[go: up one dir, main page]

JP4320270B2 - Photoelectric conversion film stack type solid-state imaging device - Google Patents

Photoelectric conversion film stack type solid-state imaging device Download PDF

Info

Publication number
JP4320270B2
JP4320270B2 JP2004077663A JP2004077663A JP4320270B2 JP 4320270 B2 JP4320270 B2 JP 4320270B2 JP 2004077663 A JP2004077663 A JP 2004077663A JP 2004077663 A JP2004077663 A JP 2004077663A JP 4320270 B2 JP4320270 B2 JP 4320270B2
Authority
JP
Japan
Prior art keywords
photoelectric conversion
film
electrode film
common electrode
conversion film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004077663A
Other languages
Japanese (ja)
Other versions
JP2005268471A (en
Inventor
幹緒 渡邉
知己 井上
正史 乾谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2004077663A priority Critical patent/JP4320270B2/en
Priority to US11/082,901 priority patent/US7400023B2/en
Publication of JP2005268471A publication Critical patent/JP2005268471A/en
Application granted granted Critical
Publication of JP4320270B2 publication Critical patent/JP4320270B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Light Receiving Elements (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Description

本発明は、信号読出回路が表面に形成された半導体基板の上に光電変換膜を積層して構成される光電変換膜積層型固体撮像素子に関する。   The present invention relates to a photoelectric conversion film stacked solid-state imaging device configured by stacking a photoelectric conversion film on a semiconductor substrate on which a signal readout circuit is formed.

光電変換膜積層型固体撮像素子の原型的な素子として、例えば下記特許文献1記載のものがある。この固体撮像素子は、半導体基板の上に感光層を3層積層し、各感光層で検出された赤色(R),緑色(G),青色(B)の夫々の電気信号を、半導体基板表面に形成されているMOS回路で読み出すという構成になっている。   As a prototype element of the photoelectric conversion film laminated solid-state imaging device, for example, there is one described in Patent Document 1 below. In this solid-state imaging device, three photosensitive layers are stacked on a semiconductor substrate, and red (R), green (G), and blue (B) electrical signals detected in each photosensitive layer are transmitted to the surface of the semiconductor substrate. Reading is performed by the MOS circuit formed in the circuit.

斯かる構成の固体撮像素子が過去に提案されたが、その後、半導体基板表面部に多数の受光部(フォトダイオード)を集積すると共に各受光部上に赤色(R),緑色(G),青色(B)の各色カラーフィルタを積層したCCD型イメージセンサやCMOS型イメージセンサが著しく進歩し、現在では、数百万もの受光部(画素)を1チップ上に集積したイメージセンサがデジタルスチルカメラに搭載される様になっている。   A solid-state imaging device having such a configuration has been proposed in the past. Thereafter, a large number of light receiving portions (photodiodes) are integrated on the surface portion of the semiconductor substrate, and red (R), green (G), and blue are integrated on each light receiving portion. The CCD type image sensor and CMOS type image sensor in which the color filters of each color (B) are laminated have advanced remarkably, and now, an image sensor in which millions of light receiving parts (pixels) are integrated on one chip is used as a digital still camera. It comes to be installed.

しかしながら、CCD型イメージセンサやCMOS型イメージセンサは、その技術進歩が限界近くまで進み、1つの受光部の開口の大きさが2μm程度と、入射光の波長オーダに近づいており、製造歩留まりが悪いという問題に直面している。   However, the CCD type image sensor and the CMOS type image sensor have progressed to their limits, and the aperture size of one light receiving part is about 2 μm, which is close to the wavelength order of incident light, and the manufacturing yield is poor. Faced with the problem.

また、微細化された1つの受光部に蓄積される光電荷量の上限は、電子3000個程度と少なく、これで256階調を奇麗に表現するのが困難にもなってきている。このため、画質や感度の点で今以上のイメージセンサをCCD型やCMOS型で期待するのは困難になっている。   In addition, the upper limit of the amount of photocharge accumulated in one miniaturized light receiving portion is as small as about 3000 electrons, which makes it difficult to express 256 gradations neatly. For this reason, it is difficult to expect an image sensor more than the current type in the CCD type or the CMOS type in terms of image quality and sensitivity.

そこで、これらの問題を解決する固体撮像素子として、特許文献1で提案された固体撮像素子が注目を集めるようになり、特許文献2や特許文献3に記載されているイメージセンサが新たに提案される様になってきている。   Therefore, as a solid-state imaging device that solves these problems, the solid-state imaging device proposed in Patent Document 1 has attracted attention, and image sensors described in Patent Document 2 and Patent Document 3 are newly proposed. It is becoming like this.

特許文献2に記載されたイメージセンサは、シリコンの超微粒子を媒質内に分散して光電変換層とし、超微粒子の粒径を変えた複数の光電変換層を半導体基板の上に3層積層し、夫々の光電変換層で、赤色,緑色,青色の夫々の受光量に応じた電気信号を発生させる様になっている。   In the image sensor described in Patent Document 2, ultrafine particles of silicon are dispersed in a medium to form a photoelectric conversion layer, and a plurality of photoelectric conversion layers having different ultrafine particle sizes are stacked on a semiconductor substrate. In each photoelectric conversion layer, electrical signals corresponding to the received light amounts of red, green and blue are generated.

特許文献3に記載されたイメージセンサも同様であり、粒径の異なるナノシリコン層を半導体基板の上に3層積層し、夫々のナノシリコン層で検出された赤色,緑色,青色の各電気信号を、半導体基板の表面部に形成されている蓄積ダイオードに読み出すようになっている。   The same applies to the image sensor described in Patent Document 3, in which three nanosilicon layers having different particle diameters are stacked on a semiconductor substrate, and red, green, and blue electrical signals detected by each nanosilicon layer are detected. Is read out to the storage diode formed on the surface portion of the semiconductor substrate.

図5は、この従来の光電変換膜積層型固体撮像素子の2画素分の断面模式図である。図5において、n型シリコン基板に形成されたPウェル層1の表面部には、赤色信号蓄積用の高濃度不純物領域2と、赤色信号読出用のMOS回路3と、緑色信号蓄積用の高濃度不純物領域4と、緑色信号読出用のMOS回路5と、青色信号蓄積用の高濃度不純物領域6と、青色信号読出用のMOS回路7とが形成されている。   FIG. 5 is a schematic cross-sectional view of two pixels of this conventional photoelectric conversion film laminated solid-state imaging device. In FIG. 5, on the surface portion of a P well layer 1 formed on an n-type silicon substrate, a high-concentration impurity region 2 for red signal storage, a MOS circuit 3 for reading red signals, and a high-level signal for green signal storage. A concentration impurity region 4, a green signal readout MOS circuit 5, a blue signal storage high concentration impurity region 6, and a blue signal readout MOS circuit 7 are formed.

各MOS回路3,5,6は、半導体基板表面に形成されたソース用、ドレイン用の不純物領域と、ゲート絶縁膜8を介して形成されたゲート電極とから成る。これらのゲート絶縁膜8及びゲート電極の上部には絶縁膜9が積層されて平坦化され、その上に、遮光膜10が積層される。遮光膜は、多くの場合、金属薄膜で形成されるため、更にその上に絶縁膜11を形成する。   Each MOS circuit 3, 5, 6 is composed of a source and drain impurity region formed on the surface of the semiconductor substrate and a gate electrode formed through a gate insulating film 8. An insulating film 9 is laminated and planarized on the gate insulating film 8 and the gate electrode, and a light shielding film 10 is laminated thereon. Since the light shielding film is often formed of a metal thin film, an insulating film 11 is further formed thereon.

上述した色信号蓄積用の高濃度不純物領域2,4,6に蓄積された信号電荷は、MOS回路3,5,7によって外部に読み出される。   The signal charges accumulated in the color signal accumulation high concentration impurity regions 2, 4, 6 described above are read out to the outside by the MOS circuits 3, 5, 7.

図5に示す絶縁膜11の上に、画素毎に区分けされた対向電極膜12が形成される。各画素毎の対向電極膜12は、夫々各画素用の赤色信号蓄積用高濃度不純物領域2に柱状電極13によって導通される。この柱状電極13は、対向電極膜12及び高濃度不純物領域2以外とは電気的に絶縁される。   On the insulating film 11 shown in FIG. 5, the counter electrode film 12 divided for each pixel is formed. The counter electrode film 12 for each pixel is electrically connected to the red signal storage high concentration impurity region 2 for each pixel by the columnar electrode 13. This columnar electrode 13 is electrically insulated from areas other than the counter electrode film 12 and the high concentration impurity region 2.

各対向電極膜12の上部には、赤色検出用の光電変換膜14が形成され、更にその上部に透明の共通電極膜15が形成される。これらの光電変換膜14及び共通電極膜15は、画素毎に区分して設ける必要はなく、半導体基板上の全面に夫々一枚構成で形成される。   A red detection photoelectric conversion film 14 is formed on each counter electrode film 12, and a transparent common electrode film 15 is formed on the photoelectric conversion film 14. The photoelectric conversion film 14 and the common electrode film 15 do not need to be provided separately for each pixel, and are formed in a single structure on the entire surface of the semiconductor substrate.

同様に、共通電極膜15の上部には透明の絶縁膜16が形成され、その上部に、各画素毎に区分けされた透明の対向電極膜17が形成される。各画素毎の対向電極膜17と対応する各画素毎の緑色信号蓄積用高濃度不純物領域4とは柱状電極18によって導通される。この柱状電極18は、対向電極膜17及び高濃度不純物領域4以外とは電気的に絶縁される。各対向電極膜17の上部には緑色検出用の光電変換膜19が光電変換膜14と同様に一枚構成で形成され、その上部に、透明の共通電極膜20が形成される。   Similarly, a transparent insulating film 16 is formed on the common electrode film 15, and a transparent counter electrode film 17 divided for each pixel is formed thereon. The counter electrode film 17 for each pixel and the corresponding high-concentration impurity region 4 for storing green signal for each pixel are electrically connected by a columnar electrode 18. This columnar electrode 18 is electrically insulated from areas other than the counter electrode film 17 and the high concentration impurity region 4. A green color photoelectric conversion film 19 is formed on the counter electrode film 17 in the same configuration as the photoelectric conversion film 14, and a transparent common electrode film 20 is formed thereon.

共通電極膜20の上部には透明の絶縁膜21が形成され、その上部に、各画素毎に区分けされた対向電極膜22が形成される。各画素毎の対向電極膜22は、対応する各画素毎の青色信号蓄積用高濃度不純物領域6に柱状電極23によって導通される。この柱状電極23は、対向電極膜22及び高濃度不純物領域6以外とは電気的に絶縁される。対向電極膜21の上部には青色検出用の光電変換膜23が形成され、その上部に、透明の共通電極膜24が形成され、最上層には透明の保護膜25が形成されている。   A transparent insulating film 21 is formed on the common electrode film 20, and a counter electrode film 22 divided for each pixel is formed on the transparent insulating film 21. The counter electrode film 22 for each pixel is electrically connected by the columnar electrode 23 to the blue signal storage high concentration impurity region 6 for each corresponding pixel. This columnar electrode 23 is electrically insulated from areas other than the counter electrode film 22 and the high concentration impurity region 6. A blue detection photoelectric conversion film 23 is formed on the counter electrode film 21, a transparent common electrode film 24 is formed on the photoelectric conversion film 23, and a transparent protective film 25 is formed on the uppermost layer.

入射光がこの固体撮像素子に入射すると、青色光,緑色光,赤色光の各入射光量に応じた光電荷が各光電変換膜23,19,14において励起され、共通電極膜24,20,15と対向電極膜22,17,12との間に電圧が印加されることで、夫々の光電荷が高濃度不純物領域2,4,6に流れ、MOS回路3,5,7によって外部に青色信号,緑色信号,赤色信号として読み出される。   When incident light is incident on the solid-state image sensor, photoelectric charges corresponding to the amounts of incident light of blue light, green light, and red light are excited in the photoelectric conversion films 23, 19, 14, and the common electrode films 24, 20, 15 are excited. And the counter electrode films 22, 17, 12 are applied with a voltage, so that respective photocharges flow into the high-concentration impurity regions 2, 4, 6. , Green signal and red signal.

特開昭58―103165号公報JP 58-103165 A 特許第3405099号公報Japanese Patent No. 3405099 特開2002―83946号公報Japanese Patent Laid-Open No. 2002-83946

図5に示す構成の光電変換膜積層型固体撮像素子では、半導体基板表面の絶縁膜11の上に、図示の例では、対向電極膜12,赤色用光電変換膜14,共通電極膜15,絶縁膜16,対向電極膜17,緑色用光電変換膜19,共通電極膜20,絶縁膜21,対向電極膜22,青色用光電変換膜23,共通電極膜24,保護膜25と、計12層の膜を積層する必要がある。   In the photoelectric conversion film stacked solid-state imaging device having the configuration shown in FIG. 5, on the insulating film 11 on the surface of the semiconductor substrate, in the illustrated example, the counter electrode film 12, the red photoelectric conversion film 14, the common electrode film 15, and the insulation are provided. The film 16, the counter electrode film 17, the green photoelectric conversion film 19, the common electrode film 20, the insulating film 21, the counter electrode film 22, the blue photoelectric conversion film 23, the common electrode film 24, and the protective film 25, a total of 12 layers It is necessary to stack the films.

光電変換膜積層型固体撮像素子を製造する場合、製造歩留まりを向上させ、また、製造コストを削減するために、製造工程数を減らす必要がある。上記の12層の膜の積層工程のうち1層でも削減できれば、それだけ製造歩留まりが向上し、製造コストが低減することになる。   When manufacturing a photoelectric conversion film laminated solid-state imaging device, it is necessary to reduce the number of manufacturing steps in order to improve the manufacturing yield and reduce the manufacturing cost. If one layer can be reduced among the above-mentioned 12 layers, the production yield is improved and the production cost is reduced.

本発明の目的は、製造コストを削減でき製造歩留まりを向上させることができる光電変換膜積層型固体撮像素子を提供することにある。   An object of the present invention is to provide a photoelectric conversion film stacked solid-state imaging device capable of reducing the manufacturing cost and improving the manufacturing yield.

本発明の光電変換膜積層型固体撮像素子は、信号読出回路が形成された半導体基板の上に複数の光電変換膜が積層され、各光電変換膜が、画素毎に区分けされない共通電極膜と画素毎に区分けされた対向電極膜とによって挟まれ、各光電変換膜で発生した光電荷が前記対向電極膜から取り出される光電変換膜積層型固体撮像素子において、第1の光電変換膜に設ける前記共通電極膜と第2の光電変換膜に設ける前記共通電極膜とを共用し、該共用した前記共通電極膜の下に前記第1の光電変換膜が積層されると共に該第1の光電変換膜の下に画素毎に区分けされた前記対向電極膜が積層され、前記共用した前記共通電極膜の上に前記第2の光電変換膜が積層されると共に該第2の光電変換膜の上に画素毎に区分けされた前記対向電極膜が積層されることを特徴とする。 The photoelectric conversion film stacked solid-state imaging device of the present invention includes a common electrode film and a pixel in which a plurality of photoelectric conversion films are stacked on a semiconductor substrate on which a signal readout circuit is formed, and each photoelectric conversion film is not divided for each pixel. In the photoelectric conversion film stack type solid-state imaging device, the common charge provided in the first photoelectric conversion film is sandwiched between the counter electrode films divided for each and the photoelectric charges generated in each photoelectric conversion film are taken out from the counter electrode film share and the common electrode film provided on the electrode film and the second photoelectric conversion layer, the first photoelectric conversion layer together with the under the common electrode film for co first photoelectric conversion layer is stacked The counter electrode film divided for each pixel is stacked below, the second photoelectric conversion film is stacked on the shared common electrode film, and each pixel is formed on the second photoelectric conversion film. The counter electrode film divided into Characterized in that it is.

この構成により、半導体基板の上の積層数を減らすことができ、製造コストが低減されると共に、製造歩留まりの向上を図ることが可能となる。   With this configuration, the number of stacked layers on the semiconductor substrate can be reduced, the manufacturing cost can be reduced, and the manufacturing yield can be improved.

本発明の光電変換膜積層型固体撮像素子は、赤色検出用,緑色検出用,青色検出用の3つの光電変換膜を検出波長の短い順に上から順に備え、3つの光電変換膜のうち隣接する少なくとも2つの光電変換膜の間に前記共通電極膜を設け、該2つの光電変換膜で該共通電極膜を共用したことを特徴とする。 The photoelectric conversion film stack type solid-state imaging device of the present invention includes three photoelectric conversion films for red detection, green detection, and blue detection in order from the shortest detection wavelength in order from the top, and are adjacent to each other among the three photoelectric conversion films. The common electrode film is provided between at least two photoelectric conversion films, and the two photoelectric conversion films share the common electrode film .

この構成により、3原色を検出できる光電変換膜積層型固体撮像素子の製造コストの低減と製造歩留まりの向上を図ることが可能となる。   With this configuration, it is possible to reduce the manufacturing cost and improve the manufacturing yield of the photoelectric conversion film stacked solid-state imaging device capable of detecting the three primary colors.

本発明の光電変換膜積層型固体撮像素子は、赤色検出用,緑色検出用,青色検出用,エメラルド色検出用の4つの光電変換膜を検出波長の短い順に上から備え、4つの光電変換膜のうち隣接する少なくとも2つの光電変換膜の間に前記共通電極膜を設け、該2つの光電変換膜で該共通電極膜を共用したことを特徴とする。 The photoelectric conversion film laminated solid-state imaging device of the present invention includes four photoelectric conversion films for red detection, green detection, blue detection, and emerald color detection from the top in order of short detection wavelength. The common electrode film is provided between at least two adjacent photoelectric conversion films, and the two photoelectric conversion films share the common electrode film .

この構成により、人の視感度に応じた色再現が可能な光電変換膜積層型固体撮像素子の製造コストの低減と製造歩留まりの向上を図ることが可能となる。   With this configuration, it is possible to reduce the manufacturing cost and improve the manufacturing yield of the photoelectric conversion film stacked solid-state imaging device capable of color reproduction according to human visibility.

本発明の光電変換膜積層型固体撮像素子は、前記半導体基板の上に積層される最下層の光電変換膜に設ける前記共通電極膜を該光電変換膜の下に設けると共に該共通電極膜を遮光膜と兼用したことを特徴とする。   In the photoelectric conversion film stacked solid-state imaging device of the present invention, the common electrode film provided on the lowermost photoelectric conversion film stacked on the semiconductor substrate is provided under the photoelectric conversion film and the common electrode film is shielded from light. It is also used as a membrane.

この構成によっても、製造工程数を削減でき、低コストで高製造歩留まりの光電変換膜積層型固体撮像素子を得ることができる。   Also with this configuration, the number of manufacturing steps can be reduced, and a photoelectric conversion film stacked solid-state imaging device with a high manufacturing yield can be obtained at low cost.

本発明によれば、光電変換膜積層型固体撮像素子の成膜積層工程数を削減できるため、製造コストの低廉化と、製造歩留まりの向上を図ることが可能となる。   According to the present invention, it is possible to reduce the number of film forming and stacking steps of the photoelectric conversion film stack type solid-state imaging device, so that it is possible to reduce the manufacturing cost and improve the manufacturing yield.

以下、本発明の一実施形態について、図面を参照して説明する。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

図1は、本発明の一実施形態に係る光電変換膜積層型固体撮像素子の2画素分の断面模式図である。本実施形態の光電変換膜積層型固体撮像素子の構造のうち、図5で説明した光電変換膜積層型固体撮像素子の半導体基板部分の構造は同じである。すなわち、絶縁膜11までの構造は同じである。   FIG. 1 is a schematic cross-sectional view of two pixels of a photoelectric conversion film stacked solid-state imaging device according to an embodiment of the present invention. Among the structures of the photoelectric conversion film laminated solid-state imaging device of the present embodiment, the structure of the semiconductor substrate portion of the photoelectric conversion film laminated solid-state imaging device described in FIG. 5 is the same. That is, the structure up to the insulating film 11 is the same.

図1において、絶縁膜11の上に、画素毎に区分けした対向電極膜31を形成する。この対向電極膜31を、柱状の電極32によって、対応画素の高濃度不純物領域2と導通させる。この柱状の電極32は、対向電極膜31及び高濃度不純物領域2以外とは電気的に絶縁される。   In FIG. 1, a counter electrode film 31 divided for each pixel is formed on an insulating film 11. The counter electrode film 31 is electrically connected to the high concentration impurity region 2 of the corresponding pixel by the columnar electrode 32. This columnar electrode 32 is electrically insulated from other than the counter electrode film 31 and the high concentration impurity region 2.

対向電極膜31の上に、赤色検出用の光電変換膜33を画素毎に区分けすることなく全面に1枚構成で積層し、更にその上部に、同様に1枚構成の透明の共通電極膜34を積層する。   A red detecting photoelectric conversion film 33 is laminated on the entire surface of the counter electrode film 31 without being divided for each pixel, and a transparent common electrode film 34 having a single structure is similarly formed thereon. Are laminated.

本実施形態では、この共通電極膜34の上に、画素毎に区分けせずに1枚構成の緑色検出用の光電変換膜35を積層し、その上部に、画素毎に区分けした透明の対向電極膜36を積層する。この対向電極膜36は、柱状の電極37によって、対応画素の高濃度不純物領域4に導通される。この柱状の電極37は、対向電極膜36及び高濃度不純物領域4以外とは電気的に絶縁される。   In the present embodiment, a single green detection photoelectric conversion film 35 is laminated on the common electrode film 34 without being divided for each pixel, and a transparent counter electrode divided for each pixel is formed thereon. A film 36 is stacked. The counter electrode film 36 is electrically connected to the high concentration impurity region 4 of the corresponding pixel by a columnar electrode 37. This columnar electrode 37 is electrically insulated except for the counter electrode film 36 and the high concentration impurity region 4.

対向電極膜36の上には、透明の絶縁膜38が積層され、その上に、画素毎に区分けされた透明の対向電極膜39が積層される。各対向電極膜39は、夫々柱状の電極40によって、対応画素の高濃度不純物領域6に導通される。この柱状の電極40は、対向電極膜39及び高濃度不純物領域6以外とは電気的に絶縁される。   A transparent insulating film 38 is laminated on the counter electrode film 36, and a transparent counter electrode film 39 divided for each pixel is laminated thereon. Each counter electrode film 39 is electrically connected to the high concentration impurity region 6 of the corresponding pixel by a columnar electrode 40. This columnar electrode 40 is electrically insulated from areas other than the counter electrode film 39 and the high concentration impurity region 6.

対向電極膜39の上には、画素毎に区分けせずに1枚構成の青色検出用の光電変換膜41が積層され、その上に、同様に1枚構成の透明の共通電極膜42が積層され、最上層に透明の保護膜43が積層される。   On the counter electrode film 39, a single-layer blue detection photoelectric conversion film 41 is laminated without being divided for each pixel, and a single-layer transparent common electrode film 42 is similarly laminated thereon. A transparent protective film 43 is laminated on the uppermost layer.

本実施形態の光電変換膜積層型固体撮像素子は、赤色(R),緑色(G),青色(B)の3色の色信号を検出する構成に関わらず、共通電極膜を2枚だけ用い、2枚の共通電極膜42,34をバイアス電圧Vbに接続している。   The photoelectric conversion film laminated solid-state imaging device of this embodiment uses only two common electrode films regardless of the configuration for detecting the color signals of three colors of red (R), green (G), and blue (B). Two common electrode films 42 and 34 are connected to the bias voltage Vb.

即ち、本実施形態では、半導体基板側の絶縁膜11の上に、対向電極膜31,赤色用光電変換膜33,共通電極膜34,緑色検出用光電変換膜35,対向電極膜36,絶縁膜38,対向電極膜39,青色検出用光電変換膜41,共通電極膜42,保護膜43と、計10層の膜を積層しており、図5の構成に比較して2層分の積層工程が省略される。   That is, in the present embodiment, the counter electrode film 31, the red photoelectric conversion film 33, the common electrode film 34, the green color detection photoelectric conversion film 35, the counter electrode film 36, and the insulating film are formed on the insulating film 11 on the semiconductor substrate side. 38, a counter electrode film 39, a blue color detection photoelectric conversion film 41, a common electrode film 42, a protective film 43, and a total of 10 layers are laminated, and a lamination process for two layers as compared with the configuration of FIG. Is omitted.

斯かる構成の光電変換膜積層型固体撮像素子では、被写体からの光が入射すると、青色光の入射光量に応じた光電荷が光電変換膜41で発生し、共通電極膜42と対向電極膜39との間に電圧が印加されると青色光の光電荷が高濃度不純物領域6に流れる。   In the photoelectric conversion film stacked solid-state imaging device having such a configuration, when light from a subject is incident, a photoelectric charge corresponding to the amount of incident blue light is generated in the photoelectric conversion film 41, and the common electrode film 42 and the counter electrode film 39. When a voltage is applied between the two, a blue light photoelectric charge flows into the high concentration impurity region 6.

同様に、入射光のうちの緑色光の光量に応じた光電荷が光電変換膜35で発生し、共通電極膜34と対向電極膜36との間に電圧が印加されると緑色光の光電荷が高濃度不純物領域4に流れる。   Similarly, a photoelectric charge corresponding to the amount of green light in the incident light is generated in the photoelectric conversion film 35, and when a voltage is applied between the common electrode film 34 and the counter electrode film 36, the green light photoelectric charge is generated. Flows into the high concentration impurity region 4.

同様に、入射光のうちの赤色光の光量に応じた光電荷が光電変換膜33で発生し、共通電極膜34と対向電極膜31との間に電圧が印加されると緑色光の光電荷が高濃度不純物領域2に流れる。   Similarly, a photoelectric charge corresponding to the amount of red light in the incident light is generated in the photoelectric conversion film 33, and when a voltage is applied between the common electrode film 34 and the counter electrode film 31, a green light photoelectric charge is generated. Flows into the high concentration impurity region 2.

この様に、本実施形態によれば、赤色(R),緑色(G),青色(B)の3色の信号を読み出すことができると共に、製造工程数を減らすことができるため、製造歩留まりが向上し、製造コストの低減も図れる。   As described above, according to the present embodiment, since signals of three colors of red (R), green (G), and blue (B) can be read out and the number of manufacturing processes can be reduced, the manufacturing yield can be increased. The manufacturing cost can be reduced.

また、図5,図1に示す例では、例えば、画素iの青色(B)検出用の光電変換膜に斜めに入射した光が隣接する画素i+1の緑色(G),赤色(R)の光電変換膜に入射して画素間のクロストークが発生する可能性があるが、図5に比較して図1の構成は2層分だけ全体の膜厚が薄くなるため、画素間のクロストークが減り、色再現性が向上するという利点もある。   In the example shown in FIGS. 5 and 1, for example, light incident obliquely to the photoelectric conversion film for detecting blue (B) of the pixel i has the green (G) and red (R) photoelectric of the adjacent pixel i + 1. There is a possibility that crosstalk occurs between the pixels by entering the conversion film. However, since the entire film thickness of the configuration of FIG. 1 is reduced by two layers compared to FIG. There is also an advantage that color reproducibility is improved.

尚、この実施形態は、半導体基板に形成したMOS回路で信号を読み出す構成としたが、色信号蓄積用の高濃度不純物領域2,4,6の蓄積電荷を、従来のCCD型イメージセンサと同様に、垂直転送路に沿って移動させ、水平転送路に沿って外部に読み出す構成とすることもできる。   In this embodiment, the signal is read out by the MOS circuit formed on the semiconductor substrate. However, the charges accumulated in the high-concentration impurity regions 2, 4 and 6 for color signal accumulation are the same as those in the conventional CCD image sensor. Further, it is also possible to adopt a configuration in which it is moved along the vertical transfer path and read out along the horizontal transfer path.

図1に示した実施形態は、赤色(R),緑色(G),青色(B)の3原色を検出する光電変換膜積層型固体撮像素子の例であるが、4色を検出できる構成にすることも可能である。図2は、4色を検出する光電変換膜積層型固体撮像素子の2画素分の断面模式図であり、図1の構成に対し、緑色(G)と青色(B)の中間色(GB:エメラルド色)を検出する光電変換膜50及び電極を、以下に述べる積層順に形成している点が異なる。   The embodiment shown in FIG. 1 is an example of a photoelectric conversion film stacked solid-state imaging device that detects three primary colors of red (R), green (G), and blue (B), but has a configuration that can detect four colors. It is also possible to do. FIG. 2 is a schematic cross-sectional view of two pixels of a photoelectric conversion film stacked solid-state imaging device that detects four colors, and is an intermediate color (GB: emerald) of green (G) and blue (B) with respect to the configuration of FIG. The difference is that the photoelectric conversion film 50 and the electrodes for detecting the color are formed in the order of lamination described below.

例えば、波長480〜520nmのエメラルド(GB)色を検出する利点は、人間の視感度に応じて赤色を補正するためである。人間の視感度は、図3にα,β,γとして示す様に、緑色(G),赤色(R),青色(B)で負の感度を持っている。このため、固体撮像素子でR,G,Bの正の感度のみ検出して色再現を行っても、人間の見た画像を再現することはできない。そこで、負感度の一番大きいβすなわち赤の負感度を光電変換膜50によって検出し、光電変換膜31で検出した赤の感度から、この負感度分を差し引くことで、人間の赤色に対する感度を再現することができる。   For example, an advantage of detecting an emerald (GB) color having a wavelength of 480 to 520 nm is to correct red according to human visual sensitivity. As shown in FIG. 3 as α, β, and γ, human visual sensitivity is negative in green (G), red (R), and blue (B). For this reason, even if color reproduction is performed by detecting only positive sensitivities of R, G, and B with a solid-state imaging device, an image seen by humans cannot be reproduced. Therefore, β having the greatest negative sensitivity, that is, negative red sensitivity is detected by the photoelectric conversion film 50, and the sensitivity to human red is obtained by subtracting this negative sensitivity from the red sensitivity detected by the photoelectric conversion film 31. Can be reproduced.

図2において、絶縁膜38を形成するまでは、図1の実施形態と同じである。この実施形態では、絶縁膜38の上に、エメラルド色検出用の画素毎に区分けされた透明の対向電極膜49が形成される。各対向電極膜49は、夫々柱状の電極51によって、各画素対応に半導体基板表面に設けられたGB色用の高濃度不純物領域52に導通される。この柱状の電極52は、対向電極膜49及び高濃度不純物領域52以外とは電気的に絶縁され、また、高濃度不純物領域52の信号電荷量は、領域52に隣接して設けられたMOS回路53によって読み出される。   In FIG. 2, the process until the insulating film 38 is formed is the same as that of the embodiment of FIG. In this embodiment, a transparent counter electrode film 49 divided for each pixel for emerald color detection is formed on the insulating film 38. Each counter electrode film 49 is electrically connected to a high-concentration impurity region 52 for GB color provided on the surface of the semiconductor substrate corresponding to each pixel by a columnar electrode 51. This columnar electrode 52 is electrically insulated from areas other than the counter electrode film 49 and the high concentration impurity region 52, and the signal charge amount of the high concentration impurity region 52 is a MOS circuit provided adjacent to the region 52. 53.

各対向電極膜49の上には、エメラルド(GB)色検出用の光電変換膜50が画素毎に区分けせずに1枚構成で積層され、その上に、透明の共通電極膜42が1枚構成で形成される。   On each counter electrode film 49, a photoelectric conversion film 50 for emerald (GB) color detection is laminated in a single configuration without being divided for each pixel, and a transparent common electrode film 42 is formed thereon. Formed with configuration.

共通電極膜42の上には、青色(B)検出用の光電変換膜41が積層され、その上に、画素毎に区分けされた透明の対向電極膜39が積層される。各対向電極膜39は、夫々柱状の電極40によって、対応画素の高濃度不純物領域6に導通される。この柱状の電極40は、対向電極膜39及び高濃度不純物領域6以外とは電気的に絶縁される。最上層には、透明の保護膜43が形成される。   A blue (B) detection photoelectric conversion film 41 is laminated on the common electrode film 42, and a transparent counter electrode film 39 divided for each pixel is laminated thereon. Each counter electrode film 39 is electrically connected to the high concentration impurity region 6 of the corresponding pixel by a columnar electrode 40. This columnar electrode 40 is electrically insulated from areas other than the counter electrode film 39 and the high concentration impurity region 6. A transparent protective film 43 is formed on the uppermost layer.

青色,エメラルド色,緑色,赤色の4色を検出する光電変換膜積層型固体撮像素子を、図5の示す3色用と同様に構成した場合、GB色用の光電変換膜と共通電極膜,対向電極膜及び他層との間に設ける絶縁膜が追加され、絶縁膜11の上部に計16層必要となる。しかし、本実施形態の積層構造にすることで、計12層となり、4層分の積層工程が削減される。   When the photoelectric conversion film laminated solid-state imaging device that detects four colors of blue, emerald, green, and red is configured in the same manner as for the three colors shown in FIG. 5, a photoelectric conversion film for GB color and a common electrode film, An insulating film provided between the counter electrode film and other layers is added, and a total of 16 layers are required on the insulating film 11. However, by adopting the laminated structure of the present embodiment, the total number of layers becomes 12 and the number of steps for laminating four layers is reduced.

図4は、青色(B),エメラルド色(GB),緑色(G),赤色(R)の4色を検出する光電変換膜積層型固体撮像素子の別実施形態の積層構造を示す図である。検出する波長が短い順に、青色検出用光電変換膜41,GB色検出用光電変換膜50,緑色検出用光電変換膜35,赤色検出用光電変換膜33と上から順に設けるのは図2の実施形態と同じであるが、共通電極膜と対向電極膜の積層順が異なる。   FIG. 4 is a diagram illustrating a stacked structure of another embodiment of a photoelectric conversion film stacked solid-state imaging device that detects four colors of blue (B), emerald color (GB), green (G), and red (R). . The blue detection photoelectric conversion film 41, the GB color detection photoelectric conversion film 50, the green color detection photoelectric conversion film 35, the red color detection photoelectric conversion film 33, and the red detection photoelectric conversion film 33 are provided in this order from the top in the shortest wavelength order. Although the form is the same, the stacking order of the common electrode film and the counter electrode film is different.

即ち、本実施形態では、絶縁膜11の上に、共通電極膜60,赤色検出用光電変換膜33,赤色用対向電極膜31,絶縁膜61,緑色用対向電極膜36,緑色検出用光電変換膜35,共通電極膜62,GB色検出用光電変換膜50,GB色用対向電極膜49,絶縁膜63,青色用対向電極膜39,青色検出用光電変換膜41,共通電極膜64,保護膜43の順に積層している。   That is, in this embodiment, the common electrode film 60, the red detection photoelectric conversion film 33, the red counter electrode film 31, the insulating film 61, the green counter electrode film 36, and the green detection photoelectric conversion are formed on the insulating film 11. Film 35, common electrode film 62, GB color detection photoelectric conversion film 50, GB color counter electrode film 49, insulating film 63, blue counter electrode film 39, blue color detection photoelectric conversion film 41, common electrode film 64, protection The films 43 are stacked in this order.

図2に示す実施形態と比較して、本実施形態では、絶縁膜11の上に計14層積層(図2では計12層)する必要が生じる。しかし、最下層に共通電極膜60が設けられるため、この共通電極膜60を不透明電極膜にすることで、遮光膜を兼用させることが可能となる。即ち、図2に示す遮光膜10が削除でき、このため、絶縁膜9と絶縁膜11とを一緒にすることができる。   Compared to the embodiment shown in FIG. 2, in this embodiment, a total of 14 layers (12 layers in FIG. 2) need to be stacked on the insulating film 11. However, since the common electrode film 60 is provided in the lowermost layer, the light shielding film can also be used by making the common electrode film 60 an opaque electrode film. That is, the light shielding film 10 shown in FIG. 2 can be eliminated, and therefore the insulating film 9 and the insulating film 11 can be combined.

以上述べた様に、本実施形態によれば、複数層の光電変換膜を積層する固体撮像素子において、共通電極膜の上下に光電変換膜を積層する構成としたため、半導体基板上に設ける積層数を減らすことが可能となり、製造コストの低減と製造歩留まりの向上を図ることが可能となる。   As described above, according to the present embodiment, in the solid-state imaging device in which a plurality of layers of photoelectric conversion films are stacked, the photoelectric conversion films are stacked above and below the common electrode film. It is possible to reduce the manufacturing cost and the manufacturing yield.

本発明に係る光電変換膜積層型固体撮像素子は、低コスト,高製造歩留まりを図ることが可能となるため、従来のCCD型やCMOS型のイメージセンサの代わりに使用することが可能となる。   Since the photoelectric conversion film laminated solid-state imaging device according to the present invention can achieve a low cost and a high production yield, it can be used in place of a conventional CCD type or CMOS type image sensor.

本発明の第1の実施形態に係る3層構造の光電変換膜積層型固体撮像素子の2画素分の断面模式図である。It is a cross-sectional schematic diagram for 2 pixels of the photoelectric conversion film laminated | stacked solid-state image sensor of the 3 layer structure which concerns on the 1st Embodiment of this invention. 本発明の第2の実施形態に係る4層構造の光電変換膜積層型固体撮像素子の2画素分の断面模式図である。It is a cross-sectional schematic diagram for 2 pixels of the photoelectric conversion film laminated | stacked solid-state image sensor of the 4 layer structure which concerns on the 2nd Embodiment of this invention. 人間の視感度を示すグラフである。It is a graph which shows human visibility. 本発明の第3の実施形態に係る4層構造の光電変換膜積層型固体撮像素子の2画素分の断面模式図である。It is a cross-sectional schematic diagram for 2 pixels of the photoelectric conversion film laminated | stacked solid-state image sensor of the 4 layer structure which concerns on the 3rd Embodiment of this invention. 従来の3層構造の光電変換膜積層型固体撮像素子の2画素分の断面模式図である。It is a cross-sectional schematic diagram for two pixels of a conventional photoelectric conversion film laminated solid-state imaging device having a three-layer structure.

符号の説明Explanation of symbols

1 Pウェル層(半導体基板)
2,4,6,52 高濃度不純物領域
3,5,7,53 MOS回路
8 ゲート絶縁膜
9,11,38,61,63 絶縁膜
31,36,39,49 対向電極膜
34,42,60,62,64 共通電極膜
33,35,41,50 光電変換膜
43 保護膜
1 P well layer (semiconductor substrate)
2, 4, 6, 52 High-concentration impurity regions 3, 5, 7, 53 MOS circuit 8 Gate insulating films 9, 11, 38, 61, 63 Insulating films 31, 36, 39, 49 Counter electrode films 34, 42, 60 , 62, 64 Common electrode film 33, 35, 41, 50 Photoelectric conversion film 43 Protective film

Claims (4)

信号読出回路が形成された半導体基板の上に複数の光電変換膜が積層され、各光電変換膜が、画素毎に区分けされない共通電極膜と画素毎に区分けされた対向電極膜とによって挟まれ、各光電変換膜で発生した光電荷が前記対向電極膜から取り出される光電変換膜積層型固体撮像素子において、第1の光電変換膜に設ける前記共通電極膜と第2の光電変換膜に設ける前記共通電極膜とを共用し、該共用した前記共通電極膜の下に前記第1の光電変換膜が積層されると共に該第1の光電変換膜の下に画素毎に区分けされた前記対向電極膜が積層され、前記共用した前記共通電極膜の上に前記第2の光電変換膜が積層されると共に該第2の光電変換膜の上に画素毎に区分けされた前記対向電極膜が積層されることを特徴とする光電変換膜積層型固体撮像素子。 A plurality of photoelectric conversion films are stacked on a semiconductor substrate on which a signal readout circuit is formed, and each photoelectric conversion film is sandwiched between a common electrode film that is not divided for each pixel and a counter electrode film that is divided for each pixel, In the photoelectric conversion film stacked solid-state imaging device in which the photoelectric charge generated in each photoelectric conversion film is extracted from the counter electrode film, the common electrode film provided on the first photoelectric conversion film and the common provided on the second photoelectric conversion film The electrode film is shared , the first photoelectric conversion film is stacked under the shared common electrode film, and the counter electrode film divided for each pixel under the first photoelectric conversion film The second photoelectric conversion film is stacked on the shared common electrode film, and the counter electrode film divided for each pixel is stacked on the second photoelectric conversion film. Photoelectric conversion film stack type solid The image pickup device. 赤色検出用,緑色検出用,青色検出用の3つの光電変換膜を検出波長の短い順に上から順に備え、3つの光電変換膜のうち隣接する少なくとも2つの光電変換膜の間に前記共通電極膜を設け、該2つの光電変換膜で該共通電極膜を共用したことを特徴とする請求項1に記載の光電変換膜積層型固体撮像素子。 Three photoelectric conversion films for red detection, green detection, and blue detection are provided in order from the shortest detection wavelength in the order from the top to the common electrode film between at least two adjacent photoelectric conversion films among the three photoelectric conversion films. The photoelectric conversion film stack type solid-state imaging device according to claim 1 , wherein the common electrode film is shared by the two photoelectric conversion films. 赤色検出用,緑色検出用,青色検出用,エメラルド色検出用の4つの光電変換膜を検出波長の短い順に上から備え、4つの光電変換膜のうち隣接する少なくとも2つの光電変換膜の間に前記共通電極膜を設け、該2つの光電変換膜で該共通電極膜を共用したことを特徴とする請求項1に記載の光電変換膜積層型固体撮像素子。 Four photoelectric conversion films for red color detection, green color detection, blue color detection, and emerald color detection are provided from the top in the order of short detection wavelength, and between at least two adjacent photoelectric conversion films among the four photoelectric conversion films. The photoelectric conversion film stacked solid-state imaging device according to claim 1, wherein the common electrode film is provided, and the two photoelectric conversion films share the common electrode film . 前記半導体基板の上に積層される最下層の光電変換膜に設ける前記共通電極膜を該光電変換膜の下に設けると共に該共通電極膜を遮光膜と兼用したことを特徴とする請求項2または請求項3に記載の光電変換膜積層型固体撮像素子。   The common electrode film provided on the lowermost photoelectric conversion film laminated on the semiconductor substrate is provided below the photoelectric conversion film, and the common electrode film is also used as a light shielding film. The photoelectric conversion film laminated solid-state imaging device according to claim 3.
JP2004077663A 2004-03-18 2004-03-18 Photoelectric conversion film stack type solid-state imaging device Expired - Fee Related JP4320270B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004077663A JP4320270B2 (en) 2004-03-18 2004-03-18 Photoelectric conversion film stack type solid-state imaging device
US11/082,901 US7400023B2 (en) 2004-03-18 2005-03-18 Photoelectric converting film stack type solid-state image pickup device and method of producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004077663A JP4320270B2 (en) 2004-03-18 2004-03-18 Photoelectric conversion film stack type solid-state imaging device

Publications (2)

Publication Number Publication Date
JP2005268471A JP2005268471A (en) 2005-09-29
JP4320270B2 true JP4320270B2 (en) 2009-08-26

Family

ID=35092715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004077663A Expired - Fee Related JP4320270B2 (en) 2004-03-18 2004-03-18 Photoelectric conversion film stack type solid-state imaging device

Country Status (1)

Country Link
JP (1) JP4320270B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007104088A (en) 2005-09-30 2007-04-19 Fujifilm Corp Imaging device for electronic reclamation
KR101631652B1 (en) 2009-12-29 2016-06-20 삼성전자주식회사 Image sensor using light-sensitive transparent oxide semiconductor material
JP5117523B2 (en) * 2010-03-09 2013-01-16 株式会社東芝 Solid-state imaging device
JP2016058559A (en) 2014-09-10 2016-04-21 ソニー株式会社 Solid-state imaging device, driving method thereof, and electronic apparatus
JPWO2020218047A1 (en) 2019-04-26 2020-10-29

Also Published As

Publication number Publication date
JP2005268471A (en) 2005-09-29

Similar Documents

Publication Publication Date Title
US7760254B2 (en) Single plate-type color solid-state image sensing device
US7741689B2 (en) Photoelectric conversion layer-stacked solid-state imaging element
JP4384198B2 (en) Solid-state imaging device, manufacturing method thereof, and electronic information device
JP4714428B2 (en) Photoelectric conversion film stacked solid-state imaging device and method for manufacturing the same
JP4491323B2 (en) Photoelectric conversion film stacked color solid-state imaging device
US8981515B2 (en) Solid-state imaging device and electronic apparatus
JP2015095468A (en) Solid-state imaging device, manufacturing method of solid-state imaging device, and electronic apparatus
JP2005268479A (en) Photoelectric conversion film stack type solid-state imaging device
US20060197172A1 (en) Solid-state image pick-up device of photoelectric converting film lamination type
JP2006120922A (en) Photoelectric conversion film laminated type color solid state imaging device
JP4751576B2 (en) Photoelectric conversion film stack type solid-state imaging device
JP4547281B2 (en) Photoelectric conversion film stack type solid-state imaging device
JP4404561B2 (en) MOS type color solid-state imaging device
JP2005353626A (en) Photoelectric conversion film laminated solid state imaging element and its manufacturing method
JP4533667B2 (en) Photoelectric conversion film stack type solid-state imaging device
JP2005268476A (en) Photoelectric conversion film stack type solid-state imaging device
JP2011100894A (en) Photoelectric conversion film lamination imaging device and manufacturing method therefor
JP4320270B2 (en) Photoelectric conversion film stack type solid-state imaging device
JP4572130B2 (en) Solid-state image sensor
JP4500702B2 (en) Photoelectric conversion film stack type solid-state imaging device
JP2005303284A (en) Photoelectric film laminated solid-state imaging device
JP2006210497A (en) Photoelectric conversion layer stacked solid-state imaging element and its signal correction method
JP2008047608A (en) Single-plate solid-state image sensing element
JP4491352B2 (en) Solid-state image sensor
JP2005303263A (en) Method of manufacturing photoelectric conversion film lamination type solid-state image pickup device

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060327

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060525

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061124

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071108

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071115

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090513

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090601

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120605

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees