[go: up one dir, main page]

JP4318934B2 - Temperature sensor - Google Patents

Temperature sensor Download PDF

Info

Publication number
JP4318934B2
JP4318934B2 JP2003049571A JP2003049571A JP4318934B2 JP 4318934 B2 JP4318934 B2 JP 4318934B2 JP 2003049571 A JP2003049571 A JP 2003049571A JP 2003049571 A JP2003049571 A JP 2003049571A JP 4318934 B2 JP4318934 B2 JP 4318934B2
Authority
JP
Japan
Prior art keywords
diffusion region
type
junction
impurity concentration
temperature sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003049571A
Other languages
Japanese (ja)
Other versions
JP2004257887A (en
Inventor
俊彦 近江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP2003049571A priority Critical patent/JP4318934B2/en
Publication of JP2004257887A publication Critical patent/JP2004257887A/en
Application granted granted Critical
Publication of JP4318934B2 publication Critical patent/JP4318934B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Integrated Circuits (AREA)

Description

【0001】
【発明の属する技術分野】
温度センサは、水晶振動子の温度補正用等、電子機器、精密機器に広く使われている。本発明は、これら温度センサの中で高精度な温度検出が容易なPN接合方式の温度センサであり、PN接合とMOSトランジスタとを集積した温度センサに関する。
【0002】
【従来の技術】
PN接合方式の温度センサは、PN接合に一定値の順方向電流を流し、その際にPN接合に発生する電位差を取り出し出力する構成であり、PN接合に一定値の順方向電流を流したときに発生する電位差が温度に依存する特性を利用している。
従来の温度センサは、図6のようなPN接合であり、半導体基板に形成した第1の拡散領域3と第1の拡散領域の中に形成した第2の拡散領域4とからなる(例えば、特許文献1参照)。
【0003】
【特許文献1】
特開平9-229778 第1図、第2図、第3図
【0004】
【発明が解決しようとする課題】
従来の温度センサのPN接合を用いた温度センサ用ダイオード1のPN接合は、図6のように半導体基板100に形成した第1の拡散領域3と第1の拡散領域3の中に形成した第2の拡散領域4とからなる。例えば、P型の半導体基板100に形成した場合、第1の拡散領域3はN型ウエルからなり、第2の拡散領域4はP+拡散領域103からなる。P+拡散領域103は周囲をフィールド酸化膜116に囲まれており、半導体基板100表面近くでは、P+拡散領域103とN型フィールドドープ領域106、107あるいは特許文献1第2図の場合は第1の拡散領域3との間にPN接合を形成する。このとき、P+拡散領域103の不純物濃度は高いため、PN接合位置は、相対的にN型フィールドドープ領域106、107側、あるいは第1の拡散領域3側に形成され、空乏層の広がりも相対的にN型フィールドドープ領域106、107側、あるいは第1の拡散領域3側に大きくなる。
【0005】
なお、104、105はN+拡散領域、115はゲート酸化膜、106-109はN型フィールドドープ、113、114はP型フィールドドープ、117はボロン・リンガラスであり、5はコレクタ電極、6、7はベース電極、8はエミッタ電極である。
【0006】
フィールド酸化膜116の端部は一般的に欠陥が多いため、再結合による電流が大きい。このため、従来例の構造では、PN接合位置、空乏層がよりフィールド酸化膜側へ広がるため、再結合による電流が大きくなりがちである。
【0007】
に一般的なPN接合の順方向電流と電位差の関係を示す。温度センサとしてPN接合の特性を利用できるのは、図3中のIの領域である。これは順方向電流(エミッタ電流)がIe1からIe2の間に相当する。順方向電流が小さくなると図3中のIIIの特性となるが、これは前述の再結合による電流によるものである。図3からわかるように、再結合による電流が大きいと、温度センサとしてPN接合の特性を利用できる範囲が小さくなる。
【0008】
本発明は、上記問題を解決して、再結合による電流を小さくして温度センサとしてPN接合の特性を利用できる範囲を大きくすることを目的とする。
【0009】
【課題を解決するための手段】
本発明は、少なくとも1つ以上のPN接合と、前記PN接合の順方向に一定の電流を流す定電流回路と、前記PN接合に発生する順方向の電位差を出力する出力回路からなり、前記PN接合は、P型半導体基板に形成したN型の第1の拡散領域と、前記第1の拡散領域の中にあるP型の第2の拡散領域から構成されており、前記定電流回路及び出力回路はPMOSトランジスタ、NMOSトランジスタからなり、前記PMOSトランジスタのドレインが第3の拡散領域と前記第3の拡散領域よりも不純物濃度が低い第4の拡散領域からなる温度センサにおいて、前記PN接合を形成する第2の拡散領域が、不純物濃度の高い第5の拡散領域と前記第5の拡散領域の周囲に配置された前記第5の拡散領域と同じ極性で不純物濃度の低い第6の拡散領域から構成され、前記第5の拡散領域と前記第3の拡散領域とが同時に形成され、前記第6の拡散領域と前記第4の拡散領域とが同時に形成されることを特徴とする温度センサである。
【0010】
前述の温度センサにおいて、導電性を逆に形成したものである。
【0011】
例えば、本発明の1例である図1によれば、PN接合を形成する第2の拡散領域4は、不純物濃度の高い第5のP+拡散領域103と前記第5のP+拡散領域103の周囲に配置された不純物濃度の低い第6の拡散領域であるP型低濃度拡散領域110、111から構成されるため、PN接合位置は、従来に比べて相対的に第2の拡散領域4側に形成され、空乏層も従来に比べて相対的にN型フィールドドープ領域106、107側、あるいは第1の拡散領域3側への広がりが小さくなる。
【0012】
また、第6の拡散領域の形成は、P型の場合はPMOSトランジスタ、N型の場合はNMOSトランジスタのドレインの低濃度拡散領域(いわゆるLDD領域)と同時に形成することで、工程増となることなく、本発明のPN接合構造を形成できる。
【0013】
【実施例】
本発明の実施例を以下に説明する。本実施例は、P型半導体基板の場合の実施例である。図1は温度センサとなるPN接合の断面図であり、図2は集積されるPMOSトランジスタ、NMOSトランジスタの断面図である。
【0014】
PN接合は、PMOSトランジスタのN型ウエルと同時に形成したベース領域(カソード)3と、PMOSトランジスタのドレインと同時に形成したエミッタ領域(アノード)4とからなる。エミッタ4は不純物濃度の高いP+拡散領域103と不純物濃度の低いP型低濃度拡散領域110、111からなる。P+拡散領域103は、PMOSトランジスタのP+ソース/ドレイン(図2の131、132)と同時に形成され、P型低濃度拡散領域110、111は、PMOSトランジスタのP-LDD領域(図2の133、144)の不純物イオン注入と同時に形成する。
【0015】
P+拡散領域103にはP型不純物として二フッ化硼素イオンを注入するが、図3に示すように、P+拡散領域103形成のイオンを注入するときには、P型低濃度拡散領域110、111にはイオンが注入されないように、P型低濃度拡散領域110、111の上にフォトレジスト150、151を形成した後にイオン注入を行う。
【0016】
本実施例のMOSトランジスタは、ポリシリコンからなるゲート電極23、24の側壁にスペーサをもたない構造のLDD型トランジスタである。PMOSの場合、図4に示すとおりにフォトレジスト152、153、154を形成してP型LDD部(低濃度拡散領域)133、134にはイオンが注入されないようにしてP+拡散領域131、132形成のためのP型不純物注入を行う。もちろん、フォトレジスト150、151、152、153、154、155は同時に形成する。このようにゲート電極23、24の側壁にスペーサを用いずにLDD部(低濃度拡散領域)の形成を行うため、本実施例ではスペーサ形成工程の削減による製造工程減もできている。
【0017】
エミッタ4の周囲はフィールド酸化膜116で囲まれており、フィールド酸化膜116を介して、ベース3のコンタクト部となるN+拡散領域104、105がフィールド酸化膜16を囲むように形成されている。N+拡散領域104、105は、NMOSトランジスタのN+ソース/ドレイン(図2の135、136)と同時に形成される。
【0018】
本発明の温度センサのPN接合の順方向電流特性を図5に示す。本発明によれば、PN接合順方向電流(エミッタ電流)が小さい領域(IV)においてもI同様の直線性を示す。これにより、従来は、エミッタ電流範囲 Ie1からIe2までの使用可能範囲が、Ie1からIe3まで拡大できた。
【0019】
本実施例では、P型半導体基板の実施例であったが、N型半導体基板の場合も同様の効果がある。
【0020】
【発明の効果】
本発明により、再結合電流が小さく、温度センサとして使用可能な順方向電流範囲が広い温度センサが提供できる。
【図面の簡単な説明】
【図1】 発明の温度センサ部の断面図である。
【図2】 発明の温度センサ用MOSトランジスタ部の断面図である。
【図3】 発明の温度センのP+拡散領域形成時のセンサ部の断面図である。
【図4】 発明の温度センサのP+拡散領域形成時のMOSトランジスタ部の断面図である。
【図5】 発明の温度センサのPN接合の順方向電流特性図である。
【図6】 来の温度センサのセンサ部の断面図である。
[0001]
BACKGROUND OF THE INVENTION
Temperature sensors are widely used in electronic equipment and precision equipment, such as for temperature correction of crystal units. The present invention relates to a temperature sensor of a PN junction type that can easily detect a temperature with high accuracy among these temperature sensors, and relates to a temperature sensor in which a PN junction and a MOS transistor are integrated.
[0002]
[Prior art]
The temperature sensor of the PN junction type is configured to flow a constant value forward current through the PN junction, extract and output a potential difference generated at the PN junction at that time, and when a constant value forward current flows through the PN junction. This utilizes the characteristic that the potential difference generated at the temperature depends on the temperature.
A conventional temperature sensor is a PN junction as shown in FIG. 6 and includes a first diffusion region 3 formed in a semiconductor substrate and a second diffusion region 4 formed in the first diffusion region (for example, Patent Document 1).
[0003]
[Patent Document 1]
Japanese Patent Laid-Open No. 9-229778 FIG. 1, FIG. 2, FIG.
[Problems to be solved by the invention]
The PN junction of the temperature sensor diode 1 using the PN junction of the conventional temperature sensor is formed in the first diffusion region 3 and the first diffusion region 3 formed in the semiconductor substrate 100 as shown in FIG. 2 diffusion regions 4. For example, when formed on a P-type semiconductor substrate 100, the first diffusion region 3 is an N-type well, and the second diffusion region 4 is a P + diffusion region 103. The P + diffusion region 103 is surrounded by a field oxide film 116. Near the surface of the semiconductor substrate 100, the P + diffusion region 103 and the N-type field doped regions 106 and 107 or the case of FIG. A PN junction is formed with one diffusion region 3. At this time, since the impurity concentration of the P + diffusion region 103 is high, the PN junction position is relatively formed on the N-type field doped regions 106 and 107 side or the first diffusion region 3 side, and the depletion layer spreads relatively. In particular, it increases toward the N-type field doped regions 106 and 107 or the first diffusion region 3 side.
[0005]
Reference numerals 104 and 105 denote N + diffusion regions, 115 denotes a gate oxide film, 106 to 109 denote N-type field doping, 113 and 114 denote P-type field doping, 117 denotes boron-phosphorus glass, 5 denotes a collector electrode, 6 , 7 is a base electrode, and 8 is an emitter electrode.
[0006]
Since the end portion of the field oxide film 116 generally has many defects, a current due to recombination is large. For this reason, in the structure of the conventional example, since the PN junction position and the depletion layer further spread to the field oxide film side, the current due to recombination tends to increase.
[0007]
FIG. 5 shows a relationship between a forward current and a potential difference of a general PN junction. It is the area | region of I in FIG. 3 that can utilize the characteristic of PN junction as a temperature sensor. This corresponds to a forward current (emitter current) between Ie 1 and Ie 2 . When the forward current is reduced, the characteristic of III in FIG. 3 is obtained, which is due to the above-described current due to recombination. As can be seen from FIG. 3, when the current due to recombination is large, the range in which the characteristics of the PN junction can be used as a temperature sensor becomes small.
[0008]
An object of the present invention is to solve the above-described problems and increase the range in which the characteristics of a PN junction can be used as a temperature sensor by reducing the current due to recombination.
[0009]
[Means for Solving the Problems]
The present invention comprises at least one or more PN junctions, a constant current circuit for passing a constant current in the forward direction of the PN junction, and an output circuit for outputting a forward potential difference generated in the PN junction, The junction is composed of an N-type first diffusion region formed in a P-type semiconductor substrate and a P-type second diffusion region in the first diffusion region. The circuit includes a PMOS transistor and an NMOS transistor, and the drain of the PMOS transistor includes a third diffusion region and a fourth diffusion region whose impurity concentration is lower than that of the third diffusion region, and forms the PN junction. A sixth diffusion region having the same polarity as the fifth diffusion region disposed around the fifth diffusion region and the fifth diffusion region disposed at the periphery of the fifth diffusion region and a low impurity concentration. Temperature sensor, wherein the fifth diffusion region and the third diffusion region are formed simultaneously, and the sixth diffusion region and the fourth diffusion region are formed simultaneously It is.
[0010]
In the above temperature sensor, the conductivity is reversed.
[0011]
For example, according to FIG. 1 which is an example of the present invention, the second diffusion region 4 forming the PN junction includes a fifth P + diffusion region 103 having a high impurity concentration and the fifth P + diffusion region 103. The P-type low concentration diffusion regions 110 and 111, which are sixth impurity regions having a low impurity concentration, are arranged around the second diffusion region 4 relative to the conventional structure. The depletion layer is formed on the N-type field doped regions 106 and 107 side or the first diffusion region 3 side relatively less than the conventional depletion layer.
[0012]
In addition, the sixth diffusion region is formed simultaneously with the low concentration diffusion region (so-called LDD region) of the drain of the PMOS transistor in the case of the P type and NMOS transistor in the case of the N type, thereby increasing the number of processes. The PN junction structure of the present invention can be formed.
[0013]
【Example】
Examples of the present invention will be described below. This embodiment is an embodiment in the case of a P-type semiconductor substrate. FIG. 1 is a cross-sectional view of a PN junction serving as a temperature sensor, and FIG. 2 is a cross-sectional view of an integrated PMOS transistor and NMOS transistor.
[0014]
The PN junction includes a base region (cathode) 3 formed simultaneously with the N-type well of the PMOS transistor and an emitter region (anode) 4 formed simultaneously with the drain of the PMOS transistor. The emitter 4 includes a P + diffusion region 103 having a high impurity concentration and P-type low concentration diffusion regions 110 and 111 having a low impurity concentration. The P + diffusion region 103 is formed simultaneously with the P + source / drain (131, 132 in FIG. 2) of the PMOS transistor, and the P-type low concentration diffusion regions 110, 111 are formed in the P-LDD region (FIG. 2). 133, 144).
[0015]
Boron difluoride ions are implanted into the P + diffusion region 103 as a P-type impurity. As shown in FIG. 3, when ions for forming the P + diffusion region 103 are implanted, the P-type low concentration diffusion regions 110, 111 are implanted. In order to prevent ions from being implanted, ion implantation is performed after photoresists 150 and 151 are formed on the P-type low concentration diffusion regions 110 and 111.
[0016]
The MOS transistor of this embodiment is an LDD type transistor having a structure in which no spacer is provided on the side walls of the gate electrodes 23 and 24 made of polysilicon. In the case of PMOS, photoresists 152, 153, and 154 are formed as shown in FIG. 4 so that ions are not implanted into the P-type LDD portions (low-concentration diffusion regions) 133 and 134, and P + diffusion regions 131 and 132 are formed. P-type impurity implantation for forming is performed. Of course, the photoresists 150, 151, 152, 153, 154, and 155 are formed simultaneously. Thus, since the LDD portion (low concentration diffusion region) is formed on the side walls of the gate electrodes 23 and 24 without using a spacer, in this embodiment, the manufacturing process can be reduced by reducing the spacer forming process.
[0017]
The periphery of the emitter 4 is surrounded by a field oxide film 116, and N + diffusion regions 104 and 105 serving as contact portions of the base 3 are formed so as to surround the field oxide film 1 16 via the field oxide film 116. ing. The N + diffusion regions 104 and 105 are formed simultaneously with the N + source / drain (135 and 136 in FIG. 2) of the NMOS transistor.
[0018]
FIG. 5 shows the forward current characteristics of the PN junction of the temperature sensor of the present invention. According to the present invention, the same linearity as in I is exhibited even in the region (IV) where the PN junction forward current (emitter current) is small. Thus, conventionally, the usable range from the emitter current range Ie 1 to Ie 2 can be expanded from Ie 1 to Ie 3 .
[0019]
In this embodiment, the embodiment is a P-type semiconductor substrate, but the same effect can be obtained in the case of an N-type semiconductor substrate.
[0020]
【The invention's effect】
The present invention can provide a temperature sensor with a small recombination current and a wide forward current range that can be used as a temperature sensor.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a temperature sensor unit of the present invention.
FIG. 2 is a cross-sectional view of a temperature sensor MOS transistor portion of the present invention.
3 is a cross-sectional view of the sensor unit during the P + diffusion region forming temperature sensor of the present invention.
FIG. 4 is a cross-sectional view of a MOS transistor portion when forming a P + diffusion region of the temperature sensor of the present invention.
FIG. 5 is a forward current characteristic diagram of a PN junction of the temperature sensor of the present invention.
6 is a cross-sectional view of a sensor portion of the temperature sensor traditional.

Claims (4)

P型半導体基板に形成されたN型の第1の拡散領域と前記第1の拡散領域の中にあるP型の第2の拡散領域よりなるPN接合と、
前記PN接合の順方向に一定の電流を流す定電流回路と、
前記PN接合に発生する順方向の電位差を出力する出力回路とからなり、
前記定電流回路及び出力回路はPMOSトランジスタ、NMOSトランジスタであり、
前記PMOSトランジスタのドレインが第3の拡散領域と前記第3の拡散領域よりも不純物濃度が低い第4の拡散領域からなる温度センサの製造方法において、
前記PN接合を形成する第2の拡散領域が、不純物濃度の高い第5の拡散領域と前記第5の拡散領域の周囲に配置された前記第5の拡散領域と同じ極性で不純物濃度の低い第6の拡散領域から構成され、
前記第5の拡散領域と前記第の拡散領域とが同時に形成され、
前記第6の拡散領域と前記第4の拡散領域とが同時に形成されることを特徴とする温度センサの製造方法。
First diffusion region of the N type formed in the P-type semiconductor substrate, a PN junction formed of P-type second diffusion region that is in the first diffusion region,
A constant current circuit for flowing a constant current in the forward direction of the PN junction;
An output circuit that outputs a forward potential difference generated in the PN junction,
The constant current circuit and the output circuit are a PMOS transistor and an NMOS transistor,
In the method of manufacturing a temperature sensor , the drain of the PMOS transistor includes a third diffusion region and a fourth diffusion region having an impurity concentration lower than that of the third diffusion region.
The second diffusion region forming the PN junction has the same polarity as the fifth diffusion region having a high impurity concentration and the fifth diffusion region disposed around the fifth diffusion region and having a low impurity concentration. 6 diffusion regions,
The fifth diffusion region and the third diffusion region are formed simultaneously;
The method for manufacturing a temperature sensor, wherein the sixth diffusion region and the fourth diffusion region are formed simultaneously.
N型半導体基板に形成されたP型の第1の拡散領域と、前記第1の拡散領域の中にあるN型の第2の拡散領域よりなるPN接合と、
前記PN接合の順方向に一定の電流を流す定電流回路と、
前記PN接合に発生する順方向の電位差を出力する出力回路からなり、
前記定電流回路及び出力回路はPMOSトランジスタ、NMOSトランジスタからなり、
前記NMOSトランジスタのドレインが第3の拡散領域と前記第3の拡散領域よりも不純物濃度が低い第4の拡散領域からなる温度センサの製造方法において、
前記PN接合を形成する第2の拡散領域が、不純物濃度の高い第5の拡散領域と前記第5の拡散領域の周囲に配置された前記第5の拡散領域と同じ極性で不純物濃度の低い第6の拡散領域から構成され、
前記第5の拡散領域と前記第3の拡散領域とが同時に形成され、
前記第6の拡散領域と前記第4の拡散領域とが同時に形成されることを特徴とする温度センサの製造方法。
A P-type first diffusion region formed in an N-type semiconductor substrate, and a PN junction comprising an N-type second diffusion region in the first diffusion region;
A constant current circuit for flowing a constant current in the forward direction of the PN junction;
An output circuit for outputting a forward potential difference generated in the PN junction;
The constant current circuit and the output circuit are composed of a PMOS transistor and an NMOS transistor,
In the method of manufacturing a temperature sensor , the drain of the NMOS transistor includes a third diffusion region and a fourth diffusion region having an impurity concentration lower than that of the third diffusion region.
The second diffusion region forming the PN junction has the same polarity as the fifth diffusion region having a high impurity concentration and the fifth diffusion region disposed around the fifth diffusion region and having a low impurity concentration. 6 diffusion regions,
The fifth diffusion region and the third diffusion region are formed simultaneously;
The method for manufacturing a temperature sensor, wherein the sixth diffusion region and the fourth diffusion region are formed simultaneously.
PN接合とMOSトランジスタを集積した温度センサであって、
前記PN接合は、
P型半導体基板の表面近傍に配置されたN型の第1の拡散領域と、
前記第1の拡散領域の中に配置された、高不純物濃度のP型の第2の拡散領域、前記第2の拡散領域を囲んで配置された低不純物濃度のP型の第3の拡散領域、および前記第3の拡散領域を囲んで配置されたフィールド酸化膜と、からなり、
前記MOSトランジスタは、
ゲート電極と、
高不純物濃度のP型のソースおよびドレイン領域と、
前記ソースおよびドレイン領域にそれぞれ配置された低不純物濃度のP型のLDD部と、を有し、
前記ゲート電極の側壁にはスペーサを有していないP型MOSトランジスタである、温度センサ
A temperature sensor integrating a PN junction and a MOS transistor,
The PN junction is
An N-type first diffusion region disposed near the surface of the P-type semiconductor substrate;
A high impurity concentration P-type second diffusion region disposed in the first diffusion region, and a low impurity concentration P-type third diffusion region disposed surrounding the second diffusion region. And a field oxide film disposed around the third diffusion region,
The MOS transistor is
A gate electrode;
High impurity concentration P-type source and drain regions;
A low impurity concentration P-type LDD portion disposed in each of the source and drain regions,
A temperature sensor , which is a P-type MOS transistor having no spacer on the side wall of the gate electrode
PN接合とMOSトランジスタを集積した温度センサであって、
前記PN接合は、
N型半導体基板の表面近傍に配置されたP型の第1の拡散領域と、
前記第1の拡散領域の中に配置された、高不純物濃度のN型の第2の拡散領域、前記第2の拡散領域を囲んで配置された低不純物濃度のN型の第3の拡散領域、および前記第3の拡散領域を囲んで配置されたフィールド酸化膜と、からなり、
前記MOSトランジスタは、
ゲート電極と、
高不純物濃度のP型のソースおよびドレイン領域と、
前記ソースおよびドレイン領域にそれぞれ配置された低不純物濃度のN型のLDD部と、を有し、
前記ゲート電極の側壁にはスペーサを有していないP型MOSトランジスタである、温度センサ
A temperature sensor integrating a PN junction and a MOS transistor,
The PN junction is
A P-type first diffusion region disposed near the surface of the N-type semiconductor substrate;
A high impurity concentration N-type second diffusion region disposed in the first diffusion region, and a low impurity concentration N-type third diffusion region disposed surrounding the second diffusion region. And a field oxide film disposed around the third diffusion region,
The MOS transistor is
A gate electrode;
High impurity concentration P-type source and drain regions;
A low impurity concentration N-type LDD portion disposed in each of the source and drain regions,
A temperature sensor , which is a P-type MOS transistor having no spacer on the side wall of the gate electrode
JP2003049571A 2003-02-26 2003-02-26 Temperature sensor Expired - Fee Related JP4318934B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003049571A JP4318934B2 (en) 2003-02-26 2003-02-26 Temperature sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003049571A JP4318934B2 (en) 2003-02-26 2003-02-26 Temperature sensor

Publications (2)

Publication Number Publication Date
JP2004257887A JP2004257887A (en) 2004-09-16
JP4318934B2 true JP4318934B2 (en) 2009-08-26

Family

ID=33115257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003049571A Expired - Fee Related JP4318934B2 (en) 2003-02-26 2003-02-26 Temperature sensor

Country Status (1)

Country Link
JP (1) JP4318934B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017528667A (en) * 2014-08-06 2017-09-28 ケーシー エルエヌジー テック カンパニー リミテッド Corner structure of liquefied natural gas storage tank

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017528667A (en) * 2014-08-06 2017-09-28 ケーシー エルエヌジー テック カンパニー リミテッド Corner structure of liquefied natural gas storage tank
US10557592B2 (en) 2014-08-06 2020-02-11 Kc Lng Tech Co., Ltd. Corner structure of LNG storage tank

Also Published As

Publication number Publication date
JP2004257887A (en) 2004-09-16

Similar Documents

Publication Publication Date Title
CN100481473C (en) Solid-state image pickup device and manufacturing thereof
US8354723B2 (en) Electro-static discharge protection device, semiconductor device, and method for manufacturing electro-static discharge protection device
JPH08250728A (en) Field effect type semiconductor device and method of manufacturing the same
US6514785B1 (en) CMOS image sensor n-type pin-diode structure
US7678643B2 (en) Method for manufacturing a CMOS image sensor
US7199412B2 (en) Image sensor with surface regions of different doping
WO2009020316A2 (en) Unit pixel improving image sensitivity and dynamic range
KR100582198B1 (en) Manufacturing method of complementary MOS thin film transistor
JP4318934B2 (en) Temperature sensor
TW201428939A (en) Semiconductor integrated circuit device
CN100536112C (en) CMOS image sensor and method for fabricating the same
JP4016192B2 (en) Solid-state imaging device and manufacturing method thereof
US6693330B2 (en) Semiconductor device and method of manufacturing the same
JP2002190575A (en) Semiconductor device and method of manufacturing the same
JPS63122267A (en) Optical sensor
US10170468B1 (en) Semiconductor structure and method of manufacturing the same
Hilleringmann MOS Technologies for Circuit Integration
KR100741881B1 (en) Transistor of CMOS Image Sensor and Manufacturing Method Thereof
US7300836B2 (en) Manufacturing method of semiconductor device
JP2792219B2 (en) Semiconductor device with photodiode and method of manufacturing the same
JPH07297296A (en) Method of manufacturing semiconductor device
JP2005109388A (en) Semiconductor device and its manufacturing method
JP2004296914A (en) Semiconductor device and method for manufacturing the same
KR101024869B1 (en) Semiconductor device and manufacturing method
JP2001320046A (en) Method for manufacturing semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081001

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090526

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090527

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120605

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4318934

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091108

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120605

Year of fee payment: 3

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D03

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130605

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130605

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees