[go: up one dir, main page]

JP4323286B2 - 末端水酸化オレフィン重合体の製造方法 - Google Patents

末端水酸化オレフィン重合体の製造方法 Download PDF

Info

Publication number
JP4323286B2
JP4323286B2 JP2003369807A JP2003369807A JP4323286B2 JP 4323286 B2 JP4323286 B2 JP 4323286B2 JP 2003369807 A JP2003369807 A JP 2003369807A JP 2003369807 A JP2003369807 A JP 2003369807A JP 4323286 B2 JP4323286 B2 JP 4323286B2
Authority
JP
Japan
Prior art keywords
compound
magnesium
group
dimethoxypropane
olefin polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003369807A
Other languages
English (en)
Other versions
JP2005132936A (ja
Inventor
信夫 川原
古城  真一
真吾 松尾
英之 金子
智昭 松木
典夫 柏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP2003369807A priority Critical patent/JP4323286B2/ja
Publication of JP2005132936A publication Critical patent/JP2005132936A/ja
Application granted granted Critical
Publication of JP4323286B2 publication Critical patent/JP4323286B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

本発明は末端水酸化オレフィン重合体の製造方法に関し、さらに詳しくは、マグネシウム担持型チタン触媒系を用いて得られるオレフィン重合体と、ハロゲン化エポキシ化合物を反応させて得られる末端水酸化オレフィン重合体の製造方法に関する。
ポリオレフィンは、加工性、耐薬品性、電気的性質、機械的性質などに優れているため、押出成形品、射出成形品、中空成形品、フィルム、シートなどに加工され、各種用途に用いられている。しかしながらポリオレフィンは、分子中に極性基を持たない、いわゆる無極性樹脂であるため、金属をはじめ種々の極性物質との親和性に乏しく、極性物質との接着または極性樹脂とのブレンドが困難であった。また、ポリオレフィンからなる成形体の表面は疎水性であり、防曇性、帯電防止性が必要な用途では、低分子量の界面活性剤などを配合する必要があり、界面活性剤のブリードアウトによる表面汚れなどの問題が起こる場合もあった。
こうした問題を解決するため、ポリオレフィンに極性基を導入することが行なわれてきた。極性化合物(極性オレフィン)を導入する場合、ラジカル開始剤の存在下にポリオレフィンと極性オレフィンを反応させる方法が一般的に行われているが、このような方法によって得られた極性基含有オレフィン重合体には、ラジカル重合性極性オレフィンの単独重合体や未反応のポリオレフィンが含まれる場合が多く、導入位置も不均一なものである。さらに、ポリマー鎖の架橋反応や分解反応を伴うため、ポリオレフィンの物性が大きく変化する場合が多かった。上記のような架橋・分解反応を伴わずにポリオレフィンに極性基を導入する方法について、Polymer Journal (第31巻、332頁、1999年)には、末端に不飽和結合を有するポリオレフィンにアルミニウム化合物を付加させた後に酸素で酸化することによりポリオレフィン末端に水酸基を導入する方法が記載されている。特開2002−155109号公報、特開2002−145944号公報等には、水酸基含有オレフィン化合物を有機アルミニウム化合物で処理したアルミ変性モノマーをオレフィン重合体の製造に用いて、水酸基含有オレフィン重合体を得る方法が開示されている。しかしこれらの方法では、ポリオレフィン末端の水酸基への変換効率が悪く、また単位触媒あたりの生産性が低いなどの問題があり、末端水酸化オレフィン重合体を効率良く製造できる方法の開発が望まれている。
特開2002-155109号公報 特開2002-145944号公報 Polymer Journal, 第31巻, 332頁,1999年)
本発明者らはこのような従来技術のもと検討した結果、マグネシウム担持型チタン触媒系を用いて得られるオレフィン重合体と、ハロゲン化エポキシ化合物を反応させれば末端水酸化オレフィン重合体を効率良く製造できる方法を見出した。
本発明は、マグネシウム担持型チタン触媒系を用いて、炭素原子数2〜20のオレフィンから選ばれる少なくとも1種以上のオレフィンに由来する繰り返し単位を主たる構成単位として得られるオレフィン重合体と、ハロゲン化エポキシ化合物を反応させた後、酸処理して得られることを特徴とする末端水酸化オレフィン重合体の製造方法である。
末端水酸化オレフィン重合体を効率良く製造できる。
以下、本発明に係るに末端水酸化オレフィン重合体の製造方法ついて具体的に説明する。本発明に係る末端水酸化オレフィン重合体の製造方法は、マグネシウム担持型チタン触媒系を用いて、炭素原子数2〜20のオレフィンから選ばれる少なくとも1種以上のオレフィンに由来する繰り返し単位を主たる構成単位として得られるオレフィン重合体と、ハロゲン化エポキシ化合物を反応させて得られることを特徴とする。
本発明に用いられるオレフィン重合体は、炭素原子数2〜20のオレフィンから選ばれる少なくとも1種以上のオレフィンに由来する繰り返し単位を主たる構成単位とするオレフィン重合体である。
炭素原子数2〜20のオレフィンとしては、例えば直鎖状または分岐状のα-オレフィン、環状オレフィン、芳香族ビニル化合物、共役ジエン、非共役ポリエンなどが挙げられる。
直鎖状または分岐状のα-オレフィンとして具体的には、例えばエチレン、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、1-オクテン、1-デセン、1-ドデセン、1-テトラデセン、1-ヘキサデセン、1-オクタデセン、1-エイコセンなどの炭素原子数2〜20、好ましくは2〜10の直鎖状のα-オレフィン;例えば3-メチル-1-ブテン、4-メチル-1-ペンテン、3-メチル-1-ペンテン、3-エチル-1-ペンテン、4,4-ジメチル-1-ペンテン、4-メチル-1-ヘキセン、4,4-ジメチル-1-ヘキセン、4-エチル-1-ヘキセン、3-エチル-1-ヘキセンなどの好ましくは5〜20、より好ましくは5〜10の分岐状のα-オレフィンが挙げられる。
環状オレフィンとしては、シクロペンテン、シクロヘプテン、ノルボルネン、5-メチル-2-ノルボルネン、テトラシクロドデセン、ビニルシクロヘキサンなどの炭素原子数3〜20、好ましくは5〜15のものが挙げられる。
芳香族ビニル化合物としては、例えばスチレン、およびα-メチルスチレン、o-メチルスチレン、m-メチルスチレン、p-メチルスチレン、o,p-ジメチルスチレン、o-エチルスチレン、m-エチルスチレン、p-エチルスチレンなどのモノまたはポリアルキルスチレンが挙げられる。
共役ジエンとしては、例えば1,3-ブタジエン、イソプレン、クロロプレン、1,3-ペンタジエン、2,3-ジメチルブタジエン、4-メチル-1,3-ペンタジエン、1,3-ペンタジエン、1,3-ヘキサジエン、1,3-オクタジエンなどの炭素原子数4〜20、好ましくは4〜10のものが挙げられる。
非共役ポリエンとしては、例えば1,4-ペンタジエン、1,4-ヘキサジエン、1,5-ヘキサジエン、1,4-オクタジエン、1,5-オクタジエン、1,6-オクタジエン、1,7-オクタジエン、2-メチル-1,5-ヘキサジエン、6-メチル-1,5-ヘプタジエン、7-メチル-1,6-オクタジエン、4-エチリデン-8-メチル-1,7-ノナジエン、4,8-ジメチル-1,4,8-デカトリエン(DMDT)、ジシクロペンタジエン、シクロヘキサジエン、ジシクロオクタジエン、メチレンノルボルネン、5-ビニルノルボルネン、5-エチリデン-2-ノルボルネン、5-メチレン-2-ノルボルネン、5-イソプロピリデン-2-ノルボルネン、6-クロロメチル-5-イソプロペンル-2-ノルボルネン、2,3-ジイソプロピリデン-5-ノルボルネン、2-エチリデン-3-イソプロピリデン-5-ノルボルネン、2-プロペニル-2,2-ノルボルナジエンなどの炭素原子数5〜20、好ましくは5〜10のものが挙げられる。
本発明に用いられるオレフィン重合体は、これらのオレフィンからなる重合体であるが、好ましくはエチレン、またはプロピレンの単独重合体、エチレンと炭素原子数3〜20のオレフィンから選ばれる少なくとも1種のオレフィンから得られる共重合体、プロピレンとエチレンおよび/または炭素原子数4〜20のオレフィンから選ばれる少なくとも1種のオレフィンから得られる共重合体である。
次に、本発明に用いるオレフィン重合体の製造方法について説明する。まず、オレフィン重合体の製造に用いられるオレフィン重合触媒について説明する。
マグネシウム担持型チタン触媒系としてはチタン、マグネシウム、ハロゲンを必須とする固体状チタン触媒成分(I)、有機金属化合物触媒成分(II)、および、必要に応じて電子供与体(III)からなる触媒系が好ましい。
[(I)固体状チタン触媒成分]
固体状チタン触媒成分(I)は、下記のようなマグネシウム化合物、チタン化合物および電子供与体を接触させることにより調製することができる。
(マグネシウム化合物)
マグネシウム化合物として還元能を有するマグネシウム化合物および還元能を有しないマグネシウム化合物が挙げられる。
還元能を有するマグネシウム化合物としては、例えば下式で表される有機マグネシウム化合物が挙げられる。
nMgR2-n
式中、nは0≦n<2であり、Rは水素、炭素原子数1〜20のアルキル基、アリール基またはシクロアルキル基であり、nが0である場合2個のRは同一でも異なっていてもよい。Xはハロゲンである。
このような還元能を有する有機マグネシウム化合物として具体的には、ジメチルマグネシウム、ジエチルマグネシウム、ジプロピルマグネシウム、ジブチルマグネシウム、ジアミルマグネシウム、ジヘキシルマグネシウム、ジデシルマグネシウム、オクチルブチルマグネシウム、エチルブチルマグネシウムなどのアルキルマグネシウム化合物;エチル塩化マグネシウム、プロピル塩化マグネシウム、ブチル塩化マグネシウム、ヘキシル塩化マグネシウム、アミル塩化マグネシウムなどのアルキルマグネシウムハライド;ブチルエトキシマグネシウム、エチルブトキシマグネシウム、オクチルブトキシマグネシウムなどのアルキルマグネシウムアルコキシド、ブチルマグネシウムハイドライド、水素化マグネシウムなどが挙げられる。
その他、金属マグネシウムを用いることもできる。
還元能を有しないマグネシウム化合物として具体的には、塩化マグネシウム、臭化マグネシウム、ヨウ化マグネシウム、フッ化マグネシウムなどのハロゲン化マグネシウム;メトキシ塩化マグネシウム、エトキシ塩化マグネシウム、イソプロポキシ塩化マグネシウム、ブトキシ塩化マグネシウム、オクトキシ塩化マグネシウムなどのアルコキシマグネシウムハライド;フェノキシ塩化マグネシウム、メチルフェノキシ塩化マグネシウムなどのアリロキシマグネシウムハライド;ジエトキシマグネシウム、ジイソプロポキシマグネシウム、ジブトキシマグネシウム、ジ-n-オクトキシマグネシウム、ジ-2-エチルヘキソキシマグネシウム、メトキシエトキシマグネシウムなどのジアルコキシマグネシウム;ジフェノキシマグネシウム、ジ-メチルフェノキシマグネシウム、フェノキシメチルフェノキシマグネシウムなどのジアリロキシマグネシウム、ラウリン酸マグネシウム、ステアリン酸マグネシウムなどのマグネシウムのカルボン酸塩などが挙げられる。
これら還元能を有しないマグネシウム化合物は、上述した還元能を有するマグネシウム化合物から誘導した化合物、あるいは触媒成分の調製時に誘導した化合物であってもよい。還元能を有しないマグネシウム化合物を、還元能を有するマグネシウム化合物から誘導するには、例えば還元能を有するマグネシウム化合物を、ポリシロキサン化合物、ハロゲン含有シラン化合物、ハロゲン含有アルミニウム化合物、エステル、アルコール、ハロゲン含有化合物、あるいはOH基や活性な炭素−酸素結合を有する化合物と接触させればよい。
なお上記の還元能を有するマグネシウム化合物および還元能を有しないマグネシウム化合物は、アルミニウム、亜鉛、ホウ素、ベリリウム、ナトリウム、カリウムなどの他の金属との錯化合物、複化合物を形成していてもよく、あるいは他の金属化合物との混合物であってもよい。さらに、マグネシウム化合物は単独であってもよく、上記の化合物を2種以上組み合わせてもよい。
上記のようなマグネシウム化合物のうち、マグネシウム化合物が固体である場合には、電子供与体(i)を用いて液体状態にすることができる。この電子供与体(i)としては、アルコール類、フェノール類、ケトン類、アルデヒド類、エーテル類、アミン類、ピリジン類、金属酸エステル類などが挙げられ、具体的には、メタノール、エタノール、プロパノール、ブタノール、ペンタノール、ヘキサノール、2-エチルヘキサノール、オクタノール、ドデカノール、オクタデシルアルコール、オレイルアルコール、ベンジルアルコール、フェニルエチルアルコール、クミルアルコール、イソプロピルアルコール、イソプロピルベンジルアルコールなどの炭素原子数1〜18のアルコール類;トリクロロメタノール、トリクロロエタノール、トリクロロヘキサノールなどの炭素原子数1〜18のハロゲン含有アルコール類;2-プロポキシエタノール、2-ブトキシエタノール、2-エトキシプロパノール、3-エトキシプロパノール、1-メトキシブタノール、2-メトキシブタノール、2-エトキシブタノールなどのアルコキシアルコール類;フェノール、クレゾール、キシレノール、エチルフェノール、プロピルフェノール、ノニルフェノール、クミルフェノール、ナフトールなどの低級アルキル基を有してもよい炭素原子数6〜20のフェノール類;アセトン、メチルエチルケトン、メチルイソブチルケトン、アセトフェノン、ベンゾフェノン、ベンゾキノンなどの炭素原子数3〜15のケトン類;アセトアルデヒド、プロピオンアルデヒド、オクチルアルデヒド、ベンズアルデヒド、トルアルデヒド、ナフトアルデヒドなどの炭素原子数2〜15のアルデヒド類;メチルエーテル、エチルエーテル、イソプロピルエーテル、ブチルエーテル、アミルエーテル、テトラヒドロフラン、アニソール、ジフェニルエーテルなどの炭素原子数2〜20のエーテル類;トリメチルアミン、トリエチルアミン、トリブチルアミン、トリベンジルアミン、テトラメチルエチレンジアミンなどのアミン類;ピリジン、メチルピリジン、エチルピリジン、ジメチルピリジンなどのピリジン類;テトラエトキシチタン、テトラ-n-プロポキシチタン、テトラ-i-プロポキシチタン、テトラブトキシチタン、テトラヘキソキシチタン、テトラブトキシジルコニウム、テトラエトキシジルコニウムなどの金属酸エステル類などが挙げられる。
これらは単独で用いても2種以上組み合わせて用いてもよい。
これらのうちでも、アルコール類、アルコキシアルコール類、金属酸エステル類が特に好ましく用いられる。固体状マグネシウム化合物の電子供与体(i)による可溶化反応は、固体状マグネシウム化合物と電子供与体(i)とを接触させ、必要に応じて加熱する方法が一般的である。この際、接触温度は0〜200℃、好ましくは20〜180℃、より好ましくは50〜150℃である。
また上記可溶化反応では、炭化水素溶媒等を共存させてもよい。このような炭化水素溶媒として具体的には、ペンタン、ヘキサン、ヘプタン、オクタン、デカン、ドデカン、テトラデカン、灯油などの脂肪族炭化水素類、シクロペンタン、メチルシクロペンタン、シクロヘキサン、メチルシクロヘキサン、シクロオクタン、シクロヘキセンなどの脂環族炭化水素類、ベンゼン、トルエン、キシレンなどの芳香族炭化水素、ジクロロエタン、ジクロロプロパン、トリクロロエチレン、クロロベンゼン、2,4-ジクロロトルエンなどのハロゲン化炭化水素類などが用いられる。
固体状チタン触媒成分(I)の調製に用いられるマグネシウム化合物としては、上述した以外にも多くのマグネシウム化合物が使用できるが、最終的に得られる固体状チタン触媒成分(I)中において、ハロゲン含有マグネシウム化合物の形で存在することが好ましく、したがってハロゲンを含まないマグネシウム化合物を用いる場合には、調製の途中でハロゲン含有化合物と接触反応させることが好ましい。
これらの中でも、還元能を有しないマグネシウム化合物を含むことが好ましく、特にハロゲン含有マグネシウム化合物が好ましく、さらにこれらの中でも塩化マグネシウム、アルコキシ塩化マグネシウム、アリーロキシ塩化マグネシウムを含むことが好ましい。
(チタン化合物)
チタン化合物としては、4価のチタン化合物が好ましく用いられる。このような四価のチタン化合物としては、次式で示される化合物が挙げられる。
Ti(OR)g4-g
式中、Rは炭化水素基であり、Xはハロゲン原子であり、0≦g≦4である。このような化合物として具体的には、TiCl4、TiBr4、TiI4 などのテトラハロゲン化チタン;Ti(OCH3)Cl3、Ti(OC25)Cl3、Ti(O n-C49)Cl3、Ti(OC25)Br3、Ti(O-iso-C49)Br3 などのトリハロゲン化アルコキシチタン;Ti(OCH3)2Cl2、Ti(OC25)2Cl2 Ti(On-C49)2Cl2、Ti(OC25)2Br2 などのジハロゲン化ジアルコキシチタン;Ti(OCH3)3Cl、Ti(OC25)3Cl、Ti(O n-C49)3Cl、Ti(OC25)3Br などのモノハロゲン化トリアルコキシチタン;Ti(OCH3)4、Ti(OC25)4、Ti(O n-C49)4、Ti(O iso-C49)4、Ti(O 2-エチルヘキシル)4 などのテトラアルコキシチタンなどが挙げられる。
これらの中でもテトラハロゲン化チタンが好ましく、特に四塩化チタンが好ましい。これらのチタン化合物は単独で用いてもよく、2種以上を組み合わせて用いてもよい。またチタン化合物は、芳香族炭化水素とともに用いたり、あるいは炭化水素、ハロゲン化炭化水素で希釈して用いたりしてもよい。
((ii)電子供与体)
固体状チタン触媒成分(I)を調製する際には電子供与体(ii)を用いることが好ましく、電子供与体(ii)としては、下記のような酸ハライド類、酸アミド類、ニトリル類、酸無水物、有機酸エステル類、ポリエーテル類などが用いられる。
具体的には、アセチルクロリド、ベンゾイルクロリド、トルイル酸クロリド、アニス酸クロリドなどの炭素原子数2〜15の酸ハライド類;酢酸N,N-ジメチルアミド、安息香酸N,N-ジエチルアミド、トルイル酸N,N-ジメチルアミドなどの酸アミド類;アセトニトリル、ベンゾニトリル、トリニトリルなどのニトリル類;無水酢酸、無水フタル酸、無水安息香酸などの酸無水物;ギ酸メチル、酢酸メチル、酢酸エチル、酢酸ビニル、酢酸プロピル、酢酸オクチル、酢酸シクロヘキシル、プロピオン酸エチル、酪酸メチル、吉草酸エチル、クロル酢酸メチル、ジクロル酢酸エチル、メタクリル酸メチル、クロトン酸エチル、シクロヘキサンカルボン酸エチル、安息香酸メチル、安息香酸エチル、安息香酸プロピル、安息香酸ブチル、安息香酸オクチル、安息香酸シクロヘキシル、安息香酸フェニル、安息香酸ベンジル、トルイル酸メチル、トルイル酸エチル、トルイル酸アミル、エチル安息香酸エチル、アニス酸メチル、アニス酸エチル、エトキシ安息香酸エチル、γ-ブチロラクトン、δ-バレロラクトン、クマリン、フタリド、炭酸エチルなどの炭素原子数2〜18の有機酸エステル類が挙げられる。
また有機酸エステル類としては、下記一般式で表される骨格を有する多価カルボン酸エステルを好ましい例として挙げることができる。
Figure 0004323286
(式中、R1は置換または非置換の炭化水素基、R2 、R5 、R6 は水素または置換もしくは非置換の炭化水素基、R3 、R4 は水素または置換もしくは非置換の炭化水素基であり、好ましくはその少なくとも一方は置換または非置換の炭化水素基である。また、R3とR4とは互いに連結されて環状構造を形成していてもよい。炭化水素基R1〜R6が置換されている場合の置換基は、N、O、Sなどの異原子を含み、例えば、C−O−C、COOR、COOH、OH、SO3H、−C−N−C−、NH2 などの基を有する)
このような多価カルボン酸エステルとしては、具体的には、脂肪族ポリカルボン酸エステル、脂環族ポリカルボン酸エステル、芳香族ポリカルボン酸エステル、異節環ポリカルボン酸エステルなどが挙げられる。
上記一般式で表される骨格を有する多価カルボン酸エステルの好ましい具体例としては、コハク酸ジエチル、コハク酸ジブチル、メチルコハク酸ジエチル、メチルコハク酸ジアリール、α-メチルグルタル酸ジイソブチル、β-メチルグルタル酸ジイソプロピル、メチルマロン酸ジイソブチル、エチルマロン酸ジブチル、エチルマロン酸ジエチル、イソプロピルマロン酸ジエチル、イソプロピルマロン酸ジブチル、ブチルマロン酸ジブチル、フェニルマロン酸ジブチル、ジエチルマロン酸ジエチル、ジブチルマロン酸ジブチル、ジブチルマロン酸ジエチル、マレイン酸 n-ブチル、メチルマレイン酸ジブチル、ブチルマレイン酸ジブチル、フマル酸ジ 2-エチルヘキシル、シクロヘキセンカルボン酸ジ n-ヘキシル、ナジック酸ジエチル、テトラヒドロフタル酸ジイソプロピル、フタル酸ジエチル、フタル酸モノエチル、フタル酸ジプロピル、フタル酸ジイソブチル、フタル酸ジイソプロピル、フタル酸エチルイソブチル、フタル酸ジ n-ブチル、フタル酸ジ n-ヘプチル、フタル酸ジ n-オクチル、フタル酸ジ 2-エチルヘキシル、フタル酸ジ(2-メチルペンチル)、フタル酸ジ(3-メチルペンチル)、フタル酸ジ(4-メチルペンチル)、フタル酸ジ(2,3-ジメチルブチル)、フタル酸ジ(3-メチルヘキシル)、フタル酸ジ(4-メチルヘキシル)、フタル酸ジ(5-メチルヘキシル)、フタル酸ジ(3-エチルペンチル)、フタル酸ジ(3,4-ジメチルペンチル)、フタル酸ジ(2,4-ジメチルペンチル)、フタル酸ジ(2-メチルヘキシル)、フタル酸ジ(2-メチルオクチル)、フタル酸ジデシル、フタル酸ジフェニル、これらフタル酸ジエステルの混合物、ナフタレンジカルボン酸ジエチル、ナフタレンジカルボン酸ジブチル、トリメリット酸トリエチル、トリメリット酸トリブチル、3,4-フランジカルボン酸ジブチル、アジピン酸ジエチル、アジピン酸ジブチル、セバシン酸ジオクチル、セバシン酸ジブチルなどが挙げられる。
これらのうち、フタル酸ジエステル類が好ましく用いられる。
さらに電子供与体としては、複数の原子を介して存在する2個以上のエーテル結合を有する化合物(以下「ポリエーテル」ということがある。)が挙げられる。このポリエーテルとしては、エーテル結合間に存在する原子が、炭素、ケイ素、酸素、窒素、リン、ホウ素、イオウまたはこれらから選択される2種以上である化合物などを挙げることができる。このうちエーテル結合間の原子に比較的嵩高い置換基が結合しており、2個以上のエーテル結合間に存在する原子に複数の炭素原子が含まれた化合物が好ましく、例えば下記一般式で示されるポリエーテルが好ましい。
Figure 0004323286
(式中、nは2≦n≦10の整数であり、R1〜R26は炭素、水素、酸素、ハロゲン、窒素、イオウ、リン、ホウ素およびケイ素から選ばれる少なくとも1種の元素を有する置換基であり、任意のR1〜R26、好ましくはR1〜R2nは共同してベンゼン環以外の環を形成していてもよく、主鎖中に炭素以外の原子が含まれていてもよい)
このようなポリエーテル化合物として具体的には、2-(2-エチルヘキシル)-1,3-ジメトキシプロパン、2-イソプロピル-1,3-ジメトキシプロパン、2-ブチル-1,3-ジメトキシプロパン、2-s-ブチル-1,3-ジメトキシプロパン、2-シクロヘキシル-1,3-ジメトキシプロパン、2-フェニル-1,3-ジメトキシプロパン、2-クミル-1,3-ジメトキシプロパン、2-(2-フェニルエチル)-1,3-ジメトキシプロパン、2-(2-シクロヘキシルエチル)-1,3-ジメトキシプロパン、2-(p-クロロフェニル)-1,3-ジメトキシプロパン、2-(ジフェニルメチル)-1,3-ジメトキシプロパン、2-(1-ナフチル)-1,3-ジメトキシプロパン、2-(2-フルオロフェニル)-1,3-ジメトキシプロパン、2-(1-デカヒドロナフチル)-1,3-ジメトキシプロパン、2-(p-t-ブチルフェニル)-1,3-ジメトキシプロパン、2,2-ジシクロヘキシル-1,3-ジメトキシプロパン、2,2-ジエチル-1,3-ジメトキシプロパン、2,2-ジプロピル-1,3-ジメトキシプロパン、2,2-ジブチル-1,3-ジメトキシプロパン、2-メチル-2-プロピル-1,3-ジメトキシプロパン、2-メチル-2-ベンジル-1,3-ジメトキシプロパン、2-メチル-2-エチル-1,3-ジメトキシプロパン、2-メチル-2-イソプロピル-1,3-ジメトキシプロパン、2-メチル-2-フェニル-1,3-ジメトキシプロパン、2-メチル-2-シクロヘキシル-1,3-ジメトキシプロパン、2,2-ビス(p-クロロフェニル)-1,3-ジメトキシプロパン、2,2-ビス(2-シクロヘキシルエチル)-1,3-ジメトキシプロパン、2-メチル-2-イソブチル-1,3-ジメトキシプロパン、2-メチル-2-(2-エチルヘキシル)-1,3-ジメトキシプロパン、2,2-ジイソブチル-1,3-ジメトキシプロパン、2,2-ジフェニル-1,3-ジメトキシプロパン、2,2-ジベンジル-1,3-ジメトキシプロパン、2,2-ビス(シクロヘキシルメチル)-1,3-ジメトキシプロパン、2,2-ジイソブチル-1,3-ジエトキシプロパン、2,2-ジイソブチル-1,3-ジブトキシプロパン、2-イソブチル-2-イソプロピル-1,3-ジメトキシプロパン、2,2-ジ-s-ブチル-1,3-ジメトキシプロパン、2,2-ジ-t-ブチル-1,3-ジメトキシプロパン、2,2-ジネオペンチル-1,3-ジメトキシプロパン、2-イソプロピル-2-イソペンチル-1,3-ジメトキシプロパン、2-フェニル-2-ベンジル-1,3-ジメトキシプロパン、2-シクロヘキシル-2-シクロヘキシルメチル-1,3-ジメトキシプロパン、2,3-ジフェニル-1,4-ジエトキシブタン、2,3-ジシクロヘキシル-1,4-ジエトキシブタン、2,2-ジベンジル-1,4-ジエトキシブタン、2,3-ジシクロヘキシル-1,4-ジエトキシブタン、2,3-ジイソプロピル-1,4-ジエトキシブタン、2,2-ビス(p-メチルフェニル)-1,4-ジメトキシブタン、2,3-ビス(p-クロロフェニル)-1,4-ジメトキシブタン、2,3-ビス(p-フルオロフェニル)-1,4-ジメトキシブタン、2,4-ジフェニル-1,5-ジメトキシペンタン、2,5-ジフェニル-1,5-ジメトキシヘキサン、2,4-ジイソプロピル-1,5-ジメトキシペンタン、2,4-ジイソブチル-1,5-ジメトキシペンタン、2,4-ジイソアミル-1,5-ジメトキシペンタン、3-メトキシメチルテトラヒドロフラン、3-メトキシメチルジオキサン、1,2-ジイソブトキシプロパン、1,2-ジイソブトキシエタン、1,3-ジイソアミロキシエタン、1,3-ジイソアミロキシプロパン、1,3-ジイソネオペンチロキシエタン、1,3-ジネオペンチロキシプロパン、2,2-テトラメチレン-1,3-ジメトキシプロパン、2,2-ペンタメチレン-1,3-ジメトキシプロパン、2,2-ヘキサメチレン-1,3-ジメトキシプロパン、1,2-ビス(メトキシメチル)シクロヘキサン、2,8-ジオキサスピロ[5,5]ウンデカン、3,7-ジオキサビシクロ[3,3,1]ノナン、3,7-ジオキサビシクロ[3,3,0]オクタン、3,3-ジイソブチル-1,5-オキソノナン、6,6-ジイソブチルジオキシヘプタン、1,1-ジメトキシメチルシクロペンタン、1,1-ビス(ジメトキシメチル)シクロヘキサン、1,1-ビス(メトキシメチル)ビシクロ[2,2,1]ヘプタン、1,1-ジメトキシメチルシクロペンタン、2-メチル-2-メトキシメチル-1,3-ジメトキシプロパン、2-シクロヘキシル-2-エトキシメチル-1,3-ジエトキシプロパン、2-シクロヘキシル-2-メトキシメチル-1,3-ジメトキシプロパン、2,2-ジイソブチル-1,3-ジメトキシシクロヘキサン、2-イソプロピル-2-イソアミル-1,3-ジメトキシシクロヘキサン、2-シクロヘキシル-2-メトキシメチル-1,3-ジメトキシシクロヘキサン、2-イソプロピル-2-メトキシメチル-1,3-ジメトキシシクロヘキサン、2-イソブチル-2-メトキシメチル-1,3-ジメトキシシクロヘキサン、2-シクロヘキシル-2-エトキシメチル-1,3-ジエトキシシクロヘキサン、2-シクロヘキシル-2-エトキシメチル-1,3-ジメトキシシクロヘキサン、2-イソプロピル-2-エトキシメチル-1,3-ジエトキシシクロヘキサン、2-イソプロピル-2-エトキシメチル-1,3-ジメトキシシクロヘキサン、2-イソブチル-2-エトキシメチル-1,3-ジエトキシシクロヘキサン、2-イソブチル-2-エトキシメチル-1,3-ジメトキシシクロヘキサンなどが挙げられる。
またポリエーテルとしては、トリス(p-メトキシフェニル)ホスフィン、メチルフェニルビス(メトキシメチル)シラン、ジフェニルビス(メトキシメチル)シラン、メチルシクロヘキシルビス(メトキシメチル)シラン、ジ-t-ブチルビス(メトキシメチル)シラン、シクロヘキシル-t-ブチルビス(メトキシメチル)シラン、i-プロピル-t-ブチルビス(メトキシメチル)シランなどを挙げることができる。
これらのうちでも、2,2-ジイソブチル-1,3-ジメトキシプロパン、2-イソプロピル-2-イソブチル-1,3-ジメトキシプロパン、2-イソプロピル-2-イソペンチル-1,3-ジメトキシプロパン、2,2-ジシクロヘキシル-1,3-ジメトキシプロパン、2,2-ビス(シクロヘキシルメチル)-1,3-ジメトキシプロパンなどが好ましく用いられる。
電子供与体(ii)としては、有機酸エステル類およびポリエーテルが好ましく、フタル酸ジエステル類などの芳香族ジエステル類およびポリエーテルがより好ましく用いられる。上記のような電子供与体は2種以上併用することもできる。また上記に例示されたような電子供与体は、最終的に固体状チタン触媒成分(I)中に含まれていればよい。したがって固体状チタン触媒成分(I)を調製する際には、上記に例示されたような化合物そのものを必ずしも用いなくてもよく、固体状チタン触媒成分(I)を調製する過程でこれらの化合物を生成しうる他の化合物を用いてもよい。この際も、2種以上の電子供与体(ii)が生成するように他の化合物を用いることもできる。
(固体状チタン触媒成分(I)の調製)
上述した化合物から固体状チタン触媒成分(I)を調製する方法としては、特に限定されるものではないが、例えば下記のような方法が挙げられる。なお以下の方法において、有機金属化合物としては、後述する有機金属化合物(II)と同じものが用いられる。
(1)マグネシウム化合物、上記電子供与体(i)および炭化水素溶媒からなる液状状態のマグネシウム化合物を、必要に応じて有機金属化合物と接触反応させて固体を析出させた後、または析出させながら液状状態のチタン化合物と接触反応させ得られた固体成分と、芳香族炭化水素と、液状状態のチタン化合物と電子供与体(ii)とを少なくとも1回接触反応させる。この固体成分と芳香族炭化水素、液状状態のチタン化合物との接触は複数回実施するのが好ましい。
(2)無機担体または有機担体と液状有機マグネシウム化合物との接触物に必要に応じて有機金属化合物と接触反応させて固体を析出させた後、または析出させながら液状状態のチタン化合物と接触反応させ得られた固体成分と、芳香族炭化水素と、液状状態のチタン化合物と電子供与体(ii)とを少なくとも1回接触反応させる。この際、予め該接触物をハロゲン含有化合物および/または有機金属化合物と接触反応させてもよい。この固体成分と芳香族炭化水素、液状状態のチタン化合物との接触は複数回実施するのが好ましい。
[(II)有機金属化合物触媒成分]
有機金属化合物触媒成分(II)は、周期表第13族から選ばれる金属を含むものが好ましく、中でも、有機アルミニウム化合物、有機ホウ素化合物、1族元素とアルミニウムまたはホウ素との錯アルキル化合物などを好ましく挙げることができる。有機アルミニウム化合物としては、例えば下記式で示される有機アルミニウム化合物を例示することができる。
a nAlX3-n
(式中、Raは炭素原子数1〜12の炭化水素基であり、Xはハロゲンまたは水素であり、nは1〜3である。)
aは、炭素原子数1〜12の炭化水素基、例えばアルキル基、シクロアルキル基またはアリール基であるが、具体的には、メチル基、エチル基、n-プロピル基、イソプロピル基、イソブチル基、ペンチル基、ヘキシル基、オクチル基、シクロペンチル基、シクロヘキシル基、フェニル基、トリル基などである。
このような有機アルミニウム化合物として具体的には、トリメチルアルミニウム、トリエチルアルミニウム、トリイソプロピルアルミニウム、トリイソブチルアルミニウム、トリオクチルアルミニウム、トリ2-エチルヘキシルアルミニウムなどのトリアルキルアルミニウム;トリイソプレニルアルミニウムなどのトリアルケニルアルミニウム;ジメチルアルミニウムクロリド、ジエチルアルミニウムクロリド、ジイソプロピルアルミニウムクロリド、ジイソブチルアルミニウムクロリド、ジメチルアルミニウムブロミドなどのジアルキルアルミニウムハライド;メチルアルミニウムセスキクロリド、エチルアルミニウムセスキクロリド、イソプロピルアルミニウムセスキクロリド、ブチルアルミニウムセスキクロリド、エチルアルミニウムセスキブロミドなどのアルキルアルミニウムセスキハライド;メチルアルミニウムジクロリド、エチルアルミニウムジクロリド、イソプロピルアルミニウムジクロリド、エチルアルミニウムジブロミドなどのアルキルアルミニウムジハライド;ジエチルアルミニウムハイドライド、ジイソブチルアルミニウムハイドライド、エチルアルミニウムジハイドライドなどのアルキルアルミニウムハイドライドなどが挙げられる。
また有機アルミニウム化合物として、下記式で示される化合物を用いることもできる。
a nAlY3-n
上記式において、Raは上記と同様であり、Yは−ORb基、−OSiRc 3基、−OAlRd 2基、−NRe 2基、−SiRf 3基または−N(Rg)AlRh 2基であり、nは1〜2である。
なお、Rb、Rc、RdおよびRhはメチル基、エチル基、イソプロピル基、イソブチル基、シクロヘキシル基、フェニル基などであり、Reは水素、メチル基、エチル基、イソプロピル基、フェニル基、トリメチルシリル基などであり、RfおよびRgはメチル基、エチル基などである。
このような有機アルミニウム化合物としては、具体的には、以下のような化合物を例示できる。
(i)Ra nAl(ORb)3-nで表される化合物、例えば ジメチルアルミニウムメトキシド、ジエチルアルミニウムエトキシド、ジイソブチルアルミニウムメトキシドなど、
(ii)Ra nAl(OSiRc)3-nで表される化合物、例えば Et2Al(OSiMe3)、(iso-Bu)2Al(OSiMe3)、(iso-Bu)2Al(OSiEt3)など、
(iii)Ra nAl(OAlRd 2)3-nで表される化合物、例えば Et2AlOAlEt2、(iso-Bu)2AlOAl(iso-Bu)2など、
(iv)Ra nAl(NRe 2)3-nで表される化合物、例えば Me2AlNEt2、Et2AlNHMe、Me2AlNHEt、Et2AlN(Me3Si)2、(iso-Bu)2AlN(Me3Si)2など、
(v)Ra nAl(SiRf 3)3-nで表される化合物、例えば、(iso-Bu)2AlSiMe3など、
(vi)Ra nAl〔N(Rg)-AlRh 23-nで表される化合物、例えば、Et2AlN(Me)-AlEt2
(iso-Bu)2AlN(Et)Al(iso-Bu)2など。
またこれに類似した化合物、例えば酸素原子、窒素原子を介して2以上のアルミニウムが結合した有機アルミニウム化合物を挙げることができる。より具体的には、(C25)2AlOAl(C25)2、(C49)2AlOAl(C49)2、(C25)2AlN(C25)Al(C25)2など、さらにメチルアルミノキサンなどのアルミノキサン類(有機アルミニウムオキシ化合物)を挙げることができる。
また、下記式の有機アルミニウム化合物を用いることもできる。
aAlXY(Ra、X、Yは上記と同様である)
有機ホウ素化合物としては、トリフェニルボロン、トリス(4-フルオロフェニル)ボロン、トリス(3,5-ジフルオロフェニル)ボロン、トリス(4-フルオロメチルフェニル)ボロン、トリス(ペンタフルオロフェニル)ボロン、トリス(p-トリル)ボロン、トリス(o-トリル)ボロン、トリス(3,5-ジメチルフェニル)ボロン、テキシルボラン、ジシクロヘキシルボラン、ジシアミルボラン、ジイソピノカンフェニルボラン、9-ボラビシクロ[3.3.1]ノナン、カテコールボラン、B-ブロモ-9-ボラビシクロ[3.3.1]ノナン、ボラン-トリエチルアミン錯体、ボラン-メチルスルフィド錯体などが挙げられる。
また、有機ホウ素化合物としてイオン性化合物を使用してもよい。このような化合物としては、トリエチルアンモニウムテトラ(フェニル)ホウ素、トリプロピルアンモニウムテトラ(フェニル)ホウ素、トリメチルアンモニウムテトラ(p-トリル)ホウ素、トリメチルアンモニウムテトラ(o-トリル)ホウ素、トリ(n-ブチル)アンモニウムテトラ(ペンタフルオロフェニル)ホウ素、トリプロピルアンモニウムテトラ(o,p-ジメチルフェニル)ホウ素、トリ(n-ブチル)アンモニウムテトラ(p-トリフルオロメチルフェニル)ホウ素、N,N-ジメチルアニリニウムテトラ(フェニル)ホウ素、ジシクロヘキシルアンモニウムテトラ(フェニル)ホウ素、トリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレート、N,N-ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート、ビス[トリ(n-ブチル)アンモンニウム]ノナボレート、ビス[トリ(n-ブチル)アンモンニウム]デカボレートなどを挙げることができる。
1族元素とアルミニウムとの錯アルキル化物としては、下記一般式で表される化合物を例示できる。
1AlRj 4
(M1はLi、Na、Kであり、Rjは炭素原子数1〜15の炭化水素基である。)
このような化合物として具体的には、LiAl(C25)4、LiAl(C715)4などが挙げられる。
有機ホウ素化合物および1族元素とホウ素との錯アルキル化物としては、前述の有機アルミニウム化合物および1族元素とアルミニウムとの錯アルキル化物のアルミニウムをホウ素で置換した構造の化合物を挙げることができる。
[(III)電子供与体]
電子供与体(III)としては、先に述べた固体状チタン触媒成分(I)の調製時に使用した電子供与体(ii)として示したような化合物を用いることができ、さらに下記一般式で示される有機ケイ素化合物を用いることができる。
nSi(OR')4-n
(式中、RおよびR'は炭化水素基であり、0<n<4である)
このような一般式で示される有機ケイ素化合物としては、具体的には、下記のような化合物が挙げられる。
トリメチルメトキシシラン、トリメチルエトキシシラン、ジメチルジメトキシシラン、ジメチルジエトキシシシラン、ジイソプロピルジメトキシシラン、tert-ブチルメチルジメトキシシラン、t-ブチルメチルジエトキシシラン、tert-アミルメチルジエトキシシラン、ジフェニルジメトキシシラン、フェニルメチルジメトキシシラン、ジフェニルジエトキシシラン、ビスo-トリルジメトキシシラン、ビスm-トリルジメトキシシラン、ビスp-トリルジメトキシシラン、ビスp-トリルジエトキシシラン、ビスエチルフェニルジメトキシシラン、ジシクロヘキシルジメトキシシラン、シクロヘキシルメチルジメトキシシラン、シクロヘキシルメチルジエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、ビニルトリメトキシシラン、メチルトリメトキシシラン、n-プロピルトリエトキシシラン、デシルトリメトキシシラン、デシルトリエトキシシラン、フェニルトリメトキシシラン、γ-クロルプロピルトリメトキシシラン、メチルトリエトキシシラン、エチルトリエトキシシラン、ビニルトリエトキシシラン、tert-ブチルトリエトキシシラン、n-ブチルトリエトキシシラン、iso-ブチルトリエトキシシラン、フェニルトリエトキシシラン、γ-アミノプロピルトリエトキシシラン、クロルトリエトキシシラン、エチルトリイソプロポキシシラン、ビニルトリブトキシシラン、シクロヘキシルトリメトキシシラン、シクロヘキシルトリエトキシシラン、2-ノルボルナントリメトキシシラン、2-ノルボルナントリエトキシシラン、2-ノルボルナンメチルジメトキシシラン、ケイ酸エチル、ケイ酸ブチル、トリメチルフェノキシシラン、メチルトリアリロキシ(allyloxy)シラン、ビニルトリス(β-メトキシエトキシシラン)、ビニルトリアセトキシシラン、ジメチルテトラエトキシジシロキサン、シクロペンチルトリメトキシシラン、2-メチルシクロペンチルトリメトキシシラン、2,3-ジメチルシクロペンチルトリメトキシシラン、シクロペンチルトリエトキシシラン、ジシクロペンチルジメトキシシラン、ビス(2-メチルシクロペンチル)ジメトキシシラン、ビス(2,3-ジメチルシクロペンチル)ジメトキシシラン、ジシクロペンチルジエトキシシラン、トリシクロペンチルメトキシシラン、トリシクロペンチルエトキシシラン、ジシクロペンチルメチルメトキシシラン、ジシクロペンチルエチルメトキシシラン、ヘキセニルトリメトキシシラン、ジシクロペンチルメチルエトキシシラン、シクロペンチルジメチルメトキシシラン、シクロペンチルジエチルメトキシシラン、シクロペンチルジメチルエトキシシランなど。
これらのうち、エチルトリエトキシシラン、n-プロピルトリエトキシシラン、tert-ブチルトリエトキシシラン、ビニルトリエトキシシラン、フェニルトリエトキシシラン、ビニルトリブトキシシラン、ジフェニルジメトキシシラン、フェニルメチルジメトキシシラン、ビスp-トリルジメトキシシラン、p-トリルメチルジメトキシシラン、ジシクロヘキシルジメトキシシラン、シクロヘキシルメチルジメトキシシラン、2-ノルボルナントリエトキシシラン、2-ノルボルナンメチルジメトキシシラン、フェニルトリエトキシシラン、ジシクロペンチルジメトキシシラン、ヘキセニルトリメトキシシラン、シクロペンチルトリエトキシシラン、トリシクロペンチルメトキシシラン、シクロペンチルジメチルメトキシシランなどが好ましく用いられる。
さらに電子供与体(III)として、2,6-置換ピペリジン類、2,5-置換ピペリジン類、N,N,N',N'-テトラメチルメチレンジアミン、N,N,N',N'-テトラエチルメチレンジアミンなどの置換メチレンジアミン類、1,3-ジベンジルイミダゾリジン、1,3-ジベンジル-2-フェニルイミダゾリジンなどの置換イミダゾリジン類などの含窒素電子供与体、トリエチルホスファイト、トリn-プロピルホスファイト、トリイソプロピルホスファイト、トリn-ブチルホスファイト、トリイソブチルホスファイト、ジエチルn-ブチルホスファイト、ジエチルフェニルホスファイトなどの亜リン酸エステル類などリン含有電子供与体、2,6-置換テトラヒドロピラン類、2,5-置換テトラヒドロピラン類などの含酸素電子供与体を用いることもできる。これらの電子供与体(III)は、2種以上併用することもできる。
オレフィン重合体の製造は、溶液重合、懸濁重合などの液相重合法または気相重合法のいずれにおいても実施することができる。重合形態としては、懸濁重合の反応形態を採ることが好ましく、この時の反応溶媒としては、不活性炭化水素溶媒を用いることもできるし、反応温度において液状のオレフィンを用いることもできる。
この際用いられる不活性炭化水素媒体としては、具体的には、プロパン、ブタン、ペンタン、ヘキサン、ヘプタン、オクタン、デカン、ドデカン、灯油などの脂肪族炭化水素;シクロペンタン、シクロヘキサン、メチルシクロペンタンなどの脂環族炭化水素;ベンゼン、トルエン、キシレンなどの芳香族炭化水素;エチレンクロリド、クロルベンゼンなどのハロゲン化炭化水素、またはこれらの組み合わせが挙げられる。これらのうち、特に脂肪族炭化水素を用いることが好ましい。
重合系内においては、固体状チタン触媒成分(a)またはその予備重合触媒は、重合容積1リットル当りチタン原子に換算して、通常は約0.0001〜50ミリモル、好ましくは約0.001〜10ミリモルの量で用いられる。有機金属化合物触媒成分(b)は、該触媒成分(b)中の金属原子が、重合系中の固体状チタン触媒成分(a)中のチタン原子1モルに対し、通常1〜2000モル、好ましくは2〜1000モルの量で用いられる。電子供与体(ED)は、有機金属化合物触媒成分(b)の金属原子1モルに対し、通常0.001モル〜10モル、好ましくは0.01モル〜5モルの量で用いられる。
重合工程における、水素濃度はモノマー1モルに対して0〜0.01モル、好ましくは0〜0.005モル、より好ましくは0〜0.001モルの量であることが好ましい。
重合温度は、通常、70℃以上、好ましくは80〜150℃、より好ましくは85〜140℃、特に好ましくは90〜130℃の範囲であり、圧力は、通常、常圧〜10MPa、好ましくは常圧〜5MPaに設定される。重合は回分式、半連続式、連続式のいずれの方法においても行うことができ、2段以上に分けて行う場合は、反応条件は同じであっても異なっていてもよい。
オレフィン重合体の製造は、バッチ式、半連続式、連続式のいずれの方法においても行うことができる。さらに重合を、反応条件を変えて2段以上に分けて行うこともできる。オレフィン重合では、オレフィンの単独重合体を製造してもよく、また2種以上のオレフィンからランダム共重合体を製造してもよい。
次に、本発明の末端水酸化オレフィン重合体の製造方法について詳説する。
本発明において、末端水酸化オレフィン重合体の製造方法は、マグネシウム担持型チタン触媒系を用いてオレフィンの重合を行なった後、重合系の失活処理操作を行なうことなく、次いでハロゲン化エポキシ化合物との処理によって末端水酸化オレフィン重合体を製造する方法である。
本発明に用いるハロゲン化エポキシ化合物としては、1化合物中に一つの反応性ハロゲン原子を有するエポキシ化合物であれば特に制限無く用いることができるが、具体的には、エピクロルヒドリン、2−クロロメチル−2−メチルオキシラン、2−クロロメチル−2−エチルオキシラン、1−クロロ−2,3−エポキシブタン、2−クロロエチルオキシラン、2−クロロエチル−2−メチルオキシラン、2−クロロエチル−2−エチルオキシラン、1−クロロ−2,3−エポキシペンタン、1−クロロ−3,4−エポキシペンタン、2−クロロプロピルオキシラン、2−クロロプロピル−2−メチルオキシラン、2−クロロプロピル−2−エチルオキシラン、1−クロロ−2,3−エポキシヘキサン、1−クロロ−4,5−エポキシヘキサン、2−クロロブチルオキシラン、2−クロロブチル−2−メチルオキシラン、2−クロロブチル−2−エチルオキシラン、1−クロロ−2,3−エポキシヘプタン、1−クロロ−5,6−エポキシヘプタン、2−フルオロメチルオキシラン、2−フルオロメチル−2−メチルオキシラン、2−フルオロメチル−2−エチルオキシラン、1−フルオロ−2,3−エポキシブタン、2−フルオロエチルオキシラン、2−フルオロエチル−2−メチルオキシラン、2−フルオロエチル−2−エチルオキシラン、1−フルオロ−2,3−エポキシペンタン、1−フルオロ−3,4−エポキシペンタン、2−フルオロプロピルオキシラン、2−フルオロプロピル−2−メチルオキシラン、2−フルオロプロピル−2−エチルオキシラン、1−フルオロ−2,3−エポキシヘキサン、1−フルオロ−4,5−エポキシヘキサン、2−フルオロブチルオキシラン、2−フルオロブチル−2−メチルオキシラン、2−フルオロブチル−2−エチルオキシラン、1−フルオロ−2,3−エポキシヘプタン、1−フルオロ−5,6−エポキシヘプタン、2−ブロモメチルオキシラン、2−ブロモメチル−2−メチルオキシラン、2−ブロモメチル−2−エチルオキシラン、1−ブロモ−2,3−エポキシブタン、2−ブロモエチルオキシラン、2−ブロモエチル−2−メチルオキシラン、2−ブロモエチル−2−エチルオキシラン、1−ブロモ−2,3−エポキシペンタン、1−ブロモ−3,4−エポキシペンタン、2−ブロモプロピルオキシラン、2−ブロモプロピル−2−メチルオキシラン、2−ブロモプロピル−2−エチルオキシラン、1−ブロモ−2,3−エポキシヘキサン、1−ブロモ−4,5−エポキシヘキサン、2−ブロモブチルオキシラン、2−ブロモブチル−2−メチルオキシラン、2−ブロモブチル−2−エチルオキシラン、1−ブロモ−2,3−エポキシヘプタン、1−ブロモ−5,6−エポキシヘプタン等の2−ハロゲン化アルキルエポキシ化合物が挙げられ、これらの中でもエピクロルヒドリンが好適に用いられる。
マグネシウム担持型チタン触媒系を用いてオレフィンを重合した後の、オレフィン重合体とハロゲン化エポキシ化合物との処理は、溶液中、懸濁液中または気相中のいずれにおいても実施することができる。処理形態としては、溶液中または懸濁液中であることが好ましく、この時の溶媒としては、不活性炭化水素溶媒を用いることができる。処理温度においては溶媒を使用せず液状のオレフィン重合体中で行うこともできる。
この際用いられる不活性炭化水素媒体としては、具体的には、プロパン、ブタン、ペンタン、ヘキサン、ヘプタン、オクタン、デカン、ドデカン、灯油などの脂肪族炭化水素;シクロペンタン、シクロヘキサン、メチルシクロペンタンなどの脂環族炭化水素;ベンゼン、トルエン、キシレンなどの芳香族炭化水素;エチレンクロリド、クロルベンゼンなどのハロゲン化炭化水素、またはこれらの組み合わせが挙げられる。これらのうち、特に脂肪族炭化水素を用いることが好ましい。
処理に用いるハロゲン化エポキシ化合物の使用量は、オレフィンの重合に用いる有機金属触媒成分(II)のモル量[M]に対するハロゲン化エポキシ化合物のモル量[E]の割合[E]/[M]が0.01〜200の範囲にあるのが好ましく、より好ましくは0.1〜100の範囲である。
処理温度は、通常、0℃以上、好ましくは10〜200℃、より好ましくは20〜100℃の範囲であり、処理時間は、通常1分〜24時間、好ましくは、10分〜10時間、より好ましくは15分〜8時間、処理圧力は、通常、常圧〜3MPa、好ましくは常圧〜1MPaに設定される。反応は回分式、半連続式、連続式のいずれの方法においても行うことができる。
末端水酸化オレフィン重合体中に導入される水酸基の量は、使用するハロゲン化エポキシ化合物の使用量、処理条件により制御することが可能であり、オレフィン重合体中の片末端の0.01モル%〜100%に水酸基を導入することができる。
末端水酸化オレフィン重合体は、公知の方法によって回収することができ、デカンテーション処理、フラッシュ処理、脱ガス処理等、いずれの方法を用いて回収しても良い。得られた末端水酸化オレフィン重合体は、通常得られるオレフィン重合体と同様の外見性状である。
(用途)
得られた末端水素化オレフィン重合体は、塗装性、接着性、印刷性等に優れ、自動車外装材、樹脂フィルムとの張り合わせ、表面印刷用樹脂等に用いられる。またアルミニウム等の金属蒸着用フィルム樹脂として、高バリア性を付与した樹脂としても用いられる。さらに、他樹脂とのポリマーアロイ用相溶化剤としても好適に用いられる。
以下、実施例に基づいて本発明をさらに具体的に説明するが、本発明はこれら実施例に限定されるものではない。
〔参考例1〕
(固体状チタン触媒成分(I)の調製)
無水塩化マグネシウム95.2g、デカン442mlおよび2−エチルヘキシルアルコール390.6gを130℃で2時間加熱して均一溶液とした後、この溶液中に無水フタル酸21.3gを添加し、さらに、130 ℃にて1時間撹拌混合を行い、無水フタル酸を溶解させた。このようにして得られた均一溶液を室温に冷却した後、−20 ℃に保持した四塩化チタン80ml中にこの均一溶液の30mlを1時間にわたって滴下装入した。液の温度を4時間かけて110 ℃に昇温し、110 ℃に達したところでフタル酸ジイソブチル(DIBP)2.1gを添加し、これより2時間同温度にて撹拌保持した。
反応終了後、熱濾過にて固体部を採取し、この固体部を110mlの四塩化チタンに再懸濁させた後、得られた懸濁液を再び110℃で2時間加熱した。反応終了後、再び熱濾過にて固体部を採取し、110 ℃のデカンおよびヘキサンにて溶液中に遊離のチタン化合物が検出されなくなる迄十分洗浄した。
以上の操作によって調製した固体状チタン触媒成分[A]はデカンスラリーとして保存したが、この内の一部を触媒組成を調べる目的で乾燥した。このようにして得られた固体状チタン触媒成分[A]の組成は、チタン:2.2wt%、マグネシウム:19.0wt%、DIBP:19.8wt%であった。
(末端水酸化プロピレンの製造1)
充分に窒素置換した攪拌機付の内容積500mlのガラス製反応器内に、デカン400mlを加え70℃に昇温した後、プロピレンガスをデカン中に100NL/時の割合で吹き込み、器内のデカンをプロピレン飽和状態にした。次に、トリエチルアルミニウム/デカン溶液(9mmol[Al])とシクロヘキシルメチルジメトキシシラン(0.9mmol)を反応器内に加え、さらに固体状チタン触媒成分(0.15mmol[Ti])を加えて、プロピレン供給下、70℃で1時間重合を行なった。器内へのプロピレン供給を停止し、窒素ガスをデカン中に50Nl/時の割合で30分間吹き込んだ後、エピクロロヒドリン(4.5ml)を器内に加え、40℃で3時間反応させた。反応液を、1N塩酸30mlを含んだメタノール(1.5L)/アセトン(1.5L)混合液中に注ぎ込んだ。室温で30分攪拌した後、濾過により固体状成分を回収した。減圧下、80℃にて10時間乾燥し、30.8gの白色ポリマーを得た。
ゲル・パーミエイション・クロマトグラフィー(GPC)による分子量測定から、得られたポリマーの数平均分子量(Mn)は26500g/molであった。核磁気共鳴(NMR)分析の結果から、ポリマー末端に水酸基が存在しており、ポリマー片末端の69%が水酸基であった。
(末端水酸化プロピレンの製造2)
プロピレンの重合温度を80℃にした以外は、実施例2と同様に操作を行い、15.6gの白色ポリマーを得た。
ゲル・パーミエイション・クロマトグラフィー(GPC)による分子量測定から、得られたポリマーの数平均分子量(Mn)は16400g/molであった。NMR分析の結果から、ポリマー末端に水酸基が存在しており、ポリマー片末端の85%が水酸基であった。
〔比較例1〕
(末端位に不飽和結合を有するオレフィン重合体の製造)
三井化学社製ポリプロピレン([η]=7.6)を、プラストミルを用いて窒素雰囲気下、360℃で2時間処理した。処理して得られた重合体の数平均分子量(Mn)は、ゲル・パーミエイション・クロマトグラフィー(GPC)による分子量測定から、26500g/molであった。IR分析の結果から、1重合体鎖当たり0.74個のビニリデン基が存在することが確認された。
熱分解反応によって得られた末端ビニリデン基含有ポリプロピレン25.0gを充分窒素置換した1000mlのガラス製反応器に入れ、デカン800mlおよびジイソブチルアルミニウムヒドリド6mmolを加えて140℃で6時間加熱攪拌を行った。デカン溶液を140℃に保ちながら、乾燥空気を200リットル/hの流量で6時間供給しつづけた後、100℃の溶液温度で10mlのイソブチルアルコールを加えた。反応溶液を、1N塩酸水50mlを含んだメタノール(1.5L)/アセトン(1.5L)混合溶液中に加えてポリマーを析出させ、濾過により回収したポリマーを80℃、減圧下、10時間乾燥して24.8gのポリマーを得た。NMR分析の結果、ポリマー末端に水酸基が存在しており、ポリマー片末端の40%が水酸基であった。

Claims (2)

  1. マグネシウム担持型チタン触媒系を用いて、炭素原子数2〜20のオレフィンから選ばれる少なくとも1種以上のオレフィンを重合した後、ハロゲン化エポキシ化合物と処理し、さらに酸処理を行うことを特徴とする末端水酸化オレフィン重合体の製造方法。
  2. ハロゲン化エポキシ化合物がエピクロルヒドリンであることを特徴とする請求項1記載の末端水酸化オレフィン重合体の製造方法。
JP2003369807A 2003-10-30 2003-10-30 末端水酸化オレフィン重合体の製造方法 Expired - Lifetime JP4323286B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003369807A JP4323286B2 (ja) 2003-10-30 2003-10-30 末端水酸化オレフィン重合体の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003369807A JP4323286B2 (ja) 2003-10-30 2003-10-30 末端水酸化オレフィン重合体の製造方法

Publications (2)

Publication Number Publication Date
JP2005132936A JP2005132936A (ja) 2005-05-26
JP4323286B2 true JP4323286B2 (ja) 2009-09-02

Family

ID=34647011

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003369807A Expired - Lifetime JP4323286B2 (ja) 2003-10-30 2003-10-30 末端水酸化オレフィン重合体の製造方法

Country Status (1)

Country Link
JP (1) JP4323286B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010050437A1 (ja) * 2008-10-27 2010-05-06 三井化学株式会社 水酸基含有オレフィン共重合体の製造方法

Also Published As

Publication number Publication date
JP2005132936A (ja) 2005-05-26

Similar Documents

Publication Publication Date Title
US6323150B1 (en) Process for preparing solid titanium catalyst component, olefin polymerization catalyst, and olefin polymerization process
EP0743326B1 (en) Solid titanium catalyst component, process for preparing same, olefin polymerization catalyst containing same, and olefin polymerization process
EP0452156B1 (en) Solid titanium catalyst component for olefin polymerization, olefin polymerization catalyst, prepolymerized polyolefin-containing catalyst and method of olefin polymerization
KR100407365B1 (ko) 고체티타늄촉매성분제조방법,올레핀중합촉매및올레핀중합방법
JP3476793B2 (ja) オレフィン重合用固体状チタン触媒成分、オレフィン重合用触媒およびオレフィンの重合方法
US7220696B2 (en) Solid titanium catalyst component for olefin polymerization, catalyst for olefin polymerization, and process for olefin polymerization
JPH09165414A (ja) 固体状チタン触媒成分とそのオレフィン重合触媒への利用
JP4509443B2 (ja) α−オレフィン系重合体の製造方法
US6034189A (en) Solid titanium catalyst component for olefin polymerization, process for preparation of the same, olefin polymerization catalyst and process for olefin polymerization
JPH04218508A (ja) α−オレフィン系重合体の製造方法
EP0683175B1 (en) Solid titanium catalyst component for olefin polymerization, process for preparation of the same, olefin polymerization catalyst and process for olefin polymerization
JP2940993B2 (ja) オレフィン重合用固体状チタン触媒成分、オレフィン重合用触媒およびオレフィンの重合方法
JPH04218507A (ja) オレフィン重合用固体状チタン触媒成分、オレフィン重合用触媒およびオレフィンの重合方法
JP3491853B2 (ja) オレフィン重合用固体状チタン触媒成分、その調製方法、これを含むオレフィン重合用触媒およびオレフィンの重合方法
JP4323286B2 (ja) 末端水酸化オレフィン重合体の製造方法
JP3529894B2 (ja) オレフィン重合用固体状チタン触媒成分、これを含むオレフィン重合用触媒およびオレフィンの重合方法
JP3895050B2 (ja) 固体状チタン触媒成分の調製方法
JP3512529B2 (ja) オレフィン重合用予備重合触媒、これを含むオレフィン重合用触媒およびオレフィンの重合方法
JP2959800B2 (ja) プロピレン系ブロック共重合体の製造方法
JPH07173212A (ja) オレフィン重合用電子供与体、これを含むオレフィン重合触媒
JPH04218509A (ja) 予備重合触媒、オレフィン重合用触媒およびオレフィンの重合方法
JPH107716A (ja) 固体状チタン触媒成分、その調製方法、触媒およびオレフィンの重合方法
JP3521098B2 (ja) 固体状チタン触媒成分の製造方法、固体状チタン触媒成分およびこれを含むオレフィン重合用触媒、オレフィンの重合方法
JP2002284810A (ja) 予備重合触媒、オレフィン重合用触媒およびオレフィンの重合方法
JPH06271613A (ja) オレフィン重合用触媒およびオレフィンの重合方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060612

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080414

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090602

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090604

R150 Certificate of patent or registration of utility model

Ref document number: 4323286

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120612

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120612

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130612

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130612

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term