[go: up one dir, main page]

JP4326386B2 - 制御装置 - Google Patents

制御装置 Download PDF

Info

Publication number
JP4326386B2
JP4326386B2 JP2004092563A JP2004092563A JP4326386B2 JP 4326386 B2 JP4326386 B2 JP 4326386B2 JP 2004092563 A JP2004092563 A JP 2004092563A JP 2004092563 A JP2004092563 A JP 2004092563A JP 4326386 B2 JP4326386 B2 JP 4326386B2
Authority
JP
Japan
Prior art keywords
value
control
disturbance
cam phase
control input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004092563A
Other languages
English (en)
Other versions
JP2005273634A (ja
Inventor
裕司 安井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2004092563A priority Critical patent/JP4326386B2/ja
Priority to DE602005000270T priority patent/DE602005000270T2/de
Priority to US11/087,674 priority patent/US7188020B2/en
Priority to EP05006642A priority patent/EP1580406B1/en
Publication of JP2005273634A publication Critical patent/JP2005273634A/ja
Priority to US11/700,123 priority patent/US7318018B2/en
Priority to US11/984,744 priority patent/US7643930B2/en
Application granted granted Critical
Publication of JP4326386B2 publication Critical patent/JP4326386B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L13/00Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations
    • F01L13/0015Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for optimising engine performances by modifying valve lift according to various working parameters, e.g. rotational speed, load, torque
    • F01L13/0021Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for optimising engine performances by modifying valve lift according to various working parameters, e.g. rotational speed, load, torque by modification of rocker arm ratio
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D41/1403Sliding mode control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2409Addressing techniques specially adapted therefor
    • F02D41/2416Interpolation techniques
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2409Addressing techniques specially adapted therefor
    • F02D41/2422Selective use of one or more tables
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B5/00Anti-hunting arrangements
    • G05B5/01Anti-hunting arrangements electric
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D2041/001Controlling intake air for engines with variable valve actuation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1413Controller structures or design
    • F02D2041/1415Controller structures or design using a state feedback or a state space representation
    • F02D2041/1416Observer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1413Controller structures or design
    • F02D2041/1423Identification of model or controller parameters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Feedback Control In General (AREA)
  • Valve Device For Special Equipments (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

本発明は、振幅が周期的に変化する周期的外乱が加えられる制御対象を制御する制御装置に関する。
従来、内燃機関の可変カム位相機構を制御する制御装置として、特許文献1に記載されたものが知られている。この可変カム位相機構は、吸気カムシャフトすなわち吸気カムのクランクシャフトに対する位相(以下「カム位相」という)を自在に変化させることにより、吸気弁のバルブタイミングを変化させるものであり、油圧駆動式の可変カム位相機構と、これにオイルポンプからの油圧を供給する電磁制御弁などで構成されている。また、カム位相制御装置は、クランクシャフトおよび吸気カムの角度位置に相当する信号をそれぞれ検出するクランク角センサおよびカム角センサと、これらのセンサの検出信号が入力されるコントローラとを備えている。
このコントローラは、クランク角センサおよびカム角センサの検出信号に基づいて実際のカム位相を算出し、内燃機関の運転状態に基づいて目標カム位相を算出するとともに、以下に述べるように、スライディングモード制御アルゴリズムにより、カム位相を目標カム位相に収束させるように制御する。すなわち、電磁制御弁への制御信号を制御入力とし、カム位相を出力とする系を、制御対象として見なすとともに、この制御対象を連続時間系モデルとしてモデル化する。具体的には、制御対象の状態方程式を、カム位相の一次および二次の時間微分値を状態変数とする微分方程式として設定する。さらに、スライディングモード制御アルゴリズムにおける切換関数を、目標カム位相とカム位相との偏差、およびその時間微分値(すなわち変化速度)を状態変数とする線形関数として設定する。そして、以上のように設定した切換関数の状態変数である偏差およびその変化速度が切換直線上に載るように制御入力を算出することによって、すなわち偏差およびその変化速度が切換直線上をスライディングし、値0に収束するように制御入力を算出することによって、カム位相が目標カム位相に収束するように制御される。
また、スライディングモード制御アルゴリズムを用いる制御装置として、特許文献2に記載されたものを本出願人はすでに提案している。この制御装置は、内燃機関のスロットル弁駆動装置を制御するものであり、適応スライディングモードコントローラ、オンボード同定器および状態予測器などを備えている。また、スロットル弁駆動装置は、スロットル弁を駆動することで、その開度を変化させるものであり、モータなどを備えている。
この制御装置では、以下のようにスロットル弁駆動装置を制御するための制御入力が算出される。すなわち、モータへの制御信号のデューティ比を制御入力とし、スロットル弁の開度と目標開度との開度偏差を出力とする系を、制御対象として見なすとともに、その制御対象を、デューティ比、開度偏差および補償値の関係を定義した離散時間系モデルとしてモデル化する。この補償値は、制御対象モデルのモデル化誤差および外乱を補償するためのものである。
そして、オンボード同定器により、制御対象モデルのモデルパラメータおよび補償値が同定演算され、それらの同定値を用いて、適応スライディングモードコントローラにおいて、スライディングモード制御アルゴリズムにより、制御入力が算出される。この制御装置では、以上のように制御入力が算出されるので、制御対象モデルのモデル化誤差および外乱を適切に補償することができ、それにより、高い制御精度が確保される。
特開2001−132482号公報 特開2003−5804号公報
上記特許文献1の制御装置では、(f1)制御対象に加えられる外乱の影響を考慮していないので、可変カム位相機構のような定常的な外乱を受けやすい制御対象の場合、定常的な外乱により制御の安定性および制御精度が低下してしまう。(f2)また、可変カム位相機構は、吸気カムのクランクシャフトに対するカム位相を自在に変化させるものであるため、吸気カムが吸気弁を開閉駆動する際、吸気弁のバルブスプリングの付勢力および反力に起因して、振幅が周期的に変化する周期的外乱を受けてしまう(後述する図12参照)。このような周期的外乱を受けると、その影響により、吸気弁の開弁時間が全体的に短くなり(後述する図14,15参照)、開弁時の吸入空気量が減少することで、内燃機関の発生トルクの低下を招くとともに燃焼状態が不安定になってしまう。
(f3)また、制御対象モデルとして連続時間系モデルを用いているので、制御対象モデルのモデルパラメータを制御対象の実験データから直接同定することは困難である。そのため、具体的には、連続時間系モデルを離散時間系モデルに近似変換し、それに基づいてモデルパラメータを同定しなければならないので、このような近似変換の使用により、モデルパラメータの同定精度が低下してしまう。さらに、離散時間系モデルを連続時間系モデルに再度、近似変換しなければならないので、このような2回の近似変換の使用により、制御対象モデルのモデル化誤差も増大してしまう。その結果、制御の安定余裕を確保するために、コントローラゲインを低く抑える必要が生じ、制御性がさらに低下してしまう。すなわち、特許文献1の制御装置では、スライディングモード制御特有のロバスト性および応答指定特性を確保できなくなる。
以上のような特許文献1の問題点を解消するために、特許文献1の制御装置に特許文献2の制御手法を適用することが考えられる。このようにした場合、上述した特許文献1の(f1)および(f3)の問題は解決できるものの、特許文献2の制御手法では、補償値をオンボード同定器で演算しているため、その演算回数が所定値に達するまでの間、上記(f2)の問題を解消することができない。すなわち、周期的外乱の影響を補償し、抑制するのに時間が若干かかり、その間、制御の安定性および制御精度が低下してしまう可能性がある。
本発明は、上記課題を解決するためになされたもので、振幅が周期的に変化する周期的外乱を受ける制御対象を制御する場合でも、周期的外乱が制御対象の出力に及ぼす影響をより迅速に補償し、抑制することができ、それにより制御の安定性および制御精度を向上させることができる制御装置を提供することを目的とする。
上記目的を達成するために、請求項1に係る発明は、振幅が周期的に変化する周期的外乱が加えられる制御対象の出力(カム位相Cain、バルブリフトLiftin、圧縮比Cr)を制御入力(位相制御入力Ucain、リフト制御入力Uliftin、圧縮比制御入力Ucr)により制御する制御装置1であって、計数値(クランク角カウンタの計数値C_crk)を、周期的外乱の周期の1/n(nは2以上の整数)に相当する所定周期(CRK信号の発生周期)で所定の一定値(値10)分が変化するように計数する計数手段(ECU2、ステップ4)と、周期的外乱を補償するための、周期的外乱の振幅変化の予測結果に応じ、計数値(クランク角カウンタの計数値C_crk)に対応して予め設定された複数の外乱補償値(カム位相制御用の外乱補償値Rcyc_cin、バルブリフト制御用の外乱補償値Rcyc_lin、圧縮比制御用の外乱補償値Rcyc_cr)を記憶する外乱補償値記憶手段(ECU2、ROM2c、補償要素102,112,122)と、所定周期ごとの選択タイミングで、記憶されている複数の外乱補償値から当該選択タイミングにおける計数値(クランク角カウンタの計数値C_crk)に対応する1つを選択する外乱補償値選択手段(ECU2、補償要素102,112,122、ステップ6,9,12)と、制御入力を、選択された外乱補償値に応じて、所定の制御アルゴリズム[式(1)〜(8),(10)〜(16)]により算出する制御入力算出手段(ECU2、2自由度スライディングモードコントローラ103,113,123、DSMコントローラ105,115,125、ステップ25〜28)と、を備えることを特徴とする。
この制御装置によれば、計数値が、周期的外乱の周期の1/n(nは2以上の整数)に相当する所定周期で所定の一定値分が変化するように計数され、周期的外乱を補償するための複数の外乱補償値が、周期的外乱の振幅変化の予測結果に応じ、計数値に対応して予め設定され、外乱補償値記憶手段に記憶されており、これらの複数の外乱補償値から、所定周期ごとの選択タイミングで、当該選択タイミングにおける計数値に対応する1つが選択され、制御入力が、選択された外乱補償値に応じて、所定の制御アルゴリズムにより算出される。このように、外乱補償値は、予め設定された複数の外乱補償値の中の1つが選択タイミングで選択されるだけであるとともに、制御入力は、選択された外乱補償値に応じて、所定の制御アルゴリズムにより算出されるので、そのように算出された制御入力により制御対象の出力を制御することで、周期的外乱が制御対象の出力に及ぼす影響を従来よりも迅速に補償し、抑制することができる。これにより、制御の安定性および制御精度を向上させることができる(なお、本明細書における「外乱補償値の記憶」は、外乱補償値をメモリーなどに記憶することに限らず、外乱補償値を装置内に保持することも含む。また、「制御入力の算出」「外乱推定値の算出」および「振幅補正値の算出」などの「算出」は、プログラムにより演算することに限らず、電気回路によりそれらを表す電気信号を生成することを含む)。
請求項2に係る発明は、振幅が周期的に変化する周期的外乱が加えられる制御対象の出力(カム位相Cain、バルブリフトLiftin、圧縮比Cr)を制御入力(位相制御入力Ucain、リフト制御入力Uliftin、圧縮比制御入力Ucr)により制御する制御装置1Aであって、計数値(クランク角カウンタの計数値C_crk)を、周期的外乱の周期の1/n(nは2以上の整数)に相当する所定周期(CRK信号の発生周期)で所定の一定値(値10)分が変化するように計数する計数手段(ECU2、ステップ4)と、周期的外乱を補償するための、周期的外乱の振幅変化の予測結果に応じ、計数値(クランク角カウンタの計数値C_crk)に対応して複数の外乱補償値(カム位相制御用の外乱補償値Rcyc_cin、バルブリフト制御用の外乱補償値Rcyc_lin、圧縮比制御用の外乱補償値Rcyc_cr)を記憶する外乱補償値記憶手段(ECU2、ROM2c、補償要素202,212,222)と、所定周期ごとの選択タイミングで、記憶されている複数の外乱補償値から当該選択タイミングにおける計数値(クランク角カウンタの計数値C_crk)に対応する1つを選択する外乱補償値選択手段(ECU2、補償要素202,212,222)と、制御対象における外乱およびモデル化誤差を補償するための外乱推定値c1を、外乱推定値c1と制御入力と制御対象の出力との関係を定義したモデル[式(20)]に基づく所定の推定アルゴリズム[式(17)〜(19)]により算出する外乱推定値算出手段(ECU2、適応外乱オブザーバ206,216,226)と、制御入力を、選択された外乱補償値および算出された外乱推定値に応じて、所定の制御アルゴリズム[式(21)〜(33)]により算出する制御入力算出手段(ECU2、2自由度スライディングモードコントローラ203,213,223、DSMコントローラ205,215,225)と、を備えることを特徴とする。
この制御装置によれば、計数値が、周期的外乱の周期の1/n(nは2以上の整数)に相当する所定周期で所定の一定値分が変化するように計数され、周期的外乱を補償するための複数の外乱補償値が、周期的外乱の振幅変化の予測結果に応じ、計数値に対応して予め設定され、外乱補償値記憶手段に記憶されており、これらの複数の外乱補償値から、所定周期ごとの選択タイミングで、当該選択タイミングにおける計数値に対応する1つが選択され、制御対象における外乱およびモデル化誤差を補償するための外乱推定値が、外乱推定値と制御入力と制御対象の出力との関係を定義したモデルに基づく所定の推定アルゴリズムにより算出され、さらに、制御入力が、選択された外乱補償値および算出された外乱推定値に応じて、所定の制御アルゴリズムにより算出される。このように、外乱補償値は、予め設定された複数の外乱補償値の中の1つが選択タイミングで選択されるだけであるとともに、制御入力は、選択された外乱補償値に応じて算出されるので、前述したように、そのように算出された制御入力により制御対象の出力を制御することで、周期的外乱が制御対象の出力に及ぼす影響を従来よりも迅速に補償し、抑制することができる。これに加えて、制御入力が、外乱推定値にさらに応じて算出されるので、制御対象における定常的な外乱およびモデル化誤差も適切に補償することができ、制御対象の出力を、定常偏差が生じないように制御することができる。以上により、制御の安定性および制御精度を向上させることができる。
請求項3に係る発明は、振幅が周期的に変化する周期的外乱が加えられる制御対象の出力(カム位相Cain、バルブリフトLiftin、圧縮比Cr)を制御入力(位相制御入力Ucain、リフト制御入力Uliftin、圧縮比制御入力Ucr)により制御する制御装置1Bであって、計数値(クランク角カウンタの計数値C_crk)を、周期的外乱の周期の1/n(nは2以上の整数)に相当する所定周期(CRK信号の発生周期)で所定の一定値(値10)分が変化するように計数する計数手段(ECU2、ステップ4)と、周期的外乱を補償するための、周期的外乱の振幅変化の予測結果に応じ、計数値(クランク角カウンタの計数値C_crk)に対応して予め設定された複数の外乱補償値(カム位相制御用の外乱補償値Rcyc_cin、バルブリフト制御用の外乱補償値Rcyc_lin、圧縮比制御用の外乱補償値Rcyc_cr)を記憶する外乱補償値記憶手段(ECU2、ROM2c、補償要素302,312,322)と、所定周期ごとの選択タイミングで、記憶されている複数の外乱補償値から当該選択タイミングにおける計数値(クランク角カウンタの計数値C_crk)に対応する1つを選択する外乱補償値選択手段(ECU2、補償要素302,312,322)と、外乱補償値と制御入力と制御対象の出力との関係を定義したモデル[式(40)]のモデルパラメータb1,b2を、所定の同定アルゴリズム[式(34)〜(39)]により同定するモデルパラメータ同定手段(ECU2、部分パラメータ同定器307,317,327)と、制御入力を、同定されたモデルパラメータおよび選択された外乱補償値に応じて、モデルに基づく所定の制御アルゴリズム[式(42)〜(48)]を含む所定のアルゴリズム[式(42)〜(54)]により算出する制御入力算出手段(ECU2、2自由度スライディングモードコントローラ303,313,323、DSMコントローラ305,315,325)と、を備えることを特徴とする。
この制御装置によれば、計数値が、周期的外乱の周期の1/n(nは2以上の整数)に相当する所定周期で所定の一定値分が変化するように計数され、周期的外乱を補償するための複数の外乱補償値が、周期的外乱の振幅変化の予測結果に応じ、計数値に対応して予め設定され、外乱補償値記憶手段に記憶されており、これらの複数の外乱補償値から、所定周期ごとの選択タイミングで、当該選択タイミングにおける計数値に対応する1つが選択され、選択された外乱補償値と制御入力と制御対象の出力との関係を定義したモデルのモデルパラメータが、所定の同定アルゴリズムにより同定され、制御入力が、同定されたモデルパラメータおよび選択された外乱補償値に応じて、モデルに基づく所定の制御アルゴリズムを含む所定のアルゴリズムにより算出される。このように、外乱補償値は、予め設定された複数の外乱補償値の中の1つが選択タイミングで選択されるだけであるとともに、制御入力は、選択された外乱補償値に応じて算出されるので、前述したように、そのように算出された制御入力により制御対象の出力を制御することで、周期的外乱が制御対象の出力に及ぼす影響を従来よりも迅速に補償し、抑制することができる。これに加えて、外乱補償値と制御入力と制御対象の出力との関係を定義したモデルのモデルパラメータの同定値にさらに応じて、制御入力が算出されるので、周期的外乱の影響を受けないように同定されたモデルパラメータを用いながら、制御入力を算出できることで、制御対象の動特性が変化した場合でも、そのような変化の影響を迅速に吸収しながら、制御対象の出力を制御することができる。以上により、制御の安定性および制御精度を向上させることができる。
請求項4に係る発明は、振幅が周期的に変化する周期的外乱が加えられる制御対象の出力(カム位相Cain、バルブリフトLiftin、圧縮比Cr)を制御入力(位相制御入力Ucain、リフト制御入力Uliftin、圧縮比制御入力Ucr)により制御する制御装置1Bであって、計数値(クランク角カウンタの計数値C_crk)を、周期的外乱の周期の1/n(nは2以上の整数)に相当する所定周期(CRK信号の発生周期)で所定の一定値(値10)分が変化するように計数する計数手段(ECU2、ステップ4)と、周期的外乱を補償するための、周期的外乱の振幅変化の予測結果に応じ、計数値(クランク角カウンタの計数値C_crk)に対応して予め設定された複数の外乱補償値(カム位相制御用の外乱補償値Rcyc_cin、バルブリフト制御用の外乱補償値Rcyc_lin、圧縮比制御用の外乱補償値Rcyc_cr)を記憶する外乱補償値記憶手段(ECU2、ROM2c、補償要素302,312,322)と、所定周期ごとの選択タイミングで、記憶されている複数の外乱補償値から当該選択タイミングにおける計数値(クランク角カウンタの計数値C_crk)に対応する1つを選択する外乱補償値選択手段(ECU2、補償要素302,312,322)と、外乱補償値の振幅を補正するための振幅補正値(外乱補償値ゲインd1,d1’,d'')を、振幅補正値と、外乱補償値と、制御入力と、制御対象の出力との関係を定義したモデル[式(40)]に基づく所定のアルゴリズム[式(34)〜(39)]により算出する振幅補正値算出手段(ECU2、部分パラメータ同定器307,317,327)と、制御入力を、算出された振幅補正値および選択された外乱補償値に応じて、所定の制御アルゴリズム[式(42)〜(54)]により算出する制御入力算出手段(ECU2、2自由度スライディングモードコントローラ303,313,323、DSMコントローラ305,315,325)と、を備えることを特徴とする。
この制御装置によれば、計数値が、周期的外乱の周期の1/n(nは2以上の整数)に相当する所定周期で所定の一定値分が変化するように計数され、周期的外乱を補償するための複数の外乱補償値が、周期的外乱の振幅変化の予測結果に応じ、計数値に対応して予め設定され、外乱補償値記憶手段に記憶されており、これらの複数の外乱補償値から、所定周期ごとの選択タイミングで、当該選択タイミングにおける計数値に対応する1つが選択され、外乱補償値の振幅を補正するための振幅補正値が、振幅補正値と、選択された外乱補償値と、制御入力と、制御対象の出力との関係を定義したモデルに基づく所定のアルゴリズムにより算出され、制御入力が、算出された振幅補正値および選択された外乱補償値に応じて、所定の制御アルゴリズムにより算出される。このように、外乱補償値は、予め設定された複数の外乱補償値の中の1つが選択タイミングで選択されるだけであるとともに、制御入力は、選択された外乱補償値に応じて算出されるので、前述したように、そのように算出された制御入力により制御対象の出力を制御することで、周期的外乱が制御対象の出力に及ぼす影響を従来よりも迅速に補償し、抑制することができる。これに加えて、制御入力が振幅補正値にさらに応じて算出されるので、制御対象の経年変化および個体間のばらつきに起因して、外乱補償値の振幅が実際の周期的外乱の振幅との間に偏差を生じている場合でも、そのような偏差を補償することができる。以上により、制御の安定性および制御精度を向上させることができる。
請求項5に係る発明は、請求項1ないし4のいずれかに記載の制御装置1,1A,1Bにおいて、制御対象の出力の目標値(目標カム位相Cain_cmd、目標バルブリフトLiftin_cmd、目標圧縮比Cr_cmd)を設定する目標値設定手段(ECU2、目標カム位相算出部101,201,301、目標バルブリフト算出部111,211,311、目標圧縮比算出部121,221,321、ステップ22〜24,29〜31)をさらに備え、所定の制御アルゴリズムは、制御対象の出力を目標値に収束させるための応答指定型制御アルゴリズム[式(1)〜(8),(21)〜(27),(42)〜(48)]を含むことを特徴とする。
この制御装置によれば、制御入力が、制御対象の出力を目標値に収束させるための応答指定型制御アルゴリズムを含む制御アルゴリズムにより算出されるので、制御対象の出力と目標値との間に大きな偏差が生じた場合でも、そのような偏差に起因するオーバーシュートの発生を回避しながら、制御対象の出力を目標値に迅速に精度よく収束させることができる。その結果、制御の安定性および制御精度をさらに向上させることができる。
請求項6に係る発明は、請求項1ないし4のいずれかに記載の制御装置1,1A,1Bにおいて、制御対象の出力の目標値(目標カム位相Cain_cmd、目標バルブリフトLiftin_cmd、目標圧縮比Cr_cmd)を設定する目標値設定手段(ECU2、目標カム位相算出部101,201,301、目標バルブリフト算出部111,211,311、目標圧縮比算出部121,221,321、ステップ22〜24,29〜31)をさらに備え、所定の制御アルゴリズムは、制御対象の出力を目標値に収束させるための、目標値フィルタ型の2自由度応答指定型制御アルゴリズム[式(1)〜(8),(21)〜(27),(42)〜(48)]を含むことを特徴とする。
この制御装置によれば、制御入力が、制御対象の出力を目標値に収束させるための、目標値フィルタ型の2自由度応答指定型制御アルゴリズムを含む制御アルゴリズムにより算出されるので、目標値が大きく変化した場合でも、そのような変化に起因するオーバーシュートの発生を回避しながら、制御対象の出力を目標値に安定した状態で精度よく収束させることができる。その結果、制御の安定性および制御精度をさらに向上させることができる。
請求項7に係る発明は、請求項1ないし6のいずれかに記載の制御装置1,1A,1Bにおいて、制御対象は、内燃機関3の吸気カムシャフト5および排気カムシャフトの少なくとも一方の、クランクシャフト3dに対する位相であるカム位相Cainを変更する可変カム位相機構70を含み、制御対象の出力は、可変カム位相機構70により変更されるカム位相Cainであり、制御入力(位相制御入力Ucain)は、可変カム位相機構70に入力されることを特徴とする。
この制御装置によれば、カム位相を、周期的外乱のカム位相への影響を従来よりも迅速に補償し、抑制しながら、制御することができる。これにより、周期的外乱に起因する、吸気弁および/または排気弁の開弁時の吸入空気量の変化を回避できることで、内燃機関の発生トルクの変動を回避できるとともに、安定した燃焼状態を確保できる。
請求項8に係る発明は、請求項1ないし6のいずれかに記載の制御装置1,1A,1Bにおいて、制御対象は、内燃機関3の吸気弁4および排気弁の少なくとも一方のリフトであるバルブリフトLiftinを変更する可変バルブリフト機構50を含み、制御対象の出力は、可変バルブリフト機構50により変更されるバルブリフトLiftinであり、制御入力(リフト制御入力Uliftin)は、可変バルブリフト機構50に入力されることを特徴とする。
一般に、可変バルブリフト機構が周期的外乱を受けると、その影響により、吸気弁および/または排気弁のリフトが変化し、開弁時の吸入空気量が変化してしまうことで、内燃機関の発生トルクの変動を招くとともに、燃焼状態が不安定になってしまう。これに対して、この制御装置によれば、吸気弁および/または排気弁のリフトを、周期的外乱のカム位相への影響を従来よりも迅速に補償し、抑制しながら、制御することができるので、周期的外乱に起因する、吸気弁および/または排気弁の開弁時の吸入空気量の変化を回避できる。その結果、内燃機関の発生トルクの変動を回避できるとともに、安定した燃焼状態を確保できる。
請求項9に係る発明は、請求項1ないし6のいずれかに記載の制御装置1,1A,1Bにおいて、制御対象は、内燃機関3の圧縮比Crを変更する可変圧縮比機構80を含み、制御対象の出力は、可変圧縮比機構80により変更される圧縮比Crであり、制御入力(圧縮比制御入力Ucr)は、可変圧縮比機構80に入力されることを特徴とする。
一般に、可変圧縮比機構が周期的外乱を受けると、その影響により圧縮比が変化することで、圧縮比と点火時期の間の適合性が低下してしまい、その結果、ノッキングが発生したり、燃焼効率が低下したりするおそれがある。これに対して、この制御装置によれば、圧縮比を、周期的外乱のカム位相への影響を従来よりも迅速に補償し、抑制しながら、制御することができるので、周期的外乱の影響による圧縮比の変化を回避でき、圧縮比と点火時期との間の適合性を良好な状態に維持できる。その結果、ノッキングの発生および燃焼効率の低下を回避することができる。
本願発明の第1実施形態に係る制御装置が適用された内燃機関の概略構成を示す模式図である。 制御装置の概略構成を示すブロック図である。 内燃機関の可変式吸気動弁機構および排気動弁機構の概略構成を示す断面図である。 可変式吸気動弁機構の可変バルブリフト機構の概略構成を示す断面図である。 (a)リフトアクチュエータの短アームが最大リフト位置にある状態と(b)最小リフト位置にある状態を示す図である。 (a)可変バルブリフト機構の下リンクが最大リフト位置にあるときの吸気弁の開弁状態と(b)最小リフト位置にあるときの吸気弁の開弁状態を示す図である。 可変バルブリフト機構の下リンクが最大リフト位置にあるときの吸気弁のバルブリフト曲線(実線)と、最小リフト位置にあるときのバルブリフト曲線(2点鎖線)をそれぞれ示す図である。 可変カム位相機構の概略構成を模式的に示す図である。 可変カム位相機構により、カム位相が最遅角値に設定されているときの吸気弁4のバルブリフト曲線(実線)と、カム位相が最進角値に設定されているときの吸気弁4のバルブリフト曲線(2点鎖線)をそれぞれ示す図である。 (a)圧縮比が低圧縮比に設定されているときの可変圧縮比機構の全体構成を模式的に示す図と、(b)圧縮比が高圧縮比に設定されているときの可変圧縮比機構における制御軸および圧縮比アクチュエータ付近の構成を示す図である。 カム位相コントローラの概略構成を示すブロック図である。 周期的外乱を説明するための、(a)吸気カムが吸気弁を開弁方向に駆動しているときと(b)吸気弁を閉弁方向に駆動しているときの動作説明図である。 カム位相制御における周期的外乱の影響を示すタイミングチャートである。 バルブリフトが高リフトである場合の、可変カム位相機構の有無を比較するためのバルブリフト曲線である。 バルブリフトが低リフトである場合の、可変カム位相機構の有無を比較するためのバルブリフト曲線である。 1つのシリンダ用のカム位相制御用の外乱補償値マップにおける、バルブリフトが最大値であるときのマップ値の一例を示す図である。 1つのシリンダ用のカム位相制御用の外乱補償値マップにおける、バルブリフトが最小値であるときのマップ値の一例を示す図である。 第1実施形態の補償要素で、カム位相制御用の外乱補償値マップにおける、バルブリフトが最大値であるときのマップ値の一例を示す図である。 第1実施形態の補償要素で、カム位相制御用の外乱補償値マップにおける、バルブリフトが最小値であるときのマップ値の一例を示す図である。 2自由度スライディングモードコントローラの制御アルゴリズム、およびその導出に用いるモデルを示す図である。 加算要素の演算式およびDSMコントローラの制御アルゴリズムを示す図である。 バルブリフトコントローラの概略構成を示すブロック図である。 バルブリフト制御用の外乱補償値マップにおける、目標バルブリフトが最大値であるときのマップ値の一例を示す図である。 バルブリフト制御用の外乱補償値マップにおける、目標バルブリフトが最小値であるときのマップ値の一例を示す図である。 圧縮比コントローラの概略構成を示すブロック図である。 圧縮比制御用の外乱補償値のマップ値の検索に用いる外乱補償値マップの一例を示す図である。 カム位相制御用、バルブリフト制御用および圧縮比制御用の外乱補償値の算出処理を示すフローチャートである。 カム位相制御用の補正係数の算出に用いるテーブルの一例を示す図である。 バルブリフト制御用の補正係数の算出に用いるテーブルの一例を示す図である。 圧縮比制御用の第1補正係数の算出に用いるマップの一例を示す図である。 圧縮比制御用の第2補正係数の算出に用いるテーブルの一例を示す図である。 位相制御入力、リフト制御入力および圧縮比制御入力の算出処理を示すフローチャートである。 目標カム位相の算出に用いるマップの一例を示す図である。 目標バルブリフトの算出に用いるマップの一例を示す図である。 目標圧縮比の算出に用いるマップの一例を示す図である。 第1実施形態に係る制御装置によるカム位相制御のシミュレーション結果の一例を、1つのシリンダについて示した図である。 カム位相制御用の外乱補償値のマップ値の算出に用いる外乱補償値マップの変形例を示す図である。 第2実施形態のカム位相コントローラの概略構成を示すブロック図である。 第2実施形態のバルブリフトコントローラの概略構成を示すブロック図である。 第2実施形態の圧縮比コントローラの概略構成を示すブロック図である。 第2実施形態のカム位相コントローラの適応外乱オブザーバにおける外乱推定値の算出アルゴリズムおよびその導出に用いるモデルを示す図である。 第2実施形態のカム位相コントローラの2自由度スライディングモードコントローラの制御アルゴリズムを示す図である。 第2実施形態のカム位相コントローラのDSMコントローラの制御アルゴリズムを示す図である。 第3実施形態のカム位相コントローラの概略構成を示すブロック図である。 第3実施形態のバルブリフトコントローラの概略構成を示すブロック図である。 第3実施形態の圧縮比コントローラの概略構成を示すブロック図である。 第3実施形態のカム位相コントローラの部分パラメータ同定器の同定アルゴリズムおよびその導出に用いるモデルを示す図である。 第3実施形態のカム位相コントローラの2自由度スライディングモードコントローラの制御アルゴリズムを示す図である。 第3実施形態のカム位相コントローラのDSMコントローラの制御アルゴリズムを示す図である。
以下、図面を参照しながら、本発明の第1実施形態に係る制御装置について説明する。この制御装置1は、図2に示すように、ECU2を備えており、このECU2は、後述するように、内燃機関(以下「エンジン」という)3の運転状態に応じて、バルブリフト制御、カム位相制御および圧縮比制御などの制御処理を実行する。
図1および図3に示すように、エンジン3は、4組のシリンダ3aおよびピストン3b(1組のみ図示)を有する直列4気筒ガソリンエンジンであり、図示しない車両に搭載されている。エンジン3は、シリンダ3aごとに設けられ、吸気ポートおよび排気ポートをそれぞれ開閉する吸気弁4および排気弁7と、吸気弁4駆動用の吸気カムシャフト5および吸気カム6と、吸気弁4を開閉駆動する可変式吸気動弁機構40と、排気弁7駆動用の排気カムシャフト8および排気カム9と、排気弁7を開閉駆動する排気動弁機構30と、可変圧縮比機構80などを備えている。
吸気弁4は、そのステム4aがガイド4bに摺動自在に嵌合しており、このガイド4bは、シリンダヘッド3cに固定されている。さらに、吸気弁4は、図4に示すように、上下のスプリングシート4c,4dと、これらの間に設けられたバルブスプリング4eとを備えており、このバルブスプリング4eにより、閉弁方向に付勢されている。
また、吸気カムシャフト5および排気カムシャフト8はそれぞれ、図示しないホルダを介して、シリンダヘッド3cに回動自在に取り付けられている。この吸気カムシャフト5の一端部上には、吸気スプロケット(図示せず)が同軸に配置され、回転自在に設けられている。この吸気スプロケットは、図示しないタイミングベルトを介してクランクシャフト3dに連結され、後述する可変カム位相機構70を介して吸気カムシャフト5に連結されている。以上の構成により、吸気カムシャフト5は、クランクシャフト3dが2回転するごとに1回転する。また、吸気カム6は、吸気カムシャフト5上にこれと一体に回転するようにシリンダ3aごとに設けられている。
さらに、可変式吸気動弁機構40は、吸気カムシャフト5の回転に伴って、各シリンダ3aの吸気弁4を開閉駆動するとともに、吸気弁4のリフトおよびバルブタイミングを無段階に変更するものであり、その詳細については、後述する。なお、本実施形態では、「吸気弁4のリフト(以下「バルブリフト」という)」は、吸気弁4の最大揚程を表すものとする。
一方、排気弁7は、そのステム7aがガイド7bに摺動自在に嵌合しており、このガイド7bは、シリンダヘッド3cに固定されている。さらに、排気弁7は、上下のスプリングシート7c,7dと、これらの間に設けられたバルブスプリング7eとを備えており、このバルブスプリング7eにより、閉弁方向に付勢されている。
また、排気カムシャフト8は、これと一体の排気スプロケット(図示せず)を備え、この排気スプロケットおよび図示しないタイミングベルトを介してクランクシャフト3dに連結されており、それにより、クランクシャフト3dが2回転するごとに1回転する。さらに、排気カム9は、排気カムシャフト8上にこれと一体に回転するようにシリンダ3aごとに設けられている。
さらに、排気動弁機構30は、ロッカアーム31を備えており、このロッカアーム31が排気カム9の回転に伴って回動することにより、バルブスプリング7eの付勢力に抗しながら、排気弁7を開閉駆動する。
一方、エンジン3には、クランク角センサ20が設けられている。このクランク角センサ20は、マグネットロータおよびMREピックアップで構成されており、クランクシャフト3dの回転に伴い、いずれもパルス信号であるCRK信号およびTDC信号をECU2に出力する。このCRK信号は、クランク角10゜ごとに1パルスが出力され、ECU2は、このCRK信号に基づき、エンジン3の回転数(以下「エンジン回転数」という)NEを算出する。また、TDC信号は、各シリンダ3aのピストン3bが吸気行程のTDC位置よりも若干、手前の所定のクランク角位置にあることを表す信号であり、所定クランク角ごとに1パルスが出力される。
また、エンジン3の吸気管10には、上流側から順に、エアフローセンサ21、スロットル弁11、吸気管内絶対圧センサ22および燃料噴射弁12などが設けられている。
このエアフローセンサ21は、熱線式エアフローメータで構成されており、スロットル弁11を通過する吸入空気量(以下「TH通過吸入空気量」という)GTHを表す検出信号をECU2に出力する。また、スロットル弁11は、吸気管10の途中に回動自在に設けられており、当該回動に伴う開度の変化によりTH通過吸入空気量GTHを変化させる。さらに、スロットル弁11は、ECU2により、図示しないアクチュエータを介して、通常運転時、全開状態に保持されるとともに、可変式吸気動弁機構40の故障時またはマスタバック(図示せず)への負圧供給時には、開度が制御される。
また、吸気管10のスロットル弁11よりも下流側の部分は、サージタンク10aになっており、このサージタンク10aに、吸気管内絶対圧センサ22が設けられている。この吸気管内絶対圧センサ22は、例えば半導体圧力センサなどで構成され、吸気管10内の絶対圧(以下「吸気管内絶対圧」という)PBAを表す検出信号をECU2に出力する。
さらに、燃料噴射弁12は、ECU2からの駆動信号によって駆動され、燃料を吸気管10内に噴射する。また、エンジン3のシリンダヘッド3cには、点火プラグ13(図2参照)が取り付けられている。この点火プラグ13は、点火時期に応じた駆動信号がECU2から加えられることによって放電し、燃焼室内の混合気を燃焼させる。
次に、前述した可変式吸気動弁機構40について説明する。この可変式吸気動弁機構40は、図4に示すように、吸気カムシャフト5、吸気カム6、可変バルブリフト機構50および可変カム位相機構70などで構成されている。
この可変バルブリフト機構50は、吸気カムシャフト5の回転に伴って吸気弁4を開閉駆動するとともに、バルブリフトLiftinを所定の最大値Liftinmaxと最小値Liftinminとの間で無段階に変更するものであり、シリンダ3aごとに設けられた四節リンク式のロッカアーム機構51と、これらのロッカアーム機構51を同時に駆動するリフトアクチュエータ60(図5参照)などを備えている。
各ロッカアーム機構51は、ロッカアーム52および上下のリンク53,54などで構成されている。この上リンク53の一端部は、上ピン55を介して、ロッカアーム52の上端部に回動自在に取り付けられており、他端部は、ロッカアームシャフト56に回動自在に取り付けられている。このロッカアームシャフト56は、図示しないホルダを介して、シリンダヘッド3cに取り付けられている。
また、ロッカアーム52の上ピン55上には、ローラ57が回動自在に設けられている。このローラ57は、吸気カム6のカム面に当接しており、吸気カム6が回転する際、そのカム面に案内されながら吸気カム6上を転動する。これにより、ロッカアーム52は上下方向に駆動されるとともに、上リンク53が、ロッカアームシャフト56を中心として回動する。
さらに、ロッカアーム52の吸気弁4側の端部には、アジャストボルト52aが取り付けられている。このアジャストボルト52aは、吸気カム6の回転に伴ってロッカアーム52が上下方向に移動すると、バルブスプリング4eの付勢力に抗しながら、ステム4aを上下方向に駆動し、吸気弁4を開閉する。
また、下リンク54の一端部は、下ピン58を介して、ロッカアーム52の下端部に回動自在に取り付けられており、下リンク54の他端部には、連結ピン59が回動自在に取り付けられている。下リンク54は、この連結ピン59を介して、リフトアクチュエータ60の後述する短アーム65に連結されている。
一方、リフトアクチュエータ60は、図5に示すように、モータ61、ナット62、リンク63、長アーム64および短アーム65などを備えている。このモータ61は、ECU2に接続され、エンジン3のヘッドカバー3gの外側に配置されている。モータ61の回転軸は、雄ねじが形成されたねじ軸61aになっており、このねじ軸61aに、ナット62が螺合している。このナット62は、リンク63を介して、長アーム64に連結されている。このリンク63の一端部は、ピン63aを介して、ナット62に回動自在に取り付けられ、他端部は、ピン63bを介して、長アーム64の一端部に回動自在に取り付けられている。
また、長アーム64の他端部は、回動軸66を介して短アーム65の一端部に取り付けられている。この回動軸66は、断面円形に形成され、エンジン3のヘッドカバー3gを貫通しているとともに、これに回動自在に支持されている。この回動軸66の回動に伴い、長アーム64および短アーム65はこれと一体に回動する。
さらに、短アーム65の他端部には、前述した連結ピン59が回動自在に取り付けられており、これにより、短アーム65は、連結ピン59を介して、下リンク54に連結されている。
次に、以上のように構成された可変バルブリフト機構50の動作について説明する。この可変バルブリフト機構50では、ECU2からの後述するリフト制御入力Uliftinがリフトアクチュエータ60に入力されると、ねじ軸61aが回転し、それに伴うナット62の移動により、長アーム64および短アーム65が回動軸66を中心として回動するとともに、この短アーム65の回動に伴って、ロッカアーム機構51の下リンク54が、下ピン58を中心として回動する。すなわち、リフトアクチュエータ60により、下リンク54が駆動される。
その際、ECU2によるフィードバック制御により、短アーム65の回動範囲は、図5(a)に示す最大リフト位置と図5(b)に示す最小リフト位置との間に規制され、それにより、下リンク54の回動範囲も、図4に実線で示す最大リフト位置と、図4に2点鎖線で示す最小リフト位置との間に規制される。
下リンク54が最大リフト位置にある場合、ロッカアームシャフト56、上下のピン55,58および連結ピン59によって構成される四節リンクでは、上ピン55および下ピン58の中心間の距離が、ロッカアームシャフト56および連結ピン59の中心間の距離よりも長くなるように構成されており、それにより、図6(a)に示すように、吸気カム6が回転すると、これとローラ57との当接点の移動量よりも、アジャストボルト52aの移動量の方が大きくなる。
一方、下リンク54が最小リフト位置にある場合、上記四節リンクでは、上ピン55および下ピン58の中心間の距離が、ロッカアームシャフト56および連結ピン59の中心間の距離よりも短くなるように構成されており、それにより、図6(b)に示すように、吸気カム6が回転すると、これとローラ57との当接点の移動量よりも、アジャストボルト52aの移動量の方が小さくなる。
以上の理由により、吸気弁4は、下リンク54が最大リフト位置にあるときには、最小リフト位置にあるときよりも大きなバルブリフトLiftinで開弁する。具体的には、吸気カム6の回転中、吸気弁4は、下リンク54が最大リフト位置にあるときには、図7の実線で示すバルブリフト曲線に従って開弁し、バルブリフトLiftinは、その最大値Liftinmaxを示す。一方、下リンク54が最小リフト位置にあるときには、図7の2点鎖線で示すバルブリフト曲線に従って開弁し、バルブリフトLiftinは、その最小値Liftinminを示す。
したがって、この可変バルブリフト機構50では、アクチュエータ60を介して、下リンク54を最大リフト位置と最小リフト位置との間で回動させることにより、バルブリフトLiftinを、最大値Liftinmaxと最小値Liftinminとの間で無段階に変化させることができる。
また、エンジン3には、回動角センサ23が設けられており(図2参照)、この回動角センサ23は、回動軸66すなわち短アーム65の回動角を検出して、その検出信号をECU2に出力する。ECU2は、この回動角センサ23の検出信号に基づき、バルブリフトLiftinを算出する。
次に、前述した可変カム位相機構70について説明する。この可変カム位相機構70は、吸気カムシャフト5のクランクシャフト3dに対する相対的な位相(以下「カム位相」という)Cainを無段階に進角側または遅角側に変更するものであり、吸気カムシャフト5の吸気スプロケット側の端部に設けられている。図8に示すように、可変カム位相機構70は、ハウジング71、3枚羽根式のベーン72、油圧ポンプ73および電磁弁機構74などを備えている。
このハウジング71は、吸気カムシャフト5上の吸気スプロケットと一体に構成されており、互いに等間隔に形成された3つの隔壁71aを備えている。ベーン72は、吸気カムシャフト5の吸気スプロケット側の端部に同軸に取り付けられ、吸気カムシャフト5から外方に放射状に延びているとともに、ハウジング71内に回転可能に収容されている。また、ハウジング71では、隔壁71aとベーン72との間に、3つの進角室75および3つの遅角室76が形成されている。
油圧ポンプ73は、クランクシャフト3dに連結された機械式のものであり、クランクシャフト3dが回転すると、それに伴って、エンジン3のオイルパン3eに蓄えられた潤滑用のオイルを、油路77cを介して吸い込むとともに、これを昇圧した状態で、油路77cを介して電磁弁機構74に供給する。
電磁弁機構74は、スプール弁機構74aおよびソレノイド74bを組み合わせたものであり、進角油路77aおよび遅角油路77bを介して、進角室75および遅角室76にそれぞれ接続されているとともに、油圧ポンプ73から供給された油圧を、進角油圧Padおよび遅角油圧Prtとして、進角室75および遅角室76にそれぞれ出力する。電磁弁機構74のソレノイド74bは、ECU2に電気的に接続されており、ECU2からの後述する位相制御入力Ucainが入力された際、スプール弁機構74aのスプール弁体を、位相制御入力Ucainに応じて所定の移動範囲内で移動させることにより、進角油圧Padおよび遅角油圧Prtをいずれも変化させる。
以上の可変カム位相機構70では、油圧ポンプ73の動作中、電磁弁機構74が位相制御入力Ucainに応じて作動することにより、進角油圧Padが進角室75に、遅角油圧Prtが遅角室76にそれぞれ供給され、それにより、ベーン72とハウジング71との間の相対的な位相が進角側または遅角側に変更される。その結果、前述したカム位相Cainが、最遅角値Cainrt(例えばカム角0゜に相当する値)と最進角値Cainad(例えばカム角55゜分に相当する値)の間で連続的に変化し、それにより、吸気弁4のバルブタイミングは、図9に実線で示す最遅角タイミングと、図9に2点鎖線で示す最進角タイミングとの間で、無段階に変更される。
なお、この可変カム位相機構70には、図示しないロック機構が設けられており、このロック機構により、油圧ポンプ73からの供給油圧が低いときには、可変カム位相機構70の動作がロックされる。すなわち、可変カム位相機構70によるカム位相Cainの変更が禁止され、カム位相Cainがアイドル運転やエンジン始動に適した値にロックされる。
以上のように、本実施形態の可変式吸気動弁機構40では、可変バルブリフト機構50により、バルブリフトLiftinが無段階に変更されるとともに、可変カム位相機構70により、カム位相Cainすなわち吸気弁4のバルブタイミングが前述した最遅角タイミングと最進角タイミングとの間で、無段階に変更される。また、ECU2により、後述するように、可変バルブリフト機構50および可変カム位相機構70を介して、バルブリフトLiftinおよびカム位相Cainがそれぞれ制御される。
一方、吸気カムシャフト5の可変カム位相機構70と反対側の端部には、カム角センサ24(図2参照)が設けられている。このカム角センサ24は、例えばマグネットロータおよびMREピックアップで構成されており、吸気カムシャフト5の回転に伴い、パルス信号であるCAM信号を所定のカム角(例えば1゜)ごとにECU2に出力する。ECU2は、このCAM信号および前述したCRK信号に基づき、カム位相Cainを算出する。
次に、図10を参照しながら、前述した可変圧縮比機構80について説明する。この可変圧縮比機構80は、ピストン3bの上死点位置を変更することにより、圧縮比Crを所定の最大値Crmaxと最小値Crminとの間で無段階に変更するものであり、ピストン3bとクランクシャフト3dの間に連結された複合リンク機構81と、複合リンク機構81の動きを制御するための制御軸85と、制御軸85を駆動するための圧縮比アクチュエータ87などで構成されている。
複合リンク機構81は、上リンク82、下リンク83および制御リンク84などで構成されている。上リンク82は、いわゆるコンロッドに相当するものであり、その上端部がピストンピン3fを介してピストン3bに回動自在に連結され、下端部がピン83aを介して、下リンク83の一端部に回動自在に連結されている。
下リンク83は、三角形状のものであり、上リンク82との連結端部以外の2つの端部はそれぞれ、クランクピン83bを介してクランクシャフト3dに、制御ピン83cを介して制御リンク84の一端部に回動自在に連結されている。以上の構成により、ピストン3bの往復運動が、複合リンク機構81を介してクランクシャフト3dに伝達され、クランクシャフト3dの回転運動に変換される。
また、制御軸85は、クランクシャフト3dと同様に、図中の奥行き方向に延びており、シリンダブロックに回動自在に支持された回動軸部85aと、これと一体の偏心軸部85bおよびアーム86を備えている。この偏心軸部85bには、制御リンク84の下端部が回動自在に連結されている。また、アーム86の先端部は、フォーク部86aになっており、このフォーク部86aには、圧縮比アクチュエータ87の駆動軸87bの先端部が回動自在に連結されている。
圧縮比アクチュエータ87は、モータおよび減速機構(いずれも図示せず)を組み合わせたものであり、これらを内蔵するケーシング87aと、このケーシング87aから出没する方向に移動可能な駆動軸87bなどを備えている。この圧縮比アクチュエータ87では、ECU2からの圧縮比制御入力Ucrによってモータが正逆回転方向に駆動されると、駆動軸87bが、ケーシング87aから最も突出する低圧縮比位置(図10(a)に示す位置)と、ケーシング87a側に最も退避する高圧縮比位置(図10(b)に示す位置)との間で移動する。
以上の構成により、この可変圧縮比機構80では、アクチュエータ87の駆動軸87bが、低圧縮比位置から高圧縮比位置側に移動すると、アーム86を介して、制御軸85が回動軸部85aを中心として図中の反時計回りに回動するように駆動され、それに伴い、偏心軸部85bが下方に移動する。それにより、制御リンク84全体が押し下げられるのに伴い、下リンク83がクランクピン83bを中心として図中の時計回りに回動するとともに、上リンク82がピストンピン3fを中心として図中の反時計回りに回動する。その結果、ピストンピン3f、上ピン83aおよびクランクピン83bが、低圧縮比位置のときよりも直線状に近づくことで、ピストン3bが上死点に到達したときのピストンピン3fとクランクピン83bを結ぶ直線距離が長くなり、燃焼室の容積が小さくなることによって、圧縮比Crが高くなる。
一方、上記とは逆に、アクチュエータ87の駆動軸87bが、高圧縮比位置から低圧縮比位置側に移動すると、回動軸部85aが図中の時計回りに回動し、それに伴い、偏心軸部85bが上方に移動することで、制御リンク84全体が押し上げられる。これにより、上記とは全く逆の動作により、下リンク83が、反時計回りに回動するとともに、上リンク82が時計回りに回動する。これにより、ピストン3bが上死点に到達したときのピストンピン3fとクランクピン83bを結ぶ直線距離が短くなり、燃焼室の容積が大きくなることによって、圧縮比Crが低くなる。以上のように、この可変圧縮比機構80では、制御軸85の回動角を変更することにより、圧縮比Crが前述した所定の最大値Crmaxと最小値Crminとの間で無段階に変更される。
また、エンジン3には、制御軸85の付近に、制御角センサ25が設けられており(図2参照)、この制御角センサ25は、制御軸85の回動角を表す検出信号をECU2に出力する。ECU2は、この制御角センサ25の検出信号に基づき、圧縮比Crを算出する。
さらに、図2に示すように、ECU2には、アクセル開度センサ26およびイグニッション・スイッチ(以下「IG・SW」という)27が接続されている。このアクセル開度センサ26は、車両の図示しないアクセルペダルの踏み込み量(以下「アクセル開度」という)APを表す検出信号をECU2に出力する。また、IG・SW27は、イグニッションキー(図示せず)操作によりON/OFFされるとともに、そのON/OFF状態を表す信号をECU2に出力する。
ECU2は、CPU2a、RAM2b、ROM2c(外乱補償値記憶手段)およびI/Oインターフェース(図示せず)などからなるマイクロコンピュータで構成されており、前述した各種のセンサ20〜26の検出信号およびIG・SW27のON/OFF信号などに応じて、エンジン3の運転状態を判別するとともに、各種の制御を実行する。具体的には、ECU2は、後述するように、可変カム位相機構70および可変バルブリフト機構50を介して、カム位相CainおよびバルブリフトLiftinをそれぞれ制御するとともに、可変圧縮比機構80を介して、圧縮比Crを制御する。また、運転状態に応じて、点火プラグ13の点火時期を制御する。
なお、本実施形態では、ECU2により、計数手段、外乱補償値記憶手段、外乱補償値選択手段、制御入力算出手段、外乱推定値算出手段、モデルパラメータ同定手段、振幅補正値算出手段および目標値設定手段が構成されている。
次に、本実施形態の制御装置1について説明する。この制御装置1は、カム位相コントローラ100(図11参照)、バルブリフトコントローラ110(図22参照)および圧縮比コントローラ120(図25参照)を備えており、まず、カム位相コントローラ100について説明する。このカム位相コントローラ100は、図11に示すように、目標カム位相算出部101、補償要素102、2自由度スライディングモードコントローラ(以下「2自由度SLDコントローラ」という)103、加算要素104、およびDSMコントローラ105を備えており、これらはいずれも、具体的には、ECU2により構成されている。
このカム位相コントローラ100では、以下に述べるように、位相制御入力Ucainが算出されるとともに、この位相制御入力Ucainが可変カム位相機構70に入力されることにより、カム位相Cainが目標カム位相Cain_cmdになるように制御される。
まず、目標カム位相算出部101(目標値設定手段)では、目標カム位相Cain_cmd(目標値)が、エンジン回転数NEおよびアクセル開度APに応じて、後述するマップ(図33参照)を検索することにより算出される。
また、補償要素102(外乱補償値記憶手段、外乱補償値選択手段)では、後述するように、上記目標カム位相算出部101で算出された目標カム位相Cain_cmdなどに応じて、カム位相制御用の外乱補償値Rcyc_cinが算出される。
さらに、2自由度SLDコントローラ103(制御入力算出手段)では、目標カム位相Cain_cmdおよびカム位相Cainに応じて、後述する制御アルゴリズムにより、カム位相制御用のSLD制御入力Rsldが算出される。
一方、加算要素104では、補償要素102で算出されたカム位相制御用の外乱補償値Rcyc_cinと、2自由度SLDコントローラ103で算出されたカム位相制御用のSLD制御入力Rsldとの和として、カム位相制御用の参照入力Rsld_fが算出される。さらに、DSMコントローラ105(制御入力算出手段)では、このカム位相制御用の参照入力Rsld_fに応じて、後述する制御アルゴリズムにより、位相制御入力Ucainが算出される。
次に、前述した補償要素102について説明する。この補償要素102では、以下に述べるように、カム位相制御用の外乱補償値Rcyc_cinが、目標カム位相Cain_cmd、クランク角カウンタの計数値C_crk、バルブリフトLiftinおよびエンジン回転数NEに応じて、算出される。なお、クランク角カウンタは、クランク角を計数するためのアップカウンタであり、その計数値C_crkは、後述するように、CRK信号の発生に同期して値10ずつインクリメントされるとともに、値720に達したときに値0にリセットされる。
このカム位相制御用の外乱補償値Rcyc_cinは、エンジン3の運転中、吸気カムシャフト5の回転、すなわち吸気カム6の回転に伴って周期的に発生すると予想される周期的外乱を補償するためのものである。以下、周期的外乱およびそれを補償するための外乱補償値Rcyc_cinの算出手法を説明する。まず、理解の容易化のために、1つのシリンダ3aにおける場合(言い換えれば、単気筒エンジンの場合)を例にとって、図12〜図17を参照しながら説明する。図12(a)に示すように、吸気カム6が、図中の矢印Y1方向に回転し、吸気弁4を開弁方向に駆動している状態では、吸気カム6は、吸気弁4のバルブスプリング4eの反力に起因して、図中の矢印Y2方向への回転モーメントとして作用する外乱を受ける。
一方、図12(b)に示すように、吸気カム6が吸気弁4を閉弁方向に駆動している状態では、吸気カム6は、吸気弁4のバルブスプリング4eの付勢力に起因して、図中の矢印Y3方向への回転モーメントとして作用する外乱を受ける。以上のような外乱は、吸気カムシャフト5の回転に伴って周期的に発生し、その振幅も周期的に変化するので、以下、周期的外乱という。
ここで、カム位相Cainが目標カム位相Cain_cmdに収束するようにフィードバック制御を実行している場合において、以上のような周期的外乱を受けると、図13に示すように、目標カム位相Cain_cmdが一定に保持されているにもかかわらず、カム位相Cainが、吸気カム6により吸気弁4が開弁側に駆動されている間は遅角側にずれ、閉弁側に駆動されている間は進角側にずれてしまう
このようなカム位相Cainのずれが発生すると、吸気弁4のバルブタイミングが、可変カム位相機構70がない場合と比べて変化してしまう。具体的には、図14および図15に示すように、吸気弁4のバルブリフト曲線は、エンジン3が可変カム位相機構70を備えている場合(図中に実線で示す曲線の場合)、これを備えていない場合(図中に破線で示す曲線)と比べて、吸気弁4の開弁時間が短くなり、その結果、吸入空気量が変化することで、エンジン3の発生トルクが変動してしまうとともに、燃焼状態が不安定になってしまうおそれがある。
これを回避するために、例えば吸気カム6のカムプロフィールを予め変更することが考えられる。しかし、図14および図15に示すバルブリフト曲線を比較すると明らかなように、エンジン3が可変バルブリフト機構50を備えている場合、バルブリフトLiftinが所定の高リフト側の値に制御されているとき(図14に示すバルブリフト曲線のとき)と、バルブリフトLiftinが所定の低リフト側の値に制御されているときとでは、吸気弁4のバルブタイミングの変化度合いが互いに異なってしまう。このため、本実施形態のように、エンジン3が可変カム位相機構70および可変バルブリフト機構50を双方とも備えている場合、吸気カム6のカムプロフィールを変更することで、周期的外乱の影響を回避することは困難である。
本実施形態では、以上のような周期的外乱が可変カム位相機構70に加えられた際の影響を回避するために、可変カム位相機構70に加えられる周期的外乱の値を予測するとともに、その予測値の符号の正負を反転した値に相当する値を、カム位相制御用の外乱補償値Rcyc_cinとして算出する。具体的には、カム位相制御用の外乱補償値Rcyc_cinは、バルブリフトLiftin、クランク角カウンタの計数値C_crkおよび目標カム位相Cain_cmdに応じて、外乱補償値マップを検索することによりマップ値Rcyc_bs_cinを算出し、そのマップ値Rcyc_bs_cinをエンジン回転数NEに応じて補正することにより算出される。
この外乱補償値マップとしては、図16に実線で示すCain_cmd=Cainrt&Liftin=Liftinmax用のマップ値Rcyc_bs_cinと、図17に実線で示すCain_cmd=Cainrt&Liftin=Liftinmin用のマップ値Rcyc_bs_cinと、Cain_cmd=Cainrtで、かつバルブリフトLiftinが最大値Liftinmaxと最小値Liftinminとの間にあるときの補間演算用の、複数段階のLiftinの値にそれぞれ対応して設定された複数のマップ値Rcyc_bs_cin(図示せず)と、を備えたものを用いる。
以上の外乱補償値マップを検索する際、目標カムCain_cmdが最遅角値Cainrtよりも進角側の値であるときには、周期的外乱の発生周期が進角側(図中の左側)にずれるので、外乱補償値もそれに応じて、例えば図16,17中の2点鎖線で示す値のように補正する必要がある。したがって、本実施形態の外乱補償値マップの検索では、目標カムCain_cmdの最遅角値Cainrtに対する進角度合いを加味して、クランク角カウンタの計数値C_crkを補正する。そして、そのように補正した計数値C_crkおよびバルブリフトLiftinに応じて、上記のマップ値Rcyc_bs_cinのうちの、そのときのバルブリフトLiftinに近い2つのマップ値Rcyc_bs_cinを選択するとともに、当該2つの選択値の補間演算により、カム位相制御用の外乱補償値のマップ値Rcyc_bs_cinを算出する。さらに、以上のように算出したマップ値Rcyc_bs_cinを、後述するように、エンジン回転数NEに応じて補正することにより、カム位相制御用の外乱補償値Rcyc_cinが算出される。
1つのシリンダ3aで発生する周期的外乱を補償するための、カム位相制御用の外乱補償値Rcyc_cinは、以上のように算出することが考えられる。これに対して、本実施形態のエンジン3は、4気筒タイプのものであるため、周期的外乱も1制御サイクル中にシリンダ3aごとに計4回、発生するとともに、互いの位相差に起因して互いに重なり合う状態で発生する。したがって、本実施形態では、そのような周期的外乱を補償するために、外乱補償値マップとして、前述したものに代えて、図18に示すCain_cmd=Cainrt&Liftin=Liftinmax用のマップ値Rcyc_bs_cinと、図19に示すCain_cmd=Cainrt&Liftin=Liftinmin用のマップ値Rcyc_bs_cinと、Cain_cmd=Cainrtで、かつバルブリフトLiftinが最大値Liftinmaxと最小値Liftinminとの間にあるときの補間演算用の、複数段階のLiftinの値にそれぞれ対応して設定された複数のマップ値Rcyc_bs_cin(図示せず)と、を備えたものを用いる。
図18,19を参照すると明らかなように、この外乱補償値マップでは、カム位相制御用の外乱補償値Rcyc_cinは、周期的外乱の予測結果に応じ、クランク角カウンタの計数値C_crkに対応する値として設定されている。すなわち、外乱補償値Rcyc_cinは、周期的外乱の予測結果に応じて時系列的に設定されている。また、外乱補償値Rcyc_cinの周期は、クランク角180゜分に設定されている。これは、前述した理由により、可変カム位相機構70に加えられる周期的外乱の周期が、クランク角180゜分となることによる。なお、この外乱補償値マップは、ROM2c内に予め記憶されている。
さらに、外乱補償値マップの検索は、前述した手法と同様に実行される。すなわち、クランク角カウンタの計数値C_crkを、目標カムCain_cmdの最遅角値Cainrtに対する進角度合いを加味して補正し、その補正した計数値C_crkおよびバルブリフトLiftinに応じて、上記のマップ値Rcyc_bs_cinのうちの、そのときのバルブリフトLiftinに近い2つのマップ値Rcyc_bs_cinを選択し、当該2つの選択値の補間演算により、カム位相制御用の外乱補償値のマップ値Rcyc_bs_cinを算出する。さらに、以上のように算出したマップ値Rcyc_bs_cinを、後述するように、エンジン回転数NEに応じて補正することにより、カム位相制御用の外乱補償値Rcyc_cinが算出される。以上により、カム位相制御用の外乱補償値Rcyc_cinは、周期的外乱の予測値の符号の正負を反転した値に相当するものとして算出される。なお、後述するように、カム位相制御用の外乱補償値Rcyc_cinの算出は、CRK信号の発生に同期するタイミングで実行される。
次に、前述した2自由度SLDコントローラ103について説明する。この2自由度SLDコントローラ103では、目標カム位相Cain_cmdおよびカム位相Cainに応じて、目標値フィルタ型2自由度スライディングモード制御アルゴリズム[図20に示す式(1)〜(8)]により、カム位相制御用のSLD制御入力Rsldが算出される。
これらの式(1)〜(8)において、記号(k)付きの各離散データは、所定の制御周期ΔT(本実施形態では5msec)に同期してサンプリング(または算出)されたデータであることを示しており、記号kは各離散データのサンプリングサイクルの順番を表している。例えば、記号kは今回の制御タイミングでサンプリングされた値であることを、記号k−1は前回の制御タイミングでサンプリングされた値であることをそれぞれ示している。この点は、以下の離散データにおいても同様である。なお、以下の説明では、各離散データにおける記号(k)などを適宜、省略する。
この制御アルゴリズムでは、まず、式(1)に示す一次遅れフィルタアルゴリズムにより、目標カム位相のフィルタ値Cain_cmd_fが算出される。同式(1)において、POLE_fは、目標値フィルタ設定パラメータであり、−1<POLE_f<0の関係が成立する値に設定される。
次いで、式(2)〜(8)に示すスライディングモード制御アルゴリズムにより、カム位相制御用のSLD制御入力Rsldが算出される。すなわち、式(2)に示すように、カム位相制御用のSLD制御入力Rsldは、等価制御入力Req、到達則入力Rrch、適応則入力Radpおよび非線形入力Rnlの総和として算出される。この等価制御入力Reqは、式(3)により算出される。同式(3)において、a1,a2,b1,b2は、後述するモデルのモデルパラメータを示しており、これらは所定値に設定されている。さらに、式(3)において、POLEは、切換関数設定パラメータであり、−1<POLE_f<POLE<0の関係が成立する値に設定されている。
また、到達則入力Rrchは、式(4)により算出される。この式(4)において、Krchは、所定の到達則ゲインを表しており、σsは、式(7)のように定義される切換関数である。
さらに、適応則入力Radpは、式(5)により算出され、この式(5)において、Kadpは、所定の適応則ゲインを表している。一方、非線形入力Rnlは、式(6)により算出される。この式(6)において、Knlは、所定の非線形ゲインを表しているとともに、sgn(σs)は、符号関数を表しており、その値は、σs≧0のときにはsgn(σs)=1となり、σs<0のときにはsgn(σs)=−1となる(なお、σs=0のときに、sgn(σs)=0と設定してもよい)。
なお、以上の式(1)〜(8)は以下のように導出される。すなわち、制御対象を、カム位相制御用のSLD制御入力Rsldを入力とし、カム位相Cainを出力とする系として定義するとともに、離散時間系モデルとしてモデル化すると、図20に示す式(9)が得られる。この式(9)のモデルに基づき、カム位相Cainが目標カム位相Cain_cmdに収束するように、目標値フィルタ型2自由度スライディングモード制御理論を適用すると、前述した式(1)〜(8)が導出される。
一方、前述した加算要素104では、図21の式(10)に示すように、以上のように算出されたカム位相制御用の外乱補償値Rcyc_cinおよびカム位相制御用のSLD制御入力Rsldの和として、カム位相制御用の参照入力Rsld_fが算出される。
次に、前述したDSMコントローラ105について説明する。このDSMコントローラ105では、図21の式(11)〜(16)で表される、ΔΣ変調アルゴリズムに基づいた制御アルゴリズムにより、位相制御入力Ucainが算出される。なお、これらの式(11)〜(16)の制御アルゴリズムは、本出願人が特願2003−293009号において提案済みの制御アルゴリズムを適用したものである。
図21の式(11)において、Lim(Rsld_f)は、カム位相制御用の参照入力Rsld_fをリミット処理した制限値を表しており、具体的には、カム位相制御用の参照入力Rsld_fを、所定の下限値Rminと所定の上限値Rmaxで規定される範囲内に制限した値として算出される。すなわち、Rsld_f<RminのときにはLim(Rsld_f)=Rminとなり、Rmin≦Rsld_f≦RmaxのときにはLim(Rsld_f)=Rsld_fとなり、Rsld_f>RmaxのときにはLim(Rsld_f)=Rmaxとなる。これらの上限値Rmaxおよび下限値Rminは、絶対値が互いに等しい正負の所定値に設定されている。
また、式(12)において、r2は制限値偏差を、udsm_oftは所定のオフセット値をそれぞれ表している。さらに、式(13)において、δは偏差信号値を表しており、同式(13)に示すように、制限値偏差r2と変調出力uの前回値との偏差として算出される。
一方、式(14)において、σは、偏差信号値δの積分値である偏差積分値を表しており、同式に示すように、その前回値と偏差信号値δとの和として算出される。また、式(15)において、fnl(σ)は、非線形関数であり、その値は、σ≧0のときにはfnl(σ)=Rとなり、σ<0のときにはfnl(σ)=−Rとなる(なお、σ=0のときには、fnl(σ)=0と設定してもよい)。また、この値Rは、R>|r2|の関係が常に成立するような値に設定されている。
本実施形態のDSMコントローラ105では、以上の制御アルゴリズムにより、位相制御入力Ucainが、所定の上限値と下限値との間で頻繁に反転を繰り返す値として算出され、それにより、カム位相制御の制御精度を向上させることができる。
次に、前述したバルブリフトコントローラ110について説明する。このバルブリフトコントローラ110は、図22に示すように、目標バルブリフト算出部111、補償要素112、2自由度SLDコントローラ113、加算要素114、およびDSMコントローラ115を備えており、これらはいずれも、具体的には、ECU2により構成されている。
このバルブリフトコントローラ110では、以下に述べるように、リフト制御入力Uliftinが算出されるとともに、このリフト制御入力Uliftinが可変バルブリフト機構50に入力されることにより、バルブリフトLiftinが目標バルブリフトLiftin_cmdになるように制御される。
まず、目標バルブリフト算出部111(目標値設定手段)では、目標バルブリフトLiftin_cmd(目標値)が、エンジン回転数NEおよびアクセル開度APに応じて、後述するマップ(図34参照)を検索することにより算出される。
また、補償要素112(外乱補償値記憶手段、外乱補償値選択手段)では、以下に述べるように、バルブリフト制御用の外乱補償値Rcyc_linが算出される。このバルブリフト制御用の外乱補償値Rcyc_linは、前述したカム位相制御用の外乱補償値Rcyc_cinと同様に、エンジン3の運転中、吸気カム6の回転に伴って発生する周期的外乱の影響を補償するためのものである。すなわち、そのような周期的外乱が可変バルブリフト機構50に加えられると、バルブリフトLiftinの変動に起因して、吸入空気量が変化してしまうので、そのような吸入空気量の変化を回避するために、可変バルブリフト機構50に加えられる周期的外乱の値を予測するとともに、その予測値の符号の正負を反転した値に相当する値を、バルブリフト制御用の外乱補償値Rcyc_linとして算出する。
具体的には、バルブリフト制御用の外乱補償値Rcyc_linは、前述した補償要素102と同様の手法により、算出される。すなわち、まず、カム位相Cain、計数値C_crkおよび目標バルブリフトLiftin_cmdに応じて、外乱補償値マップを検索することによりマップ値Rcyc_bs_linを算出する。
この補償要素112では、外乱補償値マップとして、図23に示すLiftin_cmd=Liftinmax&Cain=Cainrt用のマップ値Rcyc_bs_linと、図24に示すLiftin_cmd=Liftinmin&Cain=Cainrt用のマップ値Rcyc_bs_linと、Cain=Cainrtで、かつ目標バルブリフトLiftin_cmdが最大値Liftinmaxと最小値Liftinminとの間にあるときの補間演算用の、複数段階のLiftin_cmdの値にそれぞれ対応して設定された複数のマップ値Rcyc_bs_lin(図示せず)とを備えたものを用いる。なお、この外乱補償値マップは、ROM2c内に予め記憶されている。
以上の外乱補償値マップの検索では、カム位相Cainの最遅角値Cainrtに対する進角度合いに応じて、クランク角カウンタの計数値C_crkを補正し、そのように補正した計数値C_crkおよび目標バルブリフトLiftin_cmdに応じて、上記のマップ値Rcyc_bs_linのうちの、そのときの目標バルブリフトLiftin_cmdに近い2つのマップ値を選択し、当該2つの選択値の補間演算により、バルブリフト制御用の外乱補償値のマップ値Rcyc_bs_linを算出する。
次いで、以上のように算出したマップ値Rcyc_bs_linを、後述するように、エンジン回転数NEに応じて補正することにより、バルブリフト制御用の外乱補償値Rcyc_linが算出される。なお、後述するように、このバルブリフト制御用の外乱補償値Rcyc_linの算出は、CRK信号の発生に同期するタイミングで実行される。
一方、2自由度SLDコントローラ113(制御入力算出手段)では、目標バルブリフトLiftin_cmdおよびバルブリフトLiftinに応じて、前述した2自由度SLDコントローラ103の制御アルゴリズム[式(1)〜(8)]と同様の目標値フィルタ型2自由度スライディングモード制御アルゴリズムにより、バルブリフト制御用のSLD制御入力Rsld’が算出される。
すなわち、この2自由度SLDコントローラ113では、前述した図20の式(1)〜(8)において、カム位相Cain、目標カム位相Cain_cmdおよびカム位相制御用のSLD制御入力Rsldをそれぞれ、バルブリフトLiftin、目標バルブリフトLiftin_cmdおよびバルブリフト制御用のSLD制御入力Rsld’に置き換えるとともに、各種の変数、パラメータおよび所定の設定値をそれぞれ、バルブリフト制御用の値に置き換えたアルゴリズムにより、バルブリフト制御用のSLD制御入力Rsld’が算出される。
また、前述した加算要素114では、補償要素112で算出されたバルブリフト制御用の外乱補償値Rcyc_linと、2自由度SLDコントローラ113で算出されたバルブリフト制御用のSLD制御入力Rsld’の和として、バルブリフト制御用の参照入力Rsld_f’が算出される。
さらに、前述したDSMコントローラ115(制御入力算出手段)では、バルブリフト制御用の参照入力Rsld_f’に応じて、前述したDSMコントローラ105の制御アルゴリズム[式(11)〜(16)]と同様の制御アルゴリズムにより、リフト制御入力Uliftinが算出される。すなわち、このDSMコントローラ115では、前述した図21の式(11)〜(16)において、カム位相制御用の参照入力Rsld_fおよび位相制御入力Ucainをそれぞれ、バルブリフト制御用の参照入力Rsld_f’およびリフト制御入力Uliftinに置き換えるとともに、各種の関数および所定の設定値をそれぞれ、バルブリフト制御用の値に置き換えたアルゴリズムにより、リフト制御入力Uliftinが算出される。
次に、前述した圧縮比コントローラ120について説明する。この圧縮比コントローラ120は、図25に示すように、目標圧縮比算出部121、補償要素122、2自由度SLDコントローラ123、加算要素124、およびDSMコントローラ125を備えており、これらはいずれも、具体的には、ECU2により構成されている。
この圧縮比コントローラ120では、以下に述べるように、圧縮比制御入力Ucrが算出されるとともに、この圧縮比制御入力Ucrが可変圧縮比機構80に入力されることにより、圧縮比Crが目標圧縮比Cr_cmdになるように制御される。
まず、目標圧縮比算出部121(目標値設定手段)では、目標圧縮比Cr_cmd(目標値)が、エンジン回転数NEおよびアクセル開度APに応じて、後述するマップ(図35参照)を検索することにより算出される。
また、補償要素122(外乱補償値記憶手段、外乱補償値選択手段)では、以下に述べるように、圧縮比制御用の外乱補償値Rcyc_crが算出される。この圧縮比制御用の外乱補償値Rcyc_crは、エンジン3の運転中、燃焼圧に起因して発生する周期的外乱の影響を補償するためのものである。すなわち、そのような周期的外乱が可変圧縮比機構80に加えられると、圧縮比Crが変動し、それに伴って点火時期制御で設定された点火時期との間の適合性が低下してしまうことにより、ノッキングが発生したり、燃焼効率が低下したりするおそれがある。したがって、補償要素122では、そのような圧縮比の変化を回避するために、可変圧縮比機構80に加えられる周期的外乱の値を予測するとともに、その予測値の符号の正負を反転した値を、圧縮比制御用の外乱補償値Rcyc_crとして算出する。
具体的には、圧縮比制御用の外乱補償値Rcyc_crは、以下のように算出される。まず、圧縮比Crおよびクランク角カウンタの計数値C_crkに応じて、外乱補償値マップを検索することによりマップ値Rcyc_bs_crを算出する。
この補償要素122では、外乱補償値マップとして、図26に実線で示すCr_cmd=Crmax用のマップ値Rcyc_bs_crと、同図に破線で示すCr_cmd=Crmin用のマップ値Rcyc_bs_crと、目標圧縮比Cr_cmdが最大値Crmaxと最小値Crminとの間にあるときの補間演算用の、複数段階のCr_cmdの値にそれぞれ対応して設定された複数のマップ値Rcyc_bs_cr(図示せず)とを備えたものを用いる。この外乱補償値マップは、ROM2c内に予め記憶されている。なお、本実施形態では、可変圧縮比機構80のジオメトリに起因して、上記の外乱補償値マップを用いるが、可変圧縮比機構のジオメトリによっては、外乱補償値マップにおける、Crmax用の値とCrmin用の値との関係が逆に設定される場合もある。
また、圧縮比制御用の外乱補償値のマップ値Rcyc_bs_crは、上記のマップ値のうちの、そのときの目標圧縮比Cr_cmdに近い2つのマップ値を選択し、当該2つの選択値の補間演算により算出される。
次いで、以上のように算出したマップ値Rcyc_bs_crを、後述するように、カム位相Cain、バルブリフトLiftinおよびエンジン回転数NEに応じて補正することにより、圧縮比制御用の外乱補償値Rcyc_crが算出される。なお、後述するように、この圧縮比制御用の外乱補償値Rcyc_crの算出は、CRK信号の発生に同期するタイミングで実行される。
一方、2自由度SLDコントローラ123(制御入力算出手段)では、目標圧縮比Cr_cmdおよび圧縮比Crに応じて、前述した2自由度SLDコントローラ103の制御アルゴリズム[式(1)〜(8)]と同様の目標値フィルタ型2自由度スライディングモード制御アルゴリズムにより、圧縮比制御用のSLD制御入力Rsld''が算出される。
すなわち、この2自由度SLDコントローラ123では、前述した図20の式(1)〜(8)において、カム位相Cain、目標カム位相Cain_cmdおよびカム位相制御用のSLD制御入力Rsldをそれぞれ、圧縮比Cr、目標圧縮比Cr_cmdおよび圧縮比制御用のSLD制御入力Rsld''に置き換えるとともに、各種の変数、パラメータおよび所定の設定値をそれぞれ、圧縮比制御用の値に置き換えたアルゴリズムにより、圧縮比制御用のSLD制御入力Rsld''が算出される。
また、前述した加算要素124では、補償要素122で算出された圧縮比制御用の外乱補償値Rcyc_crと、2自由度SLDコントローラ123で算出された圧縮比制御用のSLD制御入力Rsld''の和として、圧縮比制御用の参照入力Rsld_f''が算出される。
さらに、前述したDSMコントローラ125(制御入力算出手段)では、圧縮比制御用の参照入力Rsld_f''に応じて、前述したDSMコントローラ105の制御アルゴリズム[式(11)〜(16)]と同様の制御アルゴリズムにより、圧縮比制御入力Ucrが算出される。すなわち、このDSMコントローラ125では、前述した図21の式(11)〜(16)において、カム位相制御用の参照入力Rsld_fおよび位相制御入力Ucainをそれぞれ、圧縮比制御用の参照入力Rsld_f''および圧縮比制御入力Ucrに置き換えるとともに、各種の関数および所定の設定値をそれぞれ、圧縮比制御用の値に置き換えたアルゴリズムにより、圧縮比制御入力Ucrが算出される。
次に、ECU2により実行される各種の制御処理について説明する。まず、図27〜図31を参照しながら、3つの外乱補償値Rcyc_cin,Rcyc_lin,Rcyc_crを算出する処理について説明する。この処理は、前述した補償要素102,112,122に相当するものであり、IG・SW27がONに切り換えられた後の、クランクシャフト3dが所定のクランク角位置(例えば所定のシリンダ3aがTDC位置となるようなクランク角位置)に達した時点以降、CRK信号の発生に同期するタイミングで実行される。すなわち、本処理の実行周期は、CRK信号の発生周期に相当し、これは、前述したように、周期的外乱の発生周期がクランク角180゜分となるので、その1/18の値に相当する。
図27に示すように、この処理では、まず、ステップ1(図では「S1」と略す。以下同じ)において、演算フラグF_CALが「1」であるか否かを判別する。この演算フラグF_CALは、IG・SW27がオンされたときに「0」に設定される。そのため、今回のループが1回目であるときには、ステップ1の判別結果がNOとなり、その場合には、ステップ2に進み、演算フラグF_CALを「1」に設定する。これにより、次回以降のループにおいて、ステップ1の判別結果がYESとなる。
次いで、ステップ3で、クランク角カウンタの計数値C_crkを値0に設定した後、後述するステップ6に進む。
一方、ステップ1の判別結果がYESのときには、ステップ4に進み、クランク角カウンタの計数値C_crkを値10分、インクリメントする。次いで、ステップ5で、クランク角カウンタの計数値C_crkが720であるか否かを判別する。この判別結果がNOのときには、後述するステップ6に進む。一方、この判別結果がYESのときには、前述したステップ3に進み、クランク角カウンタの計数値C_crkを値0に設定した後、ステップ6に進む。
ステップ3またはステップ5に続くステップ6では、カム位相制御用の外乱補償値のマップ値Rcyc_bs_cinを算出する。具体的には、カム位相制御用の外乱補償値のマップ値Rcyc_bs_cinは、前述したように、目標カム位相Cain_cmd、クランク角カウンタの計数値C_crkおよびバルブリフトLiftinに応じて、前述したカム位相制御用の外乱補償値マップ(図18,19)を検索することにより、算出される。
次いで、ステップ7に進み、カム位相制御用の補正係数Krcyc_cinを、エンジン回転数NEに応じて、図28に示すテーブルを検索することにより算出する。同図に示すように、このテーブルでは、補正係数Krcyc_cinは、エンジン回転数NEが低いほど、より大きな値に設定されている。これは、低回転数域では、周期的外乱の周波数が低くなり、外力に対するカム位相制御系の応答ゲインが高くなるような周波数となるため、吸気カム6の周期的変位が大きくなるので、それを補償するためである。
また、このテーブルでは、補正係数Krcyc_cinは、所定回転数NEREF1(例えば4000rpm)以上の範囲では値に0に設定されている。これは、高回転域では、アクチュエータとしての電磁弁機構74の応答性が十分でないことで、周期的外乱の補償を正確に行うのが困難であることに加えて、周期的外乱が高周波になるのに対して、可変カム位相機構70は、その応答特性(ローパス特性)により、高周波の周期的外乱の影響を受けなくなることによる。
ステップ7に続くステップ8では、カム位相制御用の外乱補償値Rcyc_cinを、上記ステップ6,7で算出したマップ値Rcyc_bs_cinおよび補正係数Krcyc_cinの積に設定し、RAM2b内に記憶する。
次に、ステップ9で、バルブリフト制御用の外乱補償値のマップ値Rcyc_bs_linを算出する。具体的には、バルブリフト制御用の外乱補償値のマップ値Rcyc_bs_linは、前述したように、目標バルブリフトLiftin_cmd、カム位相Cainおよびクランク角カウンタの計数値C_crkに応じて、前述したバルブリフト制御用の外乱補償値マップ(図23,24)を検索することにより、算出される。
次いで、ステップ10に進み、バルブリフト制御用の補正係数Krcyc_linを、エンジン回転数NEに応じて、図29に示すテーブルを検索することにより算出する。同図に示すように、このテーブルでは、補正係数Krcyc_linは、エンジン回転数NEが低いほど、より大きな値に設定されている。これは、低回転数域では、前述したように、周期的外乱の周波数が低くなり、外力に対するバルブリフト制御系の応答ゲインが高くなるような周波数となるため、バルブリフトLiftinの周期的変位が大きくなるので、それを補償するためである。
また、このテーブルでは、補正係数Krcyc_linは、所定回転数NEREF2(例えば5000rpm)以上の範囲では、値0に設定されている。これは、高回転域では、リフトアクチュエータ60の応答性が十分でないことで、周期的外乱の補償を正確に行うのが困難であることに加えて、周期的外乱が高周波になるのに対して、可変バルブリフト機構50は、その応答特性(ローパス特性)により、高周波の周期的外乱の影響を受けなくなることによる。
ステップ10に続くステップ11では、バルブリフト制御用の外乱補償値Rcyc_linを、上記ステップ9,10で算出したマップ値Rcyc_bs_linおよび補正係数Krcyc_linの積に設定する。
次いで、ステップ12に進み、圧縮比制御用の外乱補償値のマップ値Rcyc_bs_crを算出する。具体的には、このマップ値Rcyc_bs_crは、前述したように、クランク角カウンタの計数値C_crkおよび目標圧縮比Cr_cmdに応じて、前述した圧縮比制御用の外乱補償値マップ(図26)を検索することにより、算出される。
次に、ステップ13で、圧縮比制御用の第1補正係数Krcyc_cr1を、カム位相CainおよびバルブリフトLiftinに応じて、図30に示すマップを検索することにより、算出する。なお、図中に示すバルブリフトの所定値Liftin1〜3は、Liftin1>Liftin2>Liftin3の関係が成立するように設定されている。
同図に示すように、このマップでは、第1補正係数Krcyc_cr1は、カム位相Cainが進角側の値であるほど、またはバルブリフトLiftinが小さいほど、より小さい値に設定されている。これは、カム位相Cainが進角側の値であるほど、内部EGR量の増大により混合気の燃焼温度が低くなり、燃焼圧が低くなることで、周期的外乱の振幅がより小さくなるためである。また、第1補正係数Krcyc_cr1は、バルブリフトLiftinが小さいほど、より小さい値に設定されている。これは、バルブリフトLiftinが小さい値であるほど、吸入空気量が小さくなり、燃焼圧が低くなることで、周期的外乱の振幅がより小さくなるためである。
次いで、ステップ14で、圧縮比制御用の第2補正係数Krcyc_cr2を、エンジン回転数NEに応じて、図31に示すテーブルを検索することにより、算出する。同図に示すように、このテーブルでは、第2補正係数Krcyc_cr2は、エンジン回転数NEが所定回転数NEREF3(例えば3000rpm)より低い領域では、NE=NEREF4(<NEREF3)のときに最大値を示すように設定されている。これは、低回転数域では、慣性質量の影響により、周期的外乱の振幅がNE=NEREF4のときに最大値を示すので、それを補償するためである。
また、このテーブルでは、第2補正係数Krcyc_cr2は、NE≧NEREF3の領域では、値0に設定されている。これは、高回転域では、圧縮比アクチュエータ87の応答性が十分でないことで、周期的外乱の補償を正確に行うのが困難であることに加えて、燃焼圧に起因する周期的外乱が高周波になるのに対して、可変圧縮比機構80は、その応答特性(ローパス特性)により、高周波の周期的外乱の影響を受けなくなることによる。
ステップ14に続くステップ15では、圧縮比制御用の外乱補償値Rcyc_crを、上記ステップ12〜14で算出したマップ値Rcyc_bs_linと、第1および第2補正係数Krcyc_cr1,Krcyc_cr2との積に設定し、その後、本処理を終了する。
次に、図32を参照しながら、前述した3つの制御入力Ucain,Uliftin,Ucrを算出する処理について説明する。この処理は、プログラムタイマの設定により、所定の制御周期ΔT(本実施形態では5msec)で実行される。
図32に示すように、この処理では、まず、ステップ20において、可変機構正常フラグF_VDOKが「1」であるか否かを判別する。この可変機構正常フラグF_VDOKは、可変カム位相機構70、可変バルブリフト機構50および可変圧縮比機構80がいずれも正常であるときには「1」に設定され、それ以外のときには「0」に設定される。
ステップ20の判別結果がNOで、3つの可変機構50,70,80の少なくとも1つが故障しているときには、ステップ32に進み、位相制御入力Ucain、リフト制御入力Uliftinおよび圧縮比制御入力Ucrをいずれも値0に設定した後、本処理を終了する。なお、このように3つの制御入力がいずれも値0に設定されたときには、可変カム位相機構70により、カム位相Cainが最遅角値Cainrtに保持され、可変バルブリフト機構50により、バルブリフトLiftinがアイドル運転やエンジン始動に適した値に保持されるとともに、可変圧縮比機構80により、圧縮比Crが最小値Crminに保持される。
一方、ステップ20の判別結果がYESで、3つの可変機構50,70,80がいずれも正常であるときには、ステップ21に進み、エンジン始動フラグF_ENGSTが「1」であるか否かを判別する。このエンジン始動フラグF_ENGSTは、エンジン3の始動中は「1」に設定され、エンジン3が始動済みであるときには「0」に設定される。この判別結果がYESで、エンジン始動中であるときには、ステップ22に進み、目標カム位相Cain_cmdを所定の始動時用値Cain_cmd_stに設定する。
次に、ステップ23,24において、目標バルブリフトLiftin_cmdおよび目標圧縮比Cr_cmdをそれぞれ、所定の始動時用値Liftin_cmd_st,Cr_cmd_stに設定する。
次いで、ステップ25に進み、RAM2bに現在記憶されている3つの外乱補償値Rcyc_cin,Rcyc_lin,Rcyc_crの値を読み込む。すなわち、これらの値をサンプリングする。
ステップ25に続くステップ26では、位相制御入力Ucainを、算出された目標カム位相Cain_cmd、および読み込まれたカム位相制御用の外乱補償値Rcyc_cinを用い、前述した式(1)〜(8),(10)〜(16)の制御アルゴリズムにより算出する。
次に、ステップ27で、リフト制御入力Uliftinを算出する。このリフト制御入力Uliftinは、前述したように、上記位相制御入力Ucainと同様の制御アルゴリズムにより算出される。すなわち、算出された目標バルブリフトLiftin_cmd、および読み込まれたバルブリフト制御用の外乱補償値Rcyc_linを用い、式(1)〜(8),(10)〜(16)と同様の制御アルゴリズムにより、リフト制御入力Uliftinが算出される。
次いで、ステップ28で、圧縮比制御入力Ucrを算出する。この圧縮比制御入力Ucrも、前述したように、上記位相制御入力Ucainと同様の制御アルゴリズムにより算出される。すなわち、算出された目標圧縮比Cr_cmd、および読み込まれた圧縮比制御用の外乱補償値Rcyc_crを用い、式(1)〜(8),(10)〜(16)と同様の制御アルゴリズムにより、圧縮比制御入力Ucrが算出される。その後、本処理を終了する。
一方、ステップ21の判別結果がNOで、エンジン始動済みであるときには、ステップ29に進み、目標カム位相Cain_cmdを、エンジン回転数NEおよびアクセル開度APに応じて、図33に示すマップを検索することにより算出する。同図において、アクセル開度APの所定値AP1〜AP3は、AP1>AP2>AP3の関係が成立するように設定されており、この関係は以下の説明でも同様である。
このマップでは、目標カム位相Cain_cmdは、AP=AP1で、高負荷である場合には、エンジン回転数NEが高いほど、より遅角側の値に設定されている。また、AP=AP2で、中負荷である場合、目標カム位相Cain_cmdは、低回転域から中回転域では、エンジン回転数NEが高いほど、より進角側の値に設定されているとともに、中回転域から高回転域では、エンジン回転数NEが高いほど、より遅角側の値に設定されている。さらに、AP=AP3で、低負荷である場合も、目標カム位相Cain_cmdは、中負荷である場合とほぼ同様の傾向に設定されている。この理由については、後述する。
ステップ29に続くステップ30では、目標バルブリフトLiftin_cmdを、エンジン回転数NEおよびアクセル開度APに応じて、図34に示すマップを検索することにより算出する。このマップでは、目標バルブリフトLiftin_cmdは、AP=AP1で、高負荷である場合には、エンジン回転数NEが高いほど、より大きな値に設定されている。また、AP=AP2で、中負荷である場合、目標カム位相Cain_cmdは、低回転域では、エンジン回転数NEが高いほど、より大きな値に設定され、中回転域では、エンジン回転数NEに対して、ほとんど変わらない値に設定されているとともに、高回転域では、エンジン回転数NEが高いほど、より大きな値に設定されている。さらに、目標バルブリフトLiftin_cmdは、AP=AP3で、低負荷である場合も、中負荷である場合とほぼ同様の傾向に設定されている。
目標バルブリフトLiftin_cmdが以上のように設定され、かつ目標カム位相Cain_cmdが前述したように設定されている理由は、以下による。すなわち、低負荷域/低回転域では、バルブリフトLiftinを低リフトに制御し、かつカム位相Cainを進角側の値に制御することで、オットーサイクルよりも吸気弁4が早く閉じる早閉じのミラーサイクルを実現する。それにより、ポンピングロスを低減させるとともに、低リフト化による筒内流動を増大化させることで、燃焼の急速化を図り、燃焼効率を向上させるためである。
また、中負荷域/中回転域では、バルブリフトLiftinを中程度のリフトに制御し、かつカム位相Cainを進角側の値に制御することで、バルブオーバーラップを増大させ、内部EGR量を増大させるとともに、早閉じのミラーサイクルの実現により、ポンピングロスの低減および燃費の向上を図るためである。
さらに、高負荷域/高回転域では、バルブリフトLiftinを高リフトに制御し、かつカム位相Cainを遅角側の値に制御することで、吸入空気量を増大させ、エンジントルクを増大させるためである。これに加えて、そのような制御の際、内部EGR量の減少と、圧縮行程の初期では、吸気の慣性力によって吸気挙動が継続するので、それを充填効率の向上に利用すべく、カム位相Cainを遅角側の値に制御するためである。
ステップ30に続くステップ31では、目標圧縮比Cr_cmdを、エンジン回転数NEおよびアクセル開度APに応じて、図35に示すマップを検索することにより算出する。このマップでは、目標圧縮比Cr_cmdは、APが大きく、高負荷であるほど、または、エンジン回転数NEが高いほど、より小さな値に設定されている。これは、エンジン回転数NEおよびアクセル開度APが大きいほど(すなわち高負荷であるほど)、点火時期に対する最適な圧縮比Crの値がより小さくなることによる。すなわち、高回転/高負荷時に圧縮比Crを高圧縮比側の値に設定すると、ノッキングが発生するのを防止するために点火時期のリタード側への制御が必要となることで、発生トルク(効率)の低下を招くおそれがあるので、それを回避するためである。
次いで、前述したように、ステップ25〜28を実行し、3つの制御入力Ucain,Uliftin,Ucrを算出した後、本処理を終了する。
以上のように、本実施形態の制御装置1では、3つの外乱補償値Rcyc_cin,Rcyc_lin,Rcyc_crが、予め予想される周期的外乱を補償するための、周期的外乱の正負を反転させた値として、CRK信号の発生に同期するタイミングで、マップ検索およびテーブル検索などにより算出される。さらに、そのように算出された外乱補償値Rcyc_cin,Rcyc_lin,Rcyc_crに応じて、3つの制御入力Ucain,Uliftin,Ucrがそれぞれ、前述した制御アルゴリズム[式(1)〜(8),(10)〜(16)]により算出される。
したがって、そのように算出された制御入力Ucain,Uliftin,Ucrにより、カム位相Cain、バルブリフトLiftinおよび圧縮比Crをそれぞれフィードフォワード的に制御することで、周期的外乱がカム位相Cain、バルブリフトLiftinおよび圧縮比Crに及ぼす影響を迅速に補償し、抑制することができる。その結果、カム位相制御およびバルブリフト制御においては、周期的外乱に起因する、吸気弁4の開弁時の吸入空気量の変化を回避できることで、エンジン3の発生トルクの変動を回避できるとともに、安定した燃焼状態を確保できる。また、圧縮比制御においては、周期的外乱の影響による圧縮比Crの変化を回避でき、圧縮比Crと点火時期との間の適合性を良好な状態に維持できる。その結果、ノッキングの発生および燃焼効率の低下を回避することができる。以上のように、制御の安定性および制御精度を向上させることができる。
図36は、以上のような制御手法により算出された位相制御入力Ucainを用い、目標カム位相Cain_cmdを一定値に保持しながら、カム位相Cainを制御した場合のシミュレーション結果を、1つのシリンダ3aのみにおけるものを例にとって示したものである。同図と前述した図13とを比較すると明らかなように、本実施形態の制御装置1によれば、前述したようなカム位相制御用の外乱補償値Rcyc_cinを用いることにより、周期的外乱の影響を効果的に抑制できることが判る。
なお、第1実施形態は、カム位相制御用の参照入力Rsldを算出するための制御アルゴリズムとして目標値フィルタ型2自由度スライディングモード制御アルゴリズムを用いた例であるが、カム位相制御用の参照入力Rsldを算出するための制御アルゴリズムはこれに限らず、カム位相制御用の参照入力Rsldを、カム位相Cainを目標カム位相Cain_cmdに収束させるような値として算出できる制御アルゴリズムであればよい。例えば、PID制御アルゴリズムなどのフィードバック制御アルゴリズムを用いてもよく、バックステッピング制御アルゴリズムなどの応答指定型制御アルゴリズムを用いてもよい。これと同様に、バルブリフト制御用の参照入力Rsld’または圧縮比制御用の参照入力Rsld''を算出するための制御アルゴリズムとして、PI制御アルゴリズムおよびPID制御アルゴリズムなどのフィードバック制御アルゴリズムや、バックステッピング制御アルゴリズムなどの応答指定型制御アルゴリズムを用いてもよい。
また、第1実施形態は、カム位相コントローラ100における位相制御入力Ucainの算出において、DSMコントローラ105を用いた例であるが、これを省略し、カム位相制御用の参照入力Rsld_fをそのまま位相制御入力Ucainとして可変カム位相機構70に入力するように構成してもよい。さらに、バルブリフトコントローラ110または圧縮比コントローラ120における、リフト制御入力Uliftinまたは圧縮比制御入力Ucrの算出において、DSMコントローラ115またはDSMコントローラ125を省略し、バルブリフト制御用の参照入力Rsld_f’または圧縮比制御用の参照入力Rsld_f''をそのまま、リフト制御入力Uliftinまたは圧縮比制御入力Ucrとして、可変バルブリフト機構50または可変圧縮比機構80に入力するように構成してもよい。
さらに、補償要素100において、カム位相制御用の外乱補償値値Rcyc_cinを、クランク角カウンタの計数値C_crkに代えて、CAM信号の発生に同期して所定のカム角分、インクリメントされるカウンタの計数値に応じて算出してもよく、バルブリフトLiftinに代えて、目標バルブリフトLiftin_cmdに応じて算出してもよい。さらに、補償要素110,120においても、上記と同様の手法により、外乱補償値Rcyc_lin,Rcyc_crをそれぞれ算出してもよい。
また、エンジン3が可変バルブリフト機構50および可変カム位相機構70を備えておらず、可変圧縮比機構80のみを備えている場合には、補償要素120において、圧縮比制御用の外乱補償値Rcyc_crを、カム位相CainおよびバルブリフトLiftinに代えて、エンジン3の負荷を表すパラメータ(吸気管内絶対圧PBAおよびTH通過吸入空気量GTHなど)に応じて算出するように構成してもよい。
さらに、可変カム位相機構として、第1実施形態の油圧式の可変カム位相機構70に代えて、本出願人が特願2003−293009号において提案済みの電磁式の可変カム位相機構を用いてもよい。このようにした場合、電磁式の可変カム位相機構では、カム位相Cainがソレノイドの電磁力とばねの付勢力との釣り合いによって変更されるため、周期的外乱は進角側または遅角側のみに作用する。したがって、そのような周期的外乱を補償するために、カム位相制御用の外乱補償値Rcyc_cinを算出する場合、そのマップ値Rcyc_bs_cinは、図37に実線または破線で示すようなマップを用いて算出すればよい。
次に、本発明の第2実施形態に係る制御装置1Aについて説明する。本実施形態の制御装置1Aは、前述した第1実施形態の制御装置1と比べると、一部を除いて同様に構成されているので、以下、第1実施形態の制御装置1と異なる点を中心として説明する。図38〜図40に示すように、この制御装置1Aは、カム位相コントローラ200、バルブリフトコントローラ210および圧縮比コントローラ220を備えている。
まず、カム位相コントローラ200について説明すると、このカム位相コントローラ200は、図38に示すように、目標カム位相算出部201(目標値設定手段)、補償要素202(外乱補償値記憶手段、外乱補償値選択手段)、2自由度SLDコントローラ203(制御入力算出手段)、DSMコントローラ205(制御入力算出手段)および適応外乱オブザーバ206(外乱推定値算出手段)を備えており、これらはいずれも、具体的には、ECU2により構成されている。このカム位相コントローラ200では、目標カム位相算出部201および補償要素202は、前述したカム位相コントローラ100のものと同様に構成されているので、それらの説明はここでは省略する。
また、適応外乱オブザーバ206は、モデル化誤差および外乱を補償するための、カム位相制御用の外乱推定値c1を算出するものである。具体的には、この適応外乱オブザーバ206では、カム位相Cain、カム位相制御用の外乱補償値Rcyc_cinおよびカム位相制御用のSLD制御入力Rsldに応じて、図41の式(17)〜(19)で表される、固定ゲイン法の同定アルゴリズムにより、カム位相制御用の外乱推定値c1が算出される。式(17)のCain_hatはカム位相の同定値を表し、式(18)のe_idは、同定誤差を表している。また、式(19)のP’は、同定ゲインを表している。
なお、以上の式(17)〜(19)は以下のように導出される。すなわち、前述した図20の式(9)のモデルにおいて、外乱を補償するために、カム位相制御用の外乱推定値c1および外乱補償値Rcyc_cinを付加すると、図41に示す式(20)が得られる。この式(20)において、右辺をカム位相の同定値Cain_hatに置き換え、そのように置き換えたモデルに基づき、カム位相の同定値Cain_hatとカム位相Cainとの偏差が最小になるように、統計処理に基づく固定ゲイン法の同定アルゴリズムを適用すると、前述した式(17)〜(19)が導出される。
以上の式(17)〜(19)のアルゴリズムにより、この適応外乱オブザーバ206では、カム位相制御用の外乱推定値c1が、モデル化誤差および外乱を適切に補償することができる値として算出される。
また、2自由度SLDコントローラ203では、図42の式(21)〜(27)で表される目標値フィルタ型2自由度スライディングモード制御アルゴリズムにより、カム位相制御用のSLD制御入力Rsldが算出される。これらの式(21)〜(27)を参照すると明らかなように、この2自由度SLDコントローラ203の制御アルゴリズムは、等価制御入力Reqの算出式に、カム位相制御用の外乱補償値Rcyc_cinおよび外乱推定値c1を含んでいる点と、SLD制御入力Rsldの算出において適応則入力Radpを用いない点とが、前述した2自由度SLDコントローラ103のものと異なっている。
さらに、DSMコントローラ205では、上記のように算出されたカム位相制御用のSLD制御入力Rsldに基づいて、前述したDSMコントローラ105と同様の制御アルゴリズム[図43に示す式(28)〜(33)]により、位相制御入力Ucainが算出される。
カム位相コントローラ200は、以上のように構成されており、これと同様に、バルブリフトコントローラ210も構成されている。すなわち、図39に示すように、目標バルブリフト算出部211(目標値設定手段)、補償要素212(外乱補償値記憶手段、外乱補償値選択手段)、2自由度SLDコントローラ213(制御入力算出手段)、DSMコントローラ215(制御入力算出手段)および適応外乱オブザーバ216(外乱推定値算出手段)を備えている。このバルブリフトコントローラ210では、目標バルブリフト算出部211および補償要素212は、前述したバルブリフトコントローラ110のものと同様に構成されているので、それらの説明はここでは省略する。
また、適応外乱オブザーバ216では、カム位相コントローラ200の適応外乱オブザーバ206と同様のアルゴリズムにより、バルブリフト制御用の外乱推定値c1’が算出される。すなわち、前述した図41の式(17)〜(19)において、CainをLiftinに、Cain_cmdをLiftin_cmdに、Rcyc_cinをRcyc_linに、c1をc1’に、RsldをRsld’にそれぞれ置き換えるとともに、各係数などをバルブリフト制御用の値に置き換えたアルゴリズムにより、バルブリフト制御用の外乱推定値c1’が算出される。
また、2自由度SLDコントローラ213では、カム位相コントローラ200の2自由度SLDコントローラ203と同様のアルゴリズムにより、バルブリフト制御用のSLD制御入力Rsld’が算出される。すなわち、前述した図42の式(21)〜(27)において、上述したように、各パラメータおよび各係数などをバルブリフト制御用の値に置き換えたアルゴリズムにより、バルブリフト制御用のSLD制御入力Rsld’が算出される。
さらに、DSMコントローラ215では、上記のように算出されたバルブリフト制御用のSLD制御入力Rsld’に基づいて、カム位相コントローラ200のDSMコントローラ205と同様の制御アルゴリズムにより、リフト制御入力Uliftinが算出される。すなわち、図43の式(28)〜(33)において、各パラメータおよび各係数などをバルブリフト制御用の値に置き換えたアルゴリズムにより、リフト制御入力Uliftinが算出される。
一方、圧縮比コントローラ220も、カム位相コントローラ200と同様に構成されている。すなわち、図40に示すように、目標圧縮比算出部221(目標値設定手段)、補償要素222(外乱補償値記憶手段、外乱補償値選択手段)、2自由度SLDコントローラ223(制御入力算出手段)、DSMコントローラ225(制御入力算出手段)および適応外乱オブザーバ226(外乱推定値算出手段)を備えている。この圧縮比コントローラ220では、目標圧縮比算出部221および補償要素222は、前述した圧縮比コントローラ120のものと同様に構成されているので、それらの説明はここでは省略する。
また、適応外乱オブザーバ226では、カム位相コントローラ200の適応外乱オブザーバ206と同様のアルゴリズムにより、圧縮比制御用の外乱推定値c1''が算出される。すなわち、前述した図41の式(17)〜(19)において、CainをCrに、Cain_cmdをCr_cmdに、Rcyc_cinをRcyc_crに、c1をc1''に、RsldをRsld''にそれぞれ置き換えるとともに、各係数などを圧縮比制御用の値に置き換えたアルゴリズムにより、圧縮比制御用の外乱推定値c1''が算出される。
また、2自由度SLDコントローラ223では、カム位相コントローラ200の2自由度SLDコントローラ203と同様のアルゴリズムにより、圧縮比制御用のSLD制御入力Rsld''が算出される。すなわち、前述した図42の式(21)〜(27)において、上述したように、各パラメータおよび各係数などを圧縮比制御用の値に置き換えたアルゴリズムにより、圧縮比制御用のSLD制御入力Rsld''が算出される。
さらに、DSMコントローラ225では、上記のように算出された圧縮比制御用のSLD制御入力Rsld''に基づいて、カム位相コントローラ200のDSMコントローラ205と同様の制御アルゴリズムにより、圧縮比制御入力Ucrが算出される。すなわち、図43の式(28)〜(33)において、各パラメータおよび各係数などを圧縮比制御用の値に置き換えたアルゴリズムにより、圧縮比制御入力Ucrが算出される。
この制御装置1Aでは、位相制御入力Ucain,Uliftin,UcrをECU2で算出する場合、前述した図32のステップ26において、式(21)〜(33)により、位相制御入力Ucainが算出される。また、ステップ27において、式(21)〜(33)の各変数および各係数などをバルブリフト制御用の値に置き換えたアルゴリズムにより、リフト制御入力Uliftinが算出されるとともに、ステップ28において、同じ手法により、圧縮比制御入力Ucrが算出される。
以上のように構成された本実施形態の制御装置1Aによれば、第1実施形態の制御装置1と同様に、3つの外乱補償値Rcyc_cin,Rcyc_lin,Rcyc_crに応じて、3つの制御入力Ucain,Uliftin,Ucrがそれぞれ算出されるので、そのように算出された制御入力Ucain,Uliftin,Ucrにより、カム位相Cain、バルブリフトLiftinおよび圧縮比Crをそれぞれフィードフォワード的に制御することで、周期的外乱がカム位相Cain、バルブリフトLiftinおよび圧縮比Crに及ぼす影響を迅速に補償し、抑制することができる。その結果、カム位相制御、バルブリフト制御および圧縮比制御において、前述した制御装置1と同様の作用効果を得ることができる。
これに加えて、外乱推定値c1,c1’,c1''が、適応外乱オブザーバ206,216,226により、モデル化誤差および外乱を補償するような値として算出されるとともに、そのような外乱推定値c1,c1’,c1''に応じて、制御入力Ucain,Uliftin,Ucrが算出される。したがって、これらの制御入力Ucain,Uliftin,Ucrにより、カム位相Cain、バルブリフトLiftinおよび圧縮比Crを、定常偏差が生じないように制御することができるとともに、周期的外乱がカム位相Cain、バルブリフトLiftinおよび圧縮比Crに及ぼす影響を、第1実施形態の制御装置1よりも、迅速に補償し、抑制することができる。以上により、制御装置1と比べて、制御の安定性および制御精度をさらに向上させることができる。
次に、本発明の第3実施形態に係る制御装置1Bについて説明する。本実施形態の制御装置1Bは、前述した第2実施形態の制御装置1Aと比べると、一部を除いて同様に構成されているので、以下、第2実施形態の制御装置1Aと異なる点を中心として説明する。図44〜図46に示すように、この制御装置1Bは、カム位相コントローラ300、バルブリフトコントローラ310および圧縮比コントローラ320を備えている。
まず、カム位相コントローラ300について説明すると、このカム位相コントローラ300は、図44に示すように、目標カム位相算出部301(目標値設定手段)、補償要素302(外乱補償値記憶手段、外乱補償値選択手段)、2自由度SLDコントローラ303(制御入力算出手段)、DSMコントローラ305(制御入力算出手段)および部分パラメータ同定器307(モデルパラメータ同定手段、振幅補正値算出手段)を備えている。このカム位相コントローラ300は、前述したカム位相コントローラ200と比較して、前述した外乱オブザーバ206に代えて、部分パラメータ同定器307を備えている点と、それに伴って2自由度SLDコントローラ303の制御アルゴリズムの一部とが異なっている。
この部分パラメータ同定器307では、カム位相Cain、カム位相制御用の外乱補償値Rcyc_cinおよびカム位相制御用のSLD制御入力Rsldに応じて、図47の式(34)〜(39)で表される、固定ゲイン法の逐次型同定アルゴリズムにより、パラメータベクトルθが同定される。このパラメータベクトルθは、その転置行列が式(38)のように表されるベクトルであり、同式(38)のd1は、振幅補正値としての外乱補償値ゲインであり、可変カム位相機構70の経年変化および個体間のばらつきなどに起因して、周期的外乱の振幅が変化するのを補償するためのものである。また、式(34)のWは仮想出力を表し、式(35)のW_hatは、仮想出力の同定値を表している。さらに、式(37)のe_id’は、式(36)のように定義される同定誤差であり、P''は所定の同定ゲインを表しており、ζはその転置行列が式(39)のように表されるベクトルである。
なお、以上の式(34)〜(39)は以下のように導出される。すなわち、前述した図41の式(20)のモデルに、外乱補償値ゲインd1を付加すると、図47に示す式(40)が得られる。この式(40)において、各変数を離散時間1つ分シフトさせ、パラメータb1,b2、外乱補償値ゲインd1および外乱補償値Rcyc_cinを離散化し、Cainの項を左辺に移項させると、同図の式(41)が得られる。この式(41)において、左辺をWと定義し、右辺をW_hatと定義すると、上記式(34),(35)が得られる。ここで、Wは仮想的な制御対象の出力と考え、W_hatは、そのような制御対象の出力の同定値と考えることができるとともに、式(35)は、そのような仮想的な制御対象のモデルと考えることができる。したがって、仮想出力Wが仮想出力の同定値W_hatに近づくように、仮想的な制御対象のモデルパラメータの同定を行うべく、固定ゲイン法の逐次型同定アルゴリズムを適用すると、上記(34)〜(39)が導出される。
以上の式(34)〜(39)の同定アルゴリズムにより、この部分パラメータ同定器307では、モデルパラメータb1,b2、外乱推定値c1および外乱補償値ゲインd1が、逐次同定される。
また、2自由度SLDコントローラ303では、図48の式(42)〜(48)で表される目標値フィルタ型2自由度スライディングモード制御アルゴリズムにより、カム位相制御用のSLD制御入力Rsldが算出される。これらの式(42)〜(48)を参照すると明らかなように、この2自由度SLDコントローラ303の制御アルゴリズムは、前述した2自由度SLDコントローラ203のものと比較すると、等価制御入力Reqの算出において、カム位相制御用の外乱補償値Rcyc_cinに、外乱補償値ゲインd1が乗算されている点のみが異なっている。
さらに、DSMコントローラ305では、上記のように算出されたカム位相制御用のSLD制御入力Rsldに基づいて、前述したDSMコントローラ205と同じ制御アルゴリズム[図49に示す式(49)〜(54)]により、位相制御入力Ucainが算出される。
次に、バルブリフトコントローラ310に説明する。このバルブリフトコントローラ310も、上記カム位相コントローラ300と同様に構成されている。具体的には、図45に示すように、目標バルブリフト算出部311(目標値設定手段)、補償要素312(外乱補償値記憶手段、外乱補償値選択手段)、2自由度SLDコントローラ313(制御入力算出手段)、DSMコントローラ315(制御入力算出手段)および部分パラメータ同定器317(モデルパラメータ同定手段、振幅補正値算出手段)を備えている。このバルブリフトコントローラ310は、前述したバルブリフトコントローラ210と比較して、前述した外乱オブザーバ216に代えて、部分パラメータ同定器317を備えている点と、それに伴って2自由度SLDコントローラ303の制御アルゴリズムの一部とが異なっている。
この部分パラメータ同定器317では、バルブリフト制御用の、モデルパラメータb1’,b2’、外乱推定値c1’および外乱補償値ゲインd1’(振幅補正値)が、カム位相コントローラ300の部分パラメータ同定器307と同様のアルゴリズムにより、逐次同定される。すなわち、前述した図47の式(34)〜(39)において、b1,b2,c1,d1をb1’,b2’,c1’d1’に、CainをLiftinに、Rcyc_cinをRcyc_linに、RsldをRsld’にそれぞれ置き換えるとともに、各係数などをバルブリフト制御用の値に置き換えたアルゴリズムにより、バルブリフト制御用の、モデルパラメータb1’,b2’、外乱推定値c1’および外乱補償値ゲインd1’がそれぞれ、逐次同定される。
また、2自由度SLDコントローラ313では、カム位相コントローラ300の2自由度SLDコントローラ303と同様のアルゴリズムにより、バルブリフト制御用のSLD制御入力Rsld’が算出される。すなわち、前述した図48の式(42)〜(48)において、上述したように、各パラメータおよび各係数などをバルブリフト制御用の値に置き換えたアルゴリズムにより、バルブリフト制御用のSLD制御入力Rsld’が算出される。
さらに、DSMコントローラ315では、上記のように算出されたバルブリフト制御用のSLD制御入力Rsld’に基づいて、カム位相コントローラ300のDSMコントローラ305と同様の制御アルゴリズムにより、リフト制御入力Uliftinが算出される。すなわち、図49の式(49)〜(54)において、各パラメータおよび各係数などをバルブリフト制御用の値に置き換えたアルゴリズムにより、リフト制御入力Uliftinが算出される。
一方、圧縮比コントローラ320も、カム位相コントローラ300と同様に構成されている。すなわち、図46に示すように、目標圧縮比算出部321(目標値設定手段)、補償要素322(外乱補償値記憶手段、外乱補償値選択手段)、2自由度SLDコントローラ323(制御入力算出手段)、DSMコントローラ325(制御入力算出手段)および部分パラメータ同定器327(モデルパラメータ同定手段、振幅補正値算出手段)を備えている。
この部分パラメータ同定器327では、圧縮比制御用の、モデルパラメータb1'',b2''、外乱推定値c1''および外乱補償値ゲインd1''(振幅補正値)が、カム位相コントローラ300の部分パラメータ同定器307と同様のアルゴリズムにより、逐次同定される。すなわち、前述した図47の式(34)〜(39)において、b1,b2,c1,d1をb1'',b2'',c1'',d1''に、CainをCrに、Rcyc_cinをRcyc_crに、RsldをRsld''にそれぞれ置き換えるとともに、各係数などを圧縮比制御用の値に置き換えたアルゴリズムにより、圧縮比制御用の、モデルパラメータb1'',b2''、外乱推定値c1''および外乱補償値ゲインd1''がそれぞれ、逐次同定される。
また、2自由度SLDコントローラ313では、カム位相コントローラ300の2自由度SLDコントローラ303と同様のアルゴリズムにより、圧縮比制御用のSLD制御入力Rsld''が算出される。すなわち、前述した図48の式(42)〜(48)において、上述したように、各パラメータおよび各係数などを圧縮比制御用の値に置き換えたアルゴリズムにより、圧縮比制御用のSLD制御入力Rsld''が算出される。
さらに、DSMコントローラ325では、上記のように算出された圧縮比制御用のSLD制御入力Rsld''に基づいて、カム位相コントローラ300のDSMコントローラ305と同様の制御アルゴリズムにより、圧縮比制御入力Ucrが算出される。すなわち、図49の式(49)〜(54)において、各パラメータおよび各係数などを圧縮比制御用の値に置き換えたアルゴリズムにより、圧縮比制御入力Ucrが算出される。
以上のように構成された本実施形態の制御装置1Bによれば、第1および第2実施形態の制御装置1,1Aと同様に、3つの外乱補償値Rcyc_cin,Rcyc_lin,Rcyc_crに応じて、3つの制御入力Ucain,Uliftin,Ucrがそれぞれ算出されるので、そのように算出された制御入力Ucain,Uliftin,Ucrにより、カム位相Cain、バルブリフトLiftinおよび圧縮比Crをそれぞれフィードフォワード的に制御することで、周期的外乱がカム位相Cain、バルブリフトLiftinおよび圧縮比Crに及ぼす影響を迅速に補償し、抑制することができる。その結果、カム位相制御、バルブリフト制御および圧縮比制御において、前述した制御装置1,1Aと同様の作用効果を得ることができる。
これに加えて、制御装置1Bのカム位相コントローラ300では、モデルパラメータb1,b2、外乱推定値c1および外乱補償値ゲインd1が、逐次同定されるとともに、2自由度SLDコントローラ303により、そのように同定された値b1,b2,c1,d1およびカム位相制御用の外乱補償値Rcyc_cinに応じて、カム位相制御用のSLD制御入力Rsldが算出され、これに基づいて位相制御入力Ucainが算出される。したがって、この位相制御入力Ucainにより、可変カム位相機構70の経年変化および個体間のばらつきなどに起因して、周期的外乱の振幅が変化した場合でも、それを適切に補償しながら、カム位相Cainを目標カム位相Cain_cmdに迅速に精度よく収束させることができる。すなわち、周期的外乱がカム位相Cainに及ぼす影響を、第2実施形態のカム位相コントローラ200よりも、迅速に補償し、抑制することができる。以上により、第2実施形態のカム位相コントローラ200と比べて、カム位相制御の安定性および制御精度をさらに向上させることができる。
これに加えて、バルブリフトコントローラ310および圧縮比コントローラ320でも、上記カム位相コントローラ300と同様の作用効果を得ることができ、それにより、第2実施形態のバルブリフトコントローラ210および圧縮比コントローラ220と比べて、バルブリフト制御および圧縮比制御の安定性および制御精度をさらに向上させることができる。
なお、本実施形態のカム位相コントローラ300は、部分パラメータ同定器307により、モデルパラメータの一部(b1,b2)、外乱推定値c1および外乱補償値ゲインd1を同定するように構成した例であるが、部分パラメータ同定器307に代えて、全てのモデルパラメータa1,a2,b1,b2、外乱推定値c1および外乱補償値ゲインd1を同定するパラメータ同定器を用いてもよく、また、部分パラメータ同定器に代えて、外乱補償値ゲインd1のみを同定する同定器を用いてもよい。
さらに、部分パラメータ同定器307では、その同定アルゴリズムとして固定ゲイン法を用いたが、これに代えて他の同定アルゴリズムを用いてもよい。例えば、可変ゲイン法や、固定ゲイン法の改良アルゴリズムであるδ修正法またはσ修正法、モデルパラメータスケジューラとδ修正法を組み合わせた同定アルゴリズムを用いてもよい。これに加えて、コントローラ310,320においても、部分パラメータ同定器317,327を上記のように構成してもよいことは言うまでもない。
なお、以上の各実施形態は、本発明の制御装置を、制御対象として可変カム位相機構70、可変バルブリフト機構50および可変圧縮比機構80を含む系の制御に適用した例であるが、本発明の制御装置はこれに限らず、周期的外乱が加えられる各種の産業機械の制御に適用可能であることは言うまでもない。また、以上の各実施形態は、可変カム位相機構を、吸気カムシャフトのクランクシャフトに対する位相を変更するものとして構成した例であるが、可変カム位相機構はこれに限らず、排気カムシャフトのクランクシャフトに対する位相を変更するものとして構成してもよく、さらに、吸気カムシャフトおよび排気カムシャフトの双方のクランクシャフトに対する位相を変更するものとして構成してもよい。
符号の説明
1 制御装置
1A,1B 制御装置
2 ECU(計数手段、外乱補償値記憶手段、外乱補償値選択手段、制御入力算出 手段、外乱推定値算出手段、モデルパラメータ同定手段、振幅補正値算出手段 、目標値設定手段)
2c ROM(外乱補償値記憶手段)
3 内燃機関
3d クランクシャフト
4 吸気弁
5 吸気カムシャフト
50 可変バルブリフト機構
70 可変カム位相機構
80 可変圧縮比機構
101 目標カム位相算出部(目標値設定手段)
102 補償要素(外乱補償値記憶手段、外乱補償値選択手段)
103 2自由度スライディングモードコントローラ(制御入力算出手段)
105 DSMコントローラ(制御入力算出手段)
111 目標バルブリフト算出部(目標値設定手段)
112 補償要素(外乱補償値記憶手段、外乱補償値選択手段)
113 2自由度スライディングモードコントローラ(制御入力算出手段)
115 DSMコントローラ(制御入力算出手段)
121 目標圧縮比算出部(目標値設定手段)
122 補償要素(外乱補償値記憶手段、外乱補償値選択手段)
123 2自由度スライディングモードコントローラ(制御入力算出手段)
125 DSMコントローラ(制御入力算出手段)
201 目標カム位相算出部(目標値設定手段)
202 補償要素(外乱補償値記憶手段、外乱補償値選択手段)
203 2自由度スライディングモードコントローラ(制御入力算出手段)
205 DSMコントローラ(制御入力算出手段)
206 適応外乱オブザーバ(外乱推定値算出手段)
211 目標バルブリフト算出部(目標値設定手段)
212 補償要素(外乱補償値記憶手段、外乱補償値選択手段)
213 2自由度スライディングモードコントローラ(制御入力算出手段)
215 DSMコントローラ(制御入力算出手段)
216 適応外乱オブザーバ(外乱推定値算出手段)
221 目標圧縮比算出部(目標値設定手段)
222 補償要素(外乱補償値記憶手段、外乱補償値選択手段)
223 2自由度スライディングモードコントローラ(制御入力算出手段)
225 DSMコントローラ(制御入力算出手段)
226 適応外乱オブザーバ(外乱推定値算出手段)
301 目標カム位相算出部(目標値設定手段)
302 補償要素(外乱補償値記憶手段、外乱補償値選択手段)
303 2自由度スライディングモードコントローラ(制御入力算出手段)
305 DSMコントローラ(制御入力算出手段)
307 部分パラメータ同定器(モデルパラメータ同定手段、振幅補正値算出手段)
311 目標バルブリフト算出部(目標値設定手段)
312 補償要素(外乱補償値記憶手段、外乱補償値選択手段)
313 2自由度スライディングモードコントローラ(制御入力算出手段)
315 DSMコントローラ(制御入力算出手段)
317 部分パラメータ同定器(モデルパラメータ同定手段、振幅補正値算出手段)
321 目標圧縮比算出部(目標値設定手段)
322 補償要素(外乱補償値記憶手段、外乱補償値選択手段)
323 2自由度スライディングモードコントローラ(制御入力算出手段)
325 DSMコントローラ(制御入力算出手段)
327 部分パラメータ同定器(モデルパラメータ同定手段、振幅補正値算出手段)
Cain カム位相(制御対象の出力)
Cain_cmd 目標カム位相(目標値)
Ucain 位相制御入力(制御入力)
C_crk クランク角カウンタの計数値
Rcyc_cin カム位相制御用の外乱補償値
Liftin バルブリフト(制御対象の出力)
Liftin_cmd 目標バルブリフト(目標値)
Uliftin リフト制御入力(制御入力)
Rcyc_lin バルブリフト制御用の外乱補償値
Cr 圧縮比(制御対象の出力)
Cr_cmd 目標圧縮比(目標値)
Ucr 圧縮比制御入力(制御入力)
Rcyc_cr 圧縮比制御用の外乱補償値
c1 外乱推定値
d1,d1',d1'' 外乱補償値ゲイン(振幅補正値)

Claims (9)

  1. 振幅が周期的に変化する周期的外乱が加えられる制御対象の出力を制御入力により制御する制御装置であって、
    計数値を、前記周期的外乱の周期の1/n(nは2以上の整数)に相当する所定周期で所定の一定値分が変化するように計数する計数手段と、
    前記周期的外乱を補償するための、当該周期的外乱の振幅変化の予測結果に応じ、前記計数値に対応して予め設定された複数の外乱補償値を記憶する外乱補償値記憶手段と、
    前記所定周期ごとの選択タイミングで、前記記憶されている複数の外乱補償値から当該選択タイミングにおける前記計数値に対応する1つを選択する外乱補償値選択手段と、
    前記制御入力を、前記選択された外乱補償値に応じて、所定の制御アルゴリズムにより算出する制御入力算出手段と、
    を備えることを特徴とする制御装置。
  2. 振幅が周期的に変化する周期的外乱が加えられる制御対象の出力を制御入力により制御する制御装置であって、
    計数値を、前記周期的外乱の周期の1/n(nは2以上の整数)に相当する所定周期で所定の一定値分が変化するように計数する計数手段と、
    前記周期的外乱を補償するための、当該周期的外乱の振幅変化の予測結果に応じ、前記計数値に対応して予め設定された複数の外乱補償値を記憶する外乱補償値記憶手段と、
    前記所定周期ごとの選択タイミングで、前記記憶されている複数の外乱補償値から当該選択タイミングにおける前記計数値に対応する1つを選択する外乱補償値選択手段と、
    前記制御対象における外乱およびモデル化誤差を補償するための外乱推定値を、当該外乱推定値と前記制御入力と前記制御対象の出力との関係を定義したモデルに基づく所定の推定アルゴリズムにより算出する外乱推定値算出手段と、
    前記制御入力を、前記選択された外乱補償値および前記算出された外乱推定値に応じて、所定の制御アルゴリズムにより算出する制御入力算出手段と、
    を備えることを特徴とする制御装置。
  3. 振幅が周期的に変化する周期的外乱が加えられる制御対象の出力を制御入力により制御する制御装置であって、
    計数値を、前記周期的外乱の周期の1/n(nは2以上の整数)に相当する所定周期で所定の一定値分が変化するように計数する計数手段と、
    前記周期的外乱を補償するための、当該周期的外乱の振幅変化の予測結果に応じ、前記計数値に対応して予め設定された複数の外乱補償値を記憶する外乱補償値記憶手段と、
    前記所定周期ごとの選択タイミングで、前記記憶されている複数の外乱補償値から当該選択タイミングにおける前記計数値に対応する1つを選択する外乱補償値選択手段と、
    前記外乱補償値と前記制御入力と前記制御対象の出力との関係を定義したモデルのモデルパラメータを、所定の同定アルゴリズムにより同定するモデルパラメータ同定手段と、
    前記制御入力を、前記同定されたモデルパラメータおよび前記選択された外乱補償値に応じて、前記モデルに基づく所定の制御アルゴリズムを含む所定のアルゴリズムにより算出する制御入力算出手段と、
    を備えることを特徴とする制御装置。
  4. 振幅が周期的に変化する周期的外乱が加えられる制御対象の出力を制御入力により制御する制御装置であって、
    計数値を、前記周期的外乱の周期の1/n(nは2以上の整数)に相当する所定周期で所定の一定値分が変化するように計数する計数手段と、
    前記周期的外乱を補償するための、当該周期的外乱の振幅変化の予測結果に応じ、前記計数値に対応して予め設定された複数の外乱補償値を記憶する外乱補償値記憶手段と、
    前記所定周期ごとの選択タイミングで、前記記憶されている複数の外乱補償値から当該選択タイミングにおける前記計数値に対応する1つを選択する外乱補償値選択手段と、
    前記外乱補償値の振幅を補正するための振幅補正値を、当該振幅補正値と、前記外乱補償値と、前記制御入力と、前記制御対象の出力との関係を定義したモデルに基づく所定のアルゴリズムにより算出する振幅補正値算出手段と、
    前記制御入力を、当該算出された振幅補正値および前記選択された外乱補償値に応じて、所定の制御アルゴリズムにより算出する制御入力算出手段と、
    を備えることを特徴とする制御装置。
  5. 前記制御対象の出力の目標値を設定する目標値設定手段をさらに備え、
    前記所定の制御アルゴリズムは、前記制御対象の出力を前記目標値に収束させるための応答指定型制御アルゴリズムを含むことを特徴とする請求項1ないし4のいずれかに記載の制御装置。
  6. 前記制御対象の出力の目標値を設定する目標値設定手段をさらに備え、
    前記所定の制御アルゴリズムは、前記制御対象の出力を前記目標値に収束させるための、目標値フィルタ型の2自由度応答指定型制御アルゴリズムを含むことを特徴とする請求項1ないし4のいずれかに記載の制御装置。
  7. 前記制御対象は、内燃機関の吸気カムシャフトおよび排気カムシャフトの少なくとも一方の、クランクシャフトに対する位相であるカム位相を変更する可変カム位相機構を含み、
    前記制御対象の出力は、前記可変カム位相機構により変更される前記カム位相であり、
    前記制御入力は、前記可変カム位相機構に入力されることを特徴とする請求項1ないし6のいずれかに記載の制御装置。
  8. 前記制御対象は、内燃機関の吸気弁および排気弁の少なくとも一方のリフトであるバルブリフトを変更する可変バルブリフト機構を含み、
    前記制御対象の出力は、前記可変バルブリフト機構により変更される前記バルブリフトであり、
    前記制御入力は、前記可変バルブリフト機構に入力されることを特徴とする請求項1ないし6のいずれかに記載の制御装置。
  9. 前記制御対象は、内燃機関の圧縮比を変更する可変圧縮比機構を含み、
    前記制御対象の出力は、前記可変圧縮比機構により変更される前記圧縮比であり、
    前記制御入力は、前記可変圧縮比機構に入力されることを特徴とする請求項1ないし6のいずれかに記載の制御装置。
JP2004092563A 2004-03-26 2004-03-26 制御装置 Expired - Fee Related JP4326386B2 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2004092563A JP4326386B2 (ja) 2004-03-26 2004-03-26 制御装置
DE602005000270T DE602005000270T2 (de) 2004-03-26 2005-03-24 Regelungssystem
US11/087,674 US7188020B2 (en) 2004-03-26 2005-03-24 Control system
EP05006642A EP1580406B1 (en) 2004-03-26 2005-03-24 Control system
US11/700,123 US7318018B2 (en) 2004-03-26 2007-01-31 Control system
US11/984,744 US7643930B2 (en) 2004-03-26 2007-11-21 Control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004092563A JP4326386B2 (ja) 2004-03-26 2004-03-26 制御装置

Publications (2)

Publication Number Publication Date
JP2005273634A JP2005273634A (ja) 2005-10-06
JP4326386B2 true JP4326386B2 (ja) 2009-09-02

Family

ID=34858511

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004092563A Expired - Fee Related JP4326386B2 (ja) 2004-03-26 2004-03-26 制御装置

Country Status (4)

Country Link
US (3) US7188020B2 (ja)
EP (1) EP1580406B1 (ja)
JP (1) JP4326386B2 (ja)
DE (1) DE602005000270T2 (ja)

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4326386B2 (ja) * 2004-03-26 2009-09-02 本田技研工業株式会社 制御装置
JP4443985B2 (ja) * 2004-04-07 2010-03-31 本田技研工業株式会社 制御装置
DE102004046874A1 (de) * 2004-09-28 2006-04-13 Robert Bosch Gmbh Verfahren zum Betreiben eines Verwaltungssystems von Funktionsmodulen
JP4404030B2 (ja) * 2004-10-07 2010-01-27 トヨタ自動車株式会社 内燃機関の制御装置および制御方法
JP4271646B2 (ja) * 2004-10-21 2009-06-03 本田技研工業株式会社 内燃機関の制御装置
JP4364777B2 (ja) * 2004-12-02 2009-11-18 本田技研工業株式会社 内燃機関の空燃比制御装置
JP4486901B2 (ja) * 2005-02-23 2010-06-23 本田技研工業株式会社 制御装置
JP4472588B2 (ja) * 2005-06-23 2010-06-02 日立オートモティブシステムズ株式会社 内燃機関の気筒判別装置
DE102005048048B4 (de) * 2005-10-07 2018-10-04 Robert Bosch Gmbh Verfahren zum Betreiben einer Brennkraftmaschine
JP4275143B2 (ja) * 2006-04-11 2009-06-10 本田技研工業株式会社 内燃機関の点火時期制御装置
DE102006032719A1 (de) * 2006-07-14 2008-01-17 Daimler Ag Verfahren zum Betrieb eines Otto-Motors
US7607415B2 (en) * 2006-10-03 2009-10-27 Gm Global Technology Operations, Inc. Method of crank signal disturbance compensation
JP5012075B2 (ja) 2007-02-15 2012-08-29 横河電機株式会社 プロセス制御装置
US7966869B2 (en) * 2007-07-06 2011-06-28 Hitachi, Ltd. Apparatus and method for detecting cam phase of engine
JP5228450B2 (ja) * 2007-11-16 2013-07-03 日産自動車株式会社 内燃機関の運転制御装置及び運転制御方法
JP4430100B2 (ja) * 2007-12-25 2010-03-10 本田技研工業株式会社 制御装置
FR2956699B1 (fr) * 2010-02-24 2012-07-27 Peugeot Citroen Automobiles Sa Estimation de la pression d'echappement d'un vehicule
US8833324B2 (en) 2010-10-01 2014-09-16 Cummins Inc. Inertia assisted engine cranking
US8549838B2 (en) 2010-10-19 2013-10-08 Cummins Inc. System, method, and apparatus for enhancing aftertreatment regeneration in a hybrid power system
FI124121B (fi) * 2010-12-01 2014-03-31 Wärtsilä Finland Oy Polttomoottorin ohjausmenetelmä ja polttomoottori
US8833496B2 (en) 2010-12-20 2014-09-16 Cummins Inc. System, method, and apparatus for battery pack thermal management
US8742701B2 (en) 2010-12-20 2014-06-03 Cummins Inc. System, method, and apparatus for integrated hybrid power system thermal management
US8473177B2 (en) 2010-12-31 2013-06-25 Cummins, Inc. Apparatuses, methods, and systems for thermal management of hybrid vehicle SCR aftertreatment
US9043060B2 (en) 2010-12-31 2015-05-26 Cummins Inc. Methods, systems, and apparatuses for driveline load management
US9096207B2 (en) 2010-12-31 2015-08-04 Cummins Inc. Hybrid vehicle powertrain cooling system
EP2663480A4 (en) 2011-01-13 2016-10-26 Cummins Inc SYSTEM, METHOD AND DEVICE FOR CONTROLLING THE OUTPUT POWER DISTRIBUTION IN A HYBRID DRIVE TRAIN
JP2013117172A (ja) * 2011-12-01 2013-06-13 Toyota Motor Corp 火花点火式内燃機関
RU2618146C1 (ru) * 2013-04-23 2017-05-02 Ниссан Мотор Ко., Лтд. Устройство управления двигателем внутреннего сгорания и способ управления
EP2639657B1 (de) * 2013-04-24 2018-04-04 MOOG GmbH Verzögerungsminimierte Erfassung einer Hilfsregelgröße
US9885292B2 (en) * 2014-06-27 2018-02-06 Nissan Motor Co., Ltd. Control device for compression ratio variable internal combustion engine
EP2988181B1 (de) 2014-08-19 2019-07-03 Siemens Aktiengesellschaft Regeleinrichtung mit lernfähiger Fehlerkompensation
US10697392B2 (en) * 2015-12-15 2020-06-30 Hitachi Automotive Systems, Ltd. Vehicle control apparatus
US10415492B2 (en) * 2016-01-29 2019-09-17 Garrett Transportation I Inc. Engine system with inferential sensor
US10378459B2 (en) * 2017-03-23 2019-08-13 Ford Global Technologies, Llc Method and system for engine control
CN106958550B (zh) * 2017-05-18 2018-04-20 重庆交通大学 Vcr发动机曲轴连杆液压控制系统及其控制方法
KR102406127B1 (ko) * 2017-10-16 2022-06-07 현대자동차 주식회사 가변 압축비 엔진
CN110134014B (zh) * 2019-05-09 2022-05-03 浙江工业大学 周期伺服系统幂次吸引重复控制的等效扰动补偿方法
DE102019135344A1 (de) * 2019-12-20 2021-06-24 Bayerische Motoren Werke Aktiengesellschaft Verfahren zum Betreiben einer Brennkraftmaschinenanordnung eines Fahrzeugs
CN113202628A (zh) * 2021-06-02 2021-08-03 北京理工大学 一种两级式低压缩循环的实现方法、装置及检测方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4989686A (en) * 1988-07-07 1991-02-05 Borg-Warner Automotive, Inc. System for controlling torque transmission in a four wheel drive vehicle
US5289805A (en) * 1992-03-05 1994-03-01 Borg-Warner Automotive Transmission & Engine Components Corporation Self-calibrating variable camshaft timing system
US5402400A (en) * 1992-09-04 1995-03-28 Hitachi, Ltd. Method and apparatus for eliminating external disturbances in a disk drive device
JPH06280516A (ja) 1993-03-25 1994-10-04 Nippondenso Co Ltd 内燃機関における弁動作タイミング調整装置
DE19504847B4 (de) * 1994-02-23 2006-04-27 Luk Gs Verwaltungs Kg Überwachungsverfahren für ein Drehmoment-Übertragungssystem eines Kraftfahrzeugs
US5890992A (en) * 1994-02-23 1999-04-06 Luk Getriebe-Systeme Gmbh Method of and apparatus for regulating the transmission of torque in power trains
US5421302A (en) * 1994-02-28 1995-06-06 General Motors Corporation Engine speed control state prediction
US5811949A (en) * 1997-09-25 1998-09-22 Allen Bradley Company, Llc Turn-on delay compensator for motor control
JP2001132482A (ja) * 1999-11-01 2001-05-15 Unisia Jecs Corp 内燃機関のバルブタイミング制御装置
SE519192C2 (sv) * 2000-05-17 2003-01-28 Mecel Ab Metod vid motorstyrning
KR100677097B1 (ko) * 2000-08-26 2007-02-05 삼성전자주식회사 광 기록/재생 장치에서 학습 제어를 이용한 외란 보상장치 및 방법과, 그를 이용한 광 기록 매체 드라이브 서보시스템
JP3602811B2 (ja) * 2001-06-19 2004-12-15 本田技研工業株式会社 プラントの制御装置
KR100585465B1 (ko) * 2001-06-13 2006-06-02 에이에스엠엘 네델란즈 비.브이. 리소그래피 투영장치, 디바이스제조방법, 이것에 의하여제조된 디바이스 및 측정방법
JP4145520B2 (ja) 2001-11-19 2008-09-03 本田技研工業株式会社 内燃機関のカム位相制御装置
US6586914B2 (en) * 2001-11-19 2003-07-01 General Electric Company Wound field synchronous machine control system and method
JP4326386B2 (ja) * 2004-03-26 2009-09-02 本田技研工業株式会社 制御装置

Also Published As

Publication number Publication date
US7188020B2 (en) 2007-03-06
EP1580406A1 (en) 2005-09-28
DE602005000270D1 (de) 2007-01-04
US20070129875A1 (en) 2007-06-07
US20080319638A1 (en) 2008-12-25
US7643930B2 (en) 2010-01-05
JP2005273634A (ja) 2005-10-06
US7318018B2 (en) 2008-01-08
EP1580406B1 (en) 2006-11-22
DE602005000270T2 (de) 2007-03-15
US20050216179A1 (en) 2005-09-29

Similar Documents

Publication Publication Date Title
JP4326386B2 (ja) 制御装置
CA2606408C (en) Control apparatus and control method
JP4082596B2 (ja) 制御装置
JP4188158B2 (ja) 内燃機関の制御装置
JP4209435B2 (ja) 制御装置
JP4500595B2 (ja) 内燃機関の制御装置
EP1734239B1 (en) Control apparatus for internal combustion engine
JP4145520B2 (ja) 内燃機関のカム位相制御装置
WO2005098554A1 (ja) 制御装置
JP4351966B2 (ja) 制御装置
JP4263149B2 (ja) 内燃機関のカム位相制御装置
US7143728B1 (en) Control apparatus
JP4598474B2 (ja) プラントの制御装置
JP4486901B2 (ja) 制御装置
JP4082595B2 (ja) 内燃機関の吸入空気量制御装置
JP4263134B2 (ja) 可動部駆動機構の制御装置
JP4456830B2 (ja) 内燃機関の吸入空気量制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090512

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090609

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120619

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees