[go: up one dir, main page]

JP4339987B2 - Sensor ring and manufacturing method thereof - Google Patents

Sensor ring and manufacturing method thereof Download PDF

Info

Publication number
JP4339987B2
JP4339987B2 JP2000223875A JP2000223875A JP4339987B2 JP 4339987 B2 JP4339987 B2 JP 4339987B2 JP 2000223875 A JP2000223875 A JP 2000223875A JP 2000223875 A JP2000223875 A JP 2000223875A JP 4339987 B2 JP4339987 B2 JP 4339987B2
Authority
JP
Japan
Prior art keywords
tooth
punch
detection
die
cylindrical material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000223875A
Other languages
Japanese (ja)
Other versions
JP2002035887A (en
Inventor
美憲 長井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Press Kogyo Co Ltd
Original Assignee
Press Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Press Kogyo Co Ltd filed Critical Press Kogyo Co Ltd
Priority to JP2000223875A priority Critical patent/JP4339987B2/en
Publication of JP2002035887A publication Critical patent/JP2002035887A/en
Application granted granted Critical
Publication of JP4339987B2 publication Critical patent/JP4339987B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Regulating Braking Force (AREA)
  • Forging (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、例えば自動車のアンチロックブレーキシステムにおいて車軸回転数を検出するのに用いられるセンサリング及びその製造方法に関する。
【0002】
【従来の技術】
軽量、安価でプレス加工により容易に製造可能な板金製センサリングが公知である。その一例として特開平7-155893号公報に示されたものがある。これはダイスとパンチとの間にリング状素材を前方押出しにより押し込み、素材に凹凸状の歯を形成する、というものである。
【0003】
【発明が解決しようとする課題】
しかし、この方法だと密閉鍛造に近い成形となるため、成形面圧が高くなり、型耐久性(強度・かじり等)が劣るという欠点がある。またそのため機械加工により形成されたセンサリングも見受けられるがコスト高になるという欠点がある。
【0004】
そこで、本発明の目的は、成形面圧を低減し型耐久性を向上すると共にコスト低減を図り得るセンサリング及びその製造方法を提供することにある。
【0005】
【課題を解決するための手段】
本発明はダイスの内周部と、そのダイスに挿入可能なパンチの外周部とに互いに符合する凹凸部を各々形成し、上記パンチを円筒状素材に差し込むと共にその円筒状素材を軸方向に押出しつつ上記パンチと上記ダイスとの上記凹凸部により径方向に押し出して半せん断加工し、これにより上記円筒状素材側面部に凸状の検出歯と凹状の逃げ歯とを周方向交互に形成するセンサリングの製造方法であって、上記円筒状素材の表面がそのまま上記検出歯の歯先面となるように、上記ダイスの凹部に上記円筒状素材の外径よりも外側に突出する部分を設けると共に、上記パンチの凸部の先端面を上記円筒状素材の内径と同じ径方向位置に設け、他方、上記逃げ歯の裏面が径方向内側に突出するダレ形状となるように、上記ダイスの凸部の先端面を上記円筒状素材の外径よりも径方向内側に設けると共に、上記パンチの凹部をその両側面が半径方向内側に至るにつれ周方向に広がる断面水滴形状に形成し、上記半せん断加工の際に、上記検出歯の歯先面を上記ダイスの凹部内面に非接触で形成し、かつ上記逃げ歯を上記パンチの凹部内面に非接触で形成したものである。
【0013】
好ましくは、上記半せん断加工の後に、別のダイスとパンチとを用いて上記検出歯と上記逃げ歯とをサイジング加工するものである
【0014】
上記検出歯と上記逃げ歯との表面全面が上記別のダイスに接触してサイジング加工され、上記検出歯と上記逃げ歯とのいずれか一方の裏面のみが上記別のパンチに接触されるのが好ましい。
【0015】
上記別のパンチが凹凸状に形成されその凸部の先端面のみが上記検出歯の裏面に接触され、または、上記別のパンチが円周面状に形成され上記逃げ歯の裏面に接触されるのが好ましい。
本発明は、請求項2記載のセンサリングの製造方法により製造され、回転する軸に取り付けられるセンサリングであって、上記検出歯と逃げ歯とが、上記円筒状素材の上記側面部における軸方向一端から中間まで延出し、かつ上記円筒状素材の軸方向他端部に上記軸が圧入される圧入部が形成され、上記検出歯の外径が上記サイジング加工によって上記円筒状素材の外径よりも縮小され、上記逃げ歯の表面が、上記検出歯の歯先面よりも径方向内側かつ上記検出歯の裏面よりも径方向外側に位置すると共に、上記逃げ歯の裏面が、上記検出歯の裏面よりも径方向内側に位置するものである。
【0016】
【発明の実施の形態】
以下、本発明の好適な実施の形態を添付図面に基づいて詳述する。
【0017】
図1及び図2に本発明の実施形態に係る回転検出用センサリングを示す。このセンサリング1は自動車のアンチロックブレーキシステムにおいて車軸回転数を検出するのに用いられる。ただし用途はこれに限定されない。車軸に取り付けられたハブHの先端部にセンサリング1が圧入して取り付けられる。センサリング1の側面部1aに、軸方向先端から所定の中間にかけて凹凸歯2が設けられ、その凹凸の通過に応じて回転検出用の非接触センサ(磁気センサ)Sがパルスを発生し、これに基づき車軸回転数が計算される。センサSはセンサリング軸方向と直角な側方から凹凸歯2に対向して回転検出する。いわゆる側方検出タイプのセンサリングである。
【0018】
このセンサリング1は磁性材料からなる円筒状素材をプレス加工して一体に形成される。磁性材料としては例えば鉄、ステンレス等が用いられ、円筒状素材としては汎用又は専用のパイプ(例えば鋼管等)が用いられる。パイプには必要に応じてボンデ処理を施す。
【0019】
このセンサリング1では、素材としてのパイプの側面部を、後述する半せん断加工により周方向等間隔で径方向外側から内側に押し出して凹凸歯2を形成する。凹凸歯2のうち、残された部分による第一の歯が検出歯3であり、押し出された部分による第二の歯が逃げ歯4である。検出歯3が逃げ歯4の径方向外側に位置され、検出歯3の外径は素材外径に大略等しい。検出歯3と逃げ歯4とは、径方向外側に臨む表面部が回転検出に関わるためサイジング加工により高精度に成形されるのに対し、径方向内側に臨む裏面部は回転検出に無関係なためそれ程高精度で成形されない。逃げ歯4の裏面4aはダレ形状となっている。また逃げ歯4の軸方向基端部は明らかに縮径するテーパ状となっている。テーパ部を5で示す。
【0020】
このセンサリング1の製造方法を以下説明する。この製造方法は、図3に示す素材としてのパイプPを前方押出しにより半せん断加工して凹凸歯を形成する第一工程と、これによって出来た加工品をさらにサイジング加工して凹凸歯の形状を仕上げる第二工程とからなっている。
【0021】
半せん断加工に際しては図3に示す金型を用いる。これは、昇降可能な上型たるパンチ6と、ベッド7上に固定された下型8とから主に構成される。下型8は、ベッド7上に下から順に積み重ねられた下部ダイス9、上部ダイス10及び拘束ダイス11を備え、拘束ダイス11のみ中心から左右に分割できるようになっている。これらダイス9…の中心にパイプPとパンチ6とを挿入可能な加工穴12が設けられ、加工穴12の底部には加工品を取り出すためのイジェクト型13が昇降可能に設けられる。パイプPは単なる円筒状であり、汎用品、市販品等が利用出来る。
【0022】
図6に示すように、パンチ6の外周部と上部ダイス10の内周部とに、互いに符合する成形用凹凸部が形成される。パンチ6の凹部を6a、凸部を6bで示し、上部ダイス10の凹部を10a、凸部を10bで示す。図3に示すように、下部ダイス9にも上部ダイス10の凹凸部に連続する同様な凹凸部9abが設けられ、その凹凸部9abにイジェクト型13の外周に設けられた凹凸部13abが係合される。
【0023】
図4に示すように、上部ダイス10の加工穴12内においては、その上半分が単なる円周面とされるのに対し、その下半分に周方向等間隔で凸部10bが形成されている。そして凸部10bは、その上部が所定のテーパ角θ1 を有して径方向内側に突出する第一テーパ部15、中間部が一定径を有した完全部16、下部が所定のテーパ角θ2 を有して径方向外側に引っ込む第二テーパ部17となっている。第一テーパ部15と完全部16との連続部には比較的大きな所定のアールR1 が付される。
【0024】
図5は完全部16の断面であるが、これに示されるように凹部10aの最外径D11はパイプPの外径DP1に比較して大きい。なおこの最外径D11は凸部10bより上の加工穴12の内径と同じである(図4参照)。そして凹部10aのうち、パイプ外径DP1より外側の部分には所定のアールR2 が付されている。凸部10bの最内径D12はパイプ外径DP1より小さく、且つパイプ内径DP2より大きく、例えば、凸部10bの先端面20をパイプの厚さ中間付近に位置させるようになっている。これにより凸部10bでパイプを径方向内側に押し出したときの押出し量を決める(本実施の形態ではパイプ厚さの半分程度)ことができる。なお凸部10bの先端面20はほぼフラットとされ、先端面20の両側に位置するコーナー部には小さなアールR3 が付されている。
【0025】
図6に示すように、パンチ6の凸部6bの最外径D21はパイプ内径DP2と同等である。従ってパンチ6の外側にはパイプPをそのまま嵌合できる。一方、パンチ6の凹部6aは全体として水滴形状に形成され、その最内径D22は、半せん断により押し出される逃げ歯4の最内径に比べ小さい。そして凹部6aの両側面18,18には逃げ歯4に接触しないようなネガティブな逃げが設けられている。ここで「ネガティブな逃げ」とは、それら側面18,18が半径方向より内側に入っていることをいう。凹部6aの内径側には比較的大きなアールR4 が付される。これにより凹部6aは全体として水滴形状となる。
【0026】
このように凹部6aが形取られる結果、パンチ6の凸部6bは根元がくびれた形状となる。そして凸部6bの先端面19はパイプ内径面に沿う緩いア−ル状とされる。凸部6bの先端両側のコーナー部には比較的小さいアールR5 が付される。
【0027】
図3に示すように、半せん断加工に際しては、パイプPを加工穴12内にセットし、拘束ダイス11を閉じてパイプPを外周側から拘束して芯決めする。次にパンチ6を下降させると、パンチ6がパイプPに差し込まれ、次いでパンチ6の肩部21にパイプPの上端面P1 が押されることにより、パイプPが徐々に下方に押し出され上部ダイス10内に押し込まれていく。いわゆる前方押出しの態様である。こうなると上部ダイス10の凸部10bによってパイプPの逃げ歯4に相当する部分が径方向内側に押し出され、半せん断加工されていき、検出歯3と逃げ歯4とが同時に形成されていく。なお、最初パイプPをパンチ6に嵌合させてからパンチ6を下降させるようにすることも可能である。
【0028】
図6も参照して、半せん断加工の過程で、凸部10bに押されたときの反力がパンチ6の凸部6bで受け止められる。最初は半せん断が上部ダイス10の第一テーパ部15で行われるので、半せん断が徐々に進行する。材料が完全部16に入ると本工程の最終形状となる。半せん断加工の全過程において、検出歯3の歯先面3aは上部ダイス10の凹部10aの内面に接触せず、また逃げ歯4も、付け根のR5 に対応する部分を除きパンチ6の凹部6aの内面に接触しない。
【0029】
これは、上部ダイス10の凹部10aの最外径D11をパイプPの外径DP1より大きくしたことと、パンチ6の凹部6aの最内径D22を逃げ歯4の最内径より小さくし、且つ凹部6aの両側面18,18にネガティブな逃げを設けたことによる。ネガティブな逃げを設けたことにより、凹部6aの両側面18,18は材料の摩擦面とならない。この金型構成により型と材料の摩擦面が減り、成形荷重が低減される。上部ダイス10の凸部10bにおいて、アールR3 により型の焼き付きが防止され、また比較的大きなアールR1 により、第一テーパ部15から完全部16に材料が乗り移りながら徐々に変形を行うことができる。
【0030】
パイプPの径方向外側に臨む表面側つまり検出側では、検出歯3の両側面3b,3bと逃げ歯4の表面4bとが上部ダイス10の凸部10bにより成形され、検出歯3の歯先面3aはパイプPの表面形状がそのまま残される。これにより表面側では比較的高い形状精度が得られる。一方パイプPの径方向内側に臨む裏面側つまり反検出側では、検出歯3の裏面3cがパンチ6の凸部6bの先端面19で成形(拘束)されるだけで、逃げ歯4全体がパンチ6の凹部6a内面に接触せず、凸部10bで押されたなりのダレ形状となる。従って裏面側は形状精度が低くなるが、こちら側は回転検出や製品外観等に影響のない部分なので問題にならない。このように、必要ないし重要な部分だけ高精度に成形し、残りの部分は意図的に精度を落とすので、面圧荷重や成形荷重の低減により、型かじりや型摩耗等を防止することができ、型耐久性向上、コスト低減等を図ることができる。
【0031】
パイプPは所定のストロークの下死点まで下降させる。下降を終えたら拘束ダイス11を左右に開いて材料と型との接触面積を減らした後、イジェクト型13を上昇させ加工品を型から外して取り出す。このイジェクトの際も、接触面積が少ないのでイジェクト荷重を低減でき、また変形も防止できる。
【0032】
この加工品で精度が満足できれば、これをそのままセンサリング1の最終製品とすることができる。しかし、本実施形態ではさらに精度を増すため、以下に述べるようなサイジング加工を追加している。サイジング加工において、半せん断加工品(以下単に加工品という)に型を全面接触させると成形面圧が高くなると同時に型と加工品との間の接触面積が増加し、型の焼き付き、イジェクト時の変形等が生じてしまう。
【0033】
そこで、このサイジング加工においても図7及び図8に示すような別のダイス23及びパンチ24(サイジングダイス及びサイジングパンチ)を用い、接触面積をできるだけ減らすようにしている。即ち、加工品P1 の表面側のみダイス23を全面接触させ、形状精度を高めると共に、裏面側は表面側の加工に必要なだけしかパンチ24を接触させないようにしている。なお、このサイジング加工は、当該ダイス23及びパンチ24を上記金型に組み合わせて1回のプレスストロークで半せん断加工と同時に行ってもよいし、別の金型で別工程で行ってもよい。
【0034】
これらダイス23及びパンチ24も、先のダイス及びパンチ同様凹凸状に形成されている。そして図7及び図8の例の両者とも、ダイス23の凹凸部全面が半せん断加工品P1 の表面全体に接触してその表面全体をサイジング加工する。一方、裏面側では、図7の例では検出歯3の裏側のみ、図8の例では逃げ歯4の裏側のみ、パンチ24でサイジング加工する。これによって成形面圧の低減、型焼付き防止等が図れるものである。
【0035】
図7の例では、パンチ24の凸部25の先端面26(その両側のコーナーR部27を含む)のみが検出歯3の裏面部に接触してサイジング加工を行う。パンチ24の凹部28は前記同様逃げ歯4より大きいものとされ、且つネガティブな逃げも設けられている。図8の例では、パンチ24の表面が単なる円周面とされ、逃げ歯4の先端にのみ接触するようになっている。いずれにしてもパンチ24は表面を成形するときの反力受けとしての意味しか持たないため、最小限の接触面積とするのがよい。
【0036】
ここで両者の比較を行うと、図7の例の方が、ダイス23の凹部29内面への材料面圧を高められるので、検出歯3の形状精度を出すのに有利である。しかし図8の例では、半せん断加工で未拘束であった逃げ歯4の裏側部分を成形するため、図7の例に比べパンチ表面の面圧を下げることができる。従っていずれの方法を採用するかはこれらのバランスを考慮して決定すればよい。
【0037】
このように、かかるサイジング加工においても前記同様の効果が得られる。
【0038】
なお、本実施形態のサイジング加工では表面全体を加工するようにしたが、半せん断加工品で検出歯3の側面3b,3bや逃げ歯4の表面4bの精度が十分出ているならば、検出歯3の先端面3a及びその両側のコーナー部のみ加工するようにしてもよい。
【0039】
図1に示すように、上記二工程で得られたセンサリング1においては、逃げ歯4の基端部に形成されたテーパ部5が上部ダイス10の第一テーパ部15(図4)の形状に従っている。検出歯3の外径はサイジング加工に伴いパイプ外径DP1より若干縮小される。また検出歯3の基端部にはサイジングダイス23のテーパ部(図示せず)に対応した小さなテーパ部31が形成される。センサリング1の下部側では素材のパイプ形状がそのまま残され、従って圧入部の内径もパイプ内径DP2に等しくなる。
【0040】
ところで、センサリングの変形例は種々考えられる。図9に示すのはハブHへの圧入部を若干拡径した例、図10に示すのは逆に縮径した例、図11に示すのは圧入部の内面を機械加工又はしごき加工により拡径した例である。図12に示すのは、前記実施形態と検出歯3及び逃げ歯4の配置関係を逆にした参考例である。即ち、半せん断は、逃げ歯4をパイプPに対し外側に押し出すようにして行う。これに伴い図3乃至図8に示す金型構造も内外径側が逆となる。ダイスが径方向内側、パンチが径方向外側となる。いずれの変形例においても、前記実施形態と同様の作用効果を得られるのは明らかである。
【0041】
以上、本発明の実施の形態は他にも種々考えられる。
【0042】
【発明の効果】
本発明は次の如き優れた効果を発揮する。
【0043】
(1) 成形荷重の低減が図れる。
【0044】
(2) 型かじりや型摩耗を防止でき、型耐久性を向上できる。
【0045】
(3) 低コストで高精度なセンサリングを製造できる。
【図面の簡単な説明】
【図1】 本発明の実施形態に係るセンサリングを示す縦断面図である。
【図2】 図1のA−A線断面図である。
【図3】 半せん断加工用の金型を示す縦断面図である。
【図4】 上部ダイスの要部拡大縦断面図である。
【図5】 図4のB−B線断面図である。
【図6】 半せん断加工の様子を示す横断面図である。
【図7】 サイジング加工の様子を示す横断面図である。
【図8】 別のサイジング加工の様子を示す横断面図である。
【図9】 センサリングの変形例を示す縦断面図である。
【図10】 センサリングの別の変形例を示す縦断面図である。
【図11】 センサリングの別の変形例を示す縦断面図である。
【図12】 センサリングの参考例を示す縦断面図である。
【符号の説明】
1 センサリング
1a 側面部
2 凹凸歯
3 検出歯
3a 検出歯の歯先面
3b 検出歯の側面
4 逃げ歯
4a 逃げ歯の裏面
5 テーパ部
6 パンチ
6a パンチの凹部
6b パンチの凸部
9 下部ダイス
9ab 下部ダイスの凹凸部
10 上部ダイス
10a 上部ダイスの凹部
10b 上部ダイスの凸部
18 凹部側面
23 サイジングダイス
24 サイジングパンチ
25 サイジングパンチの凸部
26 サイジングパンチの凸部の先端面
11 凹部の最外径
P パイプ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a sensor ring used for detecting an axle rotation speed, for example, in an antilock brake system of an automobile, and a manufacturing method thereof.
[0002]
[Prior art]
A sheet metal sensor ring that is light and inexpensive and can be easily manufactured by pressing is known. One example is disclosed in Japanese Patent Application Laid-Open No. 7-155893. In this method, a ring-shaped material is pushed forward between a die and a punch to form uneven teeth on the material.
[0003]
[Problems to be solved by the invention]
However, this method has a disadvantage that molding surface pressure becomes high and mold durability (strength, galling, etc.) is inferior because molding is close to hermetic forging. For this reason, a sensor ring formed by machining can be seen, but there is a disadvantage of high cost.
[0004]
Accordingly, an object of the present invention is to provide a sensor ring that can reduce the molding surface pressure, improve the mold durability, and reduce the cost, and a manufacturing method thereof.
[0005]
[Means for Solving the Problems]
This onset Ming, and the inner peripheral portion of the die to form each of the uneven part consistent with each other in the outer peripheral portion of the insertable punch to the die, the axial direction thereof cylindrical material with inserting the punch into cylindrical material the uneven portions out by semi shearing press in the radial direction by, thereby the convex detecting teeth and concave relief teeth circumferentially side surface portion of the cylindrical material of the extrusion while the punch and the die in a method of manufacturing a sensor ring formed alternately, so that the surface of the cylindrical material is tooth crest of the detection teeth directly, protrudes outside the outer diameter of the cylindrical material in the recess of the die In addition to providing a portion to be provided, the tip surface of the convex portion of the punch is provided at the same radial position as the inner diameter of the cylindrical material, on the other hand, so that the back surface of the relief tooth protrudes radially inward, The tip surface of the convex part of the die Provided on the inner side in the radial direction from the outer diameter of the cylindrical material, the concave portion of the punch is formed in a cross-sectional water droplet shape that spreads in the circumferential direction as its both side surfaces reach the inner side in the radial direction. The tooth tip surface of the detection tooth is formed on the inner surface of the concave portion of the die in a non-contact manner, and the escape tooth is formed on the inner surface of the concave portion of the punch in a non-contact manner .
[0013]
Preferably, after the semi shearing a shall be sizing process and the detection teeth and the escape tooth by using a different die and punches.
[0014]
The entire surface of the detection tooth and the flank tooth is in contact with the other die for sizing, and only the back surface of either the detection tooth or the flank tooth is in contact with the other punch. preferable.
[0015]
The another punch is formed in a concavo-convex shape, and only the tip surface of the convex portion is in contact with the back surface of the detection tooth, or the another punch is formed in a circumferential surface shape and is in contact with the back surface of the relief tooth. Is preferred.
The present invention is manufactured by the manufacturing method of the sensor ring according to claim 2 Symbol mounting a sensor ring which is attached to the shaft to rotate, and the detected teeth and flank tooth axis in the side surface portion of said cylindrical material A press-fitting portion that extends from one end in the direction to the middle and is press-fitted into the other end in the axial direction of the cylindrical material, and the outer diameter of the detection tooth is the outer diameter of the cylindrical material by the sizing process And the surface of the escape tooth is positioned radially inward of the tooth tip surface of the detection tooth and radially outward of the back surface of the detection tooth, and the back surface of the escape tooth is positioned on the detection tooth It is located on the radially inner side from the back surface .
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Preferred embodiments of the present invention will be described below in detail with reference to the accompanying drawings.
[0017]
1 and 2 show a rotation detection sensor ring according to an embodiment of the present invention. This sensor ring 1 is used to detect the axle rotation speed in an antilock brake system of an automobile. However, the application is not limited to this. The sensor ring 1 is press-fitted and attached to the tip of the hub H attached to the axle. The side surface 1a of the sensor ring 1 is provided with uneven teeth 2 from the axial tip to a predetermined middle, and a non-contact sensor (magnetic sensor) S for detecting rotation generates a pulse in response to the passage of the unevenness. Based on this, the axle speed is calculated. The sensor S detects the rotation facing the concave and convex teeth 2 from the side perpendicular to the sensor ring axis direction. This is a so-called side detection type sensor ring.
[0018]
The sensor ring 1 is integrally formed by pressing a cylindrical material made of a magnetic material. For example, iron or stainless steel is used as the magnetic material, and a general-purpose or dedicated pipe (for example, a steel pipe) is used as the cylindrical material. The pipe is treated with a bond as needed.
[0019]
In this sensor ring 1, the side surface portion of the pipe as a material is extruded from the radially outer side to the inner side at equal intervals in the circumferential direction by a semi-shear process described later to form the uneven tooth 2. Of the uneven teeth 2, the first tooth due to the remaining portion is the detection tooth 3, and the second tooth due to the extruded portion is the escape tooth 4. The detection tooth 3 is positioned on the radially outer side of the escape tooth 4, and the outer diameter of the detection tooth 3 is substantially equal to the outer diameter of the material. The detection teeth 3 and the relief teeth 4 are formed with high accuracy by sizing because the surface portion facing the radially outer side is involved in rotation detection, whereas the back surface facing the radially inner side is irrelevant to the rotation detection. It is not molded with such high accuracy. The back surface 4a of the escape tooth 4 has a sagging shape. Further, the base end portion in the axial direction of the relief tooth 4 has a tapered shape with a clearly reduced diameter. A taper part is shown by 5.
[0020]
A method for manufacturing the sensor ring 1 will be described below. In this manufacturing method, the pipe P as the material shown in FIG. 3 is subjected to a half-shear process by forward extrusion to form uneven teeth, and the resulting product is further sized to form the uneven teeth shape. It consists of a second step to finish.
[0021]
A mold shown in FIG. 3 is used for half-shear processing. This is mainly composed of an upper punch 6 that can be raised and lowered and a lower die 8 fixed on a bed 7. The lower die 8 includes a lower die 9, an upper die 10, and a restraining die 11 that are stacked on the bed 7 in order from below, and only the restraining die 11 can be divided from the center to the left and right. A machining hole 12 into which the pipe P and the punch 6 can be inserted is provided at the center of the dies 9..., And an eject die 13 for taking out a processed product is provided at the bottom of the machining hole 12 so as to be movable up and down. The pipe P has a simple cylindrical shape, and a general-purpose product or a commercial product can be used.
[0022]
As shown in FIG. 6, molding irregularities that coincide with each other are formed on the outer peripheral portion of the punch 6 and the inner peripheral portion of the upper die 10. The concave portion of the punch 6 is indicated by 6a, the convex portion is indicated by 6b, the concave portion of the upper die 10 is indicated by 10a, and the convex portion is indicated by 10b. As shown in FIG. 3, the lower die 9 is also provided with a similar uneven portion 9ab continuous with the uneven portion of the upper die 10, and the uneven portion 9ab provided on the outer periphery of the ejection die 13 is engaged with the uneven portion 9ab. Is done.
[0023]
As shown in FIG. 4, in the processing hole 12 of the upper die 10, the upper half is a simple circumferential surface, whereas the lower half is formed with convex portions 10 b at equal intervals in the circumferential direction. . The protrusion 10b has a first tapered portion 15 thereon protrudes radially inward with a predetermined taper angle theta 1, fully portion 16 intermediate portion having a constant diameter, the bottom is a predetermined taper angle theta and has a second tapered portion 17 retracts radially outward a 2. The continuous portion of the first taper portion 15 and the complete portion 16 is provided with a relatively large predetermined radius R 1 .
[0024]
FIG. 5 is a cross section of the complete portion 16, and as shown in this figure, the outermost diameter D 11 of the recess 10 a is larger than the outer diameter D P1 of the pipe P. Note The outermost diameter D 11 is the same as the inner diameter of the machined hole 12 above the convex portion 10b (see FIG. 4). A predetermined radius R 2 is attached to a portion of the recess 10a outside the pipe outer diameter D P1 . Innermost diameter D 12 of the convex portion 10b is smaller than the pipe outer diameter D P1, and larger than the pipe inner diameter D P2, for example, the distal end surface 20 of the convex portion 10b so as to be located near the middle thickness of the pipe. Thereby, the extrusion amount when the pipe is extruded radially inward by the convex portion 10b can be determined (about half of the pipe thickness in the present embodiment). Note protrusion 10b of the front end surface 20 is substantially flat, a small radius R 3 are assigned the corner portions located on opposite sides of the distal end surface 20.
[0025]
As shown in FIG. 6, the outermost diameter D 21 of the convex portion 6b of the punch 6 is equal to the pipe inner diameter D P2 . Therefore, the pipe P can be fitted as it is outside the punch 6. On the other hand, the recess 6a of the punch 6 is formed in a waterdrop shape as a whole, its innermost diameter D 22 is smaller than the innermost diameter of the relief tooth 4 to be pushed out by semi shearing. And the negative relief which does not contact the escape tooth 4 is provided in the both side surfaces 18 and 18 of the recessed part 6a. Here, “negative escape” means that the side surfaces 18 are inside the radial direction. A relatively large radius R 4 is attached to the inner diameter side of the recess 6a. Thereby, the recessed part 6a becomes a water droplet shape as a whole.
[0026]
As a result of the recess 6a being formed in this way, the protrusion 6b of the punch 6 has a constricted root. And the front end surface 19 of the convex part 6b is made into the loose alarm shape along a pipe internal-diameter surface. A relatively small radius R 5 is attached to the corners on both sides of the tip of the convex portion 6b.
[0027]
As shown in FIG. 3, at the time of half-shear processing, the pipe P is set in the processing hole 12, the constraining die 11 is closed, and the pipe P is constrained from the outer peripheral side to be centered. Next, when the punch 6 is lowered, the punch 6 is inserted into the pipe P, and then the upper end surface P 1 of the pipe P is pushed onto the shoulder 21 of the punch 6 so that the pipe P is gradually pushed downward and the upper die. 10 will be pushed into. This is a so-called forward extrusion mode. As a result, the portion corresponding to the relief tooth 4 of the pipe P is pushed radially inward by the convex portion 10b of the upper die 10 and is semi-sheared, so that the detection tooth 3 and the relief tooth 4 are formed simultaneously. It is also possible to lower the punch 6 after first fitting the pipe P to the punch 6.
[0028]
With reference also to FIG. 6, the reaction force when pressed by the convex portion 10 b is received by the convex portion 6 b of the punch 6 in the process of half-shearing. At first, half-shearing is performed at the first taper portion 15 of the upper die 10, so that half-shearing gradually proceeds. When the material enters the complete part 16, the final shape of this process is obtained. In the course of the half-shearing, tooth tip face 3a of the detection teeth 3 does not contact the inner surface of the recess 10a of the upper die 10, also escape tooth 4 even concave punches 6 except for the portion corresponding to the base of R 5 It does not touch the inner surface of 6a.
[0029]
It is to be smaller than the innermost diameter of the fact that the outermost diameter D 11 of the recess 10a of the upper die 10 and larger than the outer diameter D P1 of the pipe P, the teeth 4 fled innermost diameter D 22 of the recess 6a of the punch 6, In addition, negative relief is provided on both side surfaces 18, 18 of the recess 6a. By providing a negative relief, both side surfaces 18, 18 of the recess 6a do not become friction surfaces of the material. This mold configuration reduces the friction surface between the mold and the material and reduces the molding load. The convex portion 10b of the upper die 10 is prevented from seizing the mold by the round R 3 and is gradually deformed while the material is transferred from the first tapered portion 15 to the complete portion 16 by the relatively large round R 1. it can.
[0030]
On the surface side facing the radially outer side of the pipe P, that is, the detection side, both side surfaces 3b, 3b of the detection tooth 3 and the surface 4b of the escape tooth 4 are formed by the convex portion 10b of the upper die 10, and the tooth tip of the detection tooth 3 As for surface 3a, the surface shape of pipe P is left as it is. Thereby, relatively high shape accuracy can be obtained on the surface side. On the other hand, on the back side facing the radially inner side of the pipe P, that is, on the counter-detecting side, the back surface 3c of the detection tooth 3 is simply formed (restrained) by the tip surface 19 of the convex portion 6b of the punch 6, and the entire relief tooth 4 is punched. 6 does not come into contact with the inner surface of the concave portion 6a, and has a sagging shape that is pushed by the convex portion 10b. Therefore, although the shape accuracy is low on the back side, this side is not a problem because it does not affect the rotation detection or the product appearance. In this way, only necessary or important parts are molded with high accuracy, and the remaining parts are intentionally reduced in accuracy, so it is possible to prevent mold galling and mold wear by reducing the surface pressure load and molding load. In addition, mold durability can be improved and costs can be reduced.
[0031]
The pipe P is lowered to the bottom dead center of a predetermined stroke. When the lowering is finished, the constraining die 11 is opened to the left and right to reduce the contact area between the material and the mold, and then the eject mold 13 is raised to remove the work piece from the mold. Also during this ejection, the contact area is small, so the ejection load can be reduced and deformation can be prevented.
[0032]
If this processed product satisfies the accuracy, it can be used as the final product of the sensor ring 1 as it is. However, in this embodiment, a sizing process as described below is added in order to further increase the accuracy. In sizing processing, when the mold is brought into full contact with a half-sheared product (hereinafter simply referred to as a processed product), the molding surface pressure increases and at the same time the contact area between the mold and the processed product increases, resulting in die seizure and ejection. Deformation will occur.
[0033]
Therefore, also in this sizing process, another die 23 and punch 24 (sizing die and sizing punch) as shown in FIGS. 7 and 8 are used to reduce the contact area as much as possible. That is, the die 23 is brought into full contact only on the front surface side of the processed product P 1 to improve the shape accuracy, and the punch 24 is brought into contact with the back surface side only as necessary for processing on the front surface side. The sizing process may be performed simultaneously with the half-shearing process by one press stroke by combining the die 23 and the punch 24 with the above-described mold, or may be performed in a separate process with another mold.
[0034]
These dies 23 and punches 24 are also formed in an uneven shape like the previous dies and punches. In both the examples of FIGS. 7 and 8, the entire concavo-convex portion of the die 23 contacts the entire surface of the semi-shear processed product P 1 and the entire surface is sized. On the other hand, on the back side, only the back side of the detection tooth 3 in the example of FIG. 7 and only the back side of the relief tooth 4 in the example of FIG. This can reduce the molding surface pressure and prevent die seizure.
[0035]
In the example of FIG. 7, only the front end surface 26 (including the corner R portions 27 on both sides thereof) of the convex portion 25 of the punch 24 is in contact with the back surface portion of the detection tooth 3 to perform sizing processing. The concave portion 28 of the punch 24 is larger than the relief tooth 4 as described above, and is provided with a negative relief. In the example of FIG. 8, the surface of the punch 24 is a simple circumferential surface and is in contact with only the tip of the relief tooth 4. In any case, since the punch 24 has only a meaning as a reaction force receiver when the surface is formed, it is preferable that the punch 24 has a minimum contact area.
[0036]
Here, when both are compared, the example of FIG. 7 is more advantageous in increasing the shape accuracy of the detection tooth 3 because the material surface pressure on the inner surface of the recess 29 of the die 23 can be increased. However, in the example of FIG. 8, since the back side portion of the relief tooth 4 that has not been restrained by the half-shear process is formed, the surface pressure of the punch surface can be lowered compared to the example of FIG. Accordingly, which method should be adopted may be determined in consideration of these balances.
[0037]
Thus, the same effect as described above can be obtained in such sizing.
[0038]
In the sizing process of the present embodiment, the entire surface is processed. However, if the accuracy of the side surfaces 3b, 3b of the detection tooth 3 and the surface 4b of the escape tooth 4 is sufficiently high in a semi-sheared product, the detection is performed. Only the tip surface 3a of the tooth 3 and the corners on both sides thereof may be processed.
[0039]
As shown in FIG. 1, in the sensor ring 1 obtained in the above two steps, the tapered portion 5 formed at the proximal end portion of the relief tooth 4 is the shape of the first tapered portion 15 (FIG. 4) of the upper die 10. Is following. The outer diameter of the detection tooth 3 is slightly reduced from the pipe outer diameter D P1 with the sizing process. A small tapered portion 31 corresponding to the tapered portion (not shown) of the sizing die 23 is formed at the proximal end portion of the detection tooth 3. On the lower side of the sensor ring 1, the pipe shape of the material is left as it is, so that the inner diameter of the press-fitting portion is also equal to the pipe inner diameter DP2 .
[0040]
By the way, various modifications of the sensor ring are conceivable. FIG. 9 shows an example in which the diameter of the press-fitted portion into the hub H is slightly expanded, FIG. 10 shows an example in which the diameter is reduced, and FIG. 11 shows an example in which the inner surface of the press-fitted portion is expanded by machining or ironing. This is an example of a diameter. FIG. 12 shows a reference example in which the embodiment and the arrangement relationship of the detection teeth 3 and the escape teeth 4 are reversed. That is, half-shearing is performed by pushing the relief teeth 4 outward with respect to the pipe P. Accordingly, the inner and outer diameter sides of the mold structures shown in FIGS. 3 to 8 are reversed. The die is radially inward and the punch is radially outward. In any modification, it is obvious that the same operational effects as those of the above-described embodiment can be obtained.
[0041]
As described above, various other embodiments of the present invention are conceivable.
[0042]
【The invention's effect】
The present invention exhibits the following excellent effects.
[0043]
(1) The molding load can be reduced.
[0044]
(2) Mold galling and mold wear can be prevented, and mold durability can be improved.
[0045]
(3) A highly accurate sensor ring can be manufactured at low cost.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view showing a sensor ring according to an embodiment of the present invention.
FIG. 2 is a cross-sectional view taken along line AA in FIG.
FIG. 3 is a longitudinal sectional view showing a mold for semi-shear processing.
FIG. 4 is an enlarged vertical sectional view of a main part of the upper die.
5 is a cross-sectional view taken along line BB in FIG.
FIG. 6 is a cross-sectional view showing a state of half-shear processing.
FIG. 7 is a cross-sectional view showing a state of sizing processing.
FIG. 8 is a cross-sectional view showing another sizing process.
FIG. 9 is a longitudinal sectional view showing a modified example of the sensor ring.
FIG. 10 is a longitudinal sectional view showing another modified example of the sensor ring.
FIG. 11 is a longitudinal sectional view showing another modified example of the sensor ring.
FIG. 12 is a longitudinal sectional view showing a reference example of sensor ring.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Sensor ring 1a Side surface part 2 Concavity and convexity 3 Detection tooth 3a Detection tooth tip surface 3b Detection tooth side surface 4 Relief tooth 4a Back surface of escape tooth 5 Taper part 6 Punch 6a Punch concave part 6b Punch convex part 9 Lower die 9ab Concave part of lower die 10 Upper die 10a Concave part of upper die 10b Convex part of upper die 18 Concave side face 23 Sizing die 24 Sizing punch 25 Convex part of sizing punch 26 End surface of convex part of sizing punch D 11 Outer diameter of concave part P pipe

Claims (5)

ダイスの内周部と、そのダイスに挿入可能なパンチの外周部とに互いに符合する凹凸部を各々形成し、上記パンチを円筒状素材に差し込むと共にその円筒状素材を軸方向に押出しつつ上記パンチと上記ダイスとの上記凹凸部により径方向に押し出して半せん断加工し、これにより上記円筒状素材の側面部に凸状の検出歯と凹状の逃げ歯とを周方向交互に形成するセンサリングの製造方法であって、
上記円筒状素材の表面がそのまま上記検出歯の歯先面となるように、上記ダイスの凹部に上記円筒状素材の外径よりも外側に突出する部分を設けると共に、上記パンチの凸部の先端面を上記円筒状素材の内径と同じ径方向位置に設け、
他方、上記逃げ歯の裏面が径方向内側に突出するダレ形状となるように、上記ダイスの凸部の先端面を上記円筒状素材の外径よりも径方向内側に設けると共に、上記パンチの凹部をその両側面が半径方向内側に至るにつれ周方向に広がる断面水滴形状に形成し、
上記半せん断加工の際に、上記検出歯の歯先面を上記ダイスの凹部内面に非接触で形成し、かつ上記逃げ歯を上記パンチの凹部内面に非接触で形成したことを特徴とするセンサリングの製造方法。
An uneven portion that coincides with each other is formed on the inner peripheral portion of the die and the outer peripheral portion of the punch that can be inserted into the die, and the punch is inserted into the cylindrical material and the cylindrical material is extruded in the axial direction. Of the sensor ring for forming the convex detection teeth and the concave relief teeth alternately in the circumferential direction on the side surface of the cylindrical material. A manufacturing method,
The concave portion of the die is provided with a portion protruding outward from the outer diameter of the cylindrical material so that the surface of the cylindrical material directly becomes the tip surface of the detection tooth, and the tip of the convex portion of the punch The surface is provided at the same radial position as the inner diameter of the cylindrical material,
On the other hand, the front end surface of the convex portion of the die is provided radially inward from the outer diameter of the cylindrical material so that the back surface of the relief tooth protrudes radially inward, and the concave portion of the punch Is formed into a cross-sectional water droplet shape that spreads in the circumferential direction as its both side surfaces reach radially inward,
In the half-shearing process, the tip of the detection tooth is formed in a non-contact manner on the inner surface of the concave portion of the die, and the relief tooth is formed in a non-contact manner on the inner surface of the concave portion of the punch. Ring manufacturing method.
上記半せん断加工の後に、別のダイスとパンチとを用いて上記検出歯と上記逃げ歯とをサイジング加工する請求項1記載のセンサリングの製造方法。  The method for manufacturing a sensor ring according to claim 1, wherein after the half-shearing process, the detection tooth and the relief tooth are sized using another die and a punch. 上記検出歯と上記逃げ歯との表面全面が上記別のダイスに接触してサイジング加工され、上記検出歯と上記逃げ歯とのいずれか一方の裏面のみが上記別のパンチに接触される請求項2記載のセンサリングの製造方法。  The entire surface of the detection tooth and the flank tooth is in contact with the other die for sizing, and only the back surface of either the detection tooth or the flank tooth is in contact with the other punch. The manufacturing method of the sensor ring of 2. 上記別のパンチが凹凸状に形成されその凸部の先端面のみが上記検出歯の裏面に接触され、または、上記別のパンチが円周面状に形成され上記逃げ歯の裏面に接触される請求項3記載のセンサリングの製造方法。  The another punch is formed in a concavo-convex shape, and only the tip surface of the convex portion is in contact with the back surface of the detection tooth, or the another punch is formed in a circumferential surface shape and is in contact with the back surface of the relief tooth. The manufacturing method of the sensor ring of Claim 3. 請求項2記載のセンサリングの製造方法により製造され、回転する軸に取り付けられるセンサリングであって、
上記検出歯と逃げ歯とが、上記円筒状素材の上記側面部における軸方向一端から中間まで延出し、かつ上記円筒状素材の軸方向他端部に上記軸が圧入される圧入部が形成され、 上記検出歯の外径が上記サイジング加工によって上記円筒状素材の外径よりも縮小され、
上記逃げ歯の表面が、上記検出歯の歯先面よりも径方向内側かつ上記検出歯の裏面よりも径方向外側に位置すると共に、上記逃げ歯の裏面が、上記検出歯の裏面よりも径方向内側に位置することを特徴とするセンサリング。
Produced by the method of claim 2 Symbol placement of sensor ring, a sensor ring which is attached to the shaft to rotate,
The detection tooth and the relief tooth extend from one axial end to the middle of the side surface portion of the cylindrical material, and a press-fit portion is formed in which the shaft is press-fitted to the other axial end portion of the cylindrical material. , the outer diameter of the detection teeth are reduced than the outer diameter of the cylindrical material by the sizing process,
The surface of the relief tooth is positioned radially inward of the tooth tip surface of the detection tooth and radially outward of the back surface of the detection tooth, and the back surface of the relief tooth is larger in diameter than the back surface of the detection tooth. Sensor ring characterized by being located inside in the direction .
JP2000223875A 2000-07-19 2000-07-19 Sensor ring and manufacturing method thereof Expired - Fee Related JP4339987B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000223875A JP4339987B2 (en) 2000-07-19 2000-07-19 Sensor ring and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000223875A JP4339987B2 (en) 2000-07-19 2000-07-19 Sensor ring and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2002035887A JP2002035887A (en) 2002-02-05
JP4339987B2 true JP4339987B2 (en) 2009-10-07

Family

ID=18717912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000223875A Expired - Fee Related JP4339987B2 (en) 2000-07-19 2000-07-19 Sensor ring and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4339987B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107262638A (en) * 2016-04-06 2017-10-20 哈尔滨飞机工业集团有限责任公司 A kind of special tooling for twining heterotypic spring

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004025246A (en) 2002-06-26 2004-01-29 Nhk Spring Co Ltd Method for manufacturing coiled spring having straight inclined axis
JP4653141B2 (en) * 2007-05-15 2011-03-16 コンドーセイコー株式会社 Tooth formation method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107262638A (en) * 2016-04-06 2017-10-20 哈尔滨飞机工业集团有限责任公司 A kind of special tooling for twining heterotypic spring

Also Published As

Publication number Publication date
JP2002035887A (en) 2002-02-05

Similar Documents

Publication Publication Date Title
US20100224145A1 (en) Built-Up Camshaft
US6044536A (en) Method for making an assembly unit
JP4476913B2 (en) Method and apparatus for forming cup-shaped member
JP2005131678A (en) Fastening method
JP4339987B2 (en) Sensor ring and manufacturing method thereof
JP3933143B2 (en) Wheel manufacturing method.
US6184678B1 (en) Rotor for wheel speed sensor providing increased difference in output voltage of the sensor
JP2000334527A (en) Toothed ring and projecting tooth forming method
JPH049243A (en) Production of rotating body
JP2006064124A (en) Clutch housing and method of manufacturing the same
JP2002346682A (en) Method for upset burring of thick plate and its mold
JP3838811B2 (en) Manufacturing method of universal joint outer ring
JP5986350B2 (en) Assembled vehicle wheels, wheel rims for use with such vehicle wheels, and methods of making them
JPH11277149A (en) Sensor ring and its production
JP3997684B2 (en) Manufacturing method of internal tooth member
JP2005155857A (en) Method of manufacturing clutch housing
JP5291375B2 (en) Manufacturing method for vehicle wheel
JPH02117729A (en) Forming method for sheet metal multistage v-pulley
JP3725136B2 (en) Sheet metal member forming method
JP2000071047A (en) Sleeve valve member manufacture
US20040168496A1 (en) Apparatus for manufacturing a formed body having a concentric hub
JP3780128B2 (en) Sheet metal member forming method
JP3060290B2 (en) Sheet metal pulley and manufacturing method thereof
JPS617022A (en) Method of forming bottomed cylindrical body made of metal
CA2399102A1 (en) Component with a hub, and non-cutting production method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080703

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080715

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090331

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090521

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090623

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090703

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120710

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130710

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees