[go: up one dir, main page]

JP4328892B2 - Temperature and humidity control device and environmental test device - Google Patents

Temperature and humidity control device and environmental test device Download PDF

Info

Publication number
JP4328892B2
JP4328892B2 JP2004027482A JP2004027482A JP4328892B2 JP 4328892 B2 JP4328892 B2 JP 4328892B2 JP 2004027482 A JP2004027482 A JP 2004027482A JP 2004027482 A JP2004027482 A JP 2004027482A JP 4328892 B2 JP4328892 B2 JP 4328892B2
Authority
JP
Japan
Prior art keywords
temperature
evaporator
pressure reducing
target
humidity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004027482A
Other languages
Japanese (ja)
Other versions
JP2005221110A (en
Inventor
雅志 富田
康雄 河本
武 笹田
隆義 鷲▲巣▼
貴生 大内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2004027482A priority Critical patent/JP4328892B2/en
Publication of JP2005221110A publication Critical patent/JP2005221110A/en
Application granted granted Critical
Publication of JP4328892B2 publication Critical patent/JP4328892B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)
  • Drying Of Gases (AREA)
  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
  • Central Air Conditioning (AREA)

Description

本発明は、調温調湿装置および環境試験装置に関する。   The present invention relates to a temperature control device and an environmental test device.

環境試験装置は、電子部品、自動車部品あるいは化学物質など、各種の試験対象の温度特性や湿度特性を試験する場合に用いられる。一般に、環境試験装置は、試験対象の試料を設置する試験室と、この試験室内の温度と湿度とを調整する調温調湿装置を有して構成されている。この調温調湿装置は、例えば、試験室内を加熱する加熱器と、加湿する加湿器が設けられている。試験室内の冷却と除湿については、冷凍サイクルの蒸発器で行い、これにより試験室内を、例えば恒温恒湿に保つようにしている。   The environmental test apparatus is used when testing temperature characteristics and humidity characteristics of various test objects such as electronic parts, automobile parts, and chemical substances. In general, an environmental test apparatus includes a test room in which a sample to be tested is installed, and a temperature control apparatus that adjusts the temperature and humidity in the test room. This temperature control apparatus is provided with, for example, a heater for heating the test chamber and a humidifier for humidifying. The cooling and dehumidification of the test chamber is performed by the evaporator of the refrigeration cycle, so that the test chamber is maintained at, for example, constant temperature and humidity.

ところで、試験室内が低温度あるいは低湿度に設定されると、冷凍サイクルの蒸発器に着霜することがある。蒸発器に着霜した場合、冷却および除湿の効果が低減して、試験室内を恒温恒湿に保てなくなるから、試験を中断して除霜運転を行う必要がある。しかし、環境試験装置は、一般に、例えば、2〜24時間連続使用されるから、しばしば除霜運転することはできない。そこで、除霜運転の間隔を長くするために、クロスフィンチューブ型の蒸発器において、多少の着霜が生じても冷却および除湿の効果を維持できるように、フィンピッチの間隔を広げることが行われている。   By the way, if the test chamber is set to a low temperature or a low humidity, the evaporator of the refrigeration cycle may be frosted. When the evaporator is frosted, the effect of cooling and dehumidification is reduced, and the test chamber cannot be maintained at constant temperature and humidity. Therefore, it is necessary to interrupt the test and perform the defrosting operation. However, since the environmental test apparatus is generally used continuously for, for example, 2 to 24 hours, it cannot often be defrosted. Therefore, in order to increase the interval between defrosting operations, the fin pitch interval is increased in the cross fin tube type evaporator so that the cooling and dehumidifying effects can be maintained even if some frost formation occurs. It has been broken.

一方、蒸発器の着霜を防止するため、蒸発器と圧縮機との間のガス冷媒流路に、蒸発器の蒸発温度を調整する減圧弁を設け、蒸発器の蒸発温度を着霜温度よりも高く運転する、いわゆるノーフロスト運転を行うものが提案されている(例えば、特許文献1参照)。   On the other hand, in order to prevent the frost formation of the evaporator, a pressure reducing valve for adjusting the evaporation temperature of the evaporator is provided in the gas refrigerant flow path between the evaporator and the compressor so that the evaporation temperature of the evaporator is higher than the frost temperature. Have been proposed that perform so-called no-frost operation (see, for example, Patent Document 1).

特開平8−278071号公報(第2−4頁、第1図)JP-A-8-278071 (page 2-4, FIG. 1)

しかし、特許文献1の減圧弁は、減圧量が固定されているから、周囲温度の変化などの外乱によって蒸発温度がバラつき(例えば、2〜3℃)、蒸発器に着霜する場合がある。これにより、調温調湿の対象室である試験室内の温度や湿度が変動するおそれがある。   However, since the pressure reducing amount of the pressure reducing valve of Patent Document 1 is fixed, the evaporation temperature varies due to a disturbance such as a change in ambient temperature (for example, 2 to 3 ° C.), and the evaporator may be frosted. Thereby, there exists a possibility that the temperature and humidity in the test chamber which is a target room for temperature and humidity control may fluctuate.

本発明は、対象室の調温調湿を行う冷凍サイクルの蒸発器への着霜を回避し、かつ、対象室の温度および湿度の変動を抑制することを課題とする。   This invention makes it a subject to avoid the frost formation to the evaporator of the refrigerating cycle which performs temperature-control humidity control of a target chamber, and to suppress the fluctuation | variation of the temperature and humidity of a target chamber.

本発明は、次に述べる手段により、上記課題を解決するものである。すなわち、冷凍サイクルを構成する蒸発器に対象室内の空気を循環させて、対象室内の温度と湿度を制御する冷凍機を備えた調温調湿装置において、前記蒸発器に循環される液冷媒の圧力を減圧する定減圧弁と、該定減圧弁に直列に接続された電磁弁と、前記定減圧弁と前記電磁弁の直列接続流路に並列に接続された可変減圧弁と、該可変減圧弁の開度を制御する制御器とを設け、前記制御器は、前記対象室内の温度の目標値が第1の温度以下のときは、前記電磁弁を閉じて前記可変減圧弁の開度を制御して前記対象室内の温度の目標値に制御し、前記目標値が前記第1の温度を越えたときは前記電磁弁を開いて前記可変減圧弁の開度を前記蒸発器の蒸発温度の検出値を着霜温度を超える温度に設定された設定温度に制御することを特徴とする。 The present invention solves the above problems by the following means. That is, in a temperature control humidity control apparatus having a refrigerator that circulates air in a target room through an evaporator constituting a refrigeration cycle and controls the temperature and humidity in the target room, the liquid refrigerant circulated through the evaporator a constant pressure reducing valve for reducing the pressure, and the solenoid valve connected in series with the constant pressure reducing valve, a variable pressure reducing valve connected to said parallel to the series connection passage between the constant pressure reducing valve the solenoid valve, the variable vacuum A controller for controlling the opening of the valve, and the controller closes the electromagnetic valve and controls the opening of the variable pressure reducing valve when the target temperature of the target chamber is equal to or lower than the first temperature. To control a target value of the temperature in the target chamber, and when the target value exceeds the first temperature, the solenoid valve is opened and the opening of the variable pressure reducing valve is adjusted to the evaporation temperature of the evaporator. The detection value is controlled to a set temperature that is set to a temperature exceeding the frosting temperature. .

これにより、対象室内の温度の目標値が第1の温度(例えば、10℃)を越えたときは、電磁弁を開いて定減圧弁を介して冷媒を減圧するとともに、可変減圧弁の開度を前記蒸発器の蒸発温度の検出値を着霜温度を超える温度に設定された設定温度に制御しているので、周囲温度の変化などの外乱があっても、蒸発温度が着霜しない設定温度に維持されるから、対象室内の温度および湿度を安定に制御できる。また、蒸発温度を設定温度に維持するように蒸発温度を可変制御するから、設定温度を着霜温度に近づけて設定しても着霜を防止できる。すなわち、ノーフロスト運転の領域を低温度側、あるいは低湿度側に拡大することができる。
Thereby, when the target value of the temperature in the target chamber exceeds the first temperature (for example, 10 ° C.), the solenoid valve is opened to depressurize the refrigerant through the constant pressure reducing valve, and the opening of the variable pressure reducing valve Since the detected value of the evaporation temperature of the evaporator is controlled to a set temperature that is set to a temperature that exceeds the frosting temperature, even if there is a disturbance such as a change in the ambient temperature, the set temperature at which the evaporation temperature does not frost Therefore, the temperature and humidity in the target room can be stably controlled. Further, since the evaporation temperature is variably controlled so as to maintain the evaporation temperature at the set temperature, frost formation can be prevented even if the set temperature is set close to the frost temperature. That is, the area of no frost operation can be expanded to the low temperature side or the low humidity side.

また、定減圧弁と電磁弁の直列接続流路に可変減圧弁を並列接続していることから、電磁弁を開いたときは定減圧弁により冷媒が減圧されることから、可変減圧弁により蒸発温度の微妙な調整が可能になり、対象室内の温度および湿度の変動をさらに抑制できる。ここで、定減圧弁と可変減圧弁を蒸発器の液側流路に設け、ノーフロスト運転を行うときに電磁弁を開き、ノーフロスト運転を行わないときに電磁弁を閉じるようにすれば、冷凍サイクルの膨張弁を、定減圧弁、および可変減圧弁で兼用できる。
In addition , since the variable pressure reducing valve is connected in parallel to the series connection flow path of the constant pressure reducing valve and the solenoid valve, the refrigerant is decompressed by the constant pressure reducing valve when the solenoid valve is opened. Subtle adjustment of the heat generation temperature is possible, and fluctuations in temperature and humidity in the target room can be further suppressed. Here, if the constant pressure reducing valve and the variable pressure reducing valve are provided in the liquid side flow path of the evaporator, the solenoid valve is opened when the no frost operation is performed, and the solenoid valve is closed when the no frost operation is not performed. The expansion valve of the refrigeration cycle can be used as a constant pressure reducing valve and a variable pressure reducing valve.

上述した調温調湿装置は、蒸発器に対象室内の空気を通流させる送風機と、この送風機の風量を可変させる可変手段とを有することができる。これによれば、風量を変化させて空気の単位流量当たりの蒸発器からの伝熱量を調整できるから、蒸発器の冷却能力、および除湿能力を制御することができる。特に、風量を低下させることで、除湿能力を向上できる。   The temperature and humidity control apparatus described above can include a blower that allows the air in the target chamber to flow through the evaporator, and a variable unit that varies the air volume of the blower. According to this, since the amount of heat transfer from the evaporator per unit flow rate of air can be adjusted by changing the air volume, the cooling capacity and the dehumidifying capacity of the evaporator can be controlled. In particular, the dehumidifying ability can be improved by reducing the air volume.

本発明によれば、対象室の調温調湿を行う冷凍サイクルの蒸発器への着霜を回避でき、かつ、対象室の温度および湿度の変動を抑制できる。   ADVANTAGE OF THE INVENTION According to this invention, the frost formation to the evaporator of the refrigerating cycle which performs temperature control and humidity control of an object chamber can be avoided, and the fluctuation | variation of the temperature and humidity of an object chamber can be suppressed.

以下、本発明の調温調湿装置および環境試験装置の実施の形態について図1〜図5を用いて説明する。図1は、本発明の一実施形態の調温調湿装置の冷凍サイクルの構成を示す図である。図2は、本発明の一実施形態の環境試験装置の構成を示す図である。図3は、本発明の一実施形態の調温調湿装置の構成を示す一部断面図である。   DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of a temperature and humidity control apparatus and an environmental test apparatus according to the present invention will be described with reference to FIGS. FIG. 1 is a diagram illustrating a configuration of a refrigeration cycle of a temperature and humidity control apparatus according to an embodiment of the present invention. FIG. 2 is a diagram showing a configuration of an environmental test apparatus according to an embodiment of the present invention. FIG. 3 is a partial cross-sectional view showing the configuration of the temperature and humidity control apparatus of one embodiment of the present invention.

本実施形態の環境試験装置は、図2に示すように、試験室1と、試験室1に組み付けられた調温調室装置3を備えて構成されている。試験室1は、例えば、断熱パネルで形成され、試験試料を搬入、搬出するための扉5が設けられている。   As shown in FIG. 2, the environmental test apparatus according to the present embodiment includes a test chamber 1 and a temperature adjustment chamber device 3 assembled in the test chamber 1. The test chamber 1 is formed of, for example, a heat insulating panel, and is provided with a door 5 for loading and unloading a test sample.

調温調湿装置3は、実際に試験室1内の温度や湿度を調節するユニット7と、ユニット7を制御する制御盤9を有している。ユニット7は、図3に示すように、箱型の筐体10を備えている。筐体10は試験室1に連通する吸込口11および吹出口12を有している。筐体10内に、筐体10内の空気を吹出口12へ送る送風機15が設けられている。また、筐体10内には、冷凍サイクルの蒸発器13、加熱器17および加湿器19が設けられ、冷凍サイクルを備えた冷凍機、加熱器17および加湿器19は、制御盤9によって出力が調整され調温調湿可能になっている。加熱器17は、例えば、電熱ヒータで構成され、加湿器19は、例えば、水を張った皿に電熱ヒータを取り付けて構成されている。   The temperature control device 3 includes a unit 7 that actually adjusts the temperature and humidity in the test chamber 1, and a control panel 9 that controls the unit 7. The unit 7 includes a box-shaped housing 10 as shown in FIG. The housing 10 has a suction port 11 and a blower port 12 communicating with the test chamber 1. A blower 15 that sends the air in the housing 10 to the air outlet 12 is provided in the housing 10. Further, the housing 10 is provided with an evaporator 13, a heater 17 and a humidifier 19 for the refrigeration cycle. The refrigerator, the heater 17 and the humidifier 19 having the refrigeration cycle are output by the control panel 9. Adjusted temperature and humidity can be adjusted. The heater 17 is composed of, for example, an electric heater, and the humidifier 19 is composed of, for example, an electric heater attached to a dish filled with water.

冷凍サイクルは、図1に示すように、圧縮機23、凝縮器25、電子膨張弁27、蒸発器13を有して構成されている。圧縮機23は容量制御が可能なものが用いられている。圧縮機23の吐出側には、凝縮器25が接続されている。凝縮器25の液側流路は、電子膨張弁27を介して蒸発器13に連結されている。蒸発器13のガス側流路は、圧縮機23の吸入側に接続されている。本実施形態では、凝縮器25と電子膨張弁27との間の冷媒流路に、受液器29が設けられている。また、圧縮機23の吸引側の冷媒流路に、圧縮機23の吸入圧力を調整する吸引圧力調整弁33が設けられている。   As shown in FIG. 1, the refrigeration cycle includes a compressor 23, a condenser 25, an electronic expansion valve 27, and an evaporator 13. The compressor 23 is capable of capacity control. A condenser 25 is connected to the discharge side of the compressor 23. The liquid side flow path of the condenser 25 is connected to the evaporator 13 via the electronic expansion valve 27. The gas side flow path of the evaporator 13 is connected to the suction side of the compressor 23. In the present embodiment, a liquid receiver 29 is provided in the refrigerant flow path between the condenser 25 and the electronic expansion valve 27. A suction pressure adjusting valve 33 that adjusts the suction pressure of the compressor 23 is provided in the refrigerant flow path on the suction side of the compressor 23.

本実施形態の特徴は、蒸発器における冷媒の蒸発温度(蒸発圧力)を調整し、蒸発器の蒸発温度の検出値を着霜温度を超える温度に設定された設定温度に制御することにある。この制御を実現するために、蒸発温度を検出する温度計35と、検出温度に基づいて電子膨張弁27の開度を制御する制御器37が設けられている。温度計35は、例えば、蒸発器13の液側流路に取り付けられている。   The feature of this embodiment is that the evaporation temperature (evaporation pressure) of the refrigerant in the evaporator is adjusted, and the detected value of the evaporation temperature of the evaporator is controlled to a set temperature that is set to a temperature exceeding the frosting temperature. In order to realize this control, a thermometer 35 for detecting the evaporation temperature and a controller 37 for controlling the opening degree of the electronic expansion valve 27 based on the detected temperature are provided. The thermometer 35 is attached to the liquid side flow path of the evaporator 13, for example.

また、電子膨張弁27をバイパスする冷媒流路39が設けられ、この冷媒流路39に定減圧弁である定圧膨張弁41が設けられている。つまり、電子膨張弁27と定圧膨張弁41とが並列に接続されている。定圧膨張弁41の開度は、圧縮機23の容量を最大で運転した場合に、蒸発器13の蒸発温度が蒸発器13に霜が付着する温度よりも高く、すなわち、着霜温度よりも高く設定された設定温度になる開度に固定されている。この設定温度は、単に0℃に設定するのではなく、霜が空気の熱で溶けることを考慮して、例えば、0〜−5℃に設定することができる。また、冷媒流路39には、電磁弁43が設けられている。これにより、電子膨張弁27のみの運転、あるいは電子膨張弁27と定圧膨張弁41を併用する運転に切り替え可能になっている。   A refrigerant flow path 39 that bypasses the electronic expansion valve 27 is provided, and a constant pressure expansion valve 41 that is a constant pressure reducing valve is provided in the refrigerant flow path 39. That is, the electronic expansion valve 27 and the constant pressure expansion valve 41 are connected in parallel. The opening degree of the constant pressure expansion valve 41 is higher than the temperature at which the frost adheres to the evaporator 13 when the compressor 23 is operated at the maximum capacity, that is, higher than the frosting temperature. The opening is fixed at the set temperature. This set temperature is not simply set to 0 ° C., but can be set to 0 to −5 ° C., for example, considering that frost is melted by the heat of air. The refrigerant flow path 39 is provided with an electromagnetic valve 43. Thereby, it is possible to switch to the operation of only the electronic expansion valve 27 or the operation of using the electronic expansion valve 27 and the constant pressure expansion valve 41 together.

このように構成された環境試験装置の動作について説明する。まず、試験室1内の空気は、送風機15によって吸込口12から吸い込まれ、加湿器19、蒸発器13、加熱器17を通過することにより、加湿または除湿、および加熱または冷却の空気調和が成され、吹出口11から試験室1に吹き出される。この空気の温度や湿度は、制御盤9に設定されている目標値に制御される。例えば、試験室1の空気側は、吹出口11で検出した温度および湿度と目標値との偏差量に応じて加熱器および加湿器の出力が制御(例えば、時間比例によるPID制御)される。これにより、試験室1内を任意の条件にし、例えば、恒温恒湿、あるいは一定の変化率で温度や湿度を変化させることができる。   The operation of the environmental test apparatus configured as described above will be described. First, the air in the test chamber 1 is sucked from the suction port 12 by the blower 15 and passes through the humidifier 19, the evaporator 13, and the heater 17, so that air conditioning of humidification or dehumidification and heating or cooling is achieved. Then, the air is blown out from the air outlet 11 to the test chamber 1. The air temperature and humidity are controlled to target values set in the control panel 9. For example, on the air side of the test chamber 1, the outputs of the heater and the humidifier are controlled (for example, PID control based on time proportionality) in accordance with the deviation amount between the temperature and humidity detected at the air outlet 11 and the target value. Thereby, the inside of the test chamber 1 can be made into arbitrary conditions, for example, temperature and humidity can be changed at constant temperature and humidity or a constant change rate.

冷凍サイクルは、圧縮機23で圧縮した冷媒ガスを凝縮器25で凝縮させ、この凝縮器25から排出される液冷媒を電子膨張弁27で減圧して蒸発器13に導く。蒸発器13に導かれた液冷媒は、蒸発器13の周囲を通流する空気と熱交換して蒸発する。これにより、蒸発器13の周囲の空気が冷却され、あるいは除湿されることになる。蒸発器13から排出されるガス冷媒は、圧縮機23に吸入されて循環する。   In the refrigeration cycle, the refrigerant gas compressed by the compressor 23 is condensed by the condenser 25, and the liquid refrigerant discharged from the condenser 25 is decompressed by the electronic expansion valve 27 and guided to the evaporator 13. The liquid refrigerant guided to the evaporator 13 evaporates by exchanging heat with the air flowing around the evaporator 13. Thereby, the air around the evaporator 13 is cooled or dehumidified. The gas refrigerant discharged from the evaporator 13 is sucked into the compressor 23 and circulated.

ここで、制御盤9に設定された温度の目標値が低い(例えば、10℃以下)と、目標温度まで冷却するために、蒸発器13の蒸発温度を着霜温度よりも低くしなければならない場合がある。この場合、電磁弁43を閉じることで、蒸発器13の蒸発圧力を低減し、蒸発温度を着霜温度以下で運転する、いわゆるフロスト運転を行う。   Here, if the target value of the temperature set in the control panel 9 is low (for example, 10 ° C. or lower), the evaporation temperature of the evaporator 13 must be lower than the frosting temperature in order to cool to the target temperature. There is a case. In this case, by closing the solenoid valve 43, the evaporation pressure of the evaporator 13 is reduced, and a so-called frost operation is performed in which the evaporation temperature is operated below the frosting temperature.

一方、制御盤9に設定された温度の目標値が比較的高く設定(例えば、温度が10〜60℃)されると、蒸発器13の蒸発温度を着霜温度よりも下げなくても所望の冷却能力や除湿能力を得ることができる。この場合、電磁弁43を開き、定圧膨張弁41と電子膨張弁27を併用する。これにより、蒸発器13の蒸発温度は、定圧膨張弁41に設定された設定温度(例えば、0〜−5℃)に調整される。さらに、制御器37は、電子膨張弁27の開度を調整して、温度計35が検出した蒸発温度を、定圧膨張弁の設定温度と同一に設定された設定温度に制御する。この結果、蒸発温度が設定温度に維持される。   On the other hand, if the target value of the temperature set in the control panel 9 is set relatively high (for example, the temperature is 10 to 60 ° C.), the desired temperature can be obtained without reducing the evaporation temperature of the evaporator 13 below the frosting temperature. Cooling capacity and dehumidifying capacity can be obtained. In this case, the solenoid valve 43 is opened, and the constant pressure expansion valve 41 and the electronic expansion valve 27 are used together. Thereby, the evaporation temperature of the evaporator 13 is adjusted to a set temperature (for example, 0 to −5 ° C.) set in the constant pressure expansion valve 41. Further, the controller 37 adjusts the opening degree of the electronic expansion valve 27 to control the evaporation temperature detected by the thermometer 35 to a set temperature that is set to be the same as the set temperature of the constant pressure expansion valve. As a result, the evaporation temperature is maintained at the set temperature.

このように本実施形態によれば、例えば、試験室1または凝縮器25の周囲温度の変化などの外乱があっても、電子膨張弁27のフィードバック制御によって、蒸発温度が着霜しない設定温度に維持されるから、着霜を完全に回避でき、試験室1内の温度および湿度の変動を抑制できる。これにより、環境試験を安定した温度および湿度で長時間行うことができる。   As described above, according to the present embodiment, for example, even if there is a disturbance such as a change in the ambient temperature of the test chamber 1 or the condenser 25, the evaporation temperature is set to a set temperature at which the evaporating temperature does not frost by feedback control of the electronic expansion valve 27. Since it is maintained, frost formation can be completely avoided, and fluctuations in temperature and humidity in the test chamber 1 can be suppressed. Thereby, an environmental test can be performed for a long time at a stable temperature and humidity.

さらに、本実施形態では、蒸発温度を設定温度に維持するように蒸発圧力を制御するから、設定温度を着霜温度に近づけて設定しても着霜することはない。したがって、図4に示すように、ノーフロスト運転の領域を低温度側、および低湿度側に拡大することができる。   Furthermore, in this embodiment, since the evaporation pressure is controlled so as to maintain the evaporation temperature at the set temperature, frost formation does not occur even if the set temperature is set close to the frost temperature. Therefore, as shown in FIG. 4, the area of the no frost operation can be expanded to the low temperature side and the low humidity side.

また、本実施形態では、蒸発温度の制御を並列に設けた2つの弁のうちの一つ、つまり、電子膨張弁で行うから、蒸発温度の微妙な設定と調整が可能になり、蒸発器に着霜が生じない制御ができる。この場合において、電子膨張弁27の容量、つまり弁開度に十分余裕があれば、定圧膨張弁41を併用せずに、電子膨張弁27の単独制御でノーフロスト運転を行うこともできる。   Further, in this embodiment, since the evaporation temperature is controlled by one of two valves provided in parallel, that is, an electronic expansion valve, the evaporation temperature can be delicately set and adjusted. Control can be performed without frost formation. In this case, if the capacity of the electronic expansion valve 27, that is, the valve opening, has a sufficient margin, the no-frost operation can be performed by independent control of the electronic expansion valve 27 without using the constant pressure expansion valve 41 together.

本実施形態では、送風機15の風量を調整していないが、これに代えて、送風機15の風量を可変させる、例えば、インバータなどの可変手段を設けることができる。これによれば、例えば、風量を変化させて蒸発器13のバイパスファクタを調整できるから、蒸発器13の除湿能力を制御することができる。特に、ノーフロストで運転できる領域を低湿側に拡大することができるので好ましい。   In the present embodiment, the air volume of the blower 15 is not adjusted, but instead, a variable means such as an inverter for changing the air volume of the blower 15 can be provided. According to this, for example, since the bypass factor of the evaporator 13 can be adjusted by changing the air volume, the dehumidifying ability of the evaporator 13 can be controlled. In particular, the region that can be operated with no frost can be expanded to the low humidity side, which is preferable.

具体的には、除湿能力を余り必要としない領域、すなわち目標温度における相対湿度が50%を超える領域では、送風機15は通常運転(例えば、50〜90Hz)し、相対湿度が50%以下の領域では、設定温度に応じて低速運転(例えば、30〜40Hz)切り換えることにより、風量制御して蒸発器のバイパスファクタを小さく変化させて、除湿能力を維持する配慮をしている。また、単に、相対湿度のみを基準に切り替えることに代えて、図5に示すように、試験室1内の温度を考慮して、目標温度が高くなるにつれて低速運転を開始する限界線を低湿度側の領域にずらしてもよい。なお、上記の低速運転による風量制御は、試験室1が目標温度に到達(例えば、目標温度の±1℃以内)してから実施すれば、風量の減少に伴う冷却能力の低下によって温度降下時間に及ぼす悪影響を排除できるので好ましい。   Specifically, in a region where the dehumidifying capacity is not so necessary, that is, a region where the relative humidity at the target temperature exceeds 50%, the blower 15 is normally operated (for example, 50 to 90 Hz) and the relative humidity is 50% or less. Therefore, consideration is given to maintaining the dehumidifying capacity by switching the low speed operation (for example, 30 to 40 Hz) according to the set temperature, thereby changing the bypass factor of the evaporator small by controlling the air volume. Further, instead of simply switching only relative humidity to the reference, as shown in FIG. 5, considering the temperature in the test chamber 1, a limit line for starting low-speed operation as the target temperature increases is set to low humidity. It may be shifted to the side area. In addition, if the air volume control by the low speed operation described above is performed after the test chamber 1 reaches the target temperature (for example, within ± 1 ° C. of the target temperature), the temperature drop time is reduced due to the decrease in the cooling capacity accompanying the decrease in the air volume. It is preferable because it can eliminate the adverse effect on the surface.

また、本実施形態では、加熱器17に電熱ヒータを用いたが、これに限らず、出力制御可能であればよい。加湿器19も同様に、出力制御可能であればよく、本実施形態の蒸発式に限らず、超音波式の加湿器などを用いることができる。また、本実施形態において、例えば、二重管熱交換器を用いて低圧側の冷媒と高圧側の冷媒とを熱交換させて、低圧側の冷媒のガス化を促進させ、高圧側の冷媒を過冷却するなどの周知の技術を適用することもできる。さらに、液冷媒の流路にドライヤやストレーナなどを設けて、冷媒中に含まれる水分や異物を取り除くことができる。また、圧縮機23の吐き出しガス温度の凝縮温度に対するスーパーヒートを一定に制御するために、いわゆる液インジェクションを行うこともできる。   In the present embodiment, an electric heater is used as the heater 17, but the present invention is not limited to this, and it is only necessary to be able to control the output. Similarly, the humidifier 19 need only be capable of output control, and is not limited to the evaporation type of the present embodiment, and an ultrasonic humidifier or the like can be used. Further, in the present embodiment, for example, heat exchange is performed between the low-pressure side refrigerant and the high-pressure side refrigerant using a double pipe heat exchanger to promote gasification of the low-pressure side refrigerant, A known technique such as supercooling can also be applied. Furthermore, it is possible to remove moisture and foreign substances contained in the refrigerant by providing a dryer, strainer, or the like in the liquid refrigerant flow path. Also, so-called liquid injection can be performed in order to control the superheat with respect to the condensation temperature of the discharged gas temperature of the compressor 23 to be constant.

上述するように、本実施形態によれば、ノーフロスト運転の領域を低温側、および低湿度側に拡大することができ、従来、フロスト運転で行っていた温湿度領域をノーフロスト運転でカバーできる。このため、従来、着霜対策として、クロスフィンチューブ型の蒸発器において、広め(例えば8mmピッチ)に設定していたフィンピッチの間隔を狭くすることができる。これにより小型化を実現できる。なお、クロスフィンチューブのフィンは、フィンに伝熱管を挿入する穴を深絞り加工して、フィンピッチに等しい筒状のカラーハイトを形成し、このカラーハイトの高さで各フィンピッチの間隔を規定するのが好ましい。しかし、フィンピッチ間隔が8mmであると、通常、フィンに用いられる0.1〜0.2mm厚の銅板あるいはアルミ板では、深絞りの加工の限界からカラーハイトを形成することができず、カラーハイトを別に製作するなどの手間がかかっていた。この点、本実施形態によれば、フィンピッチを通常のフィンで深絞りできる、例えば4mmにできるから製作工程を容易にできる。   As described above, according to the present embodiment, the area of no frost operation can be expanded to the low temperature side and the low humidity side, and the temperature and humidity area conventionally performed in frost operation can be covered with no frost operation. . For this reason, conventionally, as a countermeasure against frost formation, in the cross fin tube type evaporator, the interval of the fin pitch, which has been set wider (for example, 8 mm pitch), can be narrowed. Thereby, downsizing can be realized. In addition, the fin of the cross fin tube is formed by deep drawing a hole for inserting the heat transfer tube into the fin to form a cylindrical color height equal to the fin pitch. It is preferable to specify. However, if the fin pitch interval is 8 mm, the color height cannot be formed with the copper plate or aluminum plate of 0.1 to 0.2 mm thickness usually used for fins due to the limit of deep drawing. It took time and effort to make a separate height. In this respect, according to the present embodiment, the fin pitch can be deep drawn with a normal fin, for example, 4 mm, so that the manufacturing process can be facilitated.

本発明の一実施形態の調温調湿装置の冷凍サイクルの構成を示す図である。It is a figure which shows the structure of the refrigerating cycle of the temperature control apparatus of one Embodiment of this invention. 本発明の一実施形態の環境試験装置の構成を示す図である。It is a figure which shows the structure of the environmental test apparatus of one Embodiment of this invention. 本発明の一実施形態の調温調湿装置の構成を示す一部断面図である。It is a partial cross section figure which shows the structure of the temperature control apparatus of one Embodiment of this invention. 縦軸に相対湿度を、横軸に温度を表し、ノーフロスト領域を説明するためのグラフである。The vertical axis represents relative humidity, the horizontal axis represents temperature, and is a graph for explaining a no-frost region. 縦軸に目標湿度を、横軸に目標温度を表し、送風機の風量を切り替える限界線を示したグラフである。It is the graph which showed the target humidity on the vertical axis | shaft, the target temperature on the horizontal axis | shaft, and showed the limit line which switches the air volume of a fan.

符号の説明Explanation of symbols

13 蒸発器
23 圧縮機
25 凝縮器
27 電子膨張弁
35 温度計
37 制御器
41 定圧膨張弁
43 電磁弁
13 Evaporator 23 Compressor 25 Condenser 27 Electronic Expansion Valve 35 Thermometer 37 Controller 41 Constant Pressure Expansion Valve 43 Solenoid Valve

Claims (4)

冷凍サイクルを構成する蒸発器に対象室内の空気を循環させて、該対象室内の温度と湿度を制御する冷凍機を備えた調温調湿装置において、
前記蒸発器に循環される液冷媒の圧力を減圧する定減圧弁と、該定減圧弁に直列に接続された電磁弁と、前記定減圧弁と前記電磁弁の直列接続流路に並列に接続された可変減圧弁と、該可変減圧弁の開度を制御する制御器とを設け、
前記制御器は、前記対象室内の温度の目標値が第1の温度以下のときは、前記電磁弁を閉じて前記可変減圧弁の開度を制御して前記対象室内の温度の目標値に制御し、前記目標値が前記第1の温度を越えたときは前記電磁弁を開いて前記可変減圧弁の開度を前記蒸発器の蒸発温度の検出値を着霜温度を超える温度に設定された設定温度に制御することを特徴とする調温調湿装置。
In a temperature control apparatus equipped with a refrigerator that circulates air in a target room through an evaporator constituting a refrigeration cycle and controls the temperature and humidity in the target room,
Connected to a constant pressure reducing valve for reducing the pressure of the liquid refrigerant is circulated to the evaporator, and an electromagnetic valve connected in series with the constant pressure reducing valve, in parallel with the series connection channel of the the constant pressure reducing valve the solenoid valve A variable pressure reducing valve, and a controller for controlling the opening of the variable pressure reducing valve,
When the target value of the temperature in the target chamber is equal to or lower than the first temperature, the controller closes the electromagnetic valve and controls the opening of the variable pressure reducing valve to control the target value of the temperature in the target chamber. When the target value exceeds the first temperature, the solenoid valve is opened, and the opening of the variable pressure reducing valve is set to a temperature exceeding the frosting temperature as the detected value of the evaporation temperature of the evaporator. A temperature and humidity control device that is controlled to a set temperature.
前記蒸発器に前記対象室の空気を通流させる送風機と、該送風機の風量を可変させる可変手段とを有することを特徴とする請求項1に記載の調温調湿装置。   The temperature and humidity control apparatus according to claim 1, further comprising: a blower that allows the air in the target chamber to flow through the evaporator; and a variable unit that varies an air volume of the blower. 前記対象室の空気を加熱する加熱器と、前記対象室の空気を加湿する加湿器とを備えてなることを特徴とする請求項1又は2に記載の調温調湿装置。   The temperature control apparatus according to claim 1 or 2, comprising a heater for heating the air in the target chamber and a humidifier for humidifying the air in the target chamber. 請求項1乃至3のいずれか1項に記載の調温調湿装置を備えてなる環境試験装置。   The environmental test apparatus provided with the temperature-control humidity control apparatus of any one of Claims 1 thru | or 3.
JP2004027482A 2004-02-04 2004-02-04 Temperature and humidity control device and environmental test device Expired - Lifetime JP4328892B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004027482A JP4328892B2 (en) 2004-02-04 2004-02-04 Temperature and humidity control device and environmental test device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004027482A JP4328892B2 (en) 2004-02-04 2004-02-04 Temperature and humidity control device and environmental test device

Publications (2)

Publication Number Publication Date
JP2005221110A JP2005221110A (en) 2005-08-18
JP4328892B2 true JP4328892B2 (en) 2009-09-09

Family

ID=34996893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004027482A Expired - Lifetime JP4328892B2 (en) 2004-02-04 2004-02-04 Temperature and humidity control device and environmental test device

Country Status (1)

Country Link
JP (1) JP4328892B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102830055A (en) * 2011-06-17 2012-12-19 三一电气有限责任公司 Detection method and detection apparatus for wind and sand resistance of paint used in fan blades

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4583290B2 (en) * 2005-11-08 2010-11-17 株式会社大気社 Air conditioning system
JP4587971B2 (en) * 2006-02-13 2010-11-24 エスペック株式会社 Environmental test equipment
JP5007185B2 (en) * 2007-09-21 2012-08-22 三洋電機株式会社 Refrigeration apparatus, control method and control program for refrigeration apparatus
JP5422881B2 (en) * 2007-09-27 2014-02-19 パナソニック株式会社 Dehumidifier
JP4960304B2 (en) * 2008-05-23 2012-06-27 エスペック株式会社 Thermal insulation panel and environmental test equipment
JP5336917B2 (en) * 2009-04-21 2013-11-06 エスペック株式会社 Thermal insulation box and environmental test equipment
CN102207432A (en) * 2011-03-24 2011-10-05 海尔集团公司 Test tool for air conditioner indoor unit and method for online test and refrigerant recovery
JP6182854B2 (en) * 2012-12-04 2017-08-23 三菱電機株式会社 Air conditioner
CN104457001A (en) * 2014-12-30 2015-03-25 广东宏展科技有限公司 Refrigeration system of an environmental test equipment
CN106705346A (en) * 2015-11-18 2017-05-24 何齐汉 Control method for intelligent frost-free air conditioner
JP6843227B2 (en) * 2017-03-21 2021-03-17 三菱電機株式会社 Dehumidifier
CN108332378B (en) * 2018-02-11 2020-05-19 广东美的制冷设备有限公司 Control method and control device, storage medium and mobile air conditioner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102830055A (en) * 2011-06-17 2012-12-19 三一电气有限责任公司 Detection method and detection apparatus for wind and sand resistance of paint used in fan blades

Also Published As

Publication number Publication date
JP2005221110A (en) 2005-08-18

Similar Documents

Publication Publication Date Title
US6931870B2 (en) Time division multi-cycle type cooling apparatus and method for controlling the same
EP2320151B1 (en) Air-conditioning device
US10527330B2 (en) Refrigeration cycle device
EP2924376B1 (en) Refrigeration device for container
CN104508406B (en) Freezer for container
US20100023166A1 (en) Free-cooling limitation control for air conditioning systems
JP2003207248A (en) Refrigerator
JP4328892B2 (en) Temperature and humidity control device and environmental test device
CN103608630B (en) Refrigerating plant
US9857103B2 (en) Refrigerator having a condensation loop between a receiver and an evaporator
AU2002332260B2 (en) Air conditioner
US9718612B2 (en) Refrigeration device for container
JP6577264B2 (en) Air conditioner
JP2007309585A (en) Refrigeration equipment
JP6895919B2 (en) Environment forming device and environment forming method
JP2002022214A (en) Low frost environment testing device
KR20050111285A (en) Heating room control apparatus and method for multi air condintioner in building
JP2003240365A (en) Refrigeration equipment
JP2007078205A (en) Refrigerator
JP2005083616A (en) Air conditioner
JP2005164199A (en) Refrigerator
KR20200099507A (en) A refrigerator and a control method the same
JP2651327B2 (en) Method and apparatus for controlling hot gas bypass circuit of refrigeration circuit
JP3495956B2 (en) refrigerator
CN104813124B (en) Refrigeating plant for container

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080401

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080602

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080619

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080916

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090519

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090528

R150 Certificate of patent or registration of utility model

Ref document number: 4328892

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120626

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120626

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130626

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term