JP4320913B2 - High-tensile hot-dip galvanized steel sheet with excellent formability and method for producing the same - Google Patents
High-tensile hot-dip galvanized steel sheet with excellent formability and method for producing the same Download PDFInfo
- Publication number
- JP4320913B2 JP4320913B2 JP2000119286A JP2000119286A JP4320913B2 JP 4320913 B2 JP4320913 B2 JP 4320913B2 JP 2000119286 A JP2000119286 A JP 2000119286A JP 2000119286 A JP2000119286 A JP 2000119286A JP 4320913 B2 JP4320913 B2 JP 4320913B2
- Authority
- JP
- Japan
- Prior art keywords
- steel sheet
- hot
- steel
- dip galvanized
- less
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 229910001335 Galvanized steel Inorganic materials 0.000 title claims description 23
- 239000008397 galvanized steel Substances 0.000 title claims description 23
- 238000004519 manufacturing process Methods 0.000 title claims description 18
- 229910000831 Steel Inorganic materials 0.000 claims description 93
- 239000010959 steel Substances 0.000 claims description 93
- 229910000734 martensite Inorganic materials 0.000 claims description 29
- 238000001816 cooling Methods 0.000 claims description 28
- 239000000126 substance Substances 0.000 claims description 22
- 239000000203 mixture Substances 0.000 claims description 20
- 229910052748 manganese Inorganic materials 0.000 claims description 15
- 239000000463 material Substances 0.000 claims description 15
- 229910000859 α-Fe Inorganic materials 0.000 claims description 15
- 239000013078 crystal Substances 0.000 claims description 13
- 229910052796 boron Inorganic materials 0.000 claims description 10
- 238000005098 hot rolling Methods 0.000 claims description 9
- 238000005246 galvanizing Methods 0.000 claims description 7
- 229910052804 chromium Inorganic materials 0.000 claims description 6
- 238000005097 cold rolling Methods 0.000 claims description 6
- 239000012535 impurity Substances 0.000 claims description 6
- 239000011248 coating agent Substances 0.000 claims description 4
- 238000000576 coating method Methods 0.000 claims description 4
- 230000000694 effects Effects 0.000 description 24
- 238000007747 plating Methods 0.000 description 23
- 238000005275 alloying Methods 0.000 description 18
- 238000000137 annealing Methods 0.000 description 18
- 238000005096 rolling process Methods 0.000 description 16
- 229910001566 austenite Inorganic materials 0.000 description 12
- 230000001965 increasing effect Effects 0.000 description 11
- 238000007598 dipping method Methods 0.000 description 10
- 238000000034 method Methods 0.000 description 10
- 230000001771 impaired effect Effects 0.000 description 9
- 238000012360 testing method Methods 0.000 description 9
- 238000010438 heat treatment Methods 0.000 description 8
- 229910001562 pearlite Inorganic materials 0.000 description 8
- 230000007423 decrease Effects 0.000 description 6
- 238000001953 recrystallisation Methods 0.000 description 5
- 229910001035 Soft ferrite Inorganic materials 0.000 description 4
- 238000007796 conventional method Methods 0.000 description 4
- 239000006104 solid solution Substances 0.000 description 4
- 230000009466 transformation Effects 0.000 description 4
- 230000009471 action Effects 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 239000010960 cold rolled steel Substances 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 239000002244 precipitate Substances 0.000 description 3
- 238000001556 precipitation Methods 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 238000002791 soaking Methods 0.000 description 3
- 238000005728 strengthening Methods 0.000 description 3
- 238000009864 tensile test Methods 0.000 description 3
- 239000011701 zinc Substances 0.000 description 3
- 229910001563 bainite Inorganic materials 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 239000012467 final product Substances 0.000 description 2
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 2
- 229910052758 niobium Inorganic materials 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 229910052720 vanadium Inorganic materials 0.000 description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- ZDVYABSQRRRIOJ-UHFFFAOYSA-N boron;iron Chemical compound [Fe]#B ZDVYABSQRRRIOJ-UHFFFAOYSA-N 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 229910001567 cementite Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- ZCDOYSPFYFSLEW-UHFFFAOYSA-N chromate(2-) Chemical compound [O-][Cr]([O-])(=O)=O ZCDOYSPFYFSLEW-UHFFFAOYSA-N 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- KSOKAHYVTMZFBJ-UHFFFAOYSA-N iron;methane Chemical compound C.[Fe].[Fe].[Fe] KSOKAHYVTMZFBJ-UHFFFAOYSA-N 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 238000005554 pickling Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000003303 reheating Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000010583 slow cooling Methods 0.000 description 1
- 238000005482 strain hardening Methods 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Images
Landscapes
- Coating With Molten Metal (AREA)
- Heat Treatment Of Sheet Steel (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は自動車の構造部品などに好適な成形性に優れた高張力溶融亜鉛系めっき鋼板およびその製造方法に関する。
【0002】
【従来の技術】
近年、自動車の車体強度向上と走行時の燃料消費率改善を両立させるために自動車車体部品への高張力鋼板の適用が推進されている。一般に鋼の延性などで代表される成形性は高張力化に伴い低下する傾向があり、鋼の高張力化に伴ってプレス加工が困難になる。特に鋼の引張強さが500MPaを超える領域では上記傾向が著しい。このため、成形性の優れた高張力鋼板が必要となっており、自動車車体部品には優れた防錆性も必要とされることから、優れた成形性と防錆性を兼ね備えた高張力鋼板が望まれている。
【0003】
結晶組織が軟質なフェライトと硬質なマルテンサイトからなる2相組織を備えた鋼板は、高張力化しても延性劣化が少なく、降伏比が小さいので成形品の形状精度もよいという特長を有することが知られている。このような2相組織鋼板は、適度にCを含有した鋼をフェライト(α)+オーステナイト(γ)からなる2相共存域に急速加熱し、短時間保持してオーステナイト中にCを濃縮させた後、急速冷却して低温でオーステナイトをマルテンサイト変態させることで得られる。急速加熱と急速冷却が容易な連続焼鈍方法によればこのような2相組織を備えた冷間圧延の製造は容易である。
【0004】
しかしながら2相組織を備えた溶融亜鉛めっき鋼板は、冷間圧延鋼板の場合に比較すると製造が困難になる。それは、溶融めっきが460℃前後の温度でおこなわれること、めっき後に合金化処理を施す場合には560℃前後に再加熱する合金化処理が施されること、などにより冷間圧延鋼板製造時のような急速冷却が困難なためである。
【0005】
2相組織を備えた溶融亜鉛めっき鋼板の製造方法として、例えば特開昭55−100935号公報には、質量%(以下、化学組成を表す%表示は質量%を意味する)で、C:0.20%以下、Si:0.60%以下、Mn:3.5%以下を含有し、かつMn(%)+Si(%)≧2.3(%)の関係を満足する化学組成を備えた鋼を、連続溶融めっきラインにて合金化溶融亜鉛めっきすると共に、めっき槽と合金化炉との間で鋼板をMs点以上の温度に保持することを特徴とする形状性に優れた高張力亜鉛めっき鋼板の製造方法が開示されている。
【0006】
しかしながら上記方法では、良好な2相組織を得るために鋼のMnとSiの合計含有量を2.3%以上に高くするため、溶融めっきの付着性がよくないうえ、合金化処理性がよくないために生産性が低く、かつ高価な合金を多用するためにコストも高い、という問題があった。
【0007】
また、特開平11−279691号公報には、C:0.05〜0.15%、Si:0.3〜1.5%、Mn:1.5〜2.8%を含有し、Mn≧15CかつSi≧4Cの関係を満足する化学組成を備えた高張力合金化溶融亜鉛めっき鋼板およびその製造方法が開示されている。
【0008】
上記鋼板でも、3〜20体積%のマルテンサイトおよび残留オーステナイトを有する組織とするためにSiとMnを大量に含有させる必要があり、溶融めっき性や合金化処理性がよくないうえ、コストも高いという問題があった。
【0009】
以上述べたように、自動車車体部品などに好適な成形性に優れた高張力溶融亜鉛系めっき鋼板は未だ改善の余地がある。
【0010】
【発明が解決しようとする課題】
本発明の目的は上記したような問題点を解決し、延性に優れ、かつ経済性を兼ね備えた高張力溶融亜鉛系めっき鋼板、特に引張強さが500MPaを超える領域の高張力鋼板とその製造方法を提供することにある。
【0011】
【課題を解決するための手段】
本発明者らは前記課題を解決すべく、母材鋼板を焼鈍し、溶融めっきし、その後合金化処理する合金化溶融亜鉛めっき鋼板の各製造工程におけるオーステナイトの安定性と化学組成との関係について研究を重ねた結果、Mn、BおよびCr含有量を特定の範囲とした鋼を焼鈍し、特定の条件で冷却して溶融めっきすることにより、母材の結晶組織が軟質なフェライトと適度の体積率の硬質なマルテンサイトを有するものとなり、成形性に優れた高張力鋼板が得られることを見出した。
【0012】
本発明は、これらの知見を基にして完成されたものであり、その要旨は下記(1)〜(4)に記載の成形性に優れた高張力溶融亜鉛系めっき薄鋼板、および(5)に記載のその製造方法にある。
【0013】
(1)母材の少なくとも片面に溶融亜鉛系めっき皮膜を備えためっき鋼板であって、母材の化学組成が質量%で、C:0.04〜0.12%、Mn:0.3〜2.5%、sol.Al:0.005〜0.10%、B:0.0003〜0.0040%を含有し、かつ、Mn(%)+logB(%)で計算される値が−1.50以上、−0.50以下になるようにMnおよびBの含有量が調整され、残部がFeおよび不可避的不純物からなり、その結晶組織が体積%で5〜25%のマルテンサイトを有し、残部がフェライトと10体積%以下の第3相からなるものであることを特徴とする成形性に優れた高張力溶融亜鉛系めっき鋼板。
【0014】
(2)母材の少なくとも片面に溶融亜鉛系めっき皮膜を備えた亜鉛系めっき鋼板であって、母材の化学組成が質量%で、C:0.04〜0.12%、Mn:0.3〜2.5%、Cr:0.2〜2.0%、sol.Al:0.005〜0.10%、B:0.0003〜0.0040%を含有し、かつ、Mn(%)+0.6×Cr(%)+logB(%)で計算される値が−1.50以上、−0.50以下になるようにMn、CrおよびBの含有量が調整され、残部がにFeおよび不可避的不純物からなり、その結晶組織が体積%で5〜25%のマルテンサイトを有し、残部がフェライトと10体積%以下の第3相からなるものであることを特徴とする成形性に優れた高張力溶融亜鉛系めっき鋼板。
【0015】
(3)母材の化学組成がさらに質量%で、Si:0.15〜0.60%およびP:0.025〜0.050%からなる群の内の1種または2種を含有するものであることを特徴とする上記(1)または(2)に記載の成形性に優れた高張力溶融亜鉛系めっき鋼板。
【0017】
(4)上記(1)〜(3)のいずれかに記載の化学成分を有する鋼を熱間圧延し、次いで冷間圧延して得た冷延板を、780〜850℃で20〜90秒間保持した後、少なくとも550℃までを3〜20℃/秒の冷却速度で冷却した後、溶融亜鉛系めっきを施すことを特徴とする成形性に優れた高張力溶融亜鉛系めっき鋼板の製造方法。
【0018】
【発明の実施の形態】
本発明の実施の形態を詳細に述べる。
母材の化学組成;
C:鋼の焼き入れ性を向上させ、マルテンサイト形成を促進して鋼の強度を高める作用がある。本発明では上記作用を利用して鋼の強度を高めるためにCを0.04%以上含有させる。C含有量を高くしすぎると鋼の強度が高くなりすぎ、成形性が損なわれて加工用途に適さなくなる。したがってC含有量は0.12%以下とする。好ましくは0.10%未満である。
【0019】
Si:必須元素ではないが、Siを含有させることにより、フェライトを固溶強化して鋼の強度を高めたり、第2相(マルテンサイト)との間の硬度差を減少させて疲労特性を向上させるなどの効果が得られる。従ってこれらの効果を得るためにSiを含有させても構わない。その場合には0.15%以上含有させるのがよい。しかしながら、過度にSiを含有させると、めっきの濡れ性が低下して不めっきが発生するうえ、合金化処理性が悪くなり生産性を損なう。このような不都合を避けるためにSiを含有させる場合でもその上限は0.60%とする。好ましくは0.40%以下、さらに好ましくは0.30%以下である。
【0020】
Mn:本発明では、高張力鋼板でありながら良好な延性を備えた鋼板とするために、鋼の結晶組織を軟質なフェライトと硬質なマルテンサイトからなる2相組織とすることが極めて重要である。
【0021】
Mnを含有させると鋼のAc3点が低下して焼鈍均熱中のオーステナイトの確保が容易となるので、パーライトの析出抑制とMs 点(マルテンサイト変態開始温度)を低める効果が得られる。
【0022】
さらにSと結合してMnSを形成し、Sによる熱間延性の劣化を防ぐ効果や、フェライトに固溶してこれを硬化することにより、鋼の強度を高める作用もある。このような効果を確保するためにMnは0.30%以上含有させる。Ms 点を低くする観点から、好ましくは1.0%以上含有させる。
【0023】
しかしながらMn含有量が2.5%を超えると鋼板表面の酸化物が増し、めっき性が劣化して不めっきなどが発生するおそれがあるうえ、鋼の強度が高くなりすぎ、かつ製造コストが高くなる。これを避けるためにMn含有量は2.5%以下とする。好ましくは2.0%以下である。
【0024】
B:鋼のフェライト変態を抑制して鋼の焼き入れ性を高める作用があり、Bを含有させることにより、冷却速度が比較的小さい場合でもオーステナイトを低温域まで安定にし硬質なマルテンサイトを得ることができる。この効果を得るためにBを0.0003%以上含有させる。他方、B含有量が0.0040%を超えると鉄−ボロン化合物が析出し、上記焼き入れ性向上効果が期待できなくなるうえ、鋼の延性を阻害する。これを避けるためにB含有量は0.0040%以下とする。
【0025】
CrもMnと同様にMs点を低めマルテンサイトを得るのに有効な元素であるが、Mnに比較すると鋼のAc3点を低くする作用が小さく、マルテンサイトをもたらす効果はMnに比較すると小さい。しかしながらCrはMnに比較すると鋼の固溶強化能が小さいという特徴があるので、Crを含有させることにより、降伏比が小さく成形性のよい高強度鋼板を得るのに好適である。従ってこれらの効果を得るためにCrを含有させても構わない。含有させる場合には0.20%以上とするのがよい。Cr含有量が過剰になると溶融めっき性が損なわれるので、含有させる場合でも2.0%以下とする。
【0026】
Mn、BおよびCr:これらの元素には上述したように鋼の焼き入れ性を高める作用があり、それぞれの元素が有する上記作用の強さに応じてその含有割合を決定することにより、連続式溶融めっきのように、α+γ2相温度域で焼鈍した後の冷却速度を緩冷却とせざるをえない場合であっても、硬質なマルテンサイトを確保することができる。
【0027】
鋼のAc3点低下とMs点低下に対するCrの効果を合算すると、Mnの0.6倍であり、また、Bの焼き入れ性向上効果はその含有量に対して指数関数的に作用する。従ってこれらの元素の効果は、X=Mn(%)+0.6×Cr(%)+logB(%)とした場合のXの値で整理することができる。
【0028】
図1は表1に記載した種々の化学組成を有する冷間圧延鋼板をα+γ2相温度域に加熱し焼鈍した後、一定の冷却速度で470℃まで冷却して溶融めっきし、550℃に再加熱して合金化処理して得られためっき鋼板の延性とX値との関係を示すグラフである。ここでは引張強さが異なる鋼の延性良否を判断するために、鋼の延性を引張強さ(MPa)と全伸び(%)の積(以下、強度延性バランスまたはTS*Elと記す)で評価した。
【0029】
図1に示すように、強度延性バランスが良好な鋼を得るにはXを特定範囲に限定する必要がある。複雑形状の部品の成形において良好な成形結果を得るには、強度延性バランスが16000以上である鋼板を用いるのが望ましいが、これを得るにはXを−1.50以上、−0.50以下とする必要がある。さらに優れた成形結果を得るには強度延性バランスが17000以上である鋼板を用いるのが望ましいが、これを得るにはXを−1.20以上、−0.50以下とするのがよい。
【0030】
P:必須元素ではないが、Pはフェライトを硬くして鋼板の強度を高める作用があるので鋼の高強度化のために含有させても構わない。安価に鋼の強度を高めるには、Pを0.025%以上含有させるのがよい。他方、Pは亜鉛めっき相の合金化反応を遅くし、合金化処理時の能率を低下させて生産性を阻害するため、Pを含有させる場合でもその上限は0.050%とする。好ましくは0.040%以下である。
【0031】
sol.Al:Alは鋼を脱酸し健全な鋼を得るのに有用な元素である。また熱間圧延後にNを固定し、鋼中のBがBNとして消費されるのを抑制する効果が得られる。これらの効果を得るためにAlをsol.Alとして0.01%以上含有させる。一方、Alを過剰に含有させると介在物が増加し、延性が劣化するので、sol.Al含有量は0.10%以下とする。
【0032】
Ti、NbおよびV:これらの元素は安価に鋼板強度を高め、溶接性を向上させる作用があるので含有させても構わない。含有させる場合には、Ti、NbおよびVからなる群の内の1種または2種以上を、それぞれ0.01%以上、0.04%以下、合計で0.04%以下含有させるのがよい。
【0033】
残部は実質的にFeおよび不可避的不純物からなる。不可避的不純物の中でもSはMnと結合してMnSとして析出し鋼の延性を劣化させるのでS含有量は0.015%以下とするのが望ましい。また、NはBNとして析出するためN含有量が増すと固溶Bが減少し、Bによる焼入性向上効果が低減する。これを避けるためにN含有量は0.0050%以下とするのが望ましい。
【0034】
本発明の鋼板の母材は、上記化学組成に加えて、体積%で5〜25%のマルテンサイトを有し、残部が実質的にフェライトからなる2相組織からなる結晶組織を有する。
【0035】
母材のマルテンサイト比率が5体積%に満たない場合にはパーライトなどの第3相の比率が増し、目的とする良好な強度延性バランスが得られない。マルテンサイト比率が25体積%を超えると軟質なフェライトが少なくなり、鋼の強度が高くなりすぎるとともに、目的とする良好な強度延性バランスが得られない。
【0036】
結晶組織の「残部が実質的にフェライトからなる」とは、ベイナイトやパーライトなどの第3相は少ない程よいのであるが、その比率が10体積%以下であれば、本発明の目的達成の支障にはならないので、10体積%以下の第3相が含有されても構わないことを意味する。これらの第3相はマルテンサイトよりも軟質であるために鋼板が塑性変形する際の転位の増殖基点とならないため、10体積%を超えて多くなると加工硬化率が小さくなり、良好な強度延性バランスが得られない。
【0037】
本発明の高張力溶融亜鉛系めっき鋼板は、上記化学組成と結晶組織とを有する母材の少なくとも片面に溶融亜鉛系めっき皮膜を備える。めっき皮膜の種類は特に限定するものではなく、公知の溶融亜鉛めっきやFe−Zn合金化溶融亜鉛めっき、あるいはそれぞれ0.60%以下のAl、Pb、Sb、Mgなどの合金元素をを含有するZn系めっき皮膜が適用できる。
【0038】
めっき付着量は特に限定するものではないが、厚くしすぎると加工性と経済性を損なうので片面あたりで100g/m2 以下とするのがよい。薄目付けは製造が困難なため、下限は15g/m2 以上とするのがよい。めっき皮膜の上には、耐食性向上などの目的で、クロメート処理など、公知の後処理を施しても構わない。
【0039】
本発明の成形性に優れた高張力溶融亜鉛系めっき鋼板は以下の方法で製造するのが好適である。すなわち、上記化学組成を有する鋼(スラブ)を常法により熱間圧延して熱延板とし、これを酸洗した後、所定の厚さに冷間圧延し、次いで780〜850℃で20〜90秒間保持する再結晶焼鈍を施した後、少なくとも500℃までの温度範囲を3〜20℃/秒の冷却速度で冷却し、その後溶融亜鉛系めっき槽に浸漬して公知の方法により溶融めっきする。溶融めっき後に480〜560℃に加熱して合金化処理を施すのもよい。
【0040】
熱間圧延は公知の方法でおこなえばよい。すなわち、熱間圧延前のスラブは、加熱してもよいし、熱間圧延が可能であれば加熱しなくても構わない。また、仕上圧延温度を確保するために粗圧延と仕上圧延の間で加熱手段を用いて鋼を加熱しても構わない。熱間圧延温度は任意であるが好ましくは仕上温度をAr3点以上とするのがよい。
【0041】
熱間圧延後の巻取温度が低すぎるとベイナイトもしくはマルテンサイトの体積率が増加して熱延板が硬くなり冷間圧延が困難になるので、巻取温度は450℃以上とするのがよい。巻取温度が650℃を超えると、鋼板表面のスケールが厚くなり酸洗効率が損なわれるので、巻取温度は650℃以下とするのが望ましい。
【0042】
冷間圧延は公知の方法でおこなえばよい。しかしながら圧延率を過度に大きくすると、鋼板内のフェライトと、セメンタイト等との界面で微細なボイドが多数発生し、焼鈍後の延性を劣化させる。また、圧下率が過度に小さいと生産能率が低下する。したがい、冷間圧延時の圧延率は50%以上、75%以下とするのが望ましい。
【0043】
冷間圧延した鋼板は冷間圧延組織を完全に再結晶させるために、780℃以上850℃以下の焼鈍温度で20秒間以上、90秒間以下均熱保持する再結晶焼鈍をおこなう。その理由は、焼鈍温度が780℃に満たない場合には均熱状態でのオーステナイトの比率が小さくなり、最終製品でのマルテンサイト比率が確保できず、焼鈍時間が20秒間に満たない場合には再結晶が不十分になるからである。焼鈍温度が850℃を超えるか、焼鈍時間が90秒を超える場合には、オーステナイト粒が成長して鋼板の延性が劣化する。
【0044】
焼鈍後は、パーライトの析出を抑制し、かつ、オーステナイトの体積率を確保するために、少なくとも550℃に達するまでは3〜20℃/秒の冷却速度で冷却する。この間の冷却速度が3℃/秒に満たない場合には、冷却途中でパーライトが析出し、最終組織がフェライト、マルテンサイト、パーライトを含む複合組織となるため、延性が劣化する。逆に、この間の冷却速度が20℃/秒を超える場合には、フェライト変態があまり進行せず、オーステナイト体積率が多いまま冷却されるため、最終製品のマルテンサイト体積率が多くなりすぎ延性が劣化する。550℃以下の温度領域ではパーライトの析出ノーズから外れるため、3℃/秒に満たない冷却速度、あるいは低温保持などの処理をおこなっても構わない。
【0045】
焼鈍後の冷却は鋼板温度が450℃よりも低くならない範囲で終了するのがよい。これは冷却終点温度がMs点を下回ると溶融めっき前にオーステナイトがマルテンサイトに変態し、溶融めっきあるいは合金化処理時にこのマルテンサイトが焼戻されて軟質化するために鋼の降伏比が上昇し、成形性が損なわれるからである。また、冷却終点温度がめっき浴温度よりも大幅に低くなるとめっき浴に浸漬する前に再加熱が必要となるので経済性も損なわれる。
【0046】
溶融めっき方法は特に限定するものではなく、常法によりおこなえばよい。めっき付着量はガスワイピング法などの公知の方法で調整すればよい。溶融めっき後は常法により常温まで冷却して溶融亜鉛めっき鋼板としてもよいし、さらに合金化処理を施しても構わない。合金化処理する場合の合金化処理温度は480℃以上、560℃以下とするのがよい。合金化温度が560℃を超える場合には、合金化が過度に進行するために加工時にめっき層の密着性(耐パウダリング性)が低下し、合金化温度が480℃に満たない場合には合金化が不十分なため、めっき層表面での摺動性が低下し、成形性が損なわれることがあるからである。
【0047】
溶融亜鉛系めっき鋼板あるいはその合金化処理鋼板には、鋼板の平坦矯正やめっき層の表面粗度調整などのために、常法により調質圧延を施しても構わない。ただし、本発明のフェライトとマルテンサイトからなる複合組織鋼板は、低降伏比であるためスプリングバックが小さい利点をもつが、調質圧延時の圧延率を高くしすぎると降伏比が高くなり、上記利点が損なわれるので、調質圧延時の圧延率は小さくするのがよい。
【0048】
【実施例】
(実施例1)
種々の化学組成を有する鋼を実験室にて溶解し、鋳造して得た鋳片を950℃以上で熱間鍛造して厚さ20mmの鋼片を得た。これらの鋼片を1250℃に加熱して30分間保持し、仕上温度を850℃とする熱間圧延を施した、500℃まで冷却し、500℃に保持した熱処理炉中で30分間保持した後、炉内冷却して厚さ4mmの熱延板を得た。上記熱処理炉での保持と冷却は実際の製造ラインでの巻取り工程を模擬したものである。得られた熱延板を酸洗した後、圧下率を70%とする冷間圧延を施し、厚さ1.2mmの冷延板を得た。これらの冷延板から得た幅:70mm、長さ:200mmの試験片を、溶融亜鉛めっきシミュレーターを用いて、10℃/秒の加熱速度で800℃に加熱し、その温度で60秒間保持した後、8℃/秒の冷却速度で470℃まで冷却し、460℃の溶融亜鉛めっき浴に浸漬して溶融めっきし、その後10℃/秒の加熱速度で550℃に加熱し、5秒間保持した後、10℃/秒の冷却速度で室温まで冷却して合金化溶融亜鉛めっき鋼板を得た。
【0049】
得られた合金化溶融亜鉛めっき鋼板に、伸び率を0.5%とする調質圧延を施した後、結晶組織の観察と圧延方向に採取したJIS5号試験片による引張試験とをおこなった。マルテンサイト体積率は圧延方向断面をナイタール液で腐食した検査面を走査電子顕微鏡で撮影し、マルテンサイトの面積率を測定して体積率を求めた。引張試験結果については強度伸びバランスも計算した。
【0050】
第1表に鋼の化学組成と上記試験結果を示す。
【0051】
【表1】
表1に示されているように、本発明の規定する化学組成と結晶組織を有する鋼は良好なめっき皮膜と500MPaを超える引張強さを備え、かつ強度延性バランスがTS×ELで16000(MPa・%)以上の優れた成形性を備えたものであった。
【0052】
これに対し、鋼12はB含有量とX値が本発明が規定する範囲外であったために結晶組織においてパーライトが析出しており、強度延性バランスが小さかった。鋼13はX値が本発明が規定する上限を超えており、引張強さは高いが伸びが小さく強度延性バランスがよくなかった。鋼14はX値が本発明が規定する範囲よりも小さいため、鋼12と同様強度延性バランスが低かった。鋼15はB含有量が過剰であり、強度延性バランスがよくなかったうえ製造コストが高かった。鋼16はCrが過剰であるうえ、X値が本発明が規定する範囲よりも大きく、強度延性バランスが小さかった。鋼17はC含有量が本発明が規定する下限値よりも小さく、製品のマルテンサイト量が少なく、500MPaを超える引張強さが得られなかった。鋼18はC含有量が多すぎるため引張強さが非常に高くなり、プレス成形用途には適さなかった。鋼19はSi含有量が高すぎたために不めっきが発生した。
【0053】
(実施例2)
表1の番号6に記載の化学組成を有する鋼を実施例1に記載したのと同様の条件で熱間圧延し、酸洗し、冷間圧延して、厚さが1.2mmの冷延板を得た。上記冷延板から得た幅:70mm、長さ:200mmの試験片を、溶融亜鉛めっきシミュレーターを用いて、種々の焼鈍温度で60秒間保持する再結晶焼鈍を施した後、種々の冷却速度で470℃まで冷却し、460℃のめっき浴に浸漬して溶融めっきを施した。また、一部の鋼板についてはその後10℃/秒の加熱速度で550℃に加熱し、5秒間保持した後、10℃/秒の冷却速度で室温まで冷却する合金化処理を施した。得られた鋼板には伸び率:0.5%の調質圧延を施した後、実施例1に記載したのと同様の方法で引張試験と結晶組織観察をおこなった。
【0054】
表2に鋼の化学組成と上記試験結果を示す。
【0055】
【表2】
表2、試番21〜25の結果に示されているように、再結晶焼鈍条件および冷却条件が本発明が規定する範囲であったものは良好なめっき皮膜と500MPaを超える引張強さを備え、かつ強度延性バランスがTS×ELで16000(MPa・%)以上の優れた成形性を備えたものであった。
【0056】
これに対し、均熱温度が低すぎた試番28は引張強さが500MPaに満たなかった。焼鈍温度が高すぎた試番29、焼鈍後の冷却速度が小さすぎた試番27および焼鈍後の冷却速度が大きすぎた試番26はいずれも強度延性バランスがよくなかった。
【0057】
【発明の効果】
本発明の高張力鋼板は、優れた強度延性バランスを備えているので、特に複雑な形状に加工される自動車の構造部品などに極めて好適である。また、本発明の製造方法は、高価な合金元素を多用することなく上記高張力溶融亜鉛系めっき鋼板を容易に製造できるので極めて経済性にも優れた方法である。
【図面の簡単な説明】
【図1】本発明の実施例に関する、X値が鋼の延性に与える影響を示したグラフである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a high-tensile hot-dip galvanized steel sheet excellent in formability suitable for automobile structural parts and the like, and a method for producing the same.
[0002]
[Prior art]
In recent years, application of high-tensile steel plates to automobile body parts has been promoted in order to achieve both improvement in automobile body strength and improvement in fuel consumption rate during driving. In general, the formability represented by the ductility of steel tends to decrease with increasing tension, and press working becomes difficult with increasing tension of steel. In particular, the above tendency is remarkable in the region where the tensile strength of steel exceeds 500 MPa. For this reason, high-tensile steel sheets with excellent formability are required, and automobile body parts must also have excellent anti-rust properties. Therefore, high-tensile steel sheets that have both excellent formability and anti-rust properties. Is desired.
[0003]
Steel sheets with a two-phase structure consisting of soft ferrite and hard martensite have a feature that the ductility deterioration is small even when the tensile strength is increased, and the shape accuracy of the molded product is good because the yield ratio is small. Are known. Such a two-phase steel sheet is a steel that contains moderately C and is rapidly heated in a two-phase coexistence region composed of ferrite (α) + austenite (γ) and kept for a short time to concentrate C in the austenite. Thereafter, it is obtained by rapid cooling and martensitic transformation of austenite at a low temperature. According to the continuous annealing method in which rapid heating and rapid cooling are easy, it is easy to manufacture cold rolling having such a two-phase structure.
[0004]
However, a hot-dip galvanized steel sheet having a two-phase structure is difficult to manufacture as compared to a cold-rolled steel sheet. That is, when hot-rolled steel sheets are manufactured by performing hot dip plating at a temperature of around 460 ° C., and when alloying is performed after plating, an alloying treatment is performed to reheat to around 560 ° C. This is because such rapid cooling is difficult.
[0005]
As a method for producing a hot-dip galvanized steel sheet having a two-phase structure, for example, Japanese Patent Application Laid-Open No. 55-100535 discloses mass% (hereinafter, “%” indicating chemical composition means “mass%”), and C: 0 .20% or less, Si: 0.60% or less, Mn: 3.5% or less, and a chemical composition satisfying the relationship of Mn (%) + Si (%) ≧ 2.3 (%) High-tensile zinc with excellent formability, characterized in that steel is alloyed by hot dip galvanization in a continuous hot dipping line and the steel plate is kept at a temperature above the Ms point between the plating tank and the alloying furnace. A method for producing a plated steel sheet is disclosed.
[0006]
However, in the above method, in order to obtain a good two-phase structure, the total content of Mn and Si in the steel is increased to 2.3% or more, so the adhesion of hot dipping is not good and the alloying processability is good. Therefore, there is a problem that the productivity is low and the cost is high because many expensive alloys are used.
[0007]
JP-A-11-279691 contains C: 0.05 to 0.15%, Si: 0.3 to 1.5%, Mn: 1.5 to 2.8%, and Mn ≧ A high-tensile galvannealed steel sheet having a chemical composition satisfying the relationship of 15C and Si ≧ 4C and a method for producing the same are disclosed.
[0008]
Even in the steel sheet, it is necessary to contain a large amount of Si and Mn in order to obtain a structure having 3 to 20% by volume of martensite and retained austenite, and the hot dipping property and alloying processability are not good, and the cost is high. There was a problem.
[0009]
As described above, the high-tensile hot-dip galvanized steel sheet excellent in formability suitable for automobile body parts and the like still has room for improvement.
[0010]
[Problems to be solved by the invention]
The object of the present invention is to solve the above-mentioned problems, and to provide a high-tensile hot-dip galvanized steel sheet that is excellent in ductility and economical, particularly a high-tensile steel sheet having a tensile strength exceeding 500 MPa and a method for producing the same. Is to provide.
[0011]
[Means for Solving the Problems]
In order to solve the above problems, the inventors of the present invention annealed a base steel sheet, hot-dip plated, and then alloyed hot-dip galvanized steel sheet, in relation to the relationship between austenite stability and chemical composition in each manufacturing process. As a result of repeated research, steel with a specific range of Mn, B and Cr contents was annealed, cooled under specific conditions, and hot-dip plated, so that the crystal structure of the base material was soft ferrite and an appropriate volume It has been found that a high-tensile steel sheet having a high rate of hard martensite and excellent formability can be obtained.
[0012]
The present invention has been completed on the basis of these findings, and the gist thereof is a high-tensile hot dip galvanized thin steel sheet having excellent formability described in (1) to (4) below, and (5) In its production method.
[0013]
(1) A plated steel sheet having a hot dip galvanized coating on at least one side of a base material, the base material having a chemical composition of mass%, C: 0.04 to 0.12%, Mn: 0.3 to 2.5%, sol. Al: 0.005 to 0.10%, B: 0.0003 to 0.0040%, and a value calculated by Mn (%) + log B (%) is −1.50 or more, −0. 50 is adjusted content of Mn and B to be less than, the balance being Fe and unavoidable impurities, its crystal structure has 5 to 25% martensite by volume%, the remainder canvas ferrite and 10 A high-tensile hot dip galvanized steel sheet excellent in formability, characterized by comprising a third phase of volume% or less .
[0014]
(2) A galvanized steel sheet provided with a hot dip galvanized film on at least one side of the base material, wherein the base material has a chemical composition of mass%, C: 0.04 to 0.12%, Mn: 0.00. 3 to 2.5%, Cr: 0.2 to 2.0%, sol. Al: 0.005 to 0.10%, B: 0.0003 to 0.0040%, and the value calculated by Mn (%) + 0.6 × Cr (%) + log B (%) is − The content of Mn, Cr and B is adjusted so as to be 1.50 or more and −0.50 or less, the balance is made of Fe and unavoidable impurities, and the crystal structure is 5% to 25% by volume of martense. has a site, high-tensile hot-dip galvanized steel sheet excellent in formability, characterized in that with the remainder being gaff ferrite and 10% or less by volume of the third phase.
[0015]
(3) The chemical composition of the base material is further mass%, and contains one or two of the group consisting of Si: 0.15 to 0.60% and P: 0.025 to 0.050% The high-tensile hot dip galvanized steel sheet having excellent formability as described in (1) or (2) above.
[0017]
(4) A cold-rolled sheet obtained by hot rolling and then cold rolling the steel having the chemical component according to any one of (1) to (3 ) above at 780 to 850 ° C. for 20 to 90 seconds. A method for producing a high-tensile hot-dip galvanized steel sheet excellent in formability, characterized in that after being held, it is cooled to at least 550 ° C. at a cooling rate of 3 to 20 ° C./second and then hot-dip galvanized.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described in detail.
Chemical composition of the base material;
C: There exists an effect | action which improves the hardenability of steel and raises the intensity | strength of steel by promoting martensite formation. In this invention, in order to raise the intensity | strength of steel using the said effect | action, C is contained 0.04% or more. If the C content is too high, the strength of the steel becomes too high and the formability is impaired, making it unsuitable for processing applications. Therefore, the C content is 0.12% or less. Preferably it is less than 0.10%.
[0019]
Si: Although not an essential element, inclusion of Si improves the fatigue properties by increasing the strength of the steel by strengthening the ferrite by solid solution strengthening or reducing the hardness difference from the second phase (martensite). Effects such as Therefore, Si may be contained in order to obtain these effects. In that case, it is good to contain 0.15% or more. However, when Si is excessively contained, the wettability of the plating is lowered and non-plating is generated, and the alloying processability is deteriorated and the productivity is impaired. In order to avoid such inconvenience, the upper limit is made 0.60% even when Si is contained. Preferably it is 0.40% or less, More preferably, it is 0.30% or less.
[0020]
Mn: In the present invention, in order to obtain a steel sheet having good ductility while being a high-strength steel sheet, it is extremely important that the crystal structure of the steel is a two-phase structure composed of soft ferrite and hard martensite. .
[0021]
When Mn is contained, the Ac3 point of the steel is lowered and it becomes easy to secure austenite during annealing soaking, so that the effect of suppressing precipitation of pearlite and lowering the Ms point (martensitic transformation start temperature) can be obtained.
[0022]
Furthermore, it combines with S to form MnS and has the effect of preventing the hot ductility deterioration due to S and the effect of increasing the strength of the steel by solid solution in ferrite and hardening it. In order to ensure such an effect, Mn is contained by 0.30% or more. From the viewpoint of lowering the Ms point, 1.0% or more is preferably contained.
[0023]
However, if the Mn content exceeds 2.5%, the oxide on the surface of the steel sheet increases, the plating property may deteriorate and non-plating may occur, the strength of the steel becomes too high, and the manufacturing cost is high. Become. In order to avoid this, the Mn content is 2.5% or less. Preferably it is 2.0% or less.
[0024]
B: Suppresses the ferrite transformation of steel and enhances the hardenability of steel. By containing B, austenite can be stabilized to a low temperature range and hard martensite can be obtained even when the cooling rate is relatively low. Can do. In order to acquire this effect, B is contained 0.0003% or more. On the other hand, if the B content exceeds 0.0040%, an iron-boron compound precipitates, and the effect of improving the hardenability cannot be expected, and the ductility of the steel is hindered. In order to avoid this, the B content is 0.0040% or less.
[0025]
Cr, like Mn, is an effective element for lowering the Ms point and obtaining martensite. However, compared to Mn, the effect of lowering the Ac3 point of steel is small, and the effect of producing martensite is small compared to Mn. However, since Cr has a feature that the solid solution strengthening ability of steel is smaller than that of Mn, inclusion of Cr is suitable for obtaining a high strength steel sheet having a small yield ratio and good formability. Therefore, Cr may be contained in order to obtain these effects. When it is contained, the content is preferably 0.20% or more. If the Cr content is excessive, the hot dipping property is impaired, so even if it is contained, the content is made 2.0% or less.
[0026]
Mn, B and Cr: These elements have the effect of enhancing the hardenability of steel as described above, and by determining the content ratio according to the strength of the above-mentioned action of each element, continuous type Hard martensite can be ensured even when the cooling rate after annealing in the α + γ2 phase temperature range must be slow cooling as in hot dip plating.
[0027]
When the effect of Cr on the reduction of Ac3 point and Ms point of steel is added, it is 0.6 times that of Mn, and the effect of improving the hardenability of B acts on the content exponentially. Therefore, the effect of these elements can be arranged by the value of X when X = Mn (%) + 0.6 × Cr (%) + log B (%).
[0028]
FIG. 1 shows that after cold-rolled steel sheets having various chemical compositions shown in Table 1 are heated to an α + γ2 phase temperature range and annealed, cooled to 470 ° C. at a constant cooling rate, hot-dip plated, and reheated to 550 ° C. It is a graph which shows the relationship between the ductility of the plated steel plate obtained by alloying, and X value. Here, in order to judge the ductility of steels with different tensile strengths, the ductility of steel is evaluated by the product of tensile strength (MPa) and total elongation (%) (hereinafter referred to as strength-ductility balance or TS * El). did.
[0029]
As shown in FIG. 1, it is necessary to limit X to a specific range in order to obtain a steel with a good balance of strength and ductility. In order to obtain a good forming result in forming a component having a complicated shape, it is desirable to use a steel plate having a strength-ductility balance of 16000 or more. To obtain this, X is set to -1.50 or more and -0.50 or less. It is necessary to. In order to obtain a more excellent forming result, it is desirable to use a steel plate having a strength-ductility balance of 17000 or more. To obtain this, X is preferably set to -1.20 or more and -0.50 or less.
[0030]
P: Although not an essential element, P has the effect of hardening the ferrite and increasing the strength of the steel sheet, so it may be contained for increasing the strength of the steel. In order to increase the strength of steel at a low cost, it is preferable to contain 0.025% or more of P. On the other hand, P slows down the alloying reaction of the galvanized phase and lowers the efficiency during the alloying process to inhibit productivity. Therefore, even when P is contained, the upper limit is made 0.050%. Preferably it is 0.040% or less.
[0031]
sol. Al: Al is an element useful for deoxidizing steel and obtaining sound steel. Moreover, N is fixed after hot rolling, and the effect which suppresses that B in steel is consumed as BN is acquired. In order to obtain these effects, Al is sol. The Al content is 0.01% or more. On the other hand, when Al is contained excessively, inclusions increase and ductility deteriorates. The Al content is 0.10% or less.
[0032]
Ti, Nb, and V: These elements may be incorporated because they have the effect of increasing the steel sheet strength and improving the weldability at low cost. When contained, one or more of the group consisting of Ti, Nb and V are preferably contained in 0.01% or more and 0.04% or less, respectively, and in total 0.04% or less. .
[0033]
The balance consists essentially of Fe and inevitable impurities. Among the unavoidable impurities, S combines with Mn and precipitates as MnS to deteriorate the ductility of the steel, so the S content is preferably 0.015% or less. Further, since N precipitates as BN, the solid solution B decreases as the N content increases, and the effect of improving hardenability by B decreases. In order to avoid this, the N content is preferably 0.0050% or less.
[0034]
In addition to the above chemical composition, the base material of the steel sheet of the present invention has 5 to 25% by volume martensite, and the balance has a crystal structure consisting of a two-phase structure consisting essentially of ferrite.
[0035]
When the martensite ratio of the base material is less than 5% by volume, the ratio of the third phase such as pearlite increases, and the desired good strength ductility balance cannot be obtained. When the martensite ratio exceeds 25% by volume, soft ferrite decreases, the strength of the steel becomes too high, and the desired good strength ductility balance cannot be obtained.
[0036]
The phrase “the balance is substantially composed of ferrite” in the crystal structure means that the smaller the third phase such as bainite and pearlite, the better. However, if the ratio is 10% by volume or less, it will hinder the achievement of the object of the present invention. This means that 10% by volume or less of the third phase may be contained. Since these third phases are softer than martensite, they do not serve as growth base points for dislocations when the steel sheet undergoes plastic deformation, so if it exceeds 10% by volume, the work hardening rate decreases, and a good balance between strength and ductility. Cannot be obtained.
[0037]
The high-tensile hot dip galvanized steel sheet of the present invention includes a hot dip galvanized coating on at least one side of a base material having the above chemical composition and crystal structure. The kind of the plating film is not particularly limited, and contains a known hot dip galvanizing or Fe-Zn alloyed hot dip galvanizing, or alloy elements such as Al, Pb, Sb, Mg, etc. of 0.60% or less, respectively. A Zn-based plating film can be applied.
[0038]
The plating adhesion amount is not particularly limited, but if it is too thick, workability and economic efficiency are impaired, so it is preferable that the amount is 100 g / m 2 or less per side. Thinning is difficult to manufacture, so the lower limit is preferably 15 g / m 2 or more. On the plating film, a known post-treatment such as a chromate treatment may be applied for the purpose of improving the corrosion resistance.
[0039]
The high-tensile hot dip galvanized steel sheet excellent in formability of the present invention is preferably produced by the following method. That is, a steel (slab) having the above chemical composition is hot-rolled by a conventional method to obtain a hot-rolled sheet, which is pickled, cold-rolled to a predetermined thickness, and then heated at 780-850 ° C. for 20- After performing recrystallization annealing for 90 seconds, cool at a temperature range of at least 500 ° C. at a cooling rate of 3 to 20 ° C./second, and then dip in a hot dip galvanizing bath to perform hot dip plating by a known method. . An alloying treatment may be performed by heating to 480 to 560 ° C. after the hot dip plating.
[0040]
Hot rolling may be performed by a known method. That is, the slab before hot rolling may be heated or may not be heated if hot rolling is possible. Moreover, in order to ensure finish rolling temperature, you may heat steel using a heating means between rough rolling and finish rolling. The hot rolling temperature is arbitrary, but preferably the finishing temperature is Ar3 point or higher.
[0041]
If the coiling temperature after hot rolling is too low, the volume ratio of bainite or martensite increases and the hot-rolled sheet becomes hard and cold rolling becomes difficult, so the coiling temperature should be 450 ° C or higher. . If the coiling temperature exceeds 650 ° C, the scale on the steel sheet surface becomes thick and the pickling efficiency is impaired, so the coiling temperature is preferably 650 ° C or less.
[0042]
Cold rolling may be performed by a known method. However, if the rolling rate is excessively increased, a large number of fine voids are generated at the interface between ferrite in the steel sheet and cementite, and the ductility after annealing is deteriorated. Moreover, when the rolling reduction is excessively small, the production efficiency is lowered. Therefore, the rolling rate during cold rolling is desirably 50% or more and 75% or less.
[0043]
In order to completely recrystallize the cold-rolled structure, the cold-rolled steel sheet is subjected to recrystallization annealing at a temperature of 780 ° C. to 850 ° C. for 20 seconds to 90 seconds. The reason is that when the annealing temperature is less than 780 ° C., the ratio of austenite in the soaking state becomes small, the martensite ratio in the final product cannot be secured, and the annealing time is less than 20 seconds. This is because recrystallization becomes insufficient. When the annealing temperature exceeds 850 ° C. or the annealing time exceeds 90 seconds, austenite grains grow and the ductility of the steel sheet deteriorates.
[0044]
After annealing, in order to suppress the precipitation of pearlite and to secure the volume ratio of austenite, cooling is performed at a cooling rate of 3 to 20 ° C./second until reaching at least 550 ° C. When the cooling rate during this period is less than 3 ° C./second, pearlite is precipitated during the cooling, and the final structure becomes a composite structure containing ferrite, martensite, and pearlite, so that ductility deteriorates. On the contrary, when the cooling rate during this period exceeds 20 ° C./second, ferrite transformation does not proceed so much and cooling is performed with a large austenite volume fraction, so that the martensite volume fraction of the final product becomes too large and ductility is increased. to degrade. In the temperature range of 550 ° C. or less, the pearlite deviates from the nose of precipitation, so that a cooling rate of less than 3 ° C./second or a low temperature holding treatment may be performed.
[0045]
Cooling after annealing is preferably finished in a range where the steel plate temperature does not become lower than 450 ° C. This is because when the cooling end point temperature falls below the Ms point, austenite transforms to martensite before hot dipping, and this martensite is tempered and softened during hot dipping or alloying treatment, so the yield ratio of the steel increases. This is because moldability is impaired. Further, if the cooling end point temperature is significantly lower than the plating bath temperature, reheating is required before dipping in the plating bath, so that economic efficiency is also impaired.
[0046]
The hot dipping method is not particularly limited, and may be performed by a conventional method. The plating adhesion amount may be adjusted by a known method such as a gas wiping method. After hot dipping, it may be cooled to room temperature by a conventional method to obtain a hot dipped galvanized steel sheet, or may be further alloyed. In the case of alloying treatment, the alloying treatment temperature is preferably 480 ° C. or more and 560 ° C. or less. When the alloying temperature exceeds 560 ° C., the alloying proceeds excessively, so that the adhesion (powdering resistance) of the plating layer decreases during processing, and when the alloying temperature is less than 480 ° C. This is because the alloying is insufficient, the slidability on the surface of the plating layer is lowered, and the formability may be impaired.
[0047]
The hot dip galvanized steel sheet or its alloyed steel sheet may be subjected to temper rolling by a conventional method for flattening the steel sheet or adjusting the surface roughness of the plating layer. However, the composite steel sheet composed of ferrite and martensite of the present invention has the advantage of low springback because of its low yield ratio, but if the rolling rate during temper rolling is too high, the yield ratio becomes high and the above Since the advantage is impaired, the rolling rate during temper rolling should be reduced.
[0048]
【Example】
Example 1
Steel pieces having various chemical compositions were melted in a laboratory, and cast pieces obtained by casting were hot forged at 950 ° C. or more to obtain steel pieces having a thickness of 20 mm. These steel slabs were heated to 1250 ° C. and held for 30 minutes, then subjected to hot rolling to a finishing temperature of 850 ° C., cooled to 500 ° C., and held for 30 minutes in a heat treatment furnace maintained at 500 ° C. Then, the inside of the furnace was cooled to obtain a hot rolled plate having a thickness of 4 mm. The holding and cooling in the heat treatment furnace simulates a winding process in an actual production line. The obtained hot-rolled sheet was pickled and then cold-rolled with a rolling reduction of 70% to obtain a cold-rolled sheet having a thickness of 1.2 mm. A test piece having a width of 70 mm and a length of 200 mm obtained from these cold-rolled sheets was heated to 800 ° C. at a heating rate of 10 ° C./second using a hot dip galvanizing simulator and held at that temperature for 60 seconds. After that, it is cooled to 470 ° C. at a cooling rate of 8 ° C./second, immersed in a hot dip galvanizing bath at 460 ° C., hot-plated, and then heated to 550 ° C. at a heating rate of 10 ° C./second and held for 5 seconds. Then, it cooled to room temperature with the cooling rate of 10 degree-C / sec, and obtained the galvannealed steel plate.
[0049]
The obtained alloyed hot-dip galvanized steel sheet was subjected to temper rolling with an elongation of 0.5%, followed by observation of the crystal structure and tensile test with a JIS No. 5 specimen taken in the rolling direction. The martensite volume ratio was obtained by photographing the inspection surface of the cross section in the rolling direction corroded with a nital liquid with a scanning electron microscope and measuring the area ratio of martensite. For the tensile test results, the strength-elongation balance was also calculated.
[0050]
Table 1 shows the chemical composition of the steel and the test results.
[0051]
[Table 1]
As shown in Table 1, a steel having a chemical composition and a crystal structure defined by the present invention has a good plating film and a tensile strength exceeding 500 MPa, and a strength ductility balance of TS × EL of 16000 (MPa. %) It had excellent moldability as described above.
[0052]
On the other hand, since the B content and the X value of the steel 12 were outside the ranges defined by the present invention, pearlite was precipitated in the crystal structure, and the strength and ductility balance was small. Steel 13 had an X value exceeding the upper limit defined by the present invention, and the tensile strength was high, but the elongation was small and the strength-ductility balance was not good. Since the steel 14 had an X value smaller than the range defined by the present invention, the strength and ductility balance was low as in the case of the steel 12. Steel 15 had an excessive B content, a poor balance of strength and ductility, and a high production cost. Steel 16 had an excess of Cr, an X value larger than the range defined by the present invention, and a low strength ductility balance. Steel 17 had a C content smaller than the lower limit defined by the present invention, had a small amount of martensite in the product, and could not obtain a tensile strength exceeding 500 MPa. Steel 18 had too much C content, so the tensile strength was very high and it was not suitable for press molding applications. Steel 19 was unplated because the Si content was too high.
[0053]
(Example 2)
A steel having the chemical composition described in No. 6 in Table 1 is hot-rolled under the same conditions as described in Example 1, pickled, cold-rolled, and cold-rolled with a thickness of 1.2 mm. I got a plate. After subjecting a test piece having a width of 70 mm and a length of 200 mm obtained from the cold-rolled sheet to recrystallization annealing to be held at various annealing temperatures for 60 seconds using a hot dip galvanizing simulator, at various cooling rates. It cooled to 470 degreeC and immersed in the plating bath of 460 degreeC, and the hot dipping was performed. Further, some of the steel plates were then heated to 550 ° C. at a heating rate of 10 ° C./second, held for 5 seconds, and then subjected to alloying treatment to cool to room temperature at a cooling rate of 10 ° C./second. The obtained steel sheet was subjected to temper rolling with an elongation of 0.5%, and then subjected to a tensile test and a crystal structure observation in the same manner as described in Example 1.
[0054]
Table 2 shows the chemical composition of the steel and the test results.
[0055]
[Table 2]
As shown in the results of Table 2 and Test Nos. 21 to 25, those in which the recrystallization annealing conditions and the cooling conditions are within the ranges specified by the present invention have a good plating film and a tensile strength exceeding 500 MPa. In addition, the balance of strength and ductility was excellent in formability of TS × EL of 16000 (MPa ·%) or more.
[0056]
On the other hand, the test number 28 in which the soaking temperature was too low had a tensile strength of less than 500 MPa. The test number 29 in which the annealing temperature was too high, the test number 27 in which the cooling rate after annealing was too low, and the test number 26 in which the cooling rate after annealing was too high had a poor strength-ductility balance.
[0057]
【The invention's effect】
Since the high-tensile steel sheet of the present invention has an excellent balance of strength and ductility, it is extremely suitable for structural parts of automobiles that are particularly processed into complicated shapes. In addition, the production method of the present invention is very economical because the high-tensile hot dip galvanized steel sheet can be easily produced without using a lot of expensive alloy elements.
[Brief description of the drawings]
FIG. 1 is a graph showing the effect of X value on the ductility of steel in an example of the present invention.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000119286A JP4320913B2 (en) | 2000-04-20 | 2000-04-20 | High-tensile hot-dip galvanized steel sheet with excellent formability and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000119286A JP4320913B2 (en) | 2000-04-20 | 2000-04-20 | High-tensile hot-dip galvanized steel sheet with excellent formability and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001303178A JP2001303178A (en) | 2001-10-31 |
JP4320913B2 true JP4320913B2 (en) | 2009-08-26 |
Family
ID=18630297
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000119286A Expired - Fee Related JP4320913B2 (en) | 2000-04-20 | 2000-04-20 | High-tensile hot-dip galvanized steel sheet with excellent formability and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4320913B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101956126A (en) * | 2010-09-30 | 2011-01-26 | 河北钢铁股份有限公司邯郸分公司 | Cold-base high-strength galvanized sheet and production method thereof |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100860172B1 (en) * | 2003-12-19 | 2008-09-24 | 제이에프이 스틸 가부시키가이샤 | Method for manufacturing galvannealed steel sheet |
JP5332355B2 (en) * | 2007-07-11 | 2013-11-06 | Jfeスチール株式会社 | High-strength hot-dip galvanized steel sheet and manufacturing method thereof |
JP5272547B2 (en) * | 2007-07-11 | 2013-08-28 | Jfeスチール株式会社 | High-strength hot-dip galvanized steel sheet with low yield strength and small material fluctuation and method for producing the same |
JP5286986B2 (en) * | 2007-07-11 | 2013-09-11 | Jfeスチール株式会社 | High strength hot-dip galvanized steel sheet with low yield strength and high bake hardenability and method for producing the same |
JP5257981B2 (en) * | 2007-07-11 | 2013-08-07 | Jfeスチール株式会社 | Manufacturing method of high-strength hot-dip galvanized steel sheet with excellent press formability |
KR101767818B1 (en) * | 2016-03-08 | 2017-08-11 | 주식회사 포스코 | HOT DIP Zn ALLOY PLATED STEEL SHEET HAVING SUPERIOR BAKE HARDENABILITY AND AGING RESISTANCE METHOD FOR MANUFACTURING SAME |
EP3438307A4 (en) * | 2016-07-15 | 2019-08-28 | Nippon Steel Corporation | HOT GALVANIZED STEEL SHEET |
-
2000
- 2000-04-20 JP JP2000119286A patent/JP4320913B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101956126A (en) * | 2010-09-30 | 2011-01-26 | 河北钢铁股份有限公司邯郸分公司 | Cold-base high-strength galvanized sheet and production method thereof |
Also Published As
Publication number | Publication date |
---|---|
JP2001303178A (en) | 2001-10-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5709151B2 (en) | High-strength hot-dip galvanized steel sheet with excellent formability and method for producing the same | |
JP5403185B2 (en) | High-strength hot-dip galvanized steel sheet, high-strength galvannealed steel sheet excellent in plating adhesion, formability and hole expansibility having a tensile strength of 980 MPa or more, and a method for producing the same | |
EP2757169B1 (en) | High-strength steel sheet having excellent workability and method for producing same | |
JP4730056B2 (en) | Manufacturing method of high-strength cold-rolled steel sheet with excellent stretch flange formability | |
EP2371979A1 (en) | High-strength cold-rolled steel sheet having excellent workability, molten galvanized high-strength steel sheet, and method for producing the same | |
JP5092507B2 (en) | High tensile alloyed hot dip galvanized steel sheet and its manufacturing method | |
US20030099857A1 (en) | Steel sheet having excellent workability and shape accuracy and a method for its manufacture | |
JP5504737B2 (en) | High-strength hot-dip galvanized steel strip excellent in formability with small variations in material within the steel strip and method for producing the same | |
JP5953693B2 (en) | High-strength hot-dip galvanized steel sheet with excellent plating adhesion and formability and its manufacturing method | |
JP3596316B2 (en) | Manufacturing method of high tensile high ductility galvanized steel sheet | |
JP6384623B2 (en) | High strength steel plate and manufacturing method thereof | |
CN113454244A (en) | High-strength steel sheet and method for producing same | |
JP5853884B2 (en) | Hot-dip galvanized steel sheet and manufacturing method thereof | |
JP4320913B2 (en) | High-tensile hot-dip galvanized steel sheet with excellent formability and method for producing the same | |
JP2011080126A (en) | Hot-dip galvannealed steel sheet and method for manufacturing the same | |
JP4140962B2 (en) | Manufacturing method of low yield ratio type high strength galvannealed steel sheet | |
JP3882679B2 (en) | Manufacturing method of high-strength hot-dip galvanized cold-rolled steel sheet with excellent deep-drawability with good plating appearance | |
JP3912181B2 (en) | Composite structure type high-tensile hot-dip galvanized cold-rolled steel sheet excellent in deep drawability and stretch flangeability and manufacturing method thereof | |
CN112313351A (en) | Steel sheet and method for producing steel sheet | |
JP4010132B2 (en) | Composite structure type high-tensile hot-dip galvanized steel sheet excellent in deep drawability and method for producing the same | |
JP2003193189A (en) | High tensile strength galvanized steel sheet with composite structure having excellent deep drawability and production method therefor | |
JP3464611B2 (en) | High-strength hot-dip galvanized steel sheet excellent in formability and corrosion resistance and method for producing the same | |
JP2000109965A (en) | Production of hot dip galvanized high tensile strength steel sheet excellent in workability | |
JP2001262271A (en) | High-strength steel sheet excellent in electroplating adhesion and ductility and method for producing the same | |
JP3577930B2 (en) | High-strength, high-ductility hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20061120 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20081113 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20081209 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090209 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090512 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090525 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4320913 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120612 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130612 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130612 Year of fee payment: 4 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130612 Year of fee payment: 4 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |