同一要素に同一符号を付して重複説明を省略する。
【0028】
図12に示すように、芯材2の上下両端部2a,2bは共にゴム部材7を介して、可動定着部材ユニット5の一方の定着板6aに設置されている。したがって、芯材2はゴム部材7の圧縮により上方への変位と共に、下方への変位が許容され、橋脚の引張、圧縮いずれの大変形領域においても、芯材2が弾性的に挙動できるように調整可能となる。
【0029】
また、逆に芯材2の上下両端部部2a,2bにおける定着部5のゴム部材7を廃止した場合には、図11(d)に示すように橋脚に作用する外力に対して直ちに芯材2が抵抗し、図11(e)に示すように残留変位は小さくなるが、同変位時におけるエネルギー吸収量はRC製橋脚のみの場合と同じとなる。
【0030】
なお、前記の各実施形態ではRC製橋脚1について説明したが、本発明はRC製橋脚1に限定されるものではなく、その他各種のRC製柱状部材に適用できることは勿論である。
【0031】
【発明の効果】
以上の説明から明らかなように、本発明によれば、柱状部材の大変形時で主鉄筋が降伏して塑性域に入ると、高強度の芯材が外力に対して弾性的に抵抗するため、柱状部材の靭性は増大し、弾性的な復元力の付与により残留変位が小さくなって、靭性は大、残留変位は小という相反する要求に対応することが可能となり、さらに、柱状部材が圧縮外力を受けた場合は、芯材の下端がコンクリート躯体と当接していることで、当該芯材が抵抗し、本来圧縮に強いコンクリートの圧縮強度が芯材によって一層補強される効果がある。
【図面の簡単な説明】
【図1】本発明の第1実施形態の鉄筋コンクリート(RC)製橋脚の構造を模式的に示す構造図である。
【図2】図1のA−A断面図である。
【図3】図1のB−B断面図である。
【図4】図1のC−C断面図である。
【図5】(a)、(b)は、第1実施形態の要部の構造を示す断面説明図である。
【図6】(a)、(b)は、第1実施形態の要部の構造変更例を示す説明図である。
【図7】(a)は、図5(a)のE−E線の断面図、(b)は、図6(a)のF−F線の断面図である。
【図8】第1実施形態の要部の構造変更における他の例を示す説明図である。
【図9】第1実施形態における芯材の歪みを通常の構造の場合と比較して示す説明図である。
【図10】第1実施形態の静的特性を示す説明図である。
【図11】第1実施形態の残留変位を示す説明図である。
【図12】本発明の第2実施形態の鉄筋コンクリート(RC)製橋脚の構造を模式的に示す構造図である。
【符号の説明】
1,1e 鉄筋コンクリート(RC)製橋脚(柱状部材)
1a コンクリート躯体
1b 構造用主鉄筋
1c 横拘束鉄筋
1d 基礎部分
2 芯材
2a 上端部
2b 下端部
2c 押圧プレート
3 鞘管
4 定着部
5 可動定着部材ユニット
6a,6b 定着板
7 ゴム部材(可縮性部材)
8 コイルばね(可縮性部材)
9 皿ばね(可縮性部材)
10 ケーシング
11 開口
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a structure of an RC (steel reinforced) columnar member having excellent earthquake resistance.
[0002]
[Prior art]
As a columnar member having high earthquake resistance, for example, a columnar member made of, for example, PC (prestressed concrete) is known, and this gives prestress (pre-stressed stress) to reduce the substantial strength and rigidity of the columnar object. By raising it, it is intended to reduce the residual displacement. However, since the PC columnar member is always subjected to stress in the direction that cancels the external force due to pre-stress, the deformation equivalent to the proof stress defined by the collapse of the concrete is more than that of the normal RC columnar member. And the deformation performance is reduced.
[0003]
On the other hand, RC columnar members that use reinforcing bars of various strengths are also known in the past, and this introduces reinforcing bars having different yield strengths, and these reinforcing bars yield in succession so that a load-deformation relationship is established. The purpose is to provide the next rigidity. However, since all the reinforcing bars yield at the time of large deformation, it is not possible to ensure an elastic restoring force, and it is difficult to reduce residual deformation.
[0004]
In general seismic design, strength design is performed for relatively frequent level I ground motions, and deformation performance is evaluated for infrequent but intense level II ground motions including the plastic region of members. We are conducting a two-stage design that conducts a horizontal strength check, but for piers, for example, residual deformation should be 1/100 of the pier height so that it can be repaired relatively early after a major earthquake. At the same time.
[0005]
In other words, a pier with high earthquake resistance can be said to be a pier that has high strength against Level I ground motion and has both high toughness and small residual deformation performance against Level II ground motion. The requirements of large toughness and small residual deformation in the ground motion are conflicting requirements, and it was extremely difficult to achieve with conventional RC piers.
[0006]
[Problems to be solved by the invention]
Therefore, the present invention aims to reinforce the columnar member so that it can elastically cope with large deformation, and to strengthen toughness and reduce residual displacement in the plastic deformation region.
[0007]
[Means for Solving the Problems]
In order to solve the above problems, the present invention is configured as follows.
[0008]
The invention according to claim 1 is a concrete frame erected, a structural main reinforcing rod extending in the longitudinal direction of the concrete casing, and a strength higher than that of the structural main reinforcing bar. In a reinforced concrete columnar member provided with a core material extending substantially in parallel to the inside, the core material is disposed apart from the surrounding concrete frame by an unbond layer such as a sheath tube, and both upper and lower ends of the core material The lower end or the lower end is brought into contact with the concrete casing, and a space between the contact end of the core member and the fixing member provided at the end of the unbonded layer is defined as a retractable member disposition section, and disposed in the section. By compressing the compressible member, the concrete frame can be relatively displaced toward one end of the core material, and the elastic action of the core material is caused to pass through the fixing member by eliminating the compression allowance of the retractable member when the columnar member is largely deformed. Concree Is transmitted to the precursor, characterized in that the resistance to external force.
[0009]
The invention according to claim 2 is characterized in that, in the invention according to claim 1, the retractable member is made of rubber, a coil spring, a disc spring or the like.
[0010]
The invention according to claim 3 is characterized in that, in the invention according to claim 1 or 2, the compression allowance of the retractable member is set in consideration of the yield point displacement of the concrete frame and the main reinforcing bar. To do.
[0011]
According to a fourth aspect of the present invention, in the invention according to any one of the first to third aspects, the upper and lower end portions or the lower end portion of the core member is fixed to a movable fixing member unit embedded in a concrete frame, and this movable portion is fixed. The fixing member unit enters the casing through the upper and lower fixing plates arranged at a predetermined interval, the casing sandwiched and fixed between the two plates, and the opening of the fixing plate, and the end portion contacts the fixing plate. It is comprised from the core material edge part which contact | adhered and fixed the press plate to this edge part, and the retractable member arrange | positioned in the retractable member arrangement | positioning area S between a press plate and a fixing plate. Features.
[0012]
[Action]
According to the present invention, when the columnar member receives a tensile external force, first, the concrete and the main reinforcing bar bear the external force and are displaced. At the same time, the retractable member at the lower end of the core material is compressed. While the core material does not bear a tensile force while the compressible member is being compressed, for example, when the plastic displacement section exceeds the tensile yield point displacement of the main reinforcing bar, the compression allowance of the compressible member disappears and the high A strong core is added as a burden member to the concrete frame via the fixing member. In this way, the action of the core material is added in the plastic region of the columnar member, and the core material elastically resists, so the toughness of the columnar member increases and the residual displacement is reduced by applying an elastic restoring force. On the other hand, when the columnar member receives a compression external force, the lower end of the core material is in contact with the concrete casing, so that the core material resists, and the compressive strength of concrete that is inherently resistant to compression is further reinforced by the core material. Is done.
[0013]
Further, when the retractable members are arranged at the upper and lower end portions of the core material, the same action of the core material with respect to the external force can be obtained even when the columnar member receives either an external force of a tensile force or a compressive force. .
[0014]
DETAILED DESCRIPTION OF THE INVENTION
[First Embodiment]
A first embodiment of the present invention will be described with reference to FIGS.
[0015]
FIG. 1 is a structural diagram schematically showing the structure of a reinforced concrete (RC) pier according to this embodiment. 2, FIG. 3 and FIG. 4 are respectively a cross-sectional view taken along line AA, a cross-sectional view taken along a line BB, and a cross-sectional view taken along a line CC in FIG. 5-8 is explanatory drawing about the structure of the principal part. 9-11 is explanatory drawing which shows the characteristic at the time of load.
[0016]
As shown in FIGS. 1 to 4, a reinforced concrete (RC) pier 1 shown as an example of a columnar member is similar to a conventional normal RC pier in the vicinity of a concrete frame 1 a and the surface of the concrete frame 1 a. The structural main reinforcing bar 1b extending in the longitudinal direction and the laterally constrained reinforcing bar 1c embedded so as to surround the main reinforcing bar 1b perpendicularly to the longitudinal direction are constituted as main elements. In addition, the sheath tube 3 At the same time, a plurality of (four in this case) high-strength cores 2 arranged to extend from the base portion 1d to the middle portion of the pier 1 are added to the inside of the main reinforcing bar 1b.
[0017]
The core material 2 is composed of, for example, a high-elasticity steel rod, and as shown in FIG. 1, the sheath tube 3 is shown as an example of a member that forms an unbonded layer. The unbonded section D is provided by the core material 2 being spaced apart from the surrounding concrete housing 1a via the sheath tube 3 and being disposed. The gap between the core material 2 and the sheath tube 3 is kept small to prevent buckling of the core material 2.
[0018]
The upper end portion 2a of the core material 2 is fixed to the concrete housing 1a by the fixing portion 4 having a normal structure inside the intermediate portion of the pier 1, but the lower end portion 2b of the core material 2 is fixed to the concrete housing 1a. The embedded movable fixing member unit 5 is configured to bear an external force in a direction in which the core member 2 is extended through compression of a retractable member 7 described later.
[0019]
As shown in detail in FIG. 5, the movable fixing member unit 5 is sandwiched between upper and lower fixing plates 6a and 6b arranged in parallel at a predetermined interval and both fixing plates 6a and 6b, and both ends are closed. In this way, the cylindrical casing 10 fixed to both plates, the lower end 2b of the core member 2 that has entered the casing 10 through the opening 11 of the upper fixing plate 6a, and the nut 2e screwed to the lower end 2b. A U-shaped longitudinal section shown as an example of a retractable member disposed in a retractable member disposition section S between the press plate 2c and the upper fixing plate 6a in the casing 10 and the pressing plate 2c. It is comprised from the rubber member 7 which has.
[0020]
In the above-described configuration, when the pier 1 receives a tensile external force, the core member 2 is allowed to be displaced upward by the compression of the rubber member 7 as shown in FIGS. 5 (a) and 5 (b). The compression margin S 1 of the rubber member 7 is set, for example, by setting the compression margin S 1 to a value slightly smaller than the amount of displacement when the pier 1 receives a tensile external force and the main reinforcing bar 1b yields and enters the plastic region. A method of setting to be adjustable is taken. Thereby, even if the main reinforcing bar 1b enters the plastic deformation region (the pier 1 is a large deformation region), it is possible to adjust the start time when the core material 2 behaves elastically with respect to the tensile external force.
[0021]
In order to show this elastic behavior, the core material 2 is made of a material higher in strength than the main reinforcing bar 1b, for example, a new material such as the above-described high elastic steel bar, high strength reinforcing bar, aramid fiber or the like. . Further, the length of the core material 2 is set so that, for example, the core material 2 can behave with an elastic elongation amount without yielding in the large deformation region of the pier 1.
[0022]
Thus, in order for the seismic function of the pier 1 to be exhibited effectively, the high-strength core member 2 must behave elastically even when the pier 1 is largely deformed. Therefore, as described above, the core material 2 having a strength higher than that of the structural main reinforcing bar 1b is used, and the core material 2 is disposed inside the structural main reinforcing bar 1b with less displacement. By providing the unbond section D where the concrete housing 1a does not adhere, the displacement (distortion) of the core material 2 is made uniform over the entire length as shown in FIG. 9B. FIG. 9A shows a case of a normal RC pier in which the core material 2 is not disposed for comparison.
[0023]
As the retractable member disposed in the retractable member disposition section S of the movable fixing member unit 5, instead of the rubber member 7 described above, a coil spring 8 and a disc spring illustrated in FIGS. 6 and 8, respectively. Of course, a configuration in which 9 is disposed may be adopted. FIGS. 6 and 8A show the attached state of the springs 8 and 9, and FIGS. 6 and 8B show the compressed state.
[0024]
With such a configuration, the relationship between the displacement and restoring force of a normal RC bridge pier as shown in FIG. 10A is changed to the relationship between the elastic displacement and restoring force of the core member 2 as shown in FIG. Since it can be added, the restoring force (secondary rigidity) of the core material 2 can be imparted in the plastic region of the displacement-restoring force relationship of the RC pier 1 as shown in FIG. As a result, an increase in toughness and a reduction in residual deformation in the plastic region of the RC pier 1 can be obtained.
[0025]
11A to 11C show the principle of reducing the residual displacement. That is, only RC bridge piers having a normal reinforced concrete structure have extremely low rigidity in the plastic region as shown in FIG. 10 (a), so that the residual displacement after a large earthquake is large as shown in FIG. 11 (a). It will be a thing. However, by adding the high-strength core material 2 as shown in FIG. 10B and FIG. 11B with the unbonded section D and the compression allowance (dead zone) S 1 of the rubber member 7 added, FIG. As shown in c), when the displacement is smaller than the compression allowance S 1 of the rubber member 7, the same history as that of the RC bridge pier alone is exhibited, and when the displacement is large and the compression allowance S 1 is lost, the elasticity of the core material 2 is exhibited. A residual restoring force is applied, and the residual displacement is smaller than in the case of only RC piers.
[0026]
[Second Embodiment]
A second embodiment of the present invention will be described with reference to FIGS. FIG. 12 is a structural diagram schematically showing the structure of a reinforced concrete (RC) pier 1e (columnar member) of the present embodiment.
[0027]
The present embodiment is different from the first embodiment (only the lower end portion 2b) in that a retractable member such as a rubber member 7 is provided at both upper and lower end portions 2a, 2b of the core material 2. Since the configuration is the same, the same elements are denoted by the same reference numerals, and redundant description is omitted.
[0028]
As shown in FIG. 12, the upper and lower end portions 2 a and 2 b of the core member 2 are both installed on one fixing plate 6 a of the movable fixing member unit 5 via a rubber member 7. Therefore, the core material 2 is allowed to move upward and downward due to compression of the rubber member 7 so that the core material 2 can behave elastically in both large and small deformation regions of the pier. Adjustable.
[0029]
On the other hand, when the rubber member 7 of the fixing portion 5 at the upper and lower end portions 2a and 2b of the core member 2 is eliminated, the core member immediately responds to the external force acting on the pier as shown in FIG. 11 (d). 2 resists and the residual displacement becomes small as shown in FIG. 11 (e), but the amount of energy absorption at the time of the displacement is the same as that of the RC pier alone.
[0030]
In each of the above-described embodiments, the RC pier 1 has been described. However, the present invention is not limited to the RC pier 1 and can be applied to various other RC columnar members.
[0031]
【The invention's effect】
As is clear from the above description, according to the present invention, when the main reinforcing bar yields and enters the plastic zone at the time of large deformation of the columnar member, the high-strength core material elastically resists external force. In addition, the toughness of the columnar member is increased, the residual displacement is reduced by applying an elastic restoring force, and it becomes possible to meet the conflicting demands that the toughness is large and the residual displacement is small, and the columnar member is compressed. When receiving an external force, the lower end of the core member is in contact with the concrete casing, so that the core member resists, and the compressive strength of concrete that is inherently resistant to compression is further reinforced by the core member.
[Brief description of the drawings]
FIG. 1 is a structural diagram schematically showing the structure of a reinforced concrete (RC) pier according to a first embodiment of the present invention.
FIG. 2 is a cross-sectional view taken along the line AA of FIG.
3 is a cross-sectional view taken along the line BB in FIG.
4 is a cross-sectional view taken along the line CC of FIG.
FIGS. 5A and 5B are cross-sectional explanatory views showing the structure of the main part of the first embodiment. FIGS.
FIGS. 6A and 6B are explanatory views showing a structural change example of a main part of the first embodiment. FIGS.
7A is a cross-sectional view taken along line EE in FIG. 5A, and FIG. 7B is a cross-sectional view taken along line FF in FIG. 6A.
FIG. 8 is an explanatory diagram showing another example in the structure change of the main part of the first embodiment.
FIG. 9 is an explanatory view showing the distortion of the core material in the first embodiment in comparison with a normal structure.
FIG. 10 is an explanatory diagram showing static characteristics of the first embodiment.
FIG. 11 is an explanatory diagram showing residual displacement in the first embodiment.
FIG. 12 is a structural diagram schematically showing the structure of a reinforced concrete (RC) pier according to a second embodiment of the present invention.
[Explanation of symbols]
1,1e Reinforced concrete (RC) pier (columnar member)
DESCRIPTION OF SYMBOLS 1a Concrete frame 1b Structural main reinforcement 1c Lateral restraint reinforcement 1d Foundation part 2 Core material 2a Upper end part 2b Lower end part 2c Press plate 3 Sheath pipe 4 Fixing part 5 Movable fixing member unit 6a, 6b Fixing plate 7 Rubber member (retractable) Element)
8 Coil spring (retractable member)
9 Disc spring (retractable member)
10 Casing 11 Opening

Claims (4)

立設されたコンクリート躯体と、前記コンクリート躯体の長手方向に延びて埋設された構造用主鉄筋と、前記構造用主鉄筋よりも高強度を有し主鉄筋の内側にほぼ平行に延びて埋設された芯材とを備える鉄筋コンクリート製柱状部材において、
前記芯材を鞘管等のアンボンド層により周囲のコンクリート躯体と隔てて配設すると共に、当該芯材の上下両端部または下端部をコンクリート躯体に当接し、この芯材の当接端部と前記アンボンド層端部に配設の定着部材との間を可縮性部材配設区間とし、当該区間に配設した可縮性部材の圧縮により芯材一端部側へコンクリート躯体が相対変位可能とし、柱状部材の大変形時における可縮性部材の圧縮代解消により、芯材の弾性的作用が前記定着部材を介してコンクリート躯体に伝達されて外力に抵抗することを特徴とする鉄筋コンクリート製耐震柱状部材。
A standing concrete frame, a structural main reinforcement extending in the longitudinal direction of the concrete frame, and having a higher strength than the structural main reinforcement and extending substantially parallel to the inside of the main reinforcement In the columnar member made of reinforced concrete comprising the core material,
The core material is disposed separately from the surrounding concrete housing by an unbonded layer such as a sheath tube, and the upper and lower ends or the lower end of the core material is brought into contact with the concrete housing, the contact end portion of the core material and the A space between the fixing member disposed at the end of the unbonded layer is a retractable member disposed section, and the concrete frame can be relatively displaced toward the core one end by compression of the retractable member disposed in the section. A reinforced concrete seismic columnar member made of reinforced concrete that resists external force by the elastic action of the core material being transmitted to the concrete frame through the fixing member by eliminating the compression allowance of the compressible member when the columnar member is largely deformed .
前記可縮性部材がゴムまたはコイルばねまたは皿ばね等からなることを特徴とする請求項1に記載の鉄筋コンクリート製耐震柱状部材。2. The reinforced concrete earthquake-proof columnar member according to claim 1, wherein the contractible member is made of rubber, a coil spring, a disc spring, or the like. 前記可縮性部材の圧縮代が前記コンクリート躯体および主鉄筋の降伏点変位を考慮して設定されることを特徴とする請求項1または2に記載の鉄筋コンクリート製耐震柱状部材。The reinforced concrete seismic columnar member according to claim 1 or 2, wherein a compression allowance of the contractible member is set in consideration of a yield point displacement of the concrete frame and the main reinforcing bar. 前記芯材の上下両端部または下端部を、コンクリート躯体に埋設の可動定着部材ユニットに定着し、この可動定着部材ユニットは、所定の間隔を離して配設した上下の定着板と、両板の間に挟まれて固着されたケーシングと、定着板の開口を通してケーシング内に進入し、端部が定着板に当接し、この端部に押圧プレートを固着した芯材端部と、押圧プレートと定着板との間の可縮性部材配設区間Sに配設した可縮性部材とから構成されている請求項1〜3の何れかに記載の鉄筋コンクリート製耐震柱状部材。The upper and lower end portions or the lower end portion of the core member is fixed to a movable fixing member unit embedded in a concrete frame, and the movable fixing member unit is disposed between upper and lower fixing plates disposed at a predetermined interval and both plates. A casing that is sandwiched and fixed, enters the casing through the opening of the fixing plate, the end portion contacts the fixing plate, and the end portion of the core member that fixes the pressing plate to the end portion, the pressing plate and the fixing plate, The reinforced concrete seismic columnar member according to any one of claims 1 to 3, wherein the seismic columnar member is composed of a retractable member disposed in a retractable member disposition section S.
JP2001156469A 2001-05-25 2001-05-25 Reinforced concrete seismic column Expired - Fee Related JP4346259B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001156469A JP4346259B2 (en) 2001-05-25 2001-05-25 Reinforced concrete seismic column

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001156469A JP4346259B2 (en) 2001-05-25 2001-05-25 Reinforced concrete seismic column

Publications (2)

Publication Number Publication Date
JP2002349011A JP2002349011A (en) 2002-12-04
JP4346259B2 true JP4346259B2 (en) 2009-10-21

Family

ID=19000473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001156469A Expired - Fee Related JP4346259B2 (en) 2001-05-25 2001-05-25 Reinforced concrete seismic column

Country Status (1)

Country Link
JP (1) JP4346259B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5527932B2 (en) * 2007-10-17 2014-06-25 株式会社大林組 Design method of pier joint structure
JP5711573B2 (en) * 2011-03-04 2015-05-07 東日本旅客鉄道株式会社 Reinforcing bar anchoring structure
JP6324762B2 (en) * 2014-03-11 2018-05-16 大成建設株式会社 Column connection structure
CN105755952B (en) * 2016-04-15 2017-12-22 柳州欧维姆机械股份有限公司 Implanted elastic caoutchouc stand apparatus and its construction method being connected for prefabricated concrete bridge pier stud with cushion cap
CN107100322B (en) * 2017-03-22 2019-02-22 深圳市福田建安建设集团有限公司 Post stretching vertical prestressing cast-in-place concrete rod structure and construction method
CN116451506B (en) * 2023-06-08 2023-08-15 湖南大学 Determination method of foundation deformation and internal force of bridge pile group on layered foundation under earthquake load

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3418726B2 (en) * 2000-04-11 2003-06-23 京都大学長 High seismic performance RC pier with unbonded high strength core material
JP4424638B2 (en) * 2000-04-25 2010-03-03 岡部株式会社 Anchor bolt seismic construction method

Also Published As

Publication number Publication date
JP2002349011A (en) 2002-12-04

Similar Documents

Publication Publication Date Title
JP3418726B2 (en) High seismic performance RC pier with unbonded high strength core material
JPH0419407B2 (en)
JP4428304B2 (en) Plastic hinge part of RC structure
JP4346259B2 (en) Reinforced concrete seismic column
US20240020431A1 (en) Connection design method for lateral resisting system of self-centering steel frame
KR102125691B1 (en) Buckling restrained brace with enhanced damping performance
CN101761145A (en) Compound energy-consumption supporting member for automatically recovering axis centering function
Abbasi et al. Effect of shear keys on seismic response of irregular bridge configurations
JP3124502B2 (en) Structure of leaded rubber bearing
JP2020114980A (en) Road bridge pier structure
JP3728650B2 (en) Column base support structure and earthquake-resistant building
KR100540372B1 (en) Isolation Device Using Shape Memory Alloy Wire
CN219772936U (en) Assembled building foundation bottom reinforcing apparatus
CN107859196B (en) Replaceable assembled energy dissipation and vibration reduction node with self-resetting function
DesRoches et al. Seismic response of multiple span steel bridges in central and southeastern United States. II: Retrofitted
El-Amoury et al. Retrofit of RC frames using FRP jacketing or steel bracing
JP5379285B1 (en) Buildings using seismic control PC columns
CN113983121A (en) A self-reset bridge shock absorption device based on buckling restraint bellows and its manufacturing method
JP4828053B2 (en) Structure damping device
JP6833292B2 (en) Roof seismic structure
JP2930575B1 (en) Shock-absorbing link for seismic structure
CN113818738B (en) A C-shaped shell device with buckling threshold and large displacement under tension
CN221168222U (en) Damper for elastic steel pipe concrete member
JPH0549818U (en) Structure seismic isolation device
JP3960491B2 (en) Shock absorber

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061108

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20061219

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071016

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20071016

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20071016

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090623

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090714

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120724

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120724

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130724

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130724

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130724

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130724

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130724

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees