[go: up one dir, main page]

JP4326874B2 - Electrostatic chuck and manufacturing method thereof - Google Patents

Electrostatic chuck and manufacturing method thereof Download PDF

Info

Publication number
JP4326874B2
JP4326874B2 JP2003289262A JP2003289262A JP4326874B2 JP 4326874 B2 JP4326874 B2 JP 4326874B2 JP 2003289262 A JP2003289262 A JP 2003289262A JP 2003289262 A JP2003289262 A JP 2003289262A JP 4326874 B2 JP4326874 B2 JP 4326874B2
Authority
JP
Japan
Prior art keywords
insulating layer
electrostatic chuck
thermal spray
base
electrode layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003289262A
Other languages
Japanese (ja)
Other versions
JP2005057214A (en
Inventor
知之 小倉
亜希子 梅木
達也 塩貝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2003289262A priority Critical patent/JP4326874B2/en
Publication of JP2005057214A publication Critical patent/JP2005057214A/en
Application granted granted Critical
Publication of JP4326874B2 publication Critical patent/JP4326874B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Description

本発明は、静電チャック及びその製造方法に関する。特に、基台と、この基台の上面に形成された下部絶縁層と、この下部絶縁層の上に形成された電極層と、この電極層を被覆するよう前記下部絶縁層の上に形成された上部絶縁層と、を具備してなる静電チャック及びその製造方法に関する。   The present invention relates to an electrostatic chuck and a manufacturing method thereof. In particular, a base, a lower insulating layer formed on the upper surface of the base, an electrode layer formed on the lower insulating layer, and formed on the lower insulating layer so as to cover the electrode layer. The present invention also relates to an electrostatic chuck comprising the upper insulating layer and a method for manufacturing the same.

たとえば、半導体製造過程における薄膜形成工程あるいはドライエッチング工程では、ウエハなどの平板上の物品に所要の成膜処理あるいはエッチング処理を施すため、それを載置台上で確実に保持する必要がある。こうした要求に応える保持装置としては、静電作用を利用して物品を密着保持する静電チャックが広く用いられている。   For example, in a thin film forming process or a dry etching process in a semiconductor manufacturing process, since a required film forming process or etching process is performed on an article on a flat plate such as a wafer, it is necessary to securely hold it on a mounting table. As a holding device that meets these requirements, an electrostatic chuck that holds an article in close contact using electrostatic action is widely used.

従来型の静電チャックは、金属製の板状電極を被覆するよう、それにアルミナなどのセラミックスをプラズマ溶射して絶縁膜を形成することにより構成されている。このため、比較的少ない工程数で製造することができ、その上、得られた静電チャックは、耐熱性や耐久性にも優れるといった利点がある。だが最近では、基台の上に下部絶縁層、電極層及び上部絶縁層を順に溶射によって形成してなるタイプのものが主流になりつつある。   A conventional electrostatic chuck is formed by plasma-spraying ceramics such as alumina to form an insulating film so as to cover a metal plate electrode. For this reason, it can be manufactured with a relatively small number of steps, and the obtained electrostatic chuck has the advantage of being excellent in heat resistance and durability. However, recently, a type in which a lower insulating layer, an electrode layer, and an upper insulating layer are sequentially formed on a base by thermal spraying is becoming mainstream.

しかしながら、この様にして得られた静電チャックの絶縁膜すなわち溶射皮膜は、微小な気孔が無数に存在する多孔質状となるため耐電圧特性はあまり高くない。したがって大きな保持力を得るのが難しい。しかも、気孔部分で放電現象が生じることがある。すなわち、吸着保持した物品と電極層との間に、気孔を経由して電流が流れるといった不具合が稀に発生することがあり、依然として改善の余地が残されていた。こうした実情に鑑みて、気孔に樹脂を充填して耐電圧特性を高め、吸着保持能力を向上させる封孔処理技術が提案されている(例えば、特許文献1参照)。
特開昭59−152636号公報
However, the insulating film, that is, the sprayed coating of the electrostatic chuck thus obtained has a porous shape with an infinite number of minute pores, so that the withstand voltage characteristic is not so high. Therefore, it is difficult to obtain a large holding force. In addition, a discharge phenomenon may occur in the pores. That is, a problem that current flows through the pores rarely occurs between the adsorbed and held article and the electrode layer, and there is still room for improvement. In view of such circumstances, a sealing treatment technique has been proposed that fills pores with a resin to improve withstand voltage characteristics and improve adsorption holding capacity (see, for example, Patent Document 1).
JP 59-152636 A

ところで、近年、大きな保持力を得ることを目的として、耐電圧特性を高めた静電チャックの要求が高まってきている。この為、静電チャックを構成する各、溶射皮膜を厚くする方法で対処していたが、この場合、上部絶縁層形成時に溶射皮膜の収縮応力によって、静電チャックの端部から、溶射皮膜の剥離が発生するといった問題があった。したがって本発明が解決する課題は、上部絶縁層の厚みが大きなものであっても、上部絶縁層の剥離が発生せずに、優れた耐電圧特性を発揮する静電チャックとその製造方法を提供することである。 Incidentally, in recent years, there has been an increasing demand for an electrostatic chuck having improved withstand voltage characteristics for the purpose of obtaining a large holding force. For this reason, each of the methods that make up the electrostatic chuck has been dealt with by increasing the thickness of the sprayed coating. In this case, the thermal spray coating shrinks from the edge of the electrostatic chuck due to the contraction stress of the sprayed coating when the upper insulating layer is formed. There was a problem that peeling occurred. Therefore, the problem to be solved by the present invention is to provide an electrostatic chuck that exhibits excellent withstand voltage characteristics without causing peeling of the upper insulating layer even when the thickness of the upper insulating layer is large, and a method for manufacturing the same It is to be.

上記課題を解決するべく鋭意研究を推し進める過程で、本発明者らは、上部絶縁層溶射時に溶射皮膜の収縮応力を小さくできる形状にすれば、溶射皮膜の剥離が抑制することが可能であると考えた。そしてこのために、特殊な形状の枠状マスキング治具、すなわち張り出し部を備えた枠状マスキング治具を用いて溶射を行えば、その張り出し部の作用で、溶射粒子の堆積量が、治具本体側に向かって漸減するので、上部絶縁層の縁部は自然にテ−パ−状のものとなり、収縮応力が大きくなることはないとの着想に基づいて本発明を完成した。この結果、上部絶縁層の厚みが大きなものであっても、溶射により形成した上部絶縁層皮膜の剥離のない、優れた耐電圧特性を発揮する静電チャックを得ることが可能となったものである。   In the process of pursuing earnest research to solve the above problems, the present inventors can suppress the peeling of the thermal spray coating if the shape is such that the shrinkage stress of the thermal spray coating can be reduced during the thermal spraying of the upper insulating layer. Thought. For this purpose, if the thermal spraying is performed using a frame-shaped masking jig having a special shape, that is, a frame-shaped masking jig provided with an overhanging portion, the amount of deposited thermal spray particles is reduced by the action of the overhanging portion. Since it gradually decreases toward the main body, the edge of the upper insulating layer naturally becomes a taper shape, and the present invention has been completed based on the idea that shrinkage stress will not increase. As a result, even when the upper insulating layer has a large thickness, it is possible to obtain an electrostatic chuck that exhibits excellent withstand voltage characteristics without peeling of the upper insulating layer film formed by thermal spraying. is there.

すなわち、上記の課題は、基台と、この基台の上面に形成された下部絶縁層と、この下部絶縁層の上に形成された電極層と、この電極層を被覆するように前記下部絶縁層の上に形成された上部絶縁層と、を具備してなる静電チャックであって、前記上部絶縁層の縁部がテーパー状に構成されてなることを特徴とする静電チャックによって解決される。   That is, the above-mentioned problems are a base, a lower insulating layer formed on the upper surface of the base, an electrode layer formed on the lower insulating layer, and the lower insulating layer so as to cover the electrode layer. An electrostatic chuck comprising: an upper insulating layer formed on the layer, wherein the edge of the upper insulating layer is formed in a tapered shape. The

そして更に、上記の課題は、
基台と、この基台の上面に形成された下部絶縁層と、この下部絶縁層の上に形成された電極層と、この電極層を被覆するよう前記下部絶縁層の上に形成された上部絶縁層と、を具備してなる静電チャックを製造するための方法であって、
前記基台の上面に前記下部絶縁層となる材料を溶射する第1工程と、
この第1工程で得た前記下部絶縁層の縁部を除いて前記電極層となる材料を溶射する第2工程と、
前記下部絶縁層の縁部表面の上部絶縁層形成領域との間に空隙が形成されるようこの上部絶縁層形成領域の上に突出する張り出し部を備えた枠状マスキング治具を前記基台の周縁部を取り囲むように配置した状態で、前記下部絶縁層の縁部表面および前記電極層を被覆するように前記上部絶縁層となる材料を溶射する第3工程と、
を具備することを特徴とする請求項1に記載の静電チャックの製造方法によって解決される。
And further, the above issues
A base, a lower insulating layer formed on the upper surface of the base, an electrode layer formed on the lower insulating layer, and an upper portion formed on the lower insulating layer so as to cover the electrode layer A method for producing an electrostatic chuck comprising an insulating layer,
A first step of spraying a material to be the lower insulating layer on the upper surface of the base;
A second step of spraying the material to be the electrode layer except for the edge of the lower insulating layer obtained in the first step;
A frame-shaped masking jig provided with a projecting portion protruding above the upper insulating layer forming region so that a gap is formed between the edge surface of the lower insulating layer and the upper insulating layer forming region. A third step of spraying a material to be the upper insulating layer so as to cover the edge surface of the lower insulating layer and the electrode layer in a state of being arranged so as to surround the peripheral edge;
It solves by the manufacturing method of the electrostatic chuck of Claim 1 characterized by the above-mentioned.

なお、本発明において「テーパー状」とは、端に向かって厚みが小さくなっていくような形状を意味する。したがってテーパー状の縁部の斜面は、偏平なものであっても、上側(あるいは下側)に凸な曲面であってもよい。   In the present invention, the “tapered shape” means a shape whose thickness decreases toward the end. Therefore, the slope of the tapered edge portion may be flat or may be a curved surface convex upward (or downward).

本発明によれば、上部絶縁層溶射時に溶射皮膜の収縮応力を小さくできる形状(すなわち、上部絶縁層の縁部がテーパー状に構成されている。)にとなっており、後述する実施例と比較例の検討結果より明らかなように、膜厚の厚い上部絶縁層を具備して静電チャックを構成しても、溶射により形成した上部絶縁層皮膜の剥離のない、耐電圧特性に優れる静電チャックが得られる効果がある。 According to the present invention, it has a shape that can reduce the shrinkage stress of the thermal spray coating during the thermal spraying of the upper insulating layer (that is, the edge of the upper insulating layer is configured in a tapered shape). As is clear from the examination results of the comparative example, even if an electrostatic chuck is configured by including a thick upper insulating layer, the static insulation having excellent withstand voltage characteristics without peeling of the upper insulating layer film formed by thermal spraying. There is an effect that an electric chuck can be obtained.

以下、図1〜図3を用いて、本発明の第1実施形態を具体的に説明する。なお、図1は本発明に係る静電チャックの平面図、図2は図1におけるX−X線での同静電チャックの要部拡大断面図、図3(a)〜(e)は本実施形態に係る静電チャックの製造方法の手順を示す概略図である。(なお、図1〜図3は、すべて模式的に示した概略図である。)   The first embodiment of the present invention will be specifically described below with reference to FIGS. 1 is a plan view of the electrostatic chuck according to the present invention, FIG. 2 is an enlarged cross-sectional view of the main part of the electrostatic chuck taken along line XX in FIG. 1, and FIGS. It is the schematic which shows the procedure of the manufacturing method of the electrostatic chuck which concerns on embodiment. (FIGS. 1 to 3 are all schematic views schematically shown.)

本実施形態に係る静電チャック(以下、本静電チャックと言う)は、図1および図2に示すごとく単極型であり、短形平板状の外形を有する。本静電チャックは、後に群述するように、本実施形態に係る静電チャックの製造方法(以下、本製造方法と言う)を用いて得られたものであり、図2からもわかるように主要構成要素として、基台1、下部絶縁層2、電極層3、そして上部絶縁層(誘電層)4を具備する。また、上部絶縁層4の縁部がテーパー状(図中の4a)に構成されている。   The electrostatic chuck according to the present embodiment (hereinafter referred to as the present electrostatic chuck) is a monopolar type as shown in FIGS. 1 and 2 and has an outer shape of a short flat plate. As will be described later, this electrostatic chuck is obtained using the electrostatic chuck manufacturing method according to the present embodiment (hereinafter referred to as the present manufacturing method), as can be seen from FIG. As main components, a base 1, a lower insulating layer 2, an electrode layer 3, and an upper insulating layer (dielectric layer) 4 are provided. Further, the edge of the upper insulating layer 4 is tapered (4a in the figure).

このうち基台1は、金属−セラミックス複合材料(MMC)から構成されており、実際には、後述の電極端子を設置するための貫通孔が複数形成されている。ただし、基台1の材質は基本的にいかなるものであってもよく、金属−セラミックス複合材料以外にも、たとえばアルミニウムなどの金属単体、あるいはアルミニウム合金、あるいは他の低熱膨張合金などから構成される。いかなる材料を用いるかは、静電チャックの使用温度を考慮して選択される。   Among these, the base 1 is comprised from the metal-ceramics composite material (MMC), and the through-hole for installing the electrode terminal mentioned later is actually formed in multiple numbers. However, the material of the base 1 may be basically any material, and is composed of, for example, a single metal such as aluminum, an aluminum alloy, or another low thermal expansion alloy in addition to the metal-ceramic composite material. . Which material is used is selected in consideration of the operating temperature of the electrostatic chuck.

次に、基台1の上面に設けられた下部絶縁層2についてであるが、これは、たとえばアルミナなどを基台1の上面にプラズマ溶射することにより形成されている。一方、下部絶縁層2の上に設けられた電極層3は、基台1よりもやや小さな短形状のものであって、たとえばニッケル(あるいはアルミニウム、クロム、コバルト、モリブデン、タングステンなどの金属単体あるいはこれらの金属からなる合金)を下部絶縁層2の表面にプラズマ溶射することにより形成されている。そして更に、電極層3の縁部はテーパー状に、言い換えれば、縁部は端に向かって厚みが漸減する、上に凸な曲面から構成されている。   Next, regarding the lower insulating layer 2 provided on the upper surface of the base 1, this is formed by plasma spraying, for example, alumina or the like on the upper surface of the base 1. On the other hand, the electrode layer 3 provided on the lower insulating layer 2 has a short shape slightly smaller than that of the base 1, for example, nickel (or a single metal such as aluminum, chromium, cobalt, molybdenum, tungsten, These alloys are formed by plasma spraying the surface of the lower insulating layer 2. Further, the edge of the electrode layer 3 is tapered, in other words, the edge is composed of an upwardly convex curved surface whose thickness gradually decreases toward the end.

電極層3を被覆するよう下部絶縁層2の上に設けられた上部絶縁層4は、たとえば酸化チタンを少量含むアルミナなどを、電極層3の表面に、したがって下部絶縁層2の上にプラズマ溶射することにより形成されている。この上部絶縁層4の表面粗さRaは、0.1〜2.0μm程度である。ただしアルミナ以外にも、要求される誘電率の値などに応じて適切な材料を選定して使用できる。本実施形態では、単極型静電チャックを例に挙げたが、むろん二つの電極を有する双極型静電チャックについても本発明の技術を適用できる。 またここでは、基台1や電極層3を短形状としたが、言うまでもなく、これらの形状は任意である。   The upper insulating layer 4 provided on the lower insulating layer 2 so as to cover the electrode layer 3 is plasma sprayed with, for example, alumina containing a small amount of titanium oxide on the surface of the electrode layer 3 and thus on the lower insulating layer 2. It is formed by doing. The surface roughness Ra of the upper insulating layer 4 is about 0.1 to 2.0 μm. However, besides alumina, an appropriate material can be selected and used according to the required dielectric constant value. In the present embodiment, the monopolar electrostatic chuck is taken as an example, but the technique of the present invention can also be applied to a bipolar electrostatic chuck having two electrodes. Moreover, although the base 1 and the electrode layer 3 were made into short shape here, it cannot be overemphasized that these shapes are arbitrary.

なお、特に図示いていないが、電極層3には上述した給電用の電極端子が接続されている。これを用いて電極層3に電圧を印加することで、本静電チャックは、上部絶縁層4の表面に物品を吸着保持できるようになる(このとき物品は接地されることになる。)   Although not particularly illustrated, the electrode layer 3 is connected to the electrode terminal for feeding described above. By applying a voltage to the electrode layer 3 using this, the electrostatic chuck can attract and hold the article on the surface of the upper insulating layer 4 (at this time, the article is grounded).

本実施形態では、下部絶縁層2の厚さおよび上部絶縁層4の有効厚さを、ともに100〜800μmをした。それらの厚さがこの範囲内であれば、十分な耐電圧性能が得られるので絶縁破壊が起き難く、その上、基台1との熱膨張量の差がまったく問題とならない程度に抑えられるので熱衝撃による亀裂や破損も起き難くなる。これに対して電極層3の厚さは30〜100μm程度である。電極層3の厚さがこの範囲内にあれば、特に均一な溶射皮膜が得られるので、吸着力にムラが生じなくなる。また、電極層3と下部絶縁層2との間の段差が十分に小さく抑えられるので、この段差の存在に起因して、上部絶縁層4の耐電圧特性が劣化することはない。   In the present embodiment, the thickness of the lower insulating layer 2 and the effective thickness of the upper insulating layer 4 are both 100 to 800 μm. If the thickness is within this range, sufficient withstand voltage performance can be obtained, so that dielectric breakdown is unlikely to occur, and furthermore, the difference in thermal expansion from the base 1 is suppressed to such an extent that it does not matter at all. Cracks and breakage due to thermal shock are less likely to occur. On the other hand, the thickness of the electrode layer 3 is about 30 to 100 μm. If the thickness of the electrode layer 3 is within this range, a particularly uniform sprayed coating can be obtained, so that unevenness in adsorption force does not occur. In addition, since the step between the electrode layer 3 and the lower insulating layer 2 is sufficiently small, the withstand voltage characteristic of the upper insulating layer 4 does not deteriorate due to the presence of the step.

続いて本製造方法、すなわち基台1、その上面に形成された下部絶縁層2、その上に形成された電極層3、そしてこれを被覆するよう下部絶縁層2の上に形成された上部絶縁層4を具備してなる本静電チャックの製造手順について説明する。   Subsequently, the present manufacturing method, that is, the base 1, the lower insulating layer 2 formed on the upper surface, the electrode layer 3 formed thereon, and the upper insulating formed on the lower insulating layer 2 so as to cover it. A manufacturing procedure of the electrostatic chuck including the layer 4 will be described.

本静電チャックを得るには、まず、基台1の表面をアルミナあるいは炭化ケイ素などのブラスト材料を用いて均一に粗面化する。洗浄後、更に、基台1とその上に形成される絶縁層との密着性を高めるためのアンダーコート層を基台1の表面に形成する。具体的には、ニッケル、アルミニウム、クロム、コバルト、モリブデンなどの金属単体あるいはこれら金属の合金からなる金属薄膜を、基台1の表面にアーク溶射法もしくはプラズマ溶射法を用いて形成する。なお、このアンダーコート層は必要不可欠なものではなく、それを設けるか否かは静電チャックの使用環境を考慮して決定される。   In order to obtain this electrostatic chuck, first, the surface of the base 1 is uniformly roughened by using a blast material such as alumina or silicon carbide. After the cleaning, an undercoat layer is further formed on the surface of the base 1 for enhancing the adhesion between the base 1 and the insulating layer formed thereon. Specifically, a metal thin film made of a single metal such as nickel, aluminum, chromium, cobalt, molybdenum, or an alloy of these metals is formed on the surface of the base 1 using an arc spraying method or a plasma spraying method. Note that this undercoat layer is not indispensable, and whether or not to provide it is determined in consideration of the use environment of the electrostatic chuck.

続いては、このアンダーコート層の上に、したがって基台1の上に下部絶縁層2となる材料を溶射する。つまり、プラズマ溶射によりアルミナなどのセラミックスからなる下部絶縁層2を形成する〔第1工程:図3(a)参照〕。ただし、図3においては、アンダーコート層を図示していない。   Subsequently, a material to be the lower insulating layer 2 is sprayed on the undercoat layer and thus on the base 1. That is, the lower insulating layer 2 made of ceramics such as alumina is formed by plasma spraying (first step: see FIG. 3A). However, the undercoat layer is not shown in FIG.

上記第1工程により下部絶縁層2を得たならば、その下部絶縁層の縁部表面に、電極層形成領域(図1中、破線にて囲まれた領域)を取り囲むようマスキングテープ5を貼り付ける。そして、このマスキングテープ5で囲まれた下部絶縁層2の上の特定領域に、ニッケル(電極層となる材料)をプラズマ溶射し、電極層3を形成する〔第2工程:図3(b)参照〕。   When the lower insulating layer 2 is obtained by the first step, the masking tape 5 is attached to the edge surface of the lower insulating layer so as to surround the electrode layer forming region (the region surrounded by the broken line in FIG. 1). wear. Then, nickel (a material to be an electrode layer) is plasma sprayed in a specific region on the lower insulating layer 2 surrounded by the masking tape 5 to form the electrode layer 3 [second step: FIG. reference〕.

この後、マスキングテープ5を除去することになるが、その際、上記第2工程で得た電極層3の縁部には、図3(c)に示すようにバリ3aが形成される。そこで本製造方法では、ダイヤモンド工具(図示せず)を用いて、このバリ3aを除去する。つまり、電極層3の縁部を、端に向かって厚みが小さくなるようテーパー状に研磨加工する〔図3(d)参照〕   Thereafter, the masking tape 5 is removed. At this time, a burr 3a is formed on the edge of the electrode layer 3 obtained in the second step, as shown in FIG. Therefore, in this manufacturing method, this burr 3a is removed using a diamond tool (not shown). That is, the edge of the electrode layer 3 is polished into a taper shape so that the thickness decreases toward the end (see FIG. 3D).

上記工程が完了したならば、下部絶縁層の縁部表面および前記電極層3を被覆するよう、酸化チタンを少量含むアルミナ(上部絶縁層となる材料)をプラズマ溶射し、上部絶縁層(誘電層)4を形成する〔第3工程:図3(e)参照〕。この際、図4に示した特殊な形状の枠状マスキング治具6を図3(e)に示した様に、基台1の周縁部を取り囲むように治具載置台7の上に配置する。このようにすることにより、本発明の上部絶縁層の縁部がテーパー状に構成されてなることを特徴とする静電チャックが得られる。この形状は、上部絶縁層溶射時に溶射皮膜の収縮応力を小さくできる作用があるため上部絶縁層皮膜の剥離を抑制する効果がある。   When the above process is completed, plasma spraying of alumina containing a small amount of titanium oxide (a material that becomes the upper insulating layer) is performed so as to cover the edge surface of the lower insulating layer and the electrode layer 3, and the upper insulating layer (dielectric layer) ) 4 is formed [third step: see FIG. 3 (e)]. At this time, the frame-shaped masking jig 6 having a special shape shown in FIG. 4 is arranged on the jig mounting table 7 so as to surround the periphery of the base 1 as shown in FIG. . By doing so, an electrostatic chuck characterized in that the edge of the upper insulating layer of the present invention is formed in a tapered shape can be obtained. This shape has the effect of reducing the shrinkage stress of the thermal spray coating during the thermal spraying of the upper insulating layer, and therefore has an effect of suppressing peeling of the upper insulating layer coating.

ここで、枠状マスキング治具6について詳細に説明する。図4に、本発明に係る枠状マスキング治具の一部破断した斜視図(a)と要部拡大断面図(b)を示した。
枠状マスキング治具6は、ステンレス(SUS304)から構成された口の字形のものであって、その全周にわたって図4に拡大して示すような略L字形の断面となっている。つまりマスキング治具は、上部絶縁層形成領域の上に突出する張り出し部を具備している。この張り出し部は、この枠状マスキング治具を基台の周縁部を取り囲むよう載置した際、下部絶縁層の縁部表面の上部絶縁層形成領域との間に空隙が形成されるよう、この上部絶縁層形成領域の上に突出することになる。したがって枠状マスキング治具の開口の縦横寸法は、上部絶縁層形成領域の縦横寸法よりもわずかに小さいものとなっている。
Here, the frame-shaped masking jig 6 will be described in detail. FIG. 4 shows a partially broken perspective view (a) and an enlarged sectional view (b) of a main part of the frame-shaped masking jig according to the present invention.
The frame-shaped masking jig 6 has a mouth shape made of stainless steel (SUS304) and has a substantially L-shaped cross section as shown in an enlarged view in FIG. That is, the masking jig includes an overhanging portion that protrudes above the upper insulating layer formation region. The overhanging portion is formed so that a gap is formed between the frame-shaped masking jig and the upper insulating layer forming region on the edge surface of the lower insulating layer when the frame-shaped masking jig is placed so as to surround the peripheral portion of the base. It will protrude above the upper insulating layer formation region. Therefore, the vertical and horizontal dimensions of the opening of the frame-shaped masking jig are slightly smaller than the vertical and horizontal dimensions of the upper insulating layer forming region.

ちなみに本実施形態では、張り出し部の長さ(図4中、Lで示す)を1〜2mm、厚さ(図4中、Wで示す)を1〜3mm、そして張り出し部底面の高さ、すなわち空隙幅(図4中、Hで示す)を1〜3mmとした。また、張り出し部と上記上部絶縁層とのオ−バ−ラップ量(図3中、Uで示す)は、0.3〜1.0mmとなるよう設定した。なお、言うまでもなく本製造方法で使用される枠状マスキング治具は、図4に限定されるわけではなく、必要に応じて、その他さまざまな形状のものが使用される。 Incidentally, in this embodiment, the length of the overhang portion (indicated by L in FIG. 4) is 1 to 2 mm, the thickness (indicated in FIG. 4 by W) is 1 to 3 mm, and the height of the bottom surface of the overhang portion, that is, The gap width (indicated by H in FIG. 4) was 1 to 3 mm. The overlap amount (indicated by U in FIG. 3) between the overhanging portion and the upper insulating layer was set to be 0.3 to 1.0 mm. Needless to say, the frame-shaped masking jig used in this manufacturing method is not limited to that shown in FIG. 4, and various other shapes are used as necessary.

さて、枠状マスキング治具を基台の周縁部を取り囲むように配置したならば、その状態で、酸化チタンを少量含むアルミナを電極層を被覆するようにプラズマ溶射し、上部絶縁層を形成する。最後に、上部絶縁層4の表面に封孔処理、研削加工、ラッピングを順に施すことで、図2に示すような断面を有する本静電チャックが完成する。 Now, if the frame-shaped masking jig is arranged so as to surround the periphery of the base, in that state, plasma spraying is performed to cover the electrode layer with alumina containing a small amount of titanium oxide, thereby forming the upper insulating layer. . Finally, the electrostatic chuck having a cross section as shown in FIG. 2 is completed by sequentially subjecting the surface of the upper insulating layer 4 to sealing, grinding, and lapping.

なお、上記封孔処理に用いられる物質、つまり気孔に充填される物質としては、シリカゾル、アルミナゾル、マグネシアゾルなどのコロイダル状のスラリーや、SiO2、Al23、TiO2などの金属アルコキシド系ポリマー、そしてこれらポリマーの他にメラミン樹脂、アクリル樹脂、フェノール樹脂、フッ素樹脂、シリコン樹脂などの各種樹脂を含有するものが挙げられる。こうした物質の気孔への充填(絶縁層への含浸)は、半完成状態の静電チャックを真空デシケーター内にセットし、真空吸引することにより行う。これによってスラリーは、絶縁層の表面からその内部に浸透していく。こうして気孔に充填させたスラリーは、その特性を考慮して乾燥させられ、続いて上述した研削加工が行われることとなる。 In addition, as a substance used for the sealing treatment, that is, a substance filled in the pores, colloidal slurry such as silica sol, alumina sol, magnesia sol, or metal alkoxide such as SiO 2 , Al 2 O 3 , TiO 2, etc. Polymers and those containing various resins such as melamine resin, acrylic resin, phenol resin, fluororesin, and silicon resin in addition to these polymers can be mentioned. Filling the pores with such a substance (impregnation into the insulating layer) is performed by setting a semi-finished electrostatic chuck in a vacuum desiccator and vacuuming it. As a result, the slurry permeates into the inside from the surface of the insulating layer. The slurry filled in the pores in this way is dried in consideration of its characteristics, and then the above-described grinding process is performed.

(実施例1)
基台の原料として、強化材となる♯180(平均粒径66μm)の市販のSiC粉末を70重量部と、同じく強化材となる♯500(平均粒径25μm)の市販のSiC粉末を30重量部と、バインダーとなるコロイダルシリカ液を適量(シリカ固形分が2重量部となる量)と、消泡材となるフォーマスターVL(サンノプコ社製)を0.2重量部と、そしてイオン交換水を24重量部とを、それぞれ準備し、これらをポットミルを用いて12時間かけて混合した。次いで、こうして得られたスラリーをメッシュ付き金型(矩形平板状成形体が得られるもの)に流し込んでフィルタープレスを行い、脱型後、1000℃で焼成してプリフォームを形成した。
Example 1
As a base material, 70 parts by weight of # 180 (average particle size 66 μm) commercially available SiC powder as a reinforcing material, and 30 weights of # 500 (average particle size 25 μm) commercially available SiC powder as a reinforcing material are used. Part, an appropriate amount of colloidal silica liquid as a binder (amount of silica solid content of 2 parts by weight), 0.2 parts by weight of Formaster VL (manufactured by San Nopco) as an antifoaming material, and ion-exchanged water 24 parts by weight were prepared, and these were mixed using a pot mill for 12 hours. Subsequently, the slurry thus obtained was poured into a metal mold with a mesh (that can obtain a rectangular flat plate-shaped body), subjected to filter press, and after demolding, was fired at 1000 ° C. to form a preform.

続いて、このプリフォーム中にアルミニウム合金(Al−12Si―3Mg−2Cu―3Ti)を、窒素気流中において、825℃で60時間かけて非加圧浸透させ、その後、冷却する。こうして、SiC粉末の含有量が65体積%の金属―セラミックス複合材料からなる基台(縦209mm、横157mm、厚さ10mm)を作製した。   Subsequently, an aluminum alloy (Al-12Si-3Mg-2Cu-3Ti) is infiltrated into the preform under non-pressurization at 825 ° C. for 60 hours in a nitrogen stream, and then cooled. In this way, a base (length 209 mm, width 157 mm, thickness 10 mm) made of a metal-ceramic composite material with a SiC powder content of 65 vol% was produced.

次に、密着性を高める為、表面粗さがRmaxで少なくとも5μm以上となるまで、この基台表面にブラスト処理を施す。そして、その上面にプラズマ溶射によって、厚さ700μmのAl23の層すなわち下部絶縁層を形成する。その後、更にプラズマ溶射によって、下部絶縁層上の、マスキングテープで取り囲んだ 形状の特定領域に、厚さ50μmのNi電極層を形成する。 Next, in order to improve the adhesion, the base surface is blasted until the surface roughness is at least 5 μm or more in Rmax. Then, an Al 2 O 3 layer having a thickness of 700 μm, that is, a lower insulating layer is formed on the upper surface by plasma spraying. Thereafter, a Ni electrode layer having a thickness of 50 μm is formed on a specific region surrounded by a masking tape on the lower insulating layer by plasma spraying.

こうして電極層を設けたならばマスキングテープを剥がし、ダイヤモンド工具を用いて、その縁部をテーパー状に研磨加工する。そして更に、枠状マスキング治具を設置し、この電極層を覆うように、その上面にプラズマ溶射によって厚さ800μmのAl23の層、すなわち上部絶縁層を形成した。このようにして、上部絶縁層の縁部がテーパー状に構成されてなる静電チャックを得た。最後に、真空中でSiO2系の金属アルコキシドを用いて封孔処理し、更に研削加工、ラップ処理を順に行い、上部絶縁層の厚さが650μmで、表面粗さRaが0.2μmの、本発明の実施例の静電チャックを作製した。
ここで、使用した枠状マスキング治具の主要な寸法値は次の通りである。
張り出し部の長さL:2mm
張り出し部の厚さW:2mm
張り出し部底面の高さ(空隙幅)H:2mm
張り出し部と電極層形成領域とのオーバーラップ量U:1mm
When the electrode layer is thus provided, the masking tape is peeled off and the edge thereof is polished into a taper shape using a diamond tool. Further, a frame-shaped masking jig was installed, and an Al 2 O 3 layer having a thickness of 800 μm, that is, an upper insulating layer was formed on the upper surface by plasma spraying so as to cover the electrode layer. In this way, an electrostatic chuck in which the edge of the upper insulating layer is tapered is obtained. Finally, a sealing process is performed using SiO2 metal alkoxide in vacuum, followed by grinding and lapping in this order. The upper insulating layer has a thickness of 650 μm and a surface roughness Ra of 0.2 μm. An electrostatic chuck according to an embodiment of the invention was produced.
Here, the main dimension values of the used frame-shaped masking jig are as follows.
Overhang length L: 2mm
Overhang thickness W: 2mm
Height of bottom surface of overhang (gap width) H: 2 mm
Overlap amount of overhang and electrode layer formation region U: 1mm

(比較例)
上部絶縁層溶射時に枠状マスキング治具を使用しなかった以外は、実施例と同様にして比較例用の静電チャックを作製した。
(Comparative example)
An electrostatic chuck for a comparative example was produced in the same manner as in the example except that the frame-shaped masking jig was not used during the thermal spraying of the upper insulating layer.

(評価結果)
まず、溶射後の静電チャックの概観検査を実施し、溶射皮膜の剥離の有無を確認した。その後、健全なものについては、静電チャック上面に、ITO膜を有するガラス基板を設置した状態で、5KVまで直流電圧を印加して耐電圧試験を実施した。
実施例の静電チャックは、上部絶縁層となる溶射皮膜の剥離の発生もなく、健全な状態であり、印加電圧、5KVの耐電圧試験をクリアした。一方、比較例の静電チャックは、上部絶縁層を溶射後、溶射皮膜の剥離が発生しており、静電チャック機能を発揮できないことが確認された。
(Evaluation results)
First, an overview inspection of the electrostatic chuck after thermal spraying was performed, and the presence or absence of peeling of the thermal spray coating was confirmed. Thereafter, with respect to healthy samples, a withstand voltage test was performed by applying a DC voltage up to 5 KV with a glass substrate having an ITO film placed on the upper surface of the electrostatic chuck.
The electrostatic chucks of the examples were in a healthy state with no occurrence of peeling of the thermal spray coating serving as the upper insulating layer, and cleared the withstand voltage test with an applied voltage of 5 KV. On the other hand, it was confirmed that the electrostatic chuck of the comparative example was unable to exhibit the electrostatic chuck function because the thermal spray coating was peeled off after the upper insulating layer was sprayed.

本発明に係る静電チャックの平面図である。It is a top view of the electrostatic chuck which concerns on this invention. 本発明に係る静電チャックの要部拡大断面図である。It is a principal part expanded sectional view of the electrostatic chuck which concerns on this invention. 本発明に係る静電チャックの製造方法の手順を示す概略図である。It is the schematic which shows the procedure of the manufacturing method of the electrostatic chuck which concerns on this invention. 本発明に係る枠状マスキング治具の一部破断した斜視図と要部拡大断面図ある。1 is a partially broken perspective view and an enlarged cross-sectional view of a main part of a frame-shaped masking jig according to the present invention.

符号の説明Explanation of symbols

1;基台
2;下部絶縁層
3;電極層
4;上部絶縁層(誘電層)
5;マスキングテープ
6:枠状マスキング治具
7;治具載置台
1; base 2; lower insulating layer 3; electrode layer 4; upper insulating layer (dielectric layer)
5; Masking tape 6: Frame-shaped masking jig 7; Jig mounting table

Claims (2)

基台と、
この基台の上面に形成された下部溶射絶縁層と、
この下部溶射絶縁層の上に形成された厚さ30〜100μmの溶射電極層と、
この溶射電極層を被覆するように前記下部溶射絶縁層の上に形成された厚さ100〜800μmの上部溶射絶縁層と、
を具備してなる静電チャックであって、
溶射電極層が形成されていない下部溶射絶縁層の上に形成された前記上部溶射絶縁層の縁部がテーパー状に構成されてなることを特徴とする静電チャック。
The base,
A lower thermal spray insulating layer formed on the upper surface of the base;
A thermal spray electrode layer having a thickness of 30 to 100 μm formed on the lower thermal spray insulating layer;
An upper thermal spray insulating layer having a thickness of 100 to 800 μm formed on the lower thermal spray insulating layer so as to cover the thermal spray electrode layer;
An electrostatic chuck comprising:
An electrostatic chuck characterized in that an edge portion of the upper thermal spray insulating layer formed on the lower thermal spray insulating layer on which the thermal spray electrode layer is not formed is formed in a taper shape.
基台と、この基台の上面に形成された下部溶射絶縁層と、この下部溶射絶縁層の上に形成された溶射電極層と、この溶射電極層を被覆するよう前記下部溶射絶縁層の上に形成された上部溶射絶縁層と、を具備してなる静電チャックを製造するための方法であって、
前記基台の上面に前記下部溶射絶縁層となる材料を溶射する第1工程と、
この第1工程で得た前記下部溶射絶縁層の縁部を除いて前記溶射電極層となる材料を溶射する第2工程と、
前記下部溶射絶縁層の縁部表面の上部溶射絶縁層形成領域との間に空隙が形成されるようこの上部溶射絶縁層形成領域の上に突出する張り出し部を備えた枠状マスキング治具を前記基台の周縁部を取り囲むように配置した状態で、前記下部溶射絶縁層の縁部表面および前記溶射電極層を被覆するように前記上部溶射絶縁層となる材料を溶射する第3工程と、
を具備することを特徴とする請求項1に記載の静電チャックの製造方法。
A base, a lower sprayed insulating layer formed on the upper surface of the base, and the sprayed electrode layer formed on the lower sprayed insulating layer, on the lower sprayed insulating layer so as to cover the sprayed electrode layer A method of manufacturing an electrostatic chuck comprising: an upper sprayed insulating layer formed on
A first step of spraying a material to be the lower thermal spray insulating layer on the upper surface of the base;
A second step of spraying the material to be the sprayed electrode layer except the edge of the lower sprayed insulating layer obtained in the first step;
Wherein the frame-shaped masking jig having a projecting portion which projects above the upper sprayed insulating layer formation region so that the gap is formed between the upper sprayed insulating layer formation region of the edge surface of the lower spray insulation layer A third step of spraying a material to be the upper thermal spray insulation layer so as to cover the edge surface of the lower thermal spray insulation layer and the thermal spray electrode layer in a state of being arranged so as to surround the peripheral edge of the base;
The method of manufacturing an electrostatic chuck according to claim 1, comprising:
JP2003289262A 2003-08-07 2003-08-07 Electrostatic chuck and manufacturing method thereof Expired - Fee Related JP4326874B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003289262A JP4326874B2 (en) 2003-08-07 2003-08-07 Electrostatic chuck and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003289262A JP4326874B2 (en) 2003-08-07 2003-08-07 Electrostatic chuck and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2005057214A JP2005057214A (en) 2005-03-03
JP4326874B2 true JP4326874B2 (en) 2009-09-09

Family

ID=34367661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003289262A Expired - Fee Related JP4326874B2 (en) 2003-08-07 2003-08-07 Electrostatic chuck and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4326874B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4542959B2 (en) * 2005-07-14 2010-09-15 東京エレクトロン株式会社 Electrostatic chucking electrode, substrate processing apparatus, and method of manufacturing electrostatic chucking electrode
JP4654152B2 (en) * 2006-04-13 2011-03-16 信越化学工業株式会社 Heating element
KR101329630B1 (en) 2006-04-13 2013-11-14 신에쓰 가가꾸 고교 가부시끼가이샤 Heating element
JP4654153B2 (en) 2006-04-13 2011-03-16 信越化学工業株式会社 Heating element
JP2007088492A (en) * 2006-10-26 2007-04-05 Toto Ltd Manufacturing method of electrostatic chuck and electrostatic chuck
KR101709969B1 (en) * 2015-02-25 2017-02-27 (주)티티에스 Manufacturing method for bipolar electro static chuck
JP7400276B2 (en) * 2019-09-05 2023-12-19 Toto株式会社 electrostatic chuck
KR20230088677A (en) * 2020-10-21 2023-06-20 스미토모 오사카 세멘토 가부시키가이샤 Ceramic joint body, electrostatic chuck device, manufacturing method of ceramic joint body
JP3236293U (en) * 2021-12-10 2022-02-09 日本発條株式会社 Metal mask

Also Published As

Publication number Publication date
JP2005057214A (en) 2005-03-03

Similar Documents

Publication Publication Date Title
JP4066329B2 (en) Electrostatic chuck manufacturing method and electrostatic chuck obtained using the same
JP4476701B2 (en) Manufacturing method of sintered body with built-in electrode
JP4031732B2 (en) Electrostatic chuck
KR102174964B1 (en) Electrostatic chuck device
JP4942364B2 (en) Electrostatic chuck, wafer holding member, and wafer processing method
JP4739039B2 (en) Electrostatic chuck device
JP5293211B2 (en) Electrostatic chuck and method of manufacturing electrostatic chuck
TWI657529B (en) Electrostatic chuck, manufacturing method thereof and plasma processing device
JP2008160093A (en) Electrostatic chuck and manufacturing method thereof, and substrate-treating device
JP4326874B2 (en) Electrostatic chuck and manufacturing method thereof
JPH11312729A (en) Electrostatic chuck
JP2006332204A (en) Electrostatic chuck
JP4369765B2 (en) Electrostatic chuck
JP4031419B2 (en) Electrostatic chuck and manufacturing method thereof
JP2005063991A (en) Semiconductor manufacturing equipment
JP2004079861A (en) Electrostatic chuck
JP4104386B2 (en) Manufacturing method of electrostatic chuck
JP2005072286A (en) Electrostatic chuck
JP4917715B2 (en) Electrostatic chuck
CN114256039B (en) Manufacturing process of dry-etched lower electrode
JP4268450B2 (en) Large glass substrate adsorption device for display
JP2008244149A (en) Electrostatic chuck and manufacturing method thereof
JP2010114396A (en) Electrostatic chuck
TWI876586B (en) Electrostatic suction cup and semiconductor chip processing device
WO2024152569A1 (en) Electrostatic chuck and semiconductor chip processing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090330

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090609

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090610

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120619

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4326874

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120619

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120619

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130619

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130619

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140619

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees