JP4323070B2 - Valve guide material - Google Patents
Valve guide material Download PDFInfo
- Publication number
- JP4323070B2 JP4323070B2 JP2000262320A JP2000262320A JP4323070B2 JP 4323070 B2 JP4323070 B2 JP 4323070B2 JP 2000262320 A JP2000262320 A JP 2000262320A JP 2000262320 A JP2000262320 A JP 2000262320A JP 4323070 B2 JP4323070 B2 JP 4323070B2
- Authority
- JP
- Japan
- Prior art keywords
- copper
- powder
- valve guide
- content
- machinability
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000463 material Substances 0.000 title claims description 24
- 239000010949 copper Substances 0.000 claims description 34
- 229910052802 copper Inorganic materials 0.000 claims description 32
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 31
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 26
- 229910052698 phosphorus Inorganic materials 0.000 claims description 21
- CADICXFYUNYKGD-UHFFFAOYSA-N sulfanylidenemanganese Chemical compound [Mn]=S CADICXFYUNYKGD-UHFFFAOYSA-N 0.000 claims description 15
- 229910000905 alloy phase Inorganic materials 0.000 claims description 14
- 229910002804 graphite Inorganic materials 0.000 claims description 13
- 239000010439 graphite Substances 0.000 claims description 13
- 229910045601 alloy Inorganic materials 0.000 claims description 12
- 239000000956 alloy Substances 0.000 claims description 12
- 229910052718 tin Inorganic materials 0.000 claims description 12
- 229910052611 pyroxene Inorganic materials 0.000 claims description 10
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 claims description 9
- 239000000203 mixture Substances 0.000 claims description 8
- 229910052742 iron Inorganic materials 0.000 claims description 7
- 229910001562 pearlite Inorganic materials 0.000 claims description 5
- 239000011159 matrix material Substances 0.000 claims description 4
- 229920006706 PC-C Polymers 0.000 claims description 3
- 239000010459 dolomite Substances 0.000 claims description 3
- 229910000514 dolomite Inorganic materials 0.000 claims description 3
- 230000001747 exhibiting effect Effects 0.000 claims 1
- 239000000843 powder Substances 0.000 description 21
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical group [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 15
- 239000011574 phosphorus Substances 0.000 description 15
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 12
- 229910052799 carbon Inorganic materials 0.000 description 10
- 239000011135 tin Substances 0.000 description 10
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 6
- 239000011812 mixed powder Substances 0.000 description 6
- 239000007787 solid Substances 0.000 description 6
- 239000000314 lubricant Substances 0.000 description 5
- 229910001018 Cast iron Inorganic materials 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000005245 sintering Methods 0.000 description 4
- 229910017755 Cu-Sn Inorganic materials 0.000 description 3
- 229910017927 Cu—Sn Inorganic materials 0.000 description 3
- 229910001096 P alloy Inorganic materials 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- XOOUIPVCVHRTMJ-UHFFFAOYSA-L zinc stearate Chemical compound [Zn+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O XOOUIPVCVHRTMJ-UHFFFAOYSA-L 0.000 description 3
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 2
- 229910001128 Sn alloy Inorganic materials 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- 238000002485 combustion reaction Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 229910021382 natural graphite Inorganic materials 0.000 description 2
- 229910017888 Cu—P Inorganic materials 0.000 description 1
- 229910001060 Gray iron Inorganic materials 0.000 description 1
- 229910017625 MgSiO Inorganic materials 0.000 description 1
- 238000005255 carburizing Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 229910052634 enstatite Inorganic materials 0.000 description 1
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 235000000396 iron Nutrition 0.000 description 1
- 230000001050 lubricating effect Effects 0.000 description 1
- 238000005461 lubrication Methods 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- BBCCCLINBSELLX-UHFFFAOYSA-N magnesium;dihydroxy(oxo)silane Chemical compound [Mg+2].O[Si](O)=O BBCCCLINBSELLX-UHFFFAOYSA-N 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 235000010755 mineral Nutrition 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 238000004663 powder metallurgy Methods 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- FKHIFSZMMVMEQY-UHFFFAOYSA-N talc Chemical compound [Mg+2].[O-][Si]([O-])=O FKHIFSZMMVMEQY-UHFFFAOYSA-N 0.000 description 1
Images
Landscapes
- Powder Metallurgy (AREA)
Description
【0001】
【発明の属する技術分野】
この発明は内燃機関のバルブガイドに好適な耐摩耗性および被削性,特に後者の優れた焼結合金に関するものである。
【0002】
【従来の技術】
内燃機関のバルブガイドには、ねずみ鋳鉄やボロン鋳鉄などの特殊鋳鉄が用いられることもあるが、鋳鉄の場合は作業環境,量産性,価格面などに問題があるため、焼結合金での代替が進められてきた。しかし一般的な焼結合金では耐摩耗性が不充分であり、一方、合金成分を添加して材質を強化すれば耐摩耗性は使用可能な水準に達するが、その反面多くの場合被削性(切削加工性)が低下する。バルブガイドはエンジンのシリンダーヘッドに組み付け後、リーマ加工によって内径仕上げを施すので、バルブガイド材の被削性が悪いと加工の所要時間が長くなったり、工具の摩耗が早まったりして生産効率が阻害される。
【0003】
【発明が解決しようとする課題】
以前、耐摩耗性と被削性の両立を企図して本出願人が開発したバルブガイド材(特公昭55−34858号参照)は、組成が質量比でC…1.5〜4%,Cu…1〜5%,Sn…0.1〜2%,P…0.1〜0.3%未満およびFe残部の焼結合金であるが、耐摩耗性はボロン鋳鉄より優れ、被削性も鋳鉄材に比べれば削り難いものの従来の焼結材よりは優れているため、自動車メーカー各社に広く用いられてきた。しかるに近年、この分野を取り巻く環境の変化によって品質の向上に併せて生産性向上の必要が従来以上に高まり、バルブガイド材については被削性のより優れた材料が求められるようになった。
【0004】
【課題を解決するための手段】
そこで、上述の先発明に係るバルブガイド材を基礎としつつその改良を図ったところ、銅の含有量を多くすると被削性が向上するという結果が得られた。この発明はこの様な知見に基づいてなされたもので、一つは銅の含有量を6〜20%(質量%;以下、この明細書中の%は、特記しない限り全て質量%である。)の範囲に増加させたことを骨子とするもので、他の一つは銅の増加に併せて、頑火輝石( enstatite;MgSiO3 )と硫化マンガン(MnS)を合計で4%未満添加したことを骨子とするものである。
【0005】
即ち第一の発明に係るバルブガイド材は組成がC…1.5〜4%,Cu…6〜20%,Sn…0.1〜2%,P…0.1〜0.3%およびFe残部の焼結合金で、その金属組織は、パーライトを主体とする基地中にFe−P−C系合金相;銅または銅錫系合金相(この「または」は銅および銅錫系…も含む);遊離黒鉛の三者が分散している。また第二の発明に係るものは、合金の組成がC…1.5〜4%,Cu…6〜20%,Sn…0.1〜2%,P…0.1〜0.3%,頑火輝石と硫化マンガンとの合計で4%未満およびFe残部で、パーライトを主体とする基地中にFe−P−C系合金相;銅または銅錫系合金相;遊離黒鉛,頑火輝石および硫化マンガンの三者が分散した組織を呈している。
【0006】
【発明の実施の形態】
この発明に係る焼結合金において、炭素は黒鉛粉の形で添加され、一部(概ね0.8〜1%)は鉄に固溶して基地を強化したり、リンと結合して比較的硬質な粒子状のFe−P−C系合金相(ステダイト相)を生成して分散し、残りが遊離炭素(黒鉛)の状態で残留して固体潤滑の作用をする。遊離黒鉛の量は、炭素の含有量(全炭素量)が1.5%の場合に約0.3%,全炭素量3%で約1.7%であるが、遊離黒鉛が0.3%より少ない場合にはバルブとの摺動によるバルブガイドの摩耗が大きくなる。このため、炭素の含有量は1.5%を下限とする。一方、過剰の場合は基材の強度が低下する上に、粉末成形時に偏析や流動性阻害などの原因となるため、炭素の含有量は4%を上限とする。
【0007】
銅と錫は、通常は錫の含有量が5〜20%程度の銅−錫合金粉の形で、およびそれに所要量の銅粉を追加した形で添加される。共に焼結の進行を促進し、固溶して基地を強化する一方、一部がCu−Sn系合金相として残留して摺動特性や被削性を向上させる。そしてこの際、Cu−Sn系合金相と共に銅相が分散するとこの作用が一層強化されるが、その効果は銅の含有量6%以上で顕著になる。但し、20%を超えると耐摩耗性が悪化するので、銅の含有量の適正範囲を6〜20%とする。一方、錫の存在による上記の作用効果は含有量が0.1%以上で生じるが、2%を超えると基材の脆化を招くので、錫の含有量は0.1〜2%を適正範囲とする。
【0008】
リンはFe−P合金粉またはCu−P合金粉の形で添加される。リンの含有量に応じて生成するFe−P−C系合金相(ステダイト相)が増し、基材の剛性が高まり耐摩耗性が向上する。基地中に生成したステダイト相は、リンの含有量が概ね0.05%以上になれば顕微鏡で観察することができるが、耐摩耗性を有効に向上させるには0.1%は必要である。しかしその反面、リンの増加につれて被削性が低下する。従って実用上の見地から、リンの適正範囲を0.1〜0.3%とする。
【0009】
第二の発明における頑火輝石はメタ珪酸マグネシウム鉱物で、斜方晶の粒子で劈開性があり、遊離黒鉛と同じく固体潤滑剤として作用すると共に被削性をより改善する。硫化マンガンも同様であるが、更に基材の耐摩耗性を向上させる作用がある。何れも粉末として添加されるが、頑火輝石と硫化マンガン(好ましくは頑火輝石の2〜3割)を混用すると、耐摩耗性と被削性をその均衡を保ちつつ、一層改善することができる。
【0010】
遊離黒鉛も含めこれらの固体潤滑剤は、基地中に分散して固体潤滑効果を示す反面、含有(分散)量の増加に従って材料強度を低下させる。そしてこの発明の場合は含有量が4%を超えるとバルブガイド材として必要な材料強度を保てなくなるので、固体潤滑剤(遊離黒鉛,頑火輝石および硫化マンガン)の総量を4%以下とする。これは、例えば全炭素量が1.5%で遊離黒鉛量が0.7%の場合には、頑火輝石と硫化マンガンを合計で最大3.3%まで含有させられることを意味している。原料粉末の配合、成形および焼結は粉末冶金の通常の方法によるが、焼結雰囲気は還元性または浸炭性の雰囲気が好ましく、焼結温度は高過ぎると遊離黒鉛が消失するので、980〜1100℃程度が適している。
【0011】
(実施例1) 先ず原料粉として、炭素は天然黒鉛粉,リンはFe−20%P合金粉,銅と錫は銅粉とCu−10%Sn合金粉,鉄は還元鉄粉,それに粉末潤滑剤としてステアリン酸亜鉛を用意した。次にこれらを各所定割合に配合して、全体組成で炭素は一律2%,リンは0.1%と0.3%の2種類に固定し、銅は2〜30%,錫は0.1〜2%まで変化させた混合粉(還元鉄粉残部)を作製した。各混合粉とも、ステアリン酸亜鉛の添加量は一律0.75%である。
【0012】
次に各混合粉それぞれを成形圧力490MPaで所定の形状に成形後、還元性ガス雰囲気中1000℃で60分間焼結して長さ40mm,外径12mm,内径7.4mmの円筒状試料多数を作製した。各試料(焼結材)の合金組織は基地が密なパーライト組織で、白味を帯びたFe−P−C系合金相(ステダイト相),赤味を帯びたCu−Sn系合金相,それに銅の含有量の多い試料では銅相が点在している。
【0013】
次に、かくして得られた各試料について、被削性および耐摩耗性を試験した。被削性は試料の内径にリーマ加工を施して軸方向に10mm切削するまでの所要時間を求め、そのデータを、先発明材に相当する銅…5%,リン…0.3%含有の試料の場合を100とする指数に換算して比較した。従って指数が小さいほど削り易く加工時間が短くて済むことを、即ち被削性が良いことを意味している。また耐摩耗性は、各試料をバルブガイドの所定の形状・寸法に仕上げてエンジン模擬試験装置に装着し、加熱した状態でラジアル荷重を負荷したバルブと所定の時間往復摺動させ、試験の前後における試料の内径寸法差を求めて摩耗量とし、これを比較した。
【0014】
図面はこれらのデータをリン含有量別に整理してグラフ化したもので、図1は銅の含有量と被削性との関係を,図2は銅の含有量と耐摩耗性との関係を示している。グラフから先ずリンの影響については、リンの含有量0.1〜0.3%の範囲では銅の含有量に拘らず被削性はリンが少ないほど,耐摩耗性はリンが多いほど優っていることが分る。次に銅の影響については、被削性は銅の増量につれて、含有量が約5%を過ぎる頃から急激な向上を示し、10%以上でも緩慢にはなるが、含有量30%まで終始向上を続けている。一方耐摩耗性は銅の含有量が6〜20%の範囲では摩耗量が一様に少なく、優れた耐摩耗性を示しているが、その前後の領域では摩耗量が多くなる。即ち銅の含有量が20%を越える頃からリンの含有量に拘らず耐摩耗性が急激に劣化し、また銅の含有量6%未満でも、リンが多くなるほど耐摩耗性の劣化が著しい。この様に、銅の含有量の適性範囲である6〜20%では被削性,耐摩耗性ともに良好な結果が得られている。
【0015】
(実施例2) 原料粉は実施例1で用意したものを用い、天然黒鉛粉を2%,銅粉5.5%,Cu−10%Sn合金粉を5%,Fe−20%P合金粉を1.5%,頑火輝石粉末0.8%と硫化マンガン粉末0.2%,および残部還元鉄粉にステアリン酸亜鉛を0.75%添加した混合粉を作製した。その全体組成はC…2%,Cu…10%,Sn…0.5%,P…0.3%(ほか頑火輝石,硫化マンガン,および鉄残部)である。また比較のため、上記の配合から頑火輝石粉末と硫化マンガン粉末を省いた混合粉を作製した。
【0016】
次に、この2種類の混合粉について実施例1の場合と同じ条件で成形と焼結を行ない、得られた試料の被削性と耐摩耗性を試験した。その結果は、頑火輝石と硫化マンガンを含有する前者のデータは被削性指数…38,摩耗量…12μmであったのに対して、後者の場合は被削性指数…42,摩耗量…14μmであり、被削性,耐摩耗性ともに前者の方が良くなっている。両試料の組織状態を見ると後者の場合には基地中に潤滑性物質として遊離黒鉛,頑火輝石,硫化マンガンの三者が分散しているのに対して、後者では遊離黒鉛のみであり、この差が特性の違いを生じさせたものと考えられる。
【0017】
【発明の効果】
この発明に係るバルブガイド材は、従来に比べて被削性が2倍程度に向上し、しかも従来材を凌ぐ耐摩耗性を具えている。従ってエンジン部品としての品質は固より、エンジンの組み立て工程における作業条件,使用する工作機械との相性その他種々の関係からバルブガイド材の被削性が特に重視される場合、この発明は極めて有益なものである。
【図面の簡単な説明】
【図1】試料の銅含有量と被削性との関係を示すグラフである。
【図2】試料の銅含有量と耐摩耗性との関係を示すグラフである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to wear resistance and machinability suitable for a valve guide of an internal combustion engine, in particular, the latter excellent sintered alloy.
[0002]
[Prior art]
Special cast irons such as gray cast iron and boron cast iron are sometimes used as valve guides for internal combustion engines, but in the case of cast iron, there are problems with work environment, mass productivity, price, etc., so replacement with sintered alloy Has been promoted. However, general sintered alloys have inadequate wear resistance. On the other hand, if the material is strengthened by adding alloy components, the wear resistance will reach a usable level. (Machinability) decreases. Since the valve guide is assembled to the cylinder head of the engine and the inner diameter is finished by reaming, if the valve guide material is poor in machinability, the time required for machining will be longer and the wear of the tool will be accelerated, resulting in increased production efficiency Be inhibited.
[0003]
[Problems to be solved by the invention]
Previously, the valve guide material developed by the present applicant in order to achieve both wear resistance and machinability (see Japanese Examined Patent Publication No. 55-34858) has a composition of C ... 1.5-4% by mass, Cu ... Sintered alloy of 1-5%, Sn ... 0.1-2%, P ... 0.1-0.3% and Fe balance, but wear resistance is superior to boron cast iron and machinability Although it is harder to cut than cast iron, it is superior to conventional sintered materials and has been widely used by automobile manufacturers. However, in recent years, due to changes in the environment surrounding this field, it has become more necessary than ever to improve productivity as well as improve quality, and a material with better machinability has been demanded for the valve guide material.
[0004]
[Means for Solving the Problems]
Then, when the improvement was aimed at based on the valve guide material which concerns on the above-mentioned prior invention, the result that machinability improved when copper content was increased was obtained. The present invention has been made based on such findings, and one is a copper content of 6 to 20% (mass%; hereinafter,% in this specification is mass% unless otherwise specified. ), And the other one is that together with the increase of copper, a total of less than 4% of enstatite (MgSiO 3 ) and manganese sulfide (MnS) was added. Is the main point.
[0005]
That is, the valve guide material according to the first invention has a composition of C ... 1.5-4%, Cu ... 6-20%, Sn ... 0.1-2%, P ... 0.1-0.3% and Fe. The remaining sintered alloy has a microstructure of Fe-PC-based alloy phase in a matrix mainly composed of pearlite; copper or copper-tin-based alloy phase (this "or" also includes copper and copper-tin based ...) ); Three of free graphite are dispersed. Further, according to the second invention, the alloy composition is C ... 1.5-4%, Cu ... 6-20%, Sn ... 0.1-2%, P ... 0.1-0.3%, Fe-PC-C based alloy phase; copper or copper tin based alloy phase; free graphite, pyroxene and manganese sulfide in a base mainly composed of pearlite with a total of less than 4% of dolomite and manganese sulfide and Fe balance The three parties present a distributed organization.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
In the sintered alloy according to the present invention, carbon is added in the form of graphite powder, and a part (generally 0.8 to 1%) is solid-solved in iron to strengthen the base, or is bonded to phosphorus and relatively A hard particulate Fe-PC-based alloy phase (steadite phase) is generated and dispersed, and the remainder remains in the state of free carbon (graphite) to act as a solid lubricant. The amount of free graphite is about 0.3% when the carbon content (total carbon content) is 1.5%, and about 1.7% when the total carbon content is 3%. When it is less than%, the wear of the valve guide due to sliding with the valve increases. For this reason, the lower limit of the carbon content is 1.5%. On the other hand, if the amount is excessive, the strength of the base material is reduced and segregation or fluidity inhibition is caused during powder molding, so the carbon content is limited to 4%.
[0007]
Copper and tin are usually added in the form of a copper-tin alloy powder having a tin content of about 5 to 20%, and with a required amount of copper powder added thereto. Both promote the progress of sintering and strengthen the base by solid solution, while part remains as a Cu-Sn alloy phase to improve the sliding characteristics and machinability. At this time, when the copper phase is dispersed together with the Cu—Sn alloy phase, this action is further strengthened, but the effect becomes remarkable when the copper content is 6% or more. However, if it exceeds 20%, the wear resistance deteriorates, so the appropriate range of the copper content is 6 to 20%. On the other hand, the above-mentioned action and effect due to the presence of tin occurs when the content is 0.1% or more, but if it exceeds 2%, the base material becomes brittle, so the tin content is suitably 0.1-2%. Range.
[0008]
Phosphorus is added in the form of Fe-P alloy powder or Cu-P alloy powder. The Fe-PC-based alloy phase (steadite phase) produced according to the phosphorus content increases, the rigidity of the base material is increased, and the wear resistance is improved. The steadite phase formed in the matrix can be observed with a microscope when the phosphorus content is approximately 0.05% or more, but 0.1% is necessary to effectively improve the wear resistance. . On the other hand, machinability decreases as phosphorus increases. Therefore, from a practical point of view, the appropriate range of phosphorus is 0.1 to 0.3%.
[0009]
The pyroclasticite in the second invention is a magnesium metasilicate mineral, which is orthorhombic and cleaved, and acts as a solid lubricant like free graphite and further improves machinability. The same applies to manganese sulfide, but it also has the effect of improving the wear resistance of the substrate. Although both are added as powders, the use of campsite and manganese sulfide (preferably 20 to 30% of campsite) can further improve the wear resistance and machinability while maintaining the balance.
[0010]
Although these solid lubricants including free graphite are dispersed in the matrix and exhibit a solid lubricating effect, the material strength decreases as the content (dispersion) increases. In the case of the present invention, if the content exceeds 4%, the material strength necessary for the valve guide material cannot be maintained, so the total amount of the solid lubricant (free graphite, pyroxene and manganese sulfide) is made 4% or less. This means that, for example, when the total carbon content is 1.5% and the free graphite content is 0.7%, the pyroxene and manganese sulfide can be incorporated up to a maximum of 3.3%. The mixing, forming, and sintering of the raw material powder are in accordance with the usual method of powder metallurgy, but the sintering atmosphere is preferably a reducing or carburizing atmosphere. If the sintering temperature is too high, free graphite disappears, so 980-1100 A temperature of about ° C is suitable.
[0011]
(Example 1) First, as raw material powder, carbon is natural graphite powder, phosphorus is Fe-20% P alloy powder, copper and tin are copper powder and Cu-10% Sn alloy powder, iron is reduced iron powder, and powder lubrication. Zinc stearate was prepared as an agent. Next, these are blended in predetermined proportions, and the carbon is uniformly fixed at 2%, phosphorus is 0.1% and 0.3% in the total composition, copper is 2-30%, tin is 0.3%. The mixed powder (reduced iron powder remainder) changed to 1 to 2% was produced. In each mixed powder, the amount of zinc stearate added is uniformly 0.75%.
[0012]
Next, each mixed powder is molded into a predetermined shape at a molding pressure of 490 MPa, and sintered in a reducing gas atmosphere at 1000 ° C. for 60 minutes to obtain a large number of cylindrical samples having a length of 40 mm, an outer diameter of 12 mm, and an inner diameter of 7.4 mm. Produced. The alloy structure of each sample (sintered material) is a pearlite structure with a dense base, white-white Fe-PC system alloy phase (steadite phase), reddish Cu-Sn alloy phase, Samples with a high copper content are interspersed with copper phases.
[0013]
Next, the machinability and wear resistance of each sample thus obtained were tested. Machinability is a sample containing 5% copper and 0.3% phosphorous corresponding to the material of the prior invention. The time required for reaming the inner diameter of the sample and cutting 10 mm in the axial direction is obtained. Comparison was made in terms of an index of 100. Therefore, the smaller the index is, the easier it is to cut and the shorter the processing time, that is, the better the machinability. In addition, the wear resistance is determined by finishing each sample to the specified shape and dimensions of the valve guide and mounting it on the engine simulation test device, and sliding it back and forth for a specified time with a valve loaded with a radial load in the heated state. The difference in the inner diameter of the sample was determined as the amount of wear and compared.
[0014]
The drawing is a graph of these data organized by phosphorus content. Fig. 1 shows the relationship between copper content and machinability, and Fig. 2 shows the relationship between copper content and wear resistance. Show. From the graph, first, regarding the influence of phosphorus, in the range of 0.1 to 0.3% of the phosphorus content, the machinability is less as the phosphorus content is higher, and the wear resistance is higher as the phosphorus content is higher regardless of the copper content You can see that Next, with regard to the influence of copper, the machinability increases sharply as the copper content increases, starting from the time when the content exceeds about 5%. Continue. On the other hand, as for wear resistance, the amount of wear is uniformly small when the copper content is in the range of 6 to 20% and shows excellent wear resistance, but the amount of wear increases in the region before and after that. That is, the wear resistance rapidly deteriorates regardless of the phosphorus content from the time when the copper content exceeds 20%, and even if the copper content is less than 6%, the wear resistance deteriorates more as the phosphorus content increases. Thus, good results are obtained in both machinability and wear resistance at an appropriate range of copper content of 6 to 20%.
[0015]
(Example 2) The raw material powder is the same as that prepared in Example 1, 2% natural graphite powder, 5.5% copper powder, 5% Cu-10% Sn alloy powder, Fe-20% P alloy powder A mixed powder was prepared by adding 1.5% of pyroxenite powder, 0.8% of pyroxene powder, 0.2% of manganese sulfide powder, and 0.75% of zinc stearate to the remaining reduced iron powder. Its total composition is C ... 2%, Cu ... 10%, Sn ... 0.5%, P ... 0.3% (in addition to dolomite, manganese sulfide, and iron balance). For comparison, a mixed powder was prepared by omitting the pyroxene pyroxene powder and manganese sulfide powder from the above composition.
[0016]
Next, these two types of mixed powders were molded and sintered under the same conditions as in Example 1, and the machinability and wear resistance of the obtained samples were tested. As a result, the former data containing pyroxene and manganese sulfide had a machinability index of 38 and a wear amount of 12 μm, whereas in the latter case, the machinability index of 42 and the wear amount of 14 μm. The former is better in both machinability and wear resistance. Looking at the structure of both samples, in the latter case, free graphite, pyroxene and manganese sulfide are dispersed as lubricants in the base, whereas in the latter, only free graphite is present. The difference is considered to have caused the difference in characteristics.
[0017]
【The invention's effect】
The valve guide material according to the present invention has a machinability improved by about twice as compared with the conventional material, and has wear resistance that surpasses that of the conventional material. Therefore, the present invention is extremely useful when the quality as an engine part is solid, and when the workability of the valve guide material is particularly important due to various conditions such as working conditions in the assembly process of the engine, compatibility with the machine tool to be used, etc. Is.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between the copper content and machinability of a sample.
FIG. 2 is a graph showing the relationship between copper content and wear resistance of a sample.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000262320A JP4323070B2 (en) | 2000-08-31 | 2000-08-31 | Valve guide material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000262320A JP4323070B2 (en) | 2000-08-31 | 2000-08-31 | Valve guide material |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002069598A JP2002069598A (en) | 2002-03-08 |
JP4323070B2 true JP4323070B2 (en) | 2009-09-02 |
Family
ID=18750017
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000262320A Expired - Lifetime JP4323070B2 (en) | 2000-08-31 | 2000-08-31 | Valve guide material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4323070B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060032328A1 (en) * | 2004-07-15 | 2006-02-16 | Katsunao Chikahata | Sintered valve guide and manufacturing method thereof |
JP5310074B2 (en) * | 2009-02-20 | 2013-10-09 | Jfeスチール株式会社 | Iron-based powder mixture for high-strength sintered parts of automobiles |
JP5525986B2 (en) * | 2009-12-21 | 2014-06-18 | 日立粉末冶金株式会社 | Sintered valve guide and manufacturing method thereof |
EP2436463B1 (en) * | 2010-09-30 | 2013-07-10 | Hitachi Powdered Metals Co., Ltd. | Sintered materials for valve guides and production methods therefor |
CN117600459B (en) * | 2023-11-06 | 2024-08-09 | 广东凯洋新材料有限公司 | Heat dissipation bracket and preparation method thereof |
-
2000
- 2000-08-31 JP JP2000262320A patent/JP4323070B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2002069598A (en) | 2002-03-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5351022B2 (en) | Powder metallurgy mixtures, articles, sintered articles, and valve seat inserts | |
JP5858921B2 (en) | Ferrous sintered powder metal for wear resistant applications | |
JP6112473B2 (en) | Iron-based sintered sliding member | |
US4021205A (en) | Sintered powdered ferrous alloy article and process for producing the alloy article | |
CN107008907B (en) | Iron-based sintered sliding member and its manufacturing method | |
JP2713658B2 (en) | Sintered wear-resistant sliding member | |
US6616726B2 (en) | Material for valve guides | |
JP2014196526A (en) | Iron-based sintered alloy for sliding member and production method thereof | |
JP4193969B2 (en) | Valve guide for internal combustion engine made of iron-based sintered alloy | |
JPH0453944B2 (en) | ||
US6783568B1 (en) | Sintered steel material | |
JP4323069B2 (en) | Valve guide material | |
JP4323070B2 (en) | Valve guide material | |
JP4323071B2 (en) | Valve guide material | |
JP3827033B2 (en) | Wear-resistant sintered alloy and method for producing the same | |
JP5253132B2 (en) | Wear-resistant sintered alloy and method for producing the same | |
JP6519955B2 (en) | Iron-based sintered sliding member and method of manufacturing the same | |
JP6384687B2 (en) | Manufacturing method of iron-based sintered sliding member | |
JP6341455B2 (en) | Manufacturing method of iron-based sintered sliding member | |
JPH0277552A (en) | Production of wear-resistant ferrous sintered alloy | |
JP5358131B2 (en) | Wear-resistant sintered alloy and method for producing the same | |
JPH046786B2 (en) | ||
JP2000064003A (en) | Wear resistant sintered alloy and its production | |
JP5253131B2 (en) | Wear-resistant sintered alloy and method for producing the same | |
JPH01176051A (en) | Wear-resistant iron-based sintered piston ring material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070511 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090428 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090512 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090604 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 4323070 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120612 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120612 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130612 Year of fee payment: 4 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
EXPY | Cancellation because of completion of term |