JP4345188B2 - Flexible metal foil laminate and manufacturing method thereof - Google Patents
Flexible metal foil laminate and manufacturing method thereof Download PDFInfo
- Publication number
- JP4345188B2 JP4345188B2 JP2000088276A JP2000088276A JP4345188B2 JP 4345188 B2 JP4345188 B2 JP 4345188B2 JP 2000088276 A JP2000088276 A JP 2000088276A JP 2000088276 A JP2000088276 A JP 2000088276A JP 4345188 B2 JP4345188 B2 JP 4345188B2
- Authority
- JP
- Japan
- Prior art keywords
- metal foil
- thermocompression
- flexible metal
- polyimide layer
- polyimide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000011888 foil Substances 0.000 title claims description 99
- 229910052751 metal Inorganic materials 0.000 title claims description 99
- 239000002184 metal Substances 0.000 title claims description 99
- 238000004519 manufacturing process Methods 0.000 title claims description 29
- 229920001721 polyimide Polymers 0.000 claims description 145
- 239000004642 Polyimide Substances 0.000 claims description 110
- 125000003118 aryl group Chemical group 0.000 claims description 59
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 37
- 239000011889 copper foil Substances 0.000 claims description 36
- 238000001816 cooling Methods 0.000 claims description 17
- CBCKQZAAMUWICA-UHFFFAOYSA-N 1,4-phenylenediamine Chemical compound NC1=CC=C(N)C=C1 CBCKQZAAMUWICA-UHFFFAOYSA-N 0.000 claims description 16
- VLDPXPPHXDGHEW-UHFFFAOYSA-N 1-chloro-2-dichlorophosphoryloxybenzene Chemical compound ClC1=CC=CC=C1OP(Cl)(Cl)=O VLDPXPPHXDGHEW-UHFFFAOYSA-N 0.000 claims description 12
- 230000009477 glass transition Effects 0.000 claims description 12
- 229920006259 thermoplastic polyimide Polymers 0.000 claims description 11
- HLBLWEWZXPIGSM-UHFFFAOYSA-N 4-Aminophenyl ether Chemical compound C1=CC(N)=CC=C1OC1=CC=C(N)C=C1 HLBLWEWZXPIGSM-UHFFFAOYSA-N 0.000 claims description 8
- WKDNYTOXBCRNPV-UHFFFAOYSA-N bpda Chemical compound C1=C2C(=O)OC(=O)C2=CC(C=2C=C3C(=O)OC(C3=CC=2)=O)=C1 WKDNYTOXBCRNPV-UHFFFAOYSA-N 0.000 claims description 8
- QQGYZOYWNCKGEK-UHFFFAOYSA-N 5-[(1,3-dioxo-2-benzofuran-5-yl)oxy]-2-benzofuran-1,3-dione Chemical compound C1=C2C(=O)OC(=O)C2=CC(OC=2C=C3C(=O)OC(C3=CC=2)=O)=C1 QQGYZOYWNCKGEK-UHFFFAOYSA-N 0.000 claims description 6
- VQVIHDPBMFABCQ-UHFFFAOYSA-N 5-(1,3-dioxo-2-benzofuran-5-carbonyl)-2-benzofuran-1,3-dione Chemical compound C1=C2C(=O)OC(=O)C2=CC(C(C=2C=C3C(=O)OC(=O)C3=CC=2)=O)=C1 VQVIHDPBMFABCQ-UHFFFAOYSA-N 0.000 claims description 5
- 229910052782 aluminium Inorganic materials 0.000 claims description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 5
- WOYZXEVUWXQVNV-UHFFFAOYSA-N 4-phenoxyaniline Chemical compound C1=CC(N)=CC=C1OC1=CC=CC=C1 WOYZXEVUWXQVNV-UHFFFAOYSA-N 0.000 claims description 4
- DKKYOQYISDAQER-UHFFFAOYSA-N 3-[3-(3-aminophenoxy)phenoxy]aniline Chemical compound NC1=CC=CC(OC=2C=C(OC=3C=C(N)C=CC=3)C=CC=2)=C1 DKKYOQYISDAQER-UHFFFAOYSA-N 0.000 claims description 3
- FYYYKXFEKMGYLZ-UHFFFAOYSA-N 4-(1,3-dioxo-2-benzofuran-5-yl)-2-benzofuran-1,3-dione Chemical compound C=1C=C2C(=O)OC(=O)C2=CC=1C1=CC=CC2=C1C(=O)OC2=O FYYYKXFEKMGYLZ-UHFFFAOYSA-N 0.000 claims description 3
- 230000006866 deterioration Effects 0.000 claims description 3
- 239000010935 stainless steel Substances 0.000 claims description 3
- 229910001220 stainless steel Inorganic materials 0.000 claims description 3
- 230000037303 wrinkles Effects 0.000 claims description 3
- TUQQUUXMCKXGDI-UHFFFAOYSA-N bis(3-aminophenyl)methanone Chemical compound NC1=CC=CC(C(=O)C=2C=C(N)C=CC=2)=C1 TUQQUUXMCKXGDI-UHFFFAOYSA-N 0.000 claims description 2
- 230000007547 defect Effects 0.000 claims description 2
- QFHUFLZJXAZQNK-UHFFFAOYSA-N 4-(2,2-dimethylpropoxy)aniline Chemical compound CC(C)(C)COC1=CC=C(N)C=C1 QFHUFLZJXAZQNK-UHFFFAOYSA-N 0.000 claims 1
- 239000010410 layer Substances 0.000 description 41
- 229920005575 poly(amic acid) Polymers 0.000 description 19
- 239000000853 adhesive Substances 0.000 description 16
- 230000001070 adhesive effect Effects 0.000 description 16
- 238000000034 method Methods 0.000 description 14
- 239000010949 copper Substances 0.000 description 12
- 238000010030 laminating Methods 0.000 description 12
- 238000010438 heat treatment Methods 0.000 description 11
- 229910052802 copper Inorganic materials 0.000 description 8
- GTDPSWPPOUPBNX-UHFFFAOYSA-N ac1mqpva Chemical compound CC12C(=O)OC(=O)C1(C)C1(C)C2(C)C(=O)OC1=O GTDPSWPPOUPBNX-UHFFFAOYSA-N 0.000 description 7
- 238000011156 evaluation Methods 0.000 description 7
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 6
- 150000004985 diamines Chemical class 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 239000000758 substrate Substances 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 5
- 239000003960 organic solvent Substances 0.000 description 5
- 239000002243 precursor Substances 0.000 description 5
- 238000004804 winding Methods 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 238000005266 casting Methods 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 238000001035 drying Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 4
- XNGIFLGASWRNHJ-UHFFFAOYSA-N phthalic acid Chemical compound OC(=O)C1=CC=CC=C1C(O)=O XNGIFLGASWRNHJ-UHFFFAOYSA-N 0.000 description 4
- 230000000704 physical effect Effects 0.000 description 4
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 150000004984 aromatic diamines Chemical class 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- -1 dicarboxyphenyl Chemical group 0.000 description 3
- 238000001125 extrusion Methods 0.000 description 3
- 230000001771 impaired effect Effects 0.000 description 3
- 238000003475 lamination Methods 0.000 description 3
- 239000000178 monomer Substances 0.000 description 3
- 230000001681 protective effect Effects 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- 125000006158 tetracarboxylic acid group Chemical group 0.000 description 3
- YBRVSVVVWCFQMG-UHFFFAOYSA-N 4,4'-diaminodiphenylmethane Chemical compound C1=CC(N)=CC=C1CC1=CC=C(N)C=C1 YBRVSVVVWCFQMG-UHFFFAOYSA-N 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- 239000004593 Epoxy Substances 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- USIUVYZYUHIAEV-UHFFFAOYSA-N diphenyl ether Chemical compound C=1C=CC=CC=1OC1=CC=CC=C1 USIUVYZYUHIAEV-UHFFFAOYSA-N 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 230000000379 polymerizing effect Effects 0.000 description 2
- KIDHWZJUCRJVML-UHFFFAOYSA-N putrescine Chemical compound NCCCCN KIDHWZJUCRJVML-UHFFFAOYSA-N 0.000 description 2
- CYIDZMCFTVVTJO-UHFFFAOYSA-N pyromellitic acid Chemical compound OC(=O)C1=CC(C(O)=O)=C(C(O)=O)C=C1C(O)=O CYIDZMCFTVVTJO-UHFFFAOYSA-N 0.000 description 2
- KDYFGRWQOYBRFD-UHFFFAOYSA-N succinic acid Chemical compound OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 2
- 230000003746 surface roughness Effects 0.000 description 2
- XZZNDPSIHUTMOC-UHFFFAOYSA-N triphenyl phosphate Chemical compound C=1C=CC=CC=1OP(OC=1C=CC=CC=1)(=O)OC1=CC=CC=C1 XZZNDPSIHUTMOC-UHFFFAOYSA-N 0.000 description 2
- HVLLSGMXQDNUAL-UHFFFAOYSA-N triphenyl phosphite Chemical compound C=1C=CC=CC=1OP(OC=1C=CC=CC=1)OC1=CC=CC=C1 HVLLSGMXQDNUAL-UHFFFAOYSA-N 0.000 description 2
- GIWQSPITLQVMSG-UHFFFAOYSA-N 1,2-dimethylimidazole Chemical compound CC1=NC=CN1C GIWQSPITLQVMSG-UHFFFAOYSA-N 0.000 description 1
- PWGJDPKCLMLPJW-UHFFFAOYSA-N 1,8-diaminooctane Chemical compound NCCCCCCCCN PWGJDPKCLMLPJW-UHFFFAOYSA-N 0.000 description 1
- LABVVLMFRIFJRX-UHFFFAOYSA-N 2-[4-[2-[4-(2-aminophenoxy)phenyl]propan-2-yl]phenoxy]aniline Chemical compound C=1C=C(OC=2C(=CC=CC=2)N)C=CC=1C(C)(C)C(C=C1)=CC=C1OC1=CC=CC=C1N LABVVLMFRIFJRX-UHFFFAOYSA-N 0.000 description 1
- ZCUJYXPAKHMBAZ-UHFFFAOYSA-N 2-phenyl-1h-imidazole Chemical compound C1=CNC(C=2C=CC=CC=2)=N1 ZCUJYXPAKHMBAZ-UHFFFAOYSA-N 0.000 description 1
- HPUJEBAZZTZOFL-UHFFFAOYSA-N 4-[3-(4-aminophenoxy)-2,2-dimethylpropoxy]aniline Chemical compound C=1C=C(N)C=CC=1OCC(C)(C)COC1=CC=C(N)C=C1 HPUJEBAZZTZOFL-UHFFFAOYSA-N 0.000 description 1
- WUPRYUDHUFLKFL-UHFFFAOYSA-N 4-[3-(4-aminophenoxy)phenoxy]aniline Chemical compound C1=CC(N)=CC=C1OC1=CC=CC(OC=2C=CC(N)=CC=2)=C1 WUPRYUDHUFLKFL-UHFFFAOYSA-N 0.000 description 1
- SSDBTLHMCVFQMS-UHFFFAOYSA-N 4-[4-(1,1,1,3,3,3-hexafluoropropan-2-yl)phenoxy]aniline Chemical compound C1=CC(N)=CC=C1OC1=CC=C(C(C(F)(F)F)C(F)(F)F)C=C1 SSDBTLHMCVFQMS-UHFFFAOYSA-N 0.000 description 1
- JCRRFJIVUPSNTA-UHFFFAOYSA-N 4-[4-(4-aminophenoxy)phenoxy]aniline Chemical compound C1=CC(N)=CC=C1OC(C=C1)=CC=C1OC1=CC=C(N)C=C1 JCRRFJIVUPSNTA-UHFFFAOYSA-N 0.000 description 1
- LDFYRFKAYFZVNH-UHFFFAOYSA-N 4-[4-[4-(4-aminophenoxy)phenoxy]phenoxy]aniline Chemical compound C1=CC(N)=CC=C1OC(C=C1)=CC=C1OC(C=C1)=CC=C1OC1=CC=C(N)C=C1 LDFYRFKAYFZVNH-UHFFFAOYSA-N 0.000 description 1
- IVKMZPOWNVXFFH-UHFFFAOYSA-N 4-benzhydrylaniline Chemical compound C1=CC(N)=CC=C1C(C=1C=CC=CC=1)C1=CC=CC=C1 IVKMZPOWNVXFFH-UHFFFAOYSA-N 0.000 description 1
- NAOPJRFYDVWPEZ-UHFFFAOYSA-N 4-benzhydryloxyaniline Chemical compound C1=CC(N)=CC=C1OC(C=1C=CC=CC=1)C1=CC=CC=C1 NAOPJRFYDVWPEZ-UHFFFAOYSA-N 0.000 description 1
- OAPDPORYXWQVJE-UHFFFAOYSA-N 4-propylaniline Chemical compound CCCC1=CC=C(N)C=C1 OAPDPORYXWQVJE-UHFFFAOYSA-N 0.000 description 1
- JVERADGGGBYHNP-UHFFFAOYSA-N 5-phenylbenzene-1,2,3,4-tetracarboxylic acid Chemical compound OC(=O)C1=C(C(O)=O)C(C(=O)O)=CC(C=2C=CC=CC=2)=C1C(O)=O JVERADGGGBYHNP-UHFFFAOYSA-N 0.000 description 1
- 229910000967 As alloy Inorganic materials 0.000 description 1
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 1
- ZWXPDGCFMMFNRW-UHFFFAOYSA-N N-methylcaprolactam Chemical compound CN1CCCCCC1=O ZWXPDGCFMMFNRW-UHFFFAOYSA-N 0.000 description 1
- DMMPEDIYXNEVTK-UHFFFAOYSA-N N[SiH](N)O[SiH3] Chemical compound N[SiH](N)O[SiH3] DMMPEDIYXNEVTK-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 239000004962 Polyamide-imide Substances 0.000 description 1
- 239000004820 Pressure-sensitive adhesive Substances 0.000 description 1
- 239000005700 Putrescine Substances 0.000 description 1
- 229920001646 UPILEX Polymers 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- ZLSMCQSGRWNEGX-UHFFFAOYSA-N bis(4-aminophenyl)methanone Chemical compound C1=CC(N)=CC=C1C(=O)C1=CC=C(N)C=C1 ZLSMCQSGRWNEGX-UHFFFAOYSA-N 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 150000001896 cresols Chemical class 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- QSAWQNUELGIYBC-UHFFFAOYSA-N cyclohexane-1,2-dicarboxylic acid Chemical compound OC(=O)C1CCCCC1C(O)=O QSAWQNUELGIYBC-UHFFFAOYSA-N 0.000 description 1
- UKJLNMAFNRKWGR-UHFFFAOYSA-N cyclohexatrienamine Chemical group NC1=CC=C=C[CH]1 UKJLNMAFNRKWGR-UHFFFAOYSA-N 0.000 description 1
- YQLZOAVZWJBZSY-UHFFFAOYSA-N decane-1,10-diamine Chemical compound NCCCCCCCCCCN YQLZOAVZWJBZSY-UHFFFAOYSA-N 0.000 description 1
- 150000001991 dicarboxylic acids Chemical class 0.000 description 1
- QFTYSVGGYOXFRQ-UHFFFAOYSA-N dodecane-1,12-diamine Chemical compound NCCCCCCCCCCCCN QFTYSVGGYOXFRQ-UHFFFAOYSA-N 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 125000001153 fluoro group Chemical group F* 0.000 description 1
- 238000001879 gelation Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229920006015 heat resistant resin Polymers 0.000 description 1
- GNOIPBMMFNIUFM-UHFFFAOYSA-N hexamethylphosphoric triamide Chemical compound CN(C)P(=O)(N(C)C)N(C)C GNOIPBMMFNIUFM-UHFFFAOYSA-N 0.000 description 1
- NAQMVNRVTILPCV-UHFFFAOYSA-N hexane-1,6-diamine Chemical compound NCCCCCCN NAQMVNRVTILPCV-UHFFFAOYSA-N 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 238000006358 imidation reaction Methods 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000005001 laminate film Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- ACXIAEKDVUJRSK-UHFFFAOYSA-N methyl(silyloxy)silane Chemical compound C[SiH2]O[SiH3] ACXIAEKDVUJRSK-UHFFFAOYSA-N 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- AJFDBNQQDYLMJN-UHFFFAOYSA-N n,n-diethylacetamide Chemical compound CCN(CC)C(C)=O AJFDBNQQDYLMJN-UHFFFAOYSA-N 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 229920002312 polyamide-imide Polymers 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- WGYKZJWCGVVSQN-UHFFFAOYSA-N propylamine Chemical group CCCN WGYKZJWCGVVSQN-UHFFFAOYSA-N 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
- 239000001384 succinic acid Substances 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Laminated Bodies (AREA)
- Extrusion Moulding Of Plastics Or The Like (AREA)
- Lining Or Joining Of Plastics Or The Like (AREA)
Description
【0001】
【発明の属する技術分野】
この発明は、ダブルベルトプレス法によるフレキシブル金属箔積層体およびその製造方法に関するものであり、さらに詳しくは高耐熱性の芳香族ポリイミド層の少なくとも片面に熱圧着性の芳香族ポリイミド層を有する熱圧着性多層ポリイミドフィルムと金属箔とが積層されてなるオ−ルポリイミドで製品外観および寸法安定性が良好であるフレキシブル金属箔積層体およびその製造方法に関するものである。
【0002】
【従来の技術】
カメラ、パソコン、液晶ディスプレイなどの電子機器類への用途として芳香族ポリイミドフィルムは広く使用されている。
芳香族ポリイミドフィルムをフレキシブルプリント板(FPC)やテ−プ・オ−トメイティッド・ボンディング(TAB)などの基板材料として使用するためには、エポキシ樹脂などの接着剤を用いて銅箔を張り合わせる方法が採用されている。
【0003】
芳香族ポリイミドフィルムは耐熱性、機械的強度、電気的特性などが優れているが、接着剤の耐熱性等が劣るため、本来のポリイミドの特性を損なうことが指摘されている。
このような問題を解決するために、接着剤を使用しないでポリイミドフィルムに銅を電気メッキしたり、銅箔にポリアミック酸溶液を塗布し、乾燥、イミド化したり、熱可塑性のポリイミドを熱圧着させたオ−ルポリイミド基材が開発されている。
【0004】
また、真空プレス機などを用いてポリイミドフィルムと金属箔との間にポリイミド接着剤をサンドイッチ状に接合したポリイミドラミネ−トが知られている(米国特許第4543295号)。
しかし、このポリイミドラミネ−トでは、長尺状のものが得られずしかも低熱線膨張のビフェニルテトラカルボン酸系ポリイミドフィルムについては接着強度が小さく使用できないという問題がある。
【0005】
また、ロ−ルラミネ−ト法によって耐熱性ポリイミド層と熱圧着性ポリイミド層との熱圧着性多層ポリイミドフィルムと金属箔とを加熱圧着したフレキシブル金属箔積層体が提案されているが、製品外観が良好なものを得ることは困難であった。
このため、ロ−ルの材質として特定の硬度を有する金属を使用するとか、熱圧着性のポリイミドとして特定の芳香族ジアミンによって得られたものを使用する試みがなされている。
しかし、これらの方法によって得られるフレキシブル金属箔積層体も製品外観が十分ではなく、しかもフレキシブル金属箔積層体として厚みの小さいものが求められる場合に、幅方向の均一性および寸法変化率が十分なものを得ることが難しく、電子回路形成時に製品収率が悪化する。
【0006】
【発明が解決しようとする課題】
この発明の目的は、ポリイミドと金属箔とを積層した、製品外観および寸法安定性が良好であるフレキシブル金属箔積層体およびその製造方法を提供することである。
【0007】
【課題を解決するための手段】
すなわち、この発明は、高耐熱性の芳香族ポリイミド層と金属箔とを熱圧着性のポリイミド層を介して高耐熱性の芳香族ポリイミド層の片面又は両面に金属箔を有するフレキシブル金属箔積層体を製造する方法であり、
金属箔の厚みが3μm〜35μmで、
高耐熱性の芳香族ポリイミド層は、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物とパラ−フェニレンジアミンとを含む成分より製造される芳香族ポリイミド、
3,3’,4,4’−ビフェニルテトラカルボン酸二無水物とピロメリット酸二無水物とパラ−フェニレンジアミンと4,4’−ジアミノジフェニルエ−テルとを含む成分より製造される芳香族ポリイミド、
或いはピロメリット酸二無水物とパラフェニレンジアミンおよび4,4’−ジアミノジフェニルエ−テルとを含む成分より製造される芳香族ポリイミドで、
熱圧着性のポリイミド層は、300〜400℃の温度で熱圧着できる熱可塑性のポリイミドで、
ポリイミド層の全体厚みが7〜50μmで、高耐熱性の芳香族ポリイミド層の厚さが5〜40μmで、熱圧着性のポリイミド層の厚さが2〜10μmである高耐熱性の芳香族ポリイミド層と熱圧着性のポリイミド層とを直接積層した熱圧着性多層ポリイミドフィルムを用い、
ダブルベルトプレスに熱圧着性多層ポリイミドフィルムと金属箔との組み合わせを2組以上供給して、ダブルベルトプレスの加熱圧着ゾ−ンの温度が熱圧着性のポリイミド層のガラス転移温度より20℃以上高く400℃以下の温度で加圧下に熱圧着し、引き続いて冷却ゾ−ンで加圧下に熱圧着性のポリイミド層のガラス転移温度より20℃以上低い温度まで冷却して2組以上を同時に張り合わせて、高耐熱性の芳香族ポリイミド層と金属箔とが熱圧着性のポリイミド層を介して積層されていることを特徴とするフレキシブル金属箔積層体の製造方法に関する。
また、この発明は、上記フレキシブル金属箔積層体の製造方法より製造されるフレキシブル金属箔積層体に関する。なお|0.10|%とは、絶対値が0.10%であることを意味する。
【0008】
【発明の実施の形態】
以下にこの発明の好ましい態様を列記ずる。
1)高耐熱性の芳香族ポリイミド層の両面に金属箔が熱圧着性のポリイミド層を介して積層されてなる前記フレキシブル金属箔積層体の製造方法。
2)金属箔が、電解銅箔、圧延銅箔、アルミニウム箔あるいはステンレス箔である前記フレキシブル金属箔積層体の製造方法。
3)金属箔が、厚み3μm〜35μmの金属箔である前記フレキシブル金属箔積層体の製造方法。
4)ポリイミド層の全体厚みが7〜50μmである前記フレキシブル金属箔積層体の製造方法。
5)熱圧着性多層ポリイミドフィルムが、高耐熱性の芳香族ポリイミド層の少なくとも片面、好ましくは両面に熱圧着性の芳香族ポリイミド層を共押出−流延製膜成形法で積層一体化して得られるものである前記フレキシブル金属箔積層体の製造方法。
【0009】
この発明のフレキシブル金属箔積層体の構成としては、例えば次の各種の組み合わせが挙げられる。次の記載でTPI−Fは熱圧着性多層ポリイミドフィルムを、TPIは熱圧着性の芳香族ポリイミド層を、PIは高耐熱性の芳香族ポリイミド層を各々示し、[ ]中の記載は熱圧着性多層ポリイミドフィルムの構成を示す。
2組以上のフレキシブル金属箔積層体を構成する1組単位の構成:
▲1▼金属箔/TPI−F[TPI/PI]
▲2▼金属箔/TPI−F[TPI/PI/TPI]
▲3▼金属箔/TPI−F[TPI/PI/TPI]/金属箔
この▲1▼〜▲3▼から2組以上を組み合わせる場合に、同じ構成の組み合わせでもよく異なった構成の組み合わせであってもよい。
【0010】
この発明のフレキシブル金属箔積層体は、好適には、熱圧着性多層ポリイミドフィルムと金属箔との2組以上を同時にダブルベルトプレスで加圧下に熱圧着−冷却して張り合わせて積層することによって製造することができる。
【0011】
この発明における熱圧着性多層ポリイミドフィルムは、例えば高耐熱性の芳香族ポリイミドの前駆体溶液乾燥膜の片面あるいは両面に熱圧着性の芳香族ポリイミドの前駆体溶液を積層した後、あるいはより好ましくは、共押出し−流延製膜法によって高耐熱性の芳香族ポリイミドの前駆体溶液の片面あるいは両面に熱圧着性の芳香族ポリイミドまたはその前駆体溶液を積層した後、乾燥、イミド化して熱圧着性多層ポリイミドフィルムを得る方法によって得ることができる。
【0012】
前記の熱圧着性多層ポリイミドフィルムの高耐熱性の芳香族ポリイミドは、好適には3,3’,4,4’−ビフェニルテトラカルボン酸二無水物(以下単にs−BPDAと略記することもある。)とパラフェニレンジアミン(以下単にPPDと略記することもある。)と場合によりさらに4,4’−ジアミノジフェニルエ−テル(以下単にDADEと略記することもある。)および/またはピロメリット酸二無水物(以下単にPMDAと略記することもある。)とから製造される。この場合PPD/DADE(モル比)は100/0〜85/15であることが好ましい。また、s−BPDA/PMDAは100:0〜50/50であることが好ましい。
また、高耐熱性の芳香族ポリイミドは、ピロメリット酸二無水物とパラフェニレンジアミンおよび4,4’−ジアミノジフェニルエ−テルとから製造される。この場合DADE/PPD(モル比)は90/10〜10/90であることが好ましい。
さらに、高耐熱性の芳香族ポリイミドは、3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物(BTDA)およびピロメリット酸二無水物(PMDA)とパラフェニレンジアミン(PPD)および4,4’−ジアミノジフェニルエ−テル(DADE)とから製造される。この場合、酸二無水物中BTDAが20〜90モル%、PMDAが10〜80モル%、ジアミン中PPDが30〜90モル%、DADEが10〜70モル%であることが好ましい。
前記の高耐熱性の芳香族ポリイミドの物性を損なわない範囲で、他の種類の芳香族テトラカルボン酸二無水物や芳香族ジアミン、例えば4,4’−ジアミノジフェニルメタン等を使用してもよい。
また、前記の芳香族テトラカルボン酸二無水物や芳香族ジアミンの芳香環にフッ素基、水酸基、メチル基あるいはメトキシ基などの置換基を導入してもよい。
【0013】
上記の高耐熱性の芳香族ポリイミドとしては、単層のポリイミドフィルムの場合にガラス転移温度が350℃未満の温度では確認不可能であるものが好ましく、特に熱線膨張係数(50〜200℃)(MD、TDおよびこれらの平均のいずれもで、通常はこれらに差が少ないためMDの値で表示する。)が5×10-6〜25×10-6cm/cm/℃であるものが好ましい。
この高耐熱性の芳香族ポリイミドの合成は、最終的に各成分の割合が前記範囲内であればランダム重合、ブロック重合、ブレンドあるいは予め2種類以上のポリアミック酸溶液を合成しておき各ポリアミック酸溶液を混合してポリアミック酸の再結合によって共重合体を得る、いずれの方法によっても達成される。
【0014】
この発明における熱圧着性ポリイミドとしては、300〜400℃程度の温度で熱圧着できる熱可塑性ポリイミドであれば何でも良い。好適には1,3−ビス(4−アミノフェノキシベンゼン)(以下、TPERと略記することもある。)と2,3,3’,4’−ビフェニルテトラカルボン酸二無水物(以下、a−BPDAと略記することもある。)とから製造される。
また、前記の熱圧着性ポリイミドとしては、1,3−ビス(4−アミノフェノキシ)−2,2−ジメチルプロパン(DANPG)と4,4’−オキシジフタル酸二無水物(ODPA)とから製造される。
あるいは、4,4’−オキシジフタル酸二無水物(ODPA)およびピロメリット酸二無水物と1,3−ビス(4−アミノフェノキシベンゼン)とから製造される。
また、1,3−ビス(3−アミノフェノキシ)ベンゼンと3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物とから、あるいは3,3’−ジアミノベンゾフェノンおよび1,3−ビス(3−アミノフェノキシ)ベンゼンと3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物とから製造される。
【0015】
この熱圧着性ポリイミドの物性を損なわない範囲で他のテトラカルボン酸二無水物、例えば3,3’,4,4’−ビフェニルテトラカルボン酸二無水物、2,2−ビス(3、4−ジカルボキシフェニル)プロパン二無水物などで置き換えられてもよい。
また、熱圧着性ポリイミドの物性を損なわない範囲で他のジアミン、例えば4,4’−ジアミノジフェニルエ−テル、4,4’−ジアミノベンゾフェノン、4,4’−ジアミノジフェニルメタン、2,2−ビス(4−アミノフェニル)プロパン、1,4−ビス(4−アミノフェノキシ)ベンゼン、4,4’−ビス(4−アミノフェニル)ジフェニルエ−テル、4,4’−ビス(4−アミノフェニル)ジフェニルメタン、4,4’−ビス(4−アミノフェノキシ)ジフェニルエ−テル、4,4’−ビス(4−アミノフェノキシ)ジフェニルメタン、2,2−ビス〔4−(アミノフェノキシ)フェニル〕プロパン、2,2−ビス〔4−(4−アミノフェノキシ)フェニル〕ヘキサフルオロプロパンなどの複数のベンゼン環を有する柔軟な芳香族ジアミン、1,4−ジアミノブタン、1,6−ジアミノヘキサン、1,8−ジアミノオクタン、1,10−ジアミノデカン、1,12−ジアミノドデカンなどの脂肪族ジアミン、ビス(3−アミノプロピル)テトラメチルジシロキサンなどのジアミノジシロキサンによって置き換えられてもよい。
前記の熱圧着性の芳香族ポリイミドのアミン末端を封止するためにジカルボン酸類、例えば、フタル酸およびその置換体、ヘキサヒドロフタル酸およびその置換体、コハク酸およびその置換体やそれらの誘導体など、特に、フタル酸を使用してもよい。
【0016】
前記の熱圧着性のポリイミドは、前記各成分と、さらに場合により他のテトラカルボン酸二無水物および他のジアミンとを、有機溶媒中、約100℃以下、特に20〜60℃の温度で反応させてポリアミック酸の溶液とし、このポリアミック酸の溶液をド−プ液として使用できる。
前記の熱圧着性のポリイミドは、前記各成分と、さらに場合により他のテトラカルボン酸二無水物および他のジアミンとを、有機溶媒中、約100℃以下、特に20〜60℃の温度で反応させてポリアミック酸の溶液とし、このポリアミック酸の溶液をド−プ液として使用できる。
この発明における熱圧着性のポリイミドを得るためには、前記の有機溶媒中、酸の全モル数(テトラカルボン酸二無水物とジカルボン酸の総モルとして)の使用量がジアミン(モル数として)に対する比として、好ましくは0.92〜1.1、特に0.98〜1.1、そのなかでも特に0.99〜1.1であり、ジカルボン酸の使用量がテトラカルボン酸二無水物のモル量に対する比として、好ましくは0.00〜0.1、特に0.02〜0.06であるような割合が好ましい。
【0017】
また、ポリアミック酸のゲル化を制限する目的でリン系安定剤、例えば亜リン酸トリフェニル、リン酸トリフェニル等をポリアミック酸重合時に固形分(ポリマ−)濃度に対して0.01〜1%の範囲で添加することができる。また、イミド化促進の目的で、ド−プ液中に塩基性有機化合物系触媒を添加することができる。例えば、イミダゾ−ル、2−イミダゾ−ル、1,2−ジメチルイミダゾ−ル、2−フェニルイミダゾ−ルなどをポリアミック酸(固形分)に対して0.01〜20重量%、特に0.5〜10重量%の割合で使用することができる。これらは比較的低温でポリイミドフィルムを形成するため、イミド化が不十分となることを避けるために使用する。
また、接着強度の安定化の目的で、熱圧着性の芳香族ポリイミド原料ド−プに有機アルミニウム化合物、無機アルミニウム化合物または有機錫化合物を添加してもよい。例えば水酸化アルミニウム、アルミニウムトリアセチルアセトナ−トなどをポリアミック酸(固形分)に対してアルミニウム金属として1ppm以上、特に1〜1000ppmの割合で添加することができる。
【0018】
前記のポリアミック酸製造に使用する有機溶媒は、高耐熱性の芳香族ポリイミドおよび熱圧着性の芳香族ポリイミドのいずれに対しても、N−メチル−2−ピロリドン、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N,N−ジエチルアセトアミド、ジメチルスルホキシド、ヘキサメチルホスホルアミド、N−メチルカプロラクタム、クレゾ−ル類などが挙げられる。これらの有機溶媒は単独で用いてもよく、2種以上を併用してもよい。
【0019】
前記の熱圧着性多層ポリイミドフィルムの製造においては、好適には共押出し−流延製膜法、例えば上記の高耐熱性の芳香族ポリイミドのポリアミック酸溶液の片面あるいは両面に熱圧着性の芳香族ポリイミドの前駆体の溶液を共押出して、これをステンレス鏡面、ベルト面等の支持体面上に流延塗布し、100〜200℃で半硬化状態またはそれ以前の乾燥状態とする方法が採用できる。200℃を越えた高い温度で流延フィルムを処理すると、熱圧着性多層ポリイミドフィルムの製造において、接着性の低下などの欠陥を来す傾向にある。この半硬化状態またはそれ以前の状態とは、加熱および/または化学イミド化によって自己支持性の状態にあることを意味する。
【0020】
前記高耐熱性の芳香族ポリイミドを与えるポリアミック酸の溶液と熱圧着性の芳香族ポリイミドを与えるポリアミック酸の溶液との共押出しは、例えば特開平3−180343号公報(特公平7−102661号公報)に記載の共押出法によって二層あるいは三層の押出し成形用ダイスに供給し、支持体上にキャストしておこなうことができる。
前記の高耐熱性の芳香族ポリイミドを与える押出し物層の片面あるいは両面に、熱圧着性の芳香族ポリイミドを与えるポリアミック酸溶液を積層して多層フィルム状物を形成して乾燥後、熱圧着性の芳香族ポリイミドのガラス転移温度(Tg)以上で劣化が生じる温度以下の温度、好適には300〜500℃の温度(表面温度計で測定した表面温度)まで加熱して(好適にはこの温度で1〜60分間加熱して)乾燥およびイミド化して、高耐熱性(基体層)の芳香族ポリイミドの片面あるいは両面に熱圧着性の芳香族ポリイミドを有する熱圧着性多層ポリイミドフィルムを製造することができる。
【0021】
この発明における熱圧着性の芳香族ポリイミドは、前記の酸成分とジアミン成分とを使用することによって、ガラス転移温度が180〜275℃、特に200〜275℃であって、好適には前記の条件で乾燥・イミド化して熱圧着性ポリイミドのゲル化を実質的に起こさせないことによって得られる、ガラス転移温度以上で300℃以下の範囲内の温度で液状化せず、かつ弾性率が、通常275℃での弾性率が室温付近の温度(50℃)での弾性率の0.0002〜0.2倍程度を保持しているものが好ましい。
【0022】
この発明において、高耐熱性の(基体層)ポリイミド層の厚さは5〜70μm、特に5〜40μmであることが好ましい。5μm未満では作成した熱圧着性多層ポリイミドフィルムの機械的強度、寸法安定性に問題が生じる。また70μmより厚くなっても特に効果はなく、高密度化の点で不利である。
また、この発明において、熱圧着性の芳香族ポリイミド層の厚みは各々2〜10μm、特に2〜8μm程度が好ましい。2μm未満では接着性能が低下し、10μmを超えても使用可能であるがとくに効果はなく、むしろフレキシブル金属箔積層体の耐熱性が低下する。
また、熱圧着性の多層ポリイミドフィルムは厚みが7〜75μm、特に7〜50μmであることが好ましい。7μm未満では作成したフィルムの取り扱いが難しく、75μmより厚くても特に効果はなく、高密度化に不利である。
【0023】
前記の共押出し−流延製膜法によれば、高耐熱性ポリイミド層とその片面あるいは両面の熱圧着性ポリイミドとを比較的低温度でキュアして熱圧着性ポリイミドの劣化を来すことなく、自己支持性フィルムのイミド化、乾燥を完了させた熱圧着性多層ポリイミドフィルムを得ることができ、好適である。
【0024】
この発明において使用される金属箔としては、銅、アルミニウム、鉄、金などの金属箔あるいはこれら金属の合金箔など各種金属箔が挙げられるが、好適には圧延銅箔、電解銅箔などがあげられる。金属箔として、表面粗度の余り大きくなくかつ余り小さくない、好適にはRzが7μm以下、特にRzが5μm以下、特に0.5〜5μmであるものが好ましい。このような金属箔、例えば銅箔はVLP、LP(またはHTE)として知られている。
金属箔の厚さは特に制限はないが、70μm以下、特に3〜35μmであることが好ましい。
また、Raが小さい場合には、金属箔表面を表面処理したものを使用してもよい。
【0025】
この発明においては、熱圧着性多層ポリイミドフィルムと金属箔との2組以上をダブルベルトプレスに供給し、加圧下に熱圧着−冷却して張り合わせて、同時に積層することが必要であり、これによって薄いフレキシブル金属箔積層体であっても、150℃で30分加熱処理後のフィルムについて測定した寸法変化率(エッチング処理前の積層体に対する、金属箔をエッチング除去し150℃で30分加熱処理してフィルムの寸法変化を示す。)が|0.10|%以下、特に±0.001〜±0.10%、その中でも特に±0.001〜±0.08%の寸法安定性を有し、幅方向の平面性の程度および皺の発生を目視観察して判定した製品外観の良好なフレキシブルフレキシブル金属箔積層体を得ることができる。
【0026】
前記の製造方法において、熱圧着性多層ポリイミドフィルムと金属箔との2組以上を同時に加圧下に熱圧着して張り合わせても、ロ−ルラミネ−ト法であれば寸法安定性を有しかつ製品外観の良好なフレキシブル金属箔積層体を得ることができない。
また、ダブルベルトプレスであっても、熱圧着性多層ポリイミドフィルムと金属箔との1組のみを同時にダブルベルトプレスで加圧下に熱圧着−冷却して張り合わせるのであれば、高い寸法安定性を有しかつ製品外観の良好なフレキシブル金属箔積層体を得ることが容易ではなくなる。
【0027】
前記のダブルベルトプレスにおいて、熱圧着性多層ポリイミドフィルムと金属箔とを、好適にはダブルベルトプレスに導く入口ドラムに沿わせて100℃より高く250℃以下の温度で2〜120秒間程度予熱して、加圧下で熱圧着−冷却して張り合わせることことが好ましい。
前記のダブルベルトプレスは、加圧下に高温加熱−冷却を行うことができるものであって、熱媒を用いた液圧式のものが好ましい。
【0028】
この発明におけるフレキシブル金属箔積層体は、好適にはダブルベルトプレスの加熱圧着ゾ−ンの温度が熱圧着性ポリイミドのガラス転移温度より20℃以上高く400℃以下の温度、特にガラス転移温度より30℃以上高く400℃以下の温度で加圧下に熱圧着し、引き続いて冷却ゾ−ンで加圧下に冷却して、好適には熱圧着性ポリイミドのガラス転移温度より20℃以上低い温度、特に30℃以上低い温度まで冷却して、積層することによって製造することができる。
前記の方法において、製品が片面金属箔のフレキシブル金属箔積層体である場合には、剥離容易な高耐熱性フィルム、例えば前記のRzが2μm未満の高耐熱性フィルムまたは金属箔、好適にはポリイミドフィルム(宇部興産社製、ユ−ピレックスS)やフッ素樹脂フィルムなどの高耐熱性樹脂フィルムや圧延銅箔などであって表面粗さが小さく表面平滑性の良好な金属箔を保護材として、熱圧着性ポリイミド層と他の金属面との間に介在させてもよい。この保護材は積層後、積層体から除いて巻き取ってもよく、保護材を積層したままで巻き取って使用時に取り除いてもよい。
【0029】
この発明においては、ダブルベルトプレスを用いて加圧下に熱圧着−冷却して積層することによって、好適には引き取り速度1m/分以上とすることができ、得られるフレキシブル金属箔積層体は、長尺で幅が約400mm以上、特に約500mm以上の幅広であっても、接着強度が大きく(90°ピ−ル強度:0.7kg/cm以上、特に1kg/cm以上)、金属箔表面に皺が実質的に認めれられない程外観が良好なフレキシブル金属箔積層体を得ることができる。また、この発明においては、フレキシブル金属箔積層体は、寸法変化率が、各幅方向のL、CおよびR(フィルムの巻き出し方向の左端、中心、右端)の平均で、150℃×30分間加熱後で|0.10|%以下となり、寸法安定性が高い。
【0030】
この発明において、フレキシブル金属箔積層体は、熱圧着性多層ポリイミドフィルムおよび金属箔がロ−ル巻きの状態でダブルベルトプレスにそれぞれ供給され、金属箔積層フィルムをロ−ル巻きの状態で得ることができる。
【0031】
この発明によって得られるフレキシブル金属箔積層体は、ロ−ル巻き、エッチング、および場合によりカ−ル戻し等の各処理を行った後、所定の大きさに切断して、電子部品用基板として使用できる。
例えば、FPC、TAB、多層FPC、フレックスリジッド基板の基板として好適に使用することができる。
特に、金属箔の厚みが3〜35μmで熱圧着性多層ポリイミドフィルム層の厚みが7〜50μmである片面銅箔積層体(全体厚みが15〜85μm)あるいは両面銅箔積層体(全体厚みが25〜120μm)から、エポキシ系接着剤あるいは熱可塑性ポリイミドや熱可塑性ポリアミドイミドあるいはポリイミドシロキサン−エポキシ系などの耐熱性ポリイミド系接着剤から選ばれる耐熱性接着剤(厚み5〜50μm、好ましくは5〜15μm、特に7〜12μm)で複数のフレキシブル銅箔積層体を接着することによってフレキシブル銅箔積層体が2〜10層で、高耐熱性・低吸水・低誘電率・高電気特性を満足する多層基板を好適に得ることができる。
この発明のフレキシブル金属箔積層体には、前記の長尺状のものだけでなく前記のように長尺状のものを所定の大きさに切断したものも含まれる。
【0032】
【実施例】
以下、この発明を実施例によりさらに詳細に説明する。
以下の各例において、部は重量部を意味する。
以下の各例において、物性評価およびフレキシブル金属箔積層体の接着強度は以下の方法に従って測定した。
【0033】
(1)製品外観:積層後の製品外観について、平面性の程度や皺の有無を目視判定して評価。
○は平面性が均一で皺なく良好、△は平面性がやや不均一か皺が少しあり普通、×は平面性が不均一か皺が発生
(2)寸法安定性:加熱前の積層体の寸法に対する150℃×30分間の加熱処理後の積層体の寸法変化をJIS C−6471の「フレキシブルプリント配線板用銅張積層板試験方法」により測定し、%で表示の寸法変化率を求めた。
○は寸法変化率が|0.10|%以下で寸法安定性良好、△は寸法変化率が|0.10|%より大きく|0.12|%未満で寸法安定性普通、×は寸法変化率が|0.12|%以上で寸法安定性不良
(3)熱線膨張係数:50〜200℃、5℃/分で測定(TD、MDの平均値)、cm/cm/℃
(4)ガラス転移温度(Tg):粘弾性より測定。
(5)接着強度:90°剥離強度を測定し、平均値で示した。
【0034】
高耐熱性の芳香族ポリイミド製造用ド−プの合成例1
攪拌機、窒素導入管を備えた反応容器に、N−メチル−2−ピロリドンを加え、さらに、パラフェニレンジアミン(PPD)と3,3’,4,4’−ビフェニルテトラカルボン酸二無水物(s−BPDA)とを1000:998のモル比でモノマ−濃度が18%(重量%、以下同じ)になるように加えた。添加終了後50℃を保ったまま3時間反応を続けた。得られたポリアミック酸溶液は褐色粘調液体であり、25℃における溶液粘度は約1500ポイズであった。この溶液をド−プとして使用した。
【0035】
熱圧着性の芳香族ポリイミド製造用ド−プの合成−1
攪拌機、窒素導入管を備えた反応容器に、N−メチル−2−ピロリドンを加え、さらに、1,3−ビス(4−アミノフェノキシ)ベンゼン(TPE−R)と2,3,3’,4’−ビフェニルテトラカルボン酸二無水物(a−BPDA)とを1000:1000のモル比でモノマ−濃度が22%になるように、またトリフェニルホスフェ−トをモノマ−重量に対して0.1%加えた。添加終了後25℃を保ったまま1時間反応を続けた。このポリアミック酸溶液は、25℃における溶液粘度が約2000ポイズであった。この溶液をド−プとして使用した。
【0036】
参考例1〜3
上記の高耐熱性の芳香族ポリイミド用ド−プと熱圧着性の芳香族ポリイミド製造用ド−プとを三層押出し成形用ダイス(マルチマニホ−ルド型ダイス)を設けた製膜装置を使用し、前記ポリアミック酸溶液を三層押出ダイスの厚みを変えて金属製支持体上に流延し、140℃の熱風で連続的に乾燥し、固化フィルムを形成した。この固化フィルムを支持体から剥離した後加熱炉で200℃から320℃まで徐々に昇温して溶媒の除去、イミド化を行い3種類の長尺状の三層押出しポリイミドフィルムを巻き取りロ−ルに巻き取った。
得られた三層押出しポリイミドフィルムは、次のような物性を示した。
【0037】
熱圧着性多層ポリイミドフィルム−1
厚み構成:4μm/17μm/4μm(合計25μm)
熱圧着性の芳香族ポリイミドのTg:250℃(以下同じ)
熱圧着性の芳香族ポリイミドの275℃での弾性率は50℃での弾性率の約0.002倍(以下同じ)
熱圧着性多層ポリイミドフィルム−2
厚み構成:3μm/9μm/3μm(合計15μm)
熱圧着性多層ポリイミドフィルム−2
厚み構成:2μm/6μm/2μm(合計10μm)
【0038】
比較例1
前記の熱圧着性多層ポリイミドフィルム−1と、2つのロ−ル巻きした電解銅箔(三井金属鉱業社製、3EC−VLP、Rzが3.8μm、厚さ18μm)との1組を、金属製の圧着ロ−ルと弾性ロ−ルとからなるラミネ−トロ−ルを使用し、連続的に金属側:380℃、弾性側:200℃で加熱下に圧着して、フレキシブル銅箔積層体(幅:約320mm)を巻き取りロ−ルに巻き取った。なお、操作はすべて空気中で行い、冷却は自然冷却で行った。
得られたフレキシブル銅箔積層体についての評価結果を次に示す。
製品外観:×
接着強度ピ−ル強度:平均:1.2kgf/cm
製品外観:×
寸法安定性:×
寸法変化率:−0.14%
【0039】
比較例2
熱圧着性多層ポリイミドフィルム銅箔との2組を熱圧着した他は比較例1と同様にして、フレキシブル銅箔積層体を巻き取りロ−ルに巻き取った。
得られたフレキシブル銅箔積層体についての評価結果を次に示す。
製品外観:△
寸法安定性:×
寸法変化率:−0.12%
【0040】
比較例3
ダブルベルトプレスに、熱圧着性多層ポリイミドフィルム−1およびその両側から厚み18μmの電解銅箔の1組を連続的に供給し、加熱ゾ−ンの温度(最高加熱温度)380℃(設定)、冷却ゾ−ンの温度(最低冷却温度)117℃)で、連続的に加圧下に熱圧着−冷却して積層して、フレキシブル銅箔積層体(幅:約530mm、以下同じ)のロ−ル巻状物を得た。得られたフレキシブル銅箔積層体についての評価結果を次に示す。
製品外観:○
寸法安定性:×
寸法変化率:−0.12%
【0041】
実施例1
熱圧着性多層ポリイミドフィルム−1および銅箔の2組を積層したた他は比較例3と同様にして、2組のロ−ル巻状両面銅箔のフレキシブル銅箔積層体を巻き取りロ−ルに巻き取った。
このフレキシブル銅箔積層体は構成がCu/TPI−F/Cu及びCu/TPI−F/Cuで、厚みが18μm/25μm/18μmであった。
得られたフレキシブル銅箔積層体の2組についての評価結果を次に示す。
製品外観:○
寸法安定性:○
寸法変化率:−0.08%
接着強度:1.3kgf/cm
【0042】
実施例2
熱圧着性多層ポリイミドフィルム−1および銅箔の3組を積層した他は実施例1と同様にして、3組のロ−ル巻状両面銅箔のフレキシブル銅箔積層体を巻き取りロ−ルに巻き取った。このフレキシブル銅箔積層体は構成がCu/TPI−F/Cu、Cu/TPI−F/Cu及びCu/PI/Cuで、厚みが18μm/25μm/18μmであった。得られたフレキシブル銅箔積層体の3組についての評価結果を次に示す。
製品外観:○
寸法安定性:○
寸法変化率:−0.07%
接着強度:1.4kgf/cm
【0043】
実施例3〜4
熱圧着性多層ポリイミドフィルム−2および厚み12μmの電解銅箔(三井金属鉱業社製)を使用するか、熱圧着性多層ポリイミドフィルム−3および厚み9μmの電解銅箔(三井金属鉱業社製)を使用した他は実施例2と同様にして、連続的に加圧下に熱圧着−冷却して積層して、3組のフレキシブル銅箔積層体を巻き取りロ−ルに巻き取った。
得られたフレキシブル銅箔積層体についての評価結果は実施例2と同等で良好な結果を示した。
【0044】
【発明の効果】
この発明の製造方法によれば、以上のような構成を有しているため、次のような効果を奏する。
【0045】
この発明の製造方法によれば、製品外観および寸法変化率が|0.10|%以下で寸法安定性が良好なフレキシブル金属箔積層体を、ラミネ−ト装置を大きくすることなく、生産性の向上と品質特性の向上とを両立させて製造することができる。特に、この発明によれば、製品が薄い場合にも、製品外観が良好で寸法安定性を改良することが可能になった。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a flexible metal foil laminate by a double belt press method and a method for producing the same, and more specifically, thermocompression bonding having a thermocompression-bonding aromatic polyimide layer on at least one surface of a highly heat-resistant aromatic polyimide layer. The present invention relates to a flexible metal foil laminate which is an all polyimide obtained by laminating a conductive multilayer polyimide film and a metal foil and has good product appearance and dimensional stability, and a method for producing the same.
[0002]
[Prior art]
Aromatic polyimide films are widely used as applications for electronic devices such as cameras, personal computers, and liquid crystal displays.
In order to use an aromatic polyimide film as a substrate material such as a flexible printed board (FPC) or tape-automated bonding (TAB), a copper foil is bonded using an adhesive such as an epoxy resin. The method is adopted.
[0003]
Aromatic polyimide films are excellent in heat resistance, mechanical strength, electrical characteristics, etc., but it has been pointed out that the heat resistance of adhesives is inferior so that the characteristics of the original polyimide are impaired.
In order to solve such problems, copper is electroplated on the polyimide film without using an adhesive, or a polyamic acid solution is applied to the copper foil, followed by drying, imidization, or thermocompression bonding of thermoplastic polyimide. An all-polyimide substrate has been developed.
[0004]
Further, there is known a polyimide laminate in which a polyimide adhesive is bonded in a sandwich between a polyimide film and a metal foil using a vacuum press machine (US Pat. No. 4,543,295).
However, in this polyimide laminate, there is a problem that a long one cannot be obtained, and a low heat linear expansion biphenyltetracarboxylic acid type polyimide film has a low adhesive strength and cannot be used.
[0005]
In addition, a flexible metal foil laminate in which a thermocompression-bonding multilayer polyimide film of a heat-resistant polyimide layer and a thermocompression-bonding polyimide layer and a metal foil are thermocompression-bonded by a roll laminating method has been proposed. It was difficult to obtain a good one.
For this reason, attempts have been made to use a metal having a specific hardness as the material of the roll, or to use a material obtained from a specific aromatic diamine as a thermocompression bonding polyimide.
However, the flexible metal foil laminate obtained by these methods also has an insufficient product appearance, and when a thin flexible metal foil laminate is required, the uniformity in the width direction and the dimensional change rate are sufficient. It is difficult to obtain a product, and the product yield deteriorates when an electronic circuit is formed.
[0006]
[Problems to be solved by the invention]
The objective of this invention is providing the flexible metal foil laminated body which laminated | stacked polyimide and metal foil, and the product external appearance and dimensional stability are favorable, and its manufacturing method.
[0007]
[Means for Solving the Problems]
That is, this invention is a flexible metal foil laminate having a metal foil on one or both sides of a highly heat-resistant aromatic polyimide layer through a thermocompression-bonding polyimide layer and a highly heat-resistant aromatic polyimide layer and a metal foil. Is a method of manufacturing
The thickness of the metal foil is 3 μm to 35 μm,
The highly heat-resistant aromatic polyimide layer is an aromatic polyimide produced from a component containing 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride and para-phenylenediamine,
Aromatics produced from components comprising 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, pyromellitic dianhydride, para-phenylenediamine and 4,4′-diaminodiphenyl ether Polyimide,
Alternatively, an aromatic polyimide produced from a component containing pyromellitic dianhydride, paraphenylenediamine and 4,4′-diaminodiphenyl ether,
The thermocompression bonding polyimide layer is a thermoplastic polyimide that can be thermocompression bonded at a temperature of 300 to 400 ° C.
Highly heat-resistant aromatic polyimide having a total polyimide layer thickness of 7 to 50 μm, a high heat-resistant aromatic polyimide layer thickness of 5 to 40 μm, and a thermocompression bonding polyimide layer thickness of 2 to 10 μm Using a thermocompression-bonding multilayer polyimide film in which a layer and a thermocompression-bonding polyimide layer are directly laminated,
Double belt pressThermocompression bonding polyimide filmTwo or more combinations of metal foil and metal foil are supplied, and the temperature of the heat-bonding zone of the double belt press is 20 ° C. higher than the glass transition temperature of the thermo-compression bonding polyimide layer and is under pressure at a temperature of 400 ° C. or lower. Thermocompression bonding, followed by cooling to a temperature lower by 20 ° C. or lower than the glass transition temperature of the thermocompression-bondable polyimide layer under pressure with a cooling zone, and simultaneously bonding two or more pairs, a highly heat-resistant aromatic polyimide layer It is related with the manufacturing method of the flexible metal foil laminated body characterized by laminating | stacking and metal foil through the thermocompression-bonding polyimide layer.
Moreover, this invention relates to the flexible metal foil laminated body manufactured from the manufacturing method of the said flexible metal foil laminated body. Note that | 0.10 |% means that the absolute value is 0.10%.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
The preferred embodiments of the present invention are listed below.
1) The manufacturing method of the said flexible metal foil laminated body by which metal foil is laminated | stacked on both surfaces of a highly heat-resistant aromatic polyimide layer through the thermocompression-bonding polyimide layer.
2) The manufacturing method of the said flexible metal foil laminated body whose metal foil is electrolytic copper foil, rolled copper foil, aluminum foil, or stainless steel foil.
3) The manufacturing method of the said flexible metal foil laminated body whose metal foil is metal foil of thickness 3 micrometers-35 micrometers.
4) The manufacturing method of the said flexible metal foil laminated body whose whole thickness of a polyimide layer is 7-50 micrometers.
5) A thermocompression-bonding multilayer polyimide film is obtained by laminating and integrating a thermocompression-bonding aromatic polyimide layer on at least one surface, preferably both surfaces of a highly heat-resistant aromatic polyimide layer by a coextrusion-casting film forming method. A method for producing the flexible metal foil laminate.
[0009]
As a structure of the flexible metal foil laminated body of this invention, the following various combinations are mentioned, for example. In the following description, TPI-F indicates a thermocompression-bonding multilayer polyimide film, TPI indicates a thermocompression-bonding aromatic polyimide layer, PI indicates a high heat-resistant aromatic polyimide layer, and the description in [] indicates thermocompression-bonding. The structure of a conductive multilayer polyimide film is shown.
Configuration of one set unit constituting two or more sets of flexible metal foil laminates:
(1) Metal foil / TPI-F [TPI / PI]
(2) Metal foil / TPI-F [TPI / PI / TPI]
(3) Metal foil / TPI-F [TPI / PI / TPI] / Metal foil
When combining two or more sets from (1) to (3), the combinations may be the same or different.
[0010]
The flexible metal foil laminate of the present invention is preferably manufactured by laminating two or more sets of a thermocompression-bonding multilayer polyimide film and a metal foil, and simultaneously laminating them by thermocompression-cooling under pressure with a double belt press. can do.
[0011]
The thermocompression-bonding multilayer polyimide film of the present invention is preferably, for example, after laminating a thermocompression-bonding aromatic polyimide precursor solution on one or both sides of a highly heat-resistant aromatic polyimide precursor solution dry film, or more preferably. The thermocompression-bonding aromatic polyimide or its precursor solution is laminated on one or both sides of the highly heat-resistant aromatic polyimide precursor solution by the coextrusion-casting film forming method, and then dried, imidized and thermocompression bonded. It can obtain by the method of obtaining a conductive multilayer polyimide film.
[0012]
The high heat-resistant aromatic polyimide of the thermocompression-bonding multilayer polyimide film is preferably 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride (hereinafter sometimes simply referred to as s-BPDA). ) And paraphenylenediamine (hereinafter sometimes abbreviated as PPD) and optionally 4,4′-diaminodiphenyl ether (hereinafter also abbreviated as DADE) and / or pyromellitic acid. It is produced from dianhydride (hereinafter sometimes abbreviated as PMDA). In this case, the PPD / DADE (molar ratio) is preferably 100/0 to 85/15. Moreover, it is preferable that s-BPDA / PMDA is 100: 0-50 / 50.
Highly heat-resistant aromatic polyimide is produced from pyromellitic dianhydride, paraphenylenediamine, and 4,4'-diaminodiphenyl ether. In this case, the DADE / PPD (molar ratio) is preferably 90/10 to 10/90.
Furthermore, high heat-resistant aromatic polyimides include 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride (BTDA), pyromellitic dianhydride (PMDA), paraphenylenediamine (PPD) and 4 , 4'-diaminodiphenyl ether (DADE). In this case, it is preferable that BTDA in acid dianhydride is 20 to 90 mol%, PMDA is 10 to 80 mol%, PPD in diamine is 30 to 90 mol%, and DADE is 10 to 70 mol%.
Other types of aromatic tetracarboxylic dianhydrides and aromatic diamines such as 4,4'-diaminodiphenylmethane may be used as long as the physical properties of the high heat-resistant aromatic polyimide are not impaired.
Moreover, you may introduce | transduce substituents, such as a fluorine group, a hydroxyl group, a methyl group, or a methoxy group, into the aromatic ring of the said aromatic tetracarboxylic dianhydride or aromatic diamine.
[0013]
As the above-mentioned highly heat-resistant aromatic polyimide, in the case of a single-layer polyimide film, those that cannot be confirmed at a glass transition temperature of less than 350 ° C. are preferred, and in particular, the coefficient of thermal expansion (50 to 200 ° C.) ( MD, TD, and the average of all of these are usually displayed as MD values because there is little difference between them.-6~ 25x10-6What is cm / cm / degreeC is preferable.
The synthesis of this highly heat-resistant aromatic polyimide can be accomplished by randomly polymerizing, polymerizing, blending or preliminarily synthesizing two or more kinds of polyamic acid solutions as long as the ratio of each component is within the above range. This can be achieved by any method in which the solution is mixed to obtain a copolymer by recombination of the polyamic acid.
[0014]
As the thermocompression bonding polyimide in the present invention, any thermoplastic polyimide that can be thermocompression bonded at a temperature of about 300 to 400 ° C. may be used. Preferably, 1,3-bis (4-aminophenoxybenzene) (hereinafter sometimes abbreviated as TPER) and 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride (hereinafter referred to as a- And may be abbreviated as BPDA).
The thermocompression bonding polyimide is manufactured from 1,3-bis (4-aminophenoxy) -2,2-dimethylpropane (DANPG) and 4,4′-oxydiphthalic dianhydride (ODPA). The
Alternatively, it is prepared from 4,4'-oxydiphthalic dianhydride (ODPA) and pyromellitic dianhydride and 1,3-bis (4-aminophenoxybenzene).
Also, from 1,3-bis (3-aminophenoxy) benzene and 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride, or from 3,3′-diaminobenzophenone and 1,3-bis ( 3-aminophenoxy) benzene and 3,3 ′, 4,4′-benzophenone tetracarboxylic dianhydride.
[0015]
Other tetracarboxylic dianhydrides such as 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 2,2-bis (3,4- It may be replaced with dicarboxyphenyl) propane dianhydride or the like.
Further, other diamines such as 4,4′-diaminodiphenyl ether, 4,4′-diaminobenzophenone, 4,4′-diaminodiphenylmethane, 2,2-bis, as long as the physical properties of the thermocompression bonding polyimide are not impaired. (4-aminophenyl) propane, 1,4-bis (4-aminophenoxy) benzene, 4,4′-bis (4-aminophenyl) diphenyl ether, 4,4′-bis (4-aminophenyl) Diphenylmethane, 4,4′-bis (4-aminophenoxy) diphenyl ether, 4,4′-bis (4-aminophenoxy) diphenylmethane, 2,2-bis [4- (aminophenoxy) phenyl] propane, 2, Flexible aromatic di- having a plurality of benzene rings, such as 2-bis [4- (4-aminophenoxy) phenyl] hexafluoropropane Mine, 1,4-diaminobutane, 1,6-diaminohexane, 1,8-diaminooctane, 1,10-diaminodecane, 1,12-diaminododecane and other aliphatic diamines, bis (3-aminopropyl) tetra It may be replaced by a diaminodisiloxane such as methyldisiloxane.
Dicarboxylic acids such as phthalic acid and its substituted products, hexahydrophthalic acid and its substituted products, succinic acid and its substituted products and derivatives thereof for sealing the amine terminal of the thermocompression-bonding aromatic polyimide In particular, phthalic acid may be used.
[0016]
The thermocompression bonding polyimide reacts with each of the above components, and optionally other tetracarboxylic dianhydrides and other diamines in an organic solvent at a temperature of about 100 ° C. or less, particularly 20 to 60 ° C. Thus, a polyamic acid solution can be used, and this polyamic acid solution can be used as a dope solution.
The thermocompression bonding polyimide reacts with each of the above components, and optionally other tetracarboxylic dianhydrides and other diamines in an organic solvent at a temperature of about 100 ° C. or less, particularly 20 to 60 ° C. Thus, a polyamic acid solution can be used, and this polyamic acid solution can be used as a dope solution.
In order to obtain the thermocompression-bondable polyimide in the present invention, the total amount of acids (as the total moles of tetracarboxylic dianhydride and dicarboxylic acid) used in the organic solvent is diamine (as the number of moles). Is preferably 0.92 to 1.1, particularly 0.98 to 1.1, and especially 0.99 to 1.1, and the amount of dicarboxylic acid used is tetracarboxylic dianhydride The ratio to the molar amount is preferably 0.00 to 0.1, particularly preferably 0.02 to 0.06.
[0017]
Further, for the purpose of limiting the gelation of polyamic acid, phosphorus stabilizers such as triphenyl phosphite and triphenyl phosphate are 0.01 to 1% based on the solid content (polymer) concentration during polyamic acid polymerization. It can be added in the range of. For the purpose of promoting imidization, a basic organic compound-based catalyst can be added to the dope solution. For example, imidazole, 2-imidazole, 1,2-dimethylimidazole, 2-phenylimidazole and the like are 0.01 to 20% by weight, particularly 0.5% with respect to the polyamic acid (solid content). It can be used at a ratio of -10% by weight. Since these form a polyimide film at a relatively low temperature, they are used to avoid imidation becoming insufficient.
For the purpose of stabilizing the adhesive strength, an organoaluminum compound, an inorganic aluminum compound or an organotin compound may be added to the thermocompression bonding aromatic polyimide raw material dope. For example, aluminum hydroxide, aluminum triacetylacetonate, or the like can be added in an amount of 1 ppm or more, particularly 1 to 1000 ppm as an aluminum metal with respect to polyamic acid (solid content).
[0018]
The organic solvent used for the production of the polyamic acid is N-methyl-2-pyrrolidone, N, N-dimethylformamide, N, for both high heat-resistant aromatic polyimide and thermocompression aromatic polyimide. , N-dimethylacetamide, N, N-diethylacetamide, dimethylsulfoxide, hexamethylphosphoramide, N-methylcaprolactam, cresols and the like. These organic solvents may be used alone or in combination of two or more.
[0019]
In the production of the above-mentioned thermocompression-bonding multilayer polyimide film, it is preferable to use a coextrusion-casting film forming method, for example, thermocompression-bonding aromatics on one or both sides of the polyamic acid solution of the above-mentioned high heat-resistant aromatic polyimide A method in which a polyimide precursor solution is coextruded and cast onto a support surface such as a stainless steel mirror surface or a belt surface to be semi-cured or dried at 100 to 200 ° C. can be employed. When a cast film is processed at a high temperature exceeding 200 ° C., defects such as a decrease in adhesiveness tend to occur in the production of a thermocompression-bonding multilayer polyimide film. This semi-cured state or an earlier state means that it is in a self-supporting state by heating and / or chemical imidization.
[0020]
The coextrusion of the polyamic acid solution that gives the high heat-resistant aromatic polyimide and the polyamic acid solution that gives the thermocompression-bonding aromatic polyimide can be performed by, for example, JP-A-3-180343 (Japanese Patent Publication No. 7-102661). ) Can be fed to a two-layer or three-layer extrusion die and cast on a support.
A polyamic acid solution that gives a thermocompression-bonding aromatic polyimide is laminated on one or both sides of the extrudate layer that gives the high heat-resistant aromatic polyimide to form a multilayered film-like product, and is dried, followed by thermocompression bonding. Heat to a temperature below the temperature at which deterioration occurs above the glass transition temperature (Tg) of the aromatic polyimide, preferably 300 to 500 ° C. (surface temperature measured with a surface thermometer) (preferably this temperature). Drying for 1 to 60 minutes) and drying and imidizing to produce a thermocompression-bonding multilayer polyimide film having a thermocompression-bonding aromatic polyimide on one or both sides of a highly heat-resistant (substrate layer) aromatic polyimide. Can do.
[0021]
The thermocompression-bondable aromatic polyimide according to the present invention has a glass transition temperature of 180 to 275 ° C., particularly 200 to 275 ° C. by using the acid component and the diamine component. Is not liquefied at a temperature not lower than the glass transition temperature and not higher than 300 ° C., and the elastic modulus is usually 275. It is preferable that the elastic modulus at 0 ° C. holds about 0.0002 to 0.2 times the elastic modulus at a temperature near room temperature (50 ° C.).
[0022]
In the present invention, the thickness of the high heat resistant (base layer) polyimide layer is preferably 5 to 70 μm, particularly preferably 5 to 40 μm. If the thickness is less than 5 μm, problems arise in the mechanical strength and dimensional stability of the thermocompression-bondable multilayer polyimide film produced. Moreover, even if it becomes thicker than 70 μm, there is no particular effect, which is disadvantageous in terms of high density.
In the present invention, the thickness of the thermocompression-bondable aromatic polyimide layer is preferably 2 to 10 μm, particularly about 2 to 8 μm. If it is less than 2 μm, the adhesive performance is lowered, and even if it exceeds 10 μm, it can be used, but it is not particularly effective, but rather the heat resistance of the flexible metal foil laminate is lowered.
The thermocompression-bonding multilayer polyimide film preferably has a thickness of 7 to 75 μm, particularly 7 to 50 μm. If it is less than 7 μm, it is difficult to handle the prepared film, and if it is thicker than 75 μm, there is no particular effect, which is disadvantageous for increasing the density.
[0023]
According to the coextrusion-casting film forming method, the high heat-resistant polyimide layer and the thermocompression bonding polyimide on one or both sides thereof are cured at a relatively low temperature without causing deterioration of the thermocompression bonding polyimide. A thermocompression-bonding multilayer polyimide film that has completed imidization and drying of the self-supporting film can be obtained, which is preferable.
[0024]
Examples of the metal foil used in the present invention include metal foils such as copper, aluminum, iron, and gold, or various metal foils such as alloy foils of these metals, preferably rolled copper foil and electrolytic copper foil. It is done. As the metal foil, one having a surface roughness which is not so large and not too small, preferably Rz is 7 μm or less, particularly Rz is 5 μm or less, particularly 0.5 to 5 μm is preferable. Such metal foils, such as copper foils, are known as VLP, LP (or HTE).
The thickness of the metal foil is not particularly limited, but is preferably 70 μm or less, particularly preferably 3 to 35 μm.
Moreover, when Ra is small, you may use what surface-treated the metal foil surface.
[0025]
In the present invention, it is necessary to supply two or more sets of a thermocompression-bonding multilayer polyimide film and a metal foil to a double belt press, and laminate them at the same time by thermocompression-cooling and bonding together under pressure. Even if it is a thin flexible metal foil laminate, the dimensional change rate measured for the film after heat treatment at 150 ° C. for 30 minutes (the metal foil with respect to the laminate before etching treatment is removed by etching and heat treatment at 150 ° C. for 30 minutes. Shows the dimensional change of the film)| 0.10 |%In the following, it has a dimensional stability of ± 0.001 to ± 0.10%, especially ± 0.001 to ± 0.08%, and visually observes the degree of flatness in the width direction and the occurrence of wrinkles. A flexible flexible metal foil laminate having a good product appearance determined as described above can be obtained.
[0026]
In the above manufacturing method, even if two or more sets of a thermocompression-bonding multilayer polyimide film and a metal foil are bonded together by thermocompression bonding under pressure at the same time, the roll laminating method has dimensional stability and product. A flexible metal foil laminate with good appearance cannot be obtained.
In addition, even with a double belt press, if only one set of a thermocompression-bonding multilayer polyimide film and a metal foil is simultaneously bonded by thermocompression-cooling under pressure with a double belt press, high dimensional stability is achieved. It is not easy to obtain a flexible metal foil laminate having an excellent product appearance.
[0027]
In the double belt press described above, the thermocompression-bonding multilayer polyimide film and the metal foil are preheated for about 2 to 120 seconds at a temperature higher than 100 ° C and lower than 250 ° C, preferably along an inlet drum leading to the double belt press. In addition, it is preferable to bond them by thermocompression bonding and cooling under pressure.
The double belt press is capable of performing high-temperature heating and cooling under pressure, and is preferably a hydraulic type using a heat medium.
[0028]
In the flexible metal foil laminate of the present invention, the temperature of the thermocompression bonding zone of the double belt press is preferably 20 ° C. higher than the glass transition temperature of the thermocompression bonding polyimide and 400 ° C. or less, particularly 30% higher than the glass transition temperature. It is thermocompression bonded under pressure at a temperature not lower than 400 ° C. and not higher than 400 ° C., and subsequently cooled under pressure with a cooling zone, preferably at least 20 ° C. lower than the glass transition temperature of the thermocompression bonding polyimide, particularly 30 It can manufacture by cooling and laminating | stacking to the temperature lower than degreeC.
In the above method, when the product is a flexible metal foil laminate of a single-sided metal foil, a highly heat-resistant film that can be easily peeled, such as a high-heat-resistant film or metal foil having a Rz of less than 2 μm, preferably polyimide A heat-resistant resin film such as a film (Ube Industries, Upilex S) or a fluororesin film, or a rolled copper foil, which has a small surface roughness and good surface smoothness, is used as a protective material. You may interpose between a pressure-sensitive adhesive polyimide layer and another metal surface. After the lamination, the protective material may be removed from the laminate and wound up, or the protective material may be taken up while being laminated and removed during use.
[0029]
In this invention, it is possible to achieve a take-up speed of 1 m / min or more, preferably by thermocompression-cooling and laminating under pressure using a double belt press, and the resulting flexible metal foil laminate is long. Even if the width is about 400 mm or more, especially about 500 mm or more, the adhesive strength is high (90 ° peel strength: 0.7 kg / cm or more, especially 1 kg / cm or more) Can be obtained, a flexible metal foil laminate having a good appearance can be obtained. In the present invention, the flexible metal foil laminate has a dimensional change rate of L, C and R (left end, center, right end in the film unwinding direction) in each width direction, and 150 ° C. × 30 minutes. After heating| 0.10 |%The dimensional stability is high.
[0030]
In this invention, the flexible metal foil laminate is supplied to the double belt press with the thermocompression-bonding multilayer polyimide film and the metal foil in a roll winding state, and the metal foil laminate film is obtained in a roll winding state. Can do.
[0031]
The flexible metal foil laminate obtained by the present invention is used as an electronic component substrate after being rolled, etched, and optionally subjected to curl return, etc., and then cut into a predetermined size. it can.
For example, it can be suitably used as a substrate of FPC, TAB, multilayer FPC, or flex-rigid substrate.
In particular, a single-sided copper foil laminate (overall thickness is 15 to 85 μm) or a double-sided copper foil laminate (overall thickness is 25 μm) having a metal foil thickness of 3 to 35 μm and a thermocompression-bonding multilayer polyimide film layer thickness of 7 to 50 μm. To 120 μm), a heat-resistant adhesive (thickness 5 to 50 μm, preferably 5 to 15 μm) selected from epoxy-based adhesives, heat-resistant polyimide adhesives such as thermoplastic polyimide, thermoplastic polyamideimide, or polyimidesiloxane-epoxy. In particular, 7 to 12 μm), by bonding a plurality of flexible copper foil laminates, the flexible copper foil laminate has 2 to 10 layers, and satisfies a high heat resistance, low water absorption, low dielectric constant, and high electrical characteristics. Can be suitably obtained.
The flexible metal foil laminate of the present invention includes not only the above-mentioned elongated shape but also those obtained by cutting the elongated shape as described above into a predetermined size.
[0032]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples.
In each of the following examples, “part” means “part by weight”.
In each of the following examples, the physical property evaluation and the adhesive strength of the flexible metal foil laminate were measured according to the following methods.
[0033]
(1)Product appearance: The appearance of the product after lamination is evaluated by visually judging the degree of flatness and the presence or absence of wrinkles.
○ is flat and uniform and good, △ is slightly non-uniform or slightly flat, x is normal, and × is non-uniform or flawed
(2)Dimensional stability: The dimensional change of the laminate after heat treatment at 150 ° C. for 30 minutes relative to the size of the laminate before heating was measured according to “Testing method for copper-clad laminate for flexible printed wiring boards” of JIS C-6471. The dimensional change rate of the display was obtained in%.
○ is the dimensional change rate| 0.10 |%Good dimensional stability below, △ indicates dimensional change rate| 0.10 |%Bigger| 0.12 |%Less than dimensional stability is normal, × indicates dimensional change rate| 0.12 |%Dimensional stability is poor
(3)Thermal linear expansion coefficient: 50 to 200 ° C., measured at 5 ° C./min (average value of TD and MD), cm / cm / ° C.
(4)Glass transition temperature (Tg): measured from viscoelasticity.
(5)Adhesive strength: 90 ° peel strength was measured and expressed as an average value.
[0034]
Synthesis example 1 of a dope for producing highly heat-resistant aromatic polyimide
N-methyl-2-pyrrolidone is added to a reaction vessel equipped with a stirrer and a nitrogen introduction tube, and further, paraphenylenediamine (PPD) and 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride (s -BPDA) at a molar ratio of 1000: 998 so that the monomer concentration was 18% (wt%, hereinafter the same). After completion of the addition, the reaction was continued for 3 hours while maintaining 50 ° C. The obtained polyamic acid solution was a brown viscous liquid, and the solution viscosity at 25 ° C. was about 1500 poise. This solution was used as a dope.
[0035]
Synthesis of Thermocompression Aromatic Polyimide Manufacturing Dope-1
N-methyl-2-pyrrolidone is added to a reaction vessel equipped with a stirrer and a nitrogen introduction tube, and 1,3-bis (4-aminophenoxy) benzene (TPE-R) and 2,3,3 ′, 4 are added. '-Biphenyltetracarboxylic dianhydride (a-BPDA) was added at a molar ratio of 1000: 1000 to a monomer concentration of 22%, and triphenyl phosphate was added to a monomer weight of 0.1%. 1% was added. After completion of the addition, the reaction was continued for 1 hour while maintaining 25 ° C. This polyamic acid solution had a solution viscosity at 25 ° C. of about 2000 poise. This solution was used as a dope.
[0036]
Reference Examples 1-3
Using a film-forming apparatus provided with a three-layer extrusion die (multi-manifold die) for the above-mentioned highly heat-resistant aromatic polyimide dope and thermocompression-bonding aromatic polyimide production dope. The polyamic acid solution was cast on a metal support while changing the thickness of the three-layer extrusion die and continuously dried with hot air at 140 ° C. to form a solidified film. After the solidified film is peeled off from the support, the temperature is gradually raised from 200 ° C. to 320 ° C. in a heating furnace to remove the solvent and imidize to take up three types of long three-layer extruded polyimide films. Rolled up in a le.
The obtained three-layer extruded polyimide film exhibited the following physical properties.
[0037]
Thermocompression bonding polyimide film-1
Thickness configuration: 4 μm / 17 μm / 4 μm (total 25 μm)
Thermo-compressible aromatic polyimide Tg: 250 ° C. (the same applies hereinafter)
The elastic modulus at 275 ° C of the thermo-compressible aromatic polyimide is approximately 0.002 times the elastic modulus at 50 ° C (hereinafter the same)
Thermocompression-bonding multilayer polyimide film-2
Thickness configuration: 3 μm / 9 μm / 3 μm (15 μm in total)
Thermocompression-bonding multilayer polyimide film-2
Thickness configuration: 2 μm / 6 μm / 2 μm (total 10 μm)
[0038]
Comparative Example 1
One set of the thermocompression-bonding multilayer polyimide film-1 and two roll-wrapped electrolytic copper foils (Mitsui Metal Mining Co., Ltd., 3EC-VLP, Rz 3.8 μm, thickness 18 μm) A flexible copper foil laminate using a laminating roll made of a pressure-bonding roll and an elastic roll, and continuously crimped under heating at a metal side: 380 ° C. and an elastic side: 200 ° C. (Width: about 320 mm) was wound on a winding roll. All operations were performed in air, and cooling was performed by natural cooling.
The evaluation result about the obtained flexible copper foil laminated body is shown next.
Product appearance: ×
Adhesive strength Peel strength: Average: 1.2 kgf / cm
Product appearance: ×
Dimensional stability: ×
Dimensional change rate: -0.14%
[0039]
Comparative Example 2
The flexible copper foil laminate was wound up on a winding roll in the same manner as in Comparative Example 1 except that two sets of thermocompression-bonding multilayer polyimide film copper foil were thermocompression bonded.
The evaluation result about the obtained flexible copper foil laminated body is shown next.
Product appearance: △
Dimensional stability: ×
Dimensional change rate: -0.12%
[0040]
Comparative Example 3
A double belt press is continuously supplied with thermocompression-bonding multilayer polyimide film-1 and one set of electrolytic copper foil having a thickness of 18 μm from both sides thereof, and the temperature of the heating zone (maximum heating temperature) is 380 ° C. (setting), At the cooling zone temperature (minimum cooling temperature: 117 ° C.)Flexible copper foil laminateA roll roll (width: about 530 mm, the same applies hereinafter) was obtained. The evaluation result about the obtained flexible copper foil laminated body is shown next.
Product appearance: ○
Dimensional stability: ×
Dimensional change rate: -0.12%
[0041]
Example 1
A flexible copper foil laminate of two sets of roll-wound double-sided copper foil is wound up in the same manner as Comparative Example 3 except that two sets of thermocompression-bonding multilayer polyimide film-1 and copper foil are laminated. Rolled up in a le.
This flexible copper foil laminate was composed of Cu / TPI-F / Cu and Cu / TPI-F / Cu and had a thickness of 18 μm / 25 μm / 18 μm.
The evaluation result about 2 sets of the obtained flexible copper foil laminated body is shown next.
Product appearance: ○
Dimensional stability: ○
Dimensional change rate: -0.08%
Adhesive strength: 1.3 kgf / cm
[0042]
Example 2
Thermocompression-bonding multilayer polyimide film-1 and copper foil3PairLaminatedOtherwise, in the same manner as in Example 1, three sets of roll-wrapped double-sided copper foil flexible copper foil laminates were wound on a winding roll. This flexible copper foil laminate was composed of Cu / TPI-F / Cu, Cu / TPI-F / Cu and Cu / PI / Cu, and had a thickness of 18 μm / 25 μm / 18 μm. The evaluation result about 3 sets of the obtained flexible copper foil laminated body is shown next.
Product appearance: ○
Dimensional stability: ○
Dimensional change rate: -0.07%
Adhesive strength: 1.4 kgf / cm
[0043]
Examples 3-4
Use thermocompression-bonding multilayer polyimide film-2 and 12 μm thick electrolytic copper foil (made by Mitsui Kinzoku Mining Co., Ltd.) Other than the use, in the same manner as in Example 2, three layers of flexible copper foil laminates were wound around a take-up roll by continuous thermocompression-cooling and lamination under pressure.
The evaluation result about the obtained flexible copper foil laminated body was equivalent to Example 2, and showed a favorable result.
[0044]
【The invention's effect】
According to the manufacturing method of this invention, since it has the above configuration, the following effects can be obtained.
[0045]
According to the manufacturing method of the present invention, the product appearance and the dimensional change rate are| 0.10 |%A flexible metal foil laminate having good dimensional stability can be produced in the following manner while improving productivity and improving quality characteristics without enlarging the laminating apparatus. In particular, according to the present invention, even when the product is thin, the product appearance is good and the dimensional stability can be improved.
Claims (8)
金属箔の厚みが3μm〜35μmで、
高耐熱性の芳香族ポリイミド層は、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物とパラ−フェニレンジアミンとを含む成分より製造される芳香族ポリイミド、
3,3’,4,4’−ビフェニルテトラカルボン酸二無水物とピロメリット酸二無水物とパラ−フェニレンジアミンと4,4’−ジアミノジフェニルエ−テルとを含む成分より製造される芳香族ポリイミド、
或いはピロメリット酸二無水物とパラフェニレンジアミンおよび4,4’−ジアミノジフェニルエ−テルとを含む成分より製造される芳香族ポリイミドで、
熱圧着性のポリイミド層は、300〜400℃の温度で熱圧着できる熱可塑性のポリイミドで、
ポリイミド層の全体厚みが7〜50μmで、高耐熱性の芳香族ポリイミド層の厚さが5〜40μmで、熱圧着性のポリイミド層の厚さが2〜10μmである高耐熱性の芳香族ポリイミド層と熱圧着性のポリイミド層とを直接積層した熱圧着性多層ポリイミドフィルムを用い、
ダブルベルトプレスに熱圧着性多層ポリイミドフィルムと金属箔との組み合わせを2組以上供給して、ダブルベルトプレスの加熱圧着ゾ−ンの温度が熱圧着性のポリイミド層のガラス転移温度より20℃以上高く400℃以下の温度で加圧下に熱圧着し、引き続いて冷却ゾ−ンで加圧下に熱圧着性のポリイミド層のガラス転移温度より20℃以上低い温度まで冷却して2組以上を同時に張り合わせて、高耐熱性の芳香族ポリイミド層と金属箔とが熱圧着性のポリイミド層を介して積層されていることを特徴とするフレキシブル金属箔積層体の製造方法。It is a method for producing a flexible metal foil laminate having a metal foil on one or both sides of a highly heat-resistant aromatic polyimide layer through a thermocompression-bonding polyimide layer with a highly heat-resistant aromatic polyimide layer and a metal foil. ,
The thickness of the metal foil is 3 μm to 35 μm,
The highly heat-resistant aromatic polyimide layer is an aromatic polyimide produced from a component containing 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride and para-phenylenediamine,
Aromatics produced from components comprising 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, pyromellitic dianhydride, para-phenylenediamine and 4,4′-diaminodiphenyl ether Polyimide,
Alternatively, an aromatic polyimide produced from a component containing pyromellitic dianhydride, paraphenylenediamine and 4,4′-diaminodiphenyl ether,
The thermocompression bonding polyimide layer is a thermoplastic polyimide that can be thermocompression bonded at a temperature of 300 to 400 ° C.
Highly heat-resistant aromatic polyimide having a total polyimide layer thickness of 7 to 50 μm, a high heat-resistant aromatic polyimide layer thickness of 5 to 40 μm, and a thermocompression bonding polyimide layer thickness of 2 to 10 μm Using a thermocompression-bonding multilayer polyimide film in which a layer and a thermocompression-bonding polyimide layer are directly laminated,
Supply two or more combinations of thermocompression-bonding multilayer polyimide film and metal foil to the double belt press, and the temperature of the thermocompression bonding zone of the double belt press is 20 ° C or more than the glass transition temperature of the thermocompression bonding polyimide layer. Two or more pairs are bonded together at the same time by thermocompression bonding under pressure at a high temperature of 400 ° C or lower, followed by cooling with a cooling zone to a temperature that is 20 ° C lower than the glass transition temperature of the thermocompression bonding polyimide layer. A highly heat-resistant aromatic polyimide layer and a metal foil are laminated via a thermocompression-bondable polyimide layer.
ポリイミド層の全体厚みが7〜25μmである請求項1又は請求項2に記載のフレキシブル金属箔積層体の製造方法。The metal foil is a metal foil having a thickness of 3 μm to 18 μm,
The manufacturing method of the flexible metal foil laminated body of Claim 1 or Claim 2 whose whole thickness of a polyimide layer is 7-25 micrometers.
4,4’−オキシジフタル酸二無水物およびピロメリット酸二無水物と1,3−ビス(4−アミノフェノキシベンゼン)とを含む成分より製造されるもの、
1,3−ビス(3−アミノフェノキシ)ベンゼンと3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物とを含む成分より製造されるもの
あるいは3,3’−ジアミノベンゾフェノンおよび1,3−ビス(3−アミノフェノキシ)ベンゼンと3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物とを含む成分より製造されるものであることを特徴とする請求項1〜3のいずれか1項に記載のフレキシブル金属箔積層体の製造方法。The thermocompression bonding polyimide layer is manufactured from a component containing 1,3-bis (4-aminophenoxybenzene) and 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride, Produced from a component comprising 3-bis (4-aminophenoxy) -2,2-dimethylpropane and 4,4′-oxydiphthalic dianhydride,
Produced from a component comprising 4,4′-oxydiphthalic dianhydride and pyromellitic dianhydride and 1,3-bis (4-aminophenoxybenzene),
Manufactured from a component containing 1,3-bis (3-aminophenoxy) benzene and 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride, or 3,3′-diaminobenzophenone and 1, It is manufactured from the component containing 3-bis (3-amino phenoxy) benzene and 3,3 ', 4,4'- benzophenone tetracarboxylic dianhydride of Claims 1-3 characterized by the above-mentioned. The manufacturing method of the flexible metal foil laminated body of any one.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000088276A JP4345188B2 (en) | 2000-03-28 | 2000-03-28 | Flexible metal foil laminate and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000088276A JP4345188B2 (en) | 2000-03-28 | 2000-03-28 | Flexible metal foil laminate and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001270039A JP2001270039A (en) | 2001-10-02 |
JP4345188B2 true JP4345188B2 (en) | 2009-10-14 |
Family
ID=18604172
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000088276A Expired - Lifetime JP4345188B2 (en) | 2000-03-28 | 2000-03-28 | Flexible metal foil laminate and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4345188B2 (en) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100415505C (en) * | 2002-07-29 | 2008-09-03 | 纳幕尔杜邦公司 | Carbon fiber composite transfer member with reflective surfaces |
JP4509032B2 (en) | 2004-01-13 | 2010-07-21 | 株式会社カネカ | Method for producing flexible metal-clad laminate with improved dimensional stability |
JP4510506B2 (en) * | 2004-04-28 | 2010-07-28 | 三井化学株式会社 | Method for producing polyimide metal laminate |
JP4773726B2 (en) * | 2005-01-14 | 2011-09-14 | 株式会社カネカ | Multilayer extruded polyimide film and use thereof |
KR100965441B1 (en) | 2005-04-04 | 2010-06-24 | 우베 고산 가부시키가이샤 | Copper foil laminated board |
JP5025186B2 (en) * | 2005-08-19 | 2012-09-12 | 宇部日東化成株式会社 | Method for producing flexible metal foil laminate |
JP4853137B2 (en) * | 2006-06-27 | 2012-01-11 | パナソニック電工株式会社 | Laminate production method |
JP5242030B2 (en) * | 2006-07-31 | 2013-07-24 | 宇部日東化成株式会社 | Manufacturing method of long laminate of metal foil / resin film structure of multiple sets |
JP5165218B2 (en) * | 2006-07-31 | 2013-03-21 | 宇部日東化成株式会社 | Manufacturing method of long laminate of metal foil / resin film / metal foil structure |
JP4960696B2 (en) * | 2006-12-25 | 2012-06-27 | パナソニック株式会社 | Laminate production method |
JP5887561B2 (en) * | 2012-11-29 | 2016-03-16 | パナソニックIpマネジメント株式会社 | Method for producing metal-clad laminate |
-
2000
- 2000-03-28 JP JP2000088276A patent/JP4345188B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2001270039A (en) | 2001-10-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4147639B2 (en) | Flexible metal foil laminate | |
JP5035220B2 (en) | Copper-clad laminate and manufacturing method thereof | |
JP4362917B2 (en) | Metal foil laminate and its manufacturing method | |
JP2004098659A (en) | Copper-clad laminate and its manufacturing process | |
JP4356184B2 (en) | Flexible metal foil laminate | |
JP4345188B2 (en) | Flexible metal foil laminate and manufacturing method thereof | |
JP3580128B2 (en) | Manufacturing method of metal foil laminated film | |
JP2001270036A (en) | Flexible metal foil laminate | |
JP3938058B2 (en) | POLYIMIDE FILM HAVING HEAT FUSION, LAMINATE USING SAME, AND METHOD FOR PRODUCING THEM | |
JP4389338B2 (en) | Manufacturing method of flexible metal foil laminate | |
JP2002240195A (en) | Polyimide copper clad board | |
JP2006188025A (en) | Copper clad laminate | |
TWI408202B (en) | Followed by sheet and copper foil laminated board | |
JP5040451B2 (en) | Manufacturing method of laminate of release material and single-sided metal foil laminated resin film, single-sided metal foil laminated film | |
JP2007216688A (en) | Copper-clad laminate and manufacturing method thereof | |
JP4257587B2 (en) | Flexible metal foil laminate | |
JP4123665B2 (en) | Heat resistant resin board and manufacturing method thereof | |
JP4193461B2 (en) | Heat-sealable polyimide and laminate using the polyimide | |
JP4345187B2 (en) | Method for producing flexible metal foil laminate | |
JP2001270035A (en) | Flexible metal foil laminate | |
JP4389337B2 (en) | Flexible metal foil laminate and manufacturing method thereof | |
JP2000123512A (en) | Magnetic head suspension and method of manufacturing the same | |
JPH11157026A (en) | Laminate and manufacturing method thereof | |
JP4360025B2 (en) | Polyimide piece area layer with reinforcing material and method for producing the same | |
JP2004042579A (en) | Copper clad laminate and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050817 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070928 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20071023 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20071225 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090303 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090507 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090623 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090706 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4345188 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120724 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120724 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120724 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120724 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130724 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130724 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |