JP4318487B2 - Nonaqueous solvent secondary battery electrode material - Google Patents
Nonaqueous solvent secondary battery electrode material Download PDFInfo
- Publication number
- JP4318487B2 JP4318487B2 JP2003148007A JP2003148007A JP4318487B2 JP 4318487 B2 JP4318487 B2 JP 4318487B2 JP 2003148007 A JP2003148007 A JP 2003148007A JP 2003148007 A JP2003148007 A JP 2003148007A JP 4318487 B2 JP4318487 B2 JP 4318487B2
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- electrode material
- carbon material
- secondary battery
- material according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Battery Electrode And Active Subsutance (AREA)
- Carbon And Carbon Compounds (AREA)
- Secondary Cells (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、非水溶媒二次電池用電極に関するものであり、特に体積当りのドープ容量が大きく、高エネルギー密度の非水溶媒二次電池を与えるために好適な負極を形成可能であり、且つ性能の安定した非黒鉛質炭素材料からなる電極材料、ならびに該電極材料を用いて得られる非水溶媒二次電池に関する。
【0002】
【従来の技術】
高エネルギー密度の二次電池として、炭素材料を負極として用いる非水溶媒系リチウム二次電池が提案されている(例えば、特開昭57−208079号公報、特開昭62−90863号公報、特開昭62−122066号公報、特開平2−66856号公報参照)。これは、リチウムの炭素層間化合物が電気化学的に容易に形成できることを利用したものであり、この電池を充電すると、例えばLiCoO2等のカルコゲン化合物からなる正極中のリチウムは電気化学的に負極炭素の層間にドープされる。そして、リチウムをドープした炭素は、リチウム電極として作用し、放電に伴ってリチウムは炭素層間から脱ドープされ、正極中に戻る。
【0003】
このような負極材料としての炭素材料、あるいはリチウム源をドープする正極材料としての炭素材料においても、単位重量当たりに利用できる電気量は、リチウムの脱ドープ量によって決まるため、これら電極材料を構成する炭素材料は、ドープされるが脱ドープされないリチウムの不可逆容量を小さくして、リチウムの脱ドープ量を大きくすることが望ましい。
【0004】
炭素材料を得るための熱処理温度(焼成温度)と、得られる炭素材料によるリチウムのドープ容量および脱ドープ容量との関係においては、焼成温度が高い程ドープ容量が減少する傾向にあり、この点で800〜2000℃、特に900〜1500℃で焼成された非黒鉛質炭素材料は、より高温で焼成され、結晶の発達した黒鉛(グラファイト)に比べて好ましい。他方、この非黒鉛質炭素材料は、グラファイトに比べて表面反応性が高く、不可逆容量が増大する傾向を示す。
【0005】
換言すると、例えば熱天秤を用いる示差熱分析(DTA)による酸化温度測定において、酸化温度が低い程ドープ容量が大きいが、非黒鉛質炭素材料は、酸化温度が低く大ドープ容量であるが、大気中での保存時に酸化され易く、酸化により不可逆容量が増大する傾向を示す。従って、このような非黒鉛質炭素材料の保存時の酸化を防ぐために、窒素など不活性雰囲気中で保存する方法も提案されている(特開平8−298111号公報)。このような大気中での保存による不可逆容量の増大は、炭素結晶の発達したグラファイト(黒鉛)では殆ど問題にならない現象である。
【0006】
【発明が解決しようとする課題】
従って、本発明の主要な目的は、大なる放電容量を維持しながら、大気中での保存による不可逆容量の増大を極力抑制した非黒鉛質炭素材料からなる非水溶媒二次電池用電極材料を与えることにある。
【0007】
【課題を解決するための手段】
本発明者らの研究によれば、上記非黒鉛質炭素材料の、大気中での保存に伴う不可逆容量の増大は、炭素材料に水溶性高分子を塗布することにより著しく抑制されることが見出されている。しかしながら、この水溶性高分子の塗布処理には、得られた炭素材料をバインダーとともに成形して得られた電極層の集電基体に対する接着強度(剥離強度)を著しく低下するという別の問題点が見出された。しかし、本発明者等の更なる研究の結果、この水溶性高分子の塗布による電極層の接着強度の低下の問題は、水溶性高分子溶液の塗布後の炭素材料を、単に乾燥(すなわち溶剤の除去)に必要とされるレベルを超えた温度での熱処理(すなわち焼付処理)に付すことにより著しく改善されることが見出された。
【0008】
本発明の非水溶媒二次電池用電極材料は、このような知見に基づくものであり、より詳しくはX線回折法で求められる平均層面間隔(d002)が0.365nm以上且つ比表面積が3.5m 2 /g以下である非黒鉛質炭素材料に、水溶性高分子を塗布後、焼付処理してなることを特徴とするものである。水溶性高分子としてはポリビニルアルコールが特に好ましく、焼付処理温度は150〜250℃の範囲が好ましく、炭素材料(電極材料)は平均粒子径が3〜15μmであることが好ましく、3〜10μmであることが更に好ましい。
【0009】
本発明は、更に上記炭素材料と特定のバインダー溶液(ポリフッ化ビニリデンの極性溶媒溶液)との混合物からなる電極合剤、上記炭素材料を特定のバインダー(ポリフッ化ビニリデン)とともに成形してなる非水溶媒二次電池用電極、更には該電極を負極として含む非水溶媒二次電池をも提供するものである。
【0010】
【発明の実施の形態】
本発明の非水溶媒二次電池用電極材料の第一の且つ主要な成分は、非黒鉛質炭素材料であり、これは、X線回折法で求められる平均層面間隔(d002)が0.365nm以上であることで特徴付けられるものである。
【0011】
非黒鉛質炭素材料としては、石炭および石油系ピッチ類;フェノール樹脂、フルフリルアルコール樹脂などの熱硬化性樹脂;あるいはやし殻等の植物由来の炭素系原料;を不活性雰囲気中、800〜2000℃、好ましくは900〜1500℃で炭素化して得られた炭素材料が用いられる。
【0012】
本発明で非黒鉛質炭素材料として好ましく用いられるピッチ系炭素材料としては、例えば以下のようにして得られたものを用いることができる。すなわち、石油系または石炭系ピッチに対し、添加剤として沸点200℃以上の2乃至3環の芳香族化合物又はその混合物を加えて加熱して溶融混合した後、成形しピッチ成型体を得る。次にピッチに対し低溶解度を有しかつ添加剤に対して高溶解度を有する溶剤で、ピッチ成形体から添加剤を抽出除去し、得られた多孔性ピッチを酸化して不融化した後、非酸化性雰囲気中または10kpa以下の減圧下で900〜1500℃で炭素化することにより炭素材料を得る。
【0013】
本発明に従い、上記非黒鉛質炭素材料に水溶性高分子を塗布する。
【0014】
塗布は、水溶性高分子の好ましくは水溶液を、粒状の炭素材料にスプレー塗布するか、撹拌下に混合して、加熱および/または脱気乾燥することにより達成される。水溶性高分子の塗布量(固形分基準)は、炭素材料の約0.1〜5重量%、特に0.3〜1.0重量%程度であることが好ましい。0.1重量%未満では、塗布による効果が乏しく、5重量%を超えて塗布すると、却って、放電容量が低下する。上記したような低い塗布量での均一塗布を可能にするために、塗布(水)溶液中の水溶性高分子濃度は、約0.1〜10重量%、特に0.3〜5.0重量%、程度であることが好ましい。一般に乾燥は、約100〜120℃程度の温度で行われる。乾燥は、大気中あるいはN2等の不活性ガス雰囲気等で行われる。
【0015】
炭素材料は、15μm以下の平均粒子径を持つものが好ましく、形成される電極層の厚み等も考慮して、約3〜15μm、特に約3〜10μmの範囲の平均粒子径であることが好ましい。
【0016】
他方、水溶性高分子としては、ポリビニルアルコール、セルロース系樹脂等が用いられるが、塗膜適性に加えて耐電界液性および耐酸素透過性も良好な、ケン化度70%以上、重合度が3000以下のポリビニルアルコールが特に適している。
【0017】
上記のようにして、水溶性高分子溶液の塗布、乾燥後の炭素材料に焼付処理を行う。これにより、非黒鉛質炭素材料の大気中での保存による不可逆容量増大を低減しつつ、得られる電極層の集電基体への接着強度を高く維持することができる。焼付処理は、通常の水溶液の乾燥に用いられるレベルよりは高い温度、すなわち約150〜250℃、特に160〜220℃、で行われる。150℃未満では、水溶性高分子塗布に伴う電極層の集電基体への接着強度の低下が避けられず、250℃を超えると、水溶性高分子が分解し、炭素材料表面から消失する傾向を示す。焼付処理は、塗布水溶性高分子層の酸化による劣化を防止するために、N2等の不活性ガス雰囲気中あるいは減圧下で行うことが好ましい。焼付処理時間は、処理温度にも依存するが、0.5〜4時間程度が適当であり、ポリビニルアルコールが約1〜50%、より好ましくは1〜30%程度の重量減少率を示す範囲が、特に適当である。
【0018】
電極材料の比表面積が大きいと、電解液の分解が促進されるので好ましくない。比表面積3.5m2/g以下が好ましく、より好ましくは3.0m2/g以下である。
【0019】
上記のように、水溶性高分子の塗布および焼付処理して得られた炭素材料(電極材料)は、従来の炭素材料と同様に、電極合剤および電極の製造に用いられる。
【0020】
すなわち、得られた炭素材料は、そのまま、あるいは例えばその1〜10重量%のアセチレンブラックや、ファーネスブラック等の導電性カーボンブラック等からなる導電助剤とともに、用いられ、更に結合剤(バインダー)を添加し、適当な溶媒を適量添加、混練し、電極合剤ペーストとした後、例えば、円形あるいは矩形の金属板等からなる導電性の集電材に塗布・乾燥後、加圧成形することにより、厚さが例えば10〜200μmの層を形成する等の方法により、電極製造に用いられる。結合剤としては、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、およびSBR等、電解液と反応しないものであれば特に限定されない。ポリフッ化ビニリデンの場合、N−メチルピロリドン(NMP)等の極性溶媒中が好ましく用いられるが、SBRなどの水性エマルジョンを用いることもできる。結合剤の好ましい添加量は、本発明の電極材料100重量部に対して0.5〜10重量部である。結合剤の添加量が多すぎると、得られる電極の電気抵抗が大きくなり電池の内部抵抗が大きくなり電池特性を低下させるので好ましくない。また、結合剤の添加量が少なすぎると、電極材料粒子相互及び集電材との結合が不充分となり好ましくない。本発明の電極材料は、その良好なドープ特性を利用して、非水溶媒型二次電池の負極、特にリチウム二次電池の負極活物質として、リチウムドープ用負極の構成に用いることが好ましい。
【0021】
本発明の電極材料を用いて、非水溶媒二次電池の負極を形成した場合、正極材料、セパレータ、電解液など電池を構成する他の材料としては特に制限されることなく、非水溶媒二次電池として従来使用され、或いは提案されている種々の材料を使用することが可能である。
【0022】
例えば、正極材料としては、目的とする電池の種類に応じて、金属酸化物、金属硫化物又は特定のポリマーを活物質として用い構成することができる。例えば非水電解液リチウム二次電池を構成する場合、正極活物質としては、TiS2、MoS2、NbSe、V2O5等のリチウムを含有しない金属硫化物あるいは酸化物を使用できるが、高エネルギー密度を有する電池を構成するには、一般式がLixMO2(式中、Mは1種以上の遷移金属を表し、通常0.05≦x≦1.10である)を主体とするリチウム複合酸化物等を使用するのが好ましい。ここでリチウム複合酸化物を構成する金属Mとしては、Co、Ni、Mn等が好ましく、この様なリチウム複合酸化物の具体例としては、LiCoO2、LiNiO2、LixNiyCo1−yO2(式中、xおよびyは電池の充放電状態により異なり通常0.7<x<1.2、0<y<1である)、LiMnO2、LiMn2O4等を挙げることができる。この様なリチウム複合酸化物は、リチウムの炭酸塩、硝酸塩、酸化物あるいは水酸化物とを所望の組成に応じて粉砕混合し、酸化性ガス雰囲気下600〜1000℃の温度範囲で焼成することにより調製することができる。
【0023】
あるいは、一般式がLixMn2−yO4+δ(Mは、Ni、Co、Cr、FeおよびCuのうちから選ばれるいずれか1種または2種以上の遷移金属、0.9≦x≦1.2、0.2≦y≦1.0、0<δ≦0.5)で表されるリチウムマンガン複合酸化物を使用するのが好ましい。この様なリチウムマンガン複合酸化物は特開2003−81637号公報に記載の方法により調製することができる。
【0024】
これら正極材料を、適当なバインダーと電極に導電性を付与するための炭素材料とともに成形して、導電性の集電材上に層形成することにより正極が形成される。
【0025】
これら正極及び負極との組合せで用いられる非水溶媒型電解液は、一般に非水溶媒に電解質を溶解することにより形成される。非水溶媒としては、例えばプロピレンカーボネート、エチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、ジメトキシエタン、ジエトキシエタン、γ−ブチロラクトン、テトラヒドロフラン、2−メチルテトラヒドロフラン、スルホラン、1,3−ジオキソラン等の有機溶媒の一種または二種以上を組合せて用いることが出来る。また電解質としては、LiClO4、LiPF6、LiBF4、LiCF3SO3、LiAsF6、LiCl、LiBr、LiB(C6H5)4、LiN(SO2CF3)2等が用いられる。二次電池は、一般に上記のようにして形成した正極層と負極層とを、必要に応じて不織布、その他の多孔質材料等からなる透液性セパレータを介して、対向させ電解液中に浸漬することにより形成される。
【0026】
なお、本明細書に記載する炭素材料のd002および比表面積の値は以下の測定法による測定値を基準とするものである。
【0027】
「炭素材料の平均層面間隔(d002)」
炭素材料粉末をアルミニウム製試料セルに充填し、グラファイトモノクロメーターにより単色化したCuKα線(波長λ=0.15418nm)を線源とし、反射式デフラクトメーター法によりX線回折図形を得る。回折図形の補正には、ローレンツ偏光因子、吸収因子、原子散乱因子等に関する補正を行わず、Kα1、Kα2、の2重線の補正のみをRachingerの方法により行った。(002)回折線のピーク位置は、重心法(回折線の重心位置を求め、これに対応する2θでピーク位置を求める方法)により求め、標準物質用高純度シリコン粉末の(111)回折線を用いて補正し、下記Braggの公式よりd002を計算した:
【数1】
【0028】
「窒素吸着による比表面積(SBET)の測定」
BETの式から誘導された近似式
【数2】
Vm=1/V(1−x)
を用いて液体窒素温度における、窒素吸着による1点法(相対圧力x=0.3)によりVmを求め、次式により試料の比表面積を計算した。
【0029】
【数3】
比表面積=4.35×Vm (m2/g)
ここに、Vmは試料表面に単分子層を形成するに必要な吸着量(cm3/g)、Vは実測される吸着量(cm3/g)、xは相対圧力である。具体的には、MICROMERITICS社製「Flow Sorb II 2300」を用いて、以下のようにして液体窒素温度における炭素材料への窒素の吸着量を測定した。粒子径約5〜50μmに粉砕した炭素材料を試料管に充填し、窒素ガスを30モル%濃度で含有するヘリウムガスを流しながら、試料管を−196℃に冷却し、炭素材料に窒素を吸着させる。次に試料管を室温に戻す。このとき試料から脱離してくる窒素量を熱伝導度型検出器で測定し、吸着ガス量Vとした。
【0030】
【実施例】
以下、実施例および比較例により、本発明を更に具体的に説明する。
【0031】
(実施例1)
軟化点210℃、キノリン不溶分1重量%、H/C原子比0.63の石油系ピッチ68kgと、ナフタレン32kgとを、攪拌翼のついた内容積300リットルの耐圧容器に仕込み、190℃で溶融混合を行った後、80〜90℃に冷却して押し出し、径約500μmの紐状成形体を得た。次いで、この紐状成形体を直径と長さの比が約1.5になるように破砕し、得られた破砕物を93℃に加熱した0.53重量%のポリビニルアルコール(ケン化度88%)を溶解した水溶液中に投入し、攪拌分散し、冷却して球状ピッチ成形体スラリーを得た。大部分の水をろ過により除いた後、球状ピッチ成形体の約6倍量の重量のn−ヘキサンでピッチ成形体中のナフタレンを抽出除去した。この様にして得た多孔性球状ピッチを、流動床を用いて、加熱空気を通じながら、260℃まで昇温し、260℃に1時間保持して酸化し、熱に対して不融性の多孔性球状酸化ピッチを得た。得られた酸化ピッチは酸素含有量が17重量%であった。次に酸化ピッチを窒素ガス雰囲気中(常圧)で600℃まで昇温し、600℃で1時間保持して仮焼成し、揮発分2%以下の炭素前駆体を得た。得られた炭素前駆体を粉砕し、平均粒径12μmの粉末状炭素前駆体とした。次に粉末状炭素前駆体を横型焼成炉に仕込み、内部を窒素ガス雰囲気中として1200℃まで昇温し、1時間保持して本焼成を行った後、冷却し、数平均粒子径(D1)=10μm、d002=0.385nmの粉末状炭素材料を製造した。
【0032】
ポリビニルアルコール(以下「PVA」と記す)の0.3重量%水溶液、上記粉末炭素材料を、混合、攪拌しながら、真空脱気しつつ、120℃で真空乾燥することで、PVAを粉末炭素材料にコートした。PVAコート量は、0.3重量%とした。乾燥後、N2雰囲気中で180℃×2時間の熱処理(焼付処理)を行って、本発明の電極材料を得た。
【0033】
上記で得られた電極材料の概要を、以下の実施例および比較例で得られた電極材料の概要とともに、まとめて後記表1に示す。
【0034】
(実施例2)
熱処理(焼付処理)条件を、180℃×2時間から、200℃×2時間に変更する以外は、実施例1と同様にして、電極材料を得た。
【0035】
(実施例3)
焼付処理条件を220℃×2時間に変更する以外は、実施例1と同様にして、電極材料を得た。
【0036】
(実施例4)
0.5重量%水溶液により、PVAコート量を0.5重量%と変更する以外は、実施例1と同様にして、電極材料を得た。
【0037】
(実施例5)
1.0重量%水溶液により、PVAコート量を1.0重量%と変更する以外は、実施例1と同様にして、電極材料を得た。
【0038】
(比較例1)
180℃×2時間の熱処理(焼付処理)を行わない以外は、実施例1と同様にして、電極材料を得た。
【0039】
(比較例2)
実施例1とほぼ同様にして得た、ただし平均粒径が5μmの粉末状炭素材料を用いて、PVAコートおよび乾燥を実施例1と同様にして行い、また、180℃×2時間の焼付処理を行わない以外は、実施例1と同様にして電極材料を得た。
【0040】
(比較例3)
平均粒径が20μmの粉末状炭素材料を用いる以外は、比較例2と同様にして、電極材料を得た。
【0041】
(比較例4)
実施例1のPVAコート前の炭素材料を、そのまま電極材料として用いた。
【0042】
(比較例5)
実施例1記載の石油ピッチを酸化することなく、窒素雰囲気中(常圧)600℃で1時間仮焼成した後粉砕し平均粒径が約20μmの炭素前駆体微粒子とした。
【0043】
次に、この炭素前駆体微粒子をアルゴン雰囲気下で昇温し、2400℃で1時間黒鉛化して黒鉛を得た。このPVAコート前の黒鉛(d002=0.338nm)を、そのまま電極材料として用いた。
【0044】
上記実施例および比較例の電極材料の概要を以下の表1にまとめて記す。
【0045】
【表1】
上記、実施例および比較例の電極材料を用いて、以下のようにして電極形成を行い、且つ電極性能および保存特性の評価を行った。
【0046】
(a)電極作成
上記電極材料(PVA被覆または非被覆炭素材料)90重量部、PVdF(呉羽化学工業製「KF#1100」)10重量部にNMPを加えてペースト状にし、銅箔上に均一に塗布した。乾燥した後、直径15mmの円盤状に打ち抜き電極を作製した。電極中の炭素材料の量を約20mgとなるように調整した。
【0047】
(b)試験電池の作成
本発明の電極材料は非水溶媒二次電池の負極を構成するのに適しているが、電池活物質の放電容量(脱ドープ容量)及び不可逆容量(非脱ドープ容量)を、対極の性能のバラツキに影響されることなく精度良く評価するために、特性の安定したリチウム金属を負極とし、上記で得られた電極を正極とするリチウム二次電池を構成し、その特性を評価した。
【0048】
すなわち、上記各実施例あるいは比較例で得られた直径15mmの円盤膜状電極を、2016サイズ(すなわち直径20mm、厚さ1.6mm)のコイン型電池用缶の内蓋にスポット溶接された直径17mmのステンレススチール網円盤に、プレスにより加圧して圧着して正極とした。
【0049】
負極(リチウム極)の調製はAr雰囲気中のグローブボックス内で行った。予め2016サイズのコイン型電池用缶の外蓋に直径17mmのステンレススチール網円盤をスポット溶接した後、厚さ0.5mmの金属リチウム薄板を直径15mmの円盤状に打ち抜いたものをステンレススチール網円盤に圧着し負極とした。
【0050】
このようにして製造した正極及び負極を用い、電解液としてはプロピレンカーボネートとジメトキシエタンとを容量比で1:1で混合した混合溶媒に1モル/リットルの割合でLiClO4を加えたものを使用し、直径17mmのポリプロピレン製微細孔膜をセパレータを介して対向させ、Arグローブボックス中で2016サイズのコイン型非水溶媒系リチウム二次電池を組み立てた(但し、比較例5では黒鉛を用いているため、溶媒としてプロピレンカーボネートを用いると使用条件下での電解液の分解が多くなるので、電解液としてはエチレンカーボネート/ジメトキシエタン/ジエトキシエタン(重量比=42/31.9/14.1)混合溶媒88重量部にLiPF6 12重量部を添加したものを用いた)。
【0051】
(c)充放電能力の測定
上記構成のLi二次電池について、充放電試験装置(東洋システム製「TOSCAT」)を用いて充放電試験を行った。充放電は定電流定電圧法により行った。ここで、「充電」は試験電池としては放電反応であるが、この場合は炭素材料へのリチウム挿入反応であるので、便宜上「充電」と記述する。逆に「放電」とは試験電池では充電反応であるが、炭素材料からのリチウム脱離反応であるので便宜上「放電」と記述することにする。
【0052】
ここで採用した定電流定電圧充電条件は、電池電圧が0Vになるまで一定の電流密度0.5mA/cm2で充電を行い、その後、電圧を0Vに保持するように(定電圧に保持しながら)電流値を変化させて充電を継続する方法である。このとき、電流値が0.02μAに達するまで供給した炭素材料単位重量あたりの電気量を充電量と定義した。充電終了後、30分間電池回路を開放し、その後放電を行った。放電は電池電圧が1.5Vに達するまで一定の電流密度0.5mA/cm2で行い、このときの供給した炭素材料単位重量あたりの電気量(mAh/g)を放電量と定義した。充電量から放電量を差し引いた電気量を不可逆容量(mAh/g)と定義する。(放電)効率は、放電量/充電量(=放電量+不可逆容量)として計算される。
【0053】
同一試料に対し作製した試験電池n=3の測定値を平均して充放電容量および効率を決定した。
【0054】
○ 保存特性
製造直後(0日)ならびに温度:25℃および露点が−60℃の湿度の空気中で10日ないし20日保管した電極材料について充放電能力を測定し、電極材料の保存特性を評価した。
【0055】
○ 接着強度(剥離強度)測定
別途、上記(a)で銅箔上に電極層を形成して得た電極を1.5cm×5cmの短冊状に切った試料の一端において、電極層を剥離し、その上に接着した接着テープとともに折返して、露出した銅箔片の間に逆方向張力を印加して180゜剥離強度を測定した。
【0056】
上記実施例および比較例の電極材料について行った上記評価試験結果をまとめて下表2に記す。
【0057】
【表2】
【0058】
【発明の効果】
上記表1および表2の結果を見れば、本発明に従い非水溶媒二次電池用電極材料としての非黒鉛質炭素材料について問題であった大気中での保存による不可逆容量の増大が、水溶性高分子(PVA)の塗布および焼付処理により、有意に抑制され、且つ電極層の接着強度(剥離強度)の低下も防止されることがわかる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electrode for a non-aqueous solvent secondary battery, and can form a negative electrode suitable for providing a non-aqueous solvent secondary battery having a large dope capacity per volume and high energy density, and The present invention relates to an electrode material made of a non-graphitic carbon material having stable performance, and a non-aqueous solvent secondary battery obtained using the electrode material.
[0002]
[Prior art]
As a high energy density secondary battery, a non-aqueous solvent type lithium secondary battery using a carbon material as a negative electrode has been proposed (for example, Japanese Patent Laid-Open Nos. 57-208079 and 62-90863, (See Japanese Utility Model Laid-Open Nos. 62-122066 and 2-66856). This utilizes the fact that lithium carbon intercalation compounds can be easily formed electrochemically. When this battery is charged, the lithium in the positive electrode made of a chalcogen compound such as LiCoO 2 is electrochemically negative carbon. Doped between the layers. The carbon doped with lithium acts as a lithium electrode, and the lithium is dedoped from the carbon layer along with the discharge and returns to the positive electrode.
[0003]
Even in such a carbon material as a negative electrode material or a carbon material as a positive electrode material doped with a lithium source, the amount of electricity that can be used per unit weight is determined by the amount of lithium dedoping, and therefore, these electrode materials are configured. It is desirable for the carbon material to increase the amount of lithium dedoped by reducing the irreversible capacity of lithium that is doped but not dedoped.
[0004]
In relation to the heat treatment temperature (firing temperature) for obtaining the carbon material and the lithium doping capacity and dedoping capacity of the obtained carbon material, the doping capacity tends to decrease as the firing temperature increases. Non-graphitic carbon materials fired at 800 to 2000 ° C., particularly 900 to 1500 ° C., are more preferable than graphite (graphite) that has been fired at a higher temperature and has developed crystals. On the other hand, this non-graphitic carbon material has a higher surface reactivity than graphite and tends to increase irreversible capacity.
[0005]
In other words, for example, in the oxidation temperature measurement by differential thermal analysis (DTA) using a thermobalance, the lower the oxidation temperature, the larger the doping capacity, but the non-graphitic carbon material has a low oxidation temperature and a large doping capacity, It tends to be oxidized during storage, and the irreversible capacity tends to increase due to oxidation. Therefore, in order to prevent such oxidation of the non-graphitic carbon material during storage, a method of storing it in an inert atmosphere such as nitrogen has also been proposed (JP-A-8-298111). Such an increase in irreversible capacity due to storage in the atmosphere is a phenomenon that hardly poses a problem in graphite (graphite) having developed carbon crystals.
[0006]
[Problems to be solved by the invention]
Therefore, the main object of the present invention is to provide an electrode material for a non-aqueous solvent secondary battery comprising a non-graphitic carbon material that suppresses an increase in irreversible capacity due to storage in the atmosphere as much as possible while maintaining a large discharge capacity. Is to give.
[0007]
[Means for Solving the Problems]
According to the study by the present inventors, it has been found that the increase in the irreversible capacity of the non-graphitic carbon material accompanying storage in the air is significantly suppressed by applying a water-soluble polymer to the carbon material. Has been issued. However, this water-soluble polymer coating treatment has another problem that the adhesion strength (peeling strength) of the electrode layer obtained by molding the obtained carbon material together with a binder to the current collecting substrate is remarkably reduced. It was found. However, as a result of further studies by the present inventors, the problem of a decrease in the adhesive strength of the electrode layer due to the application of the water-soluble polymer is that the carbon material after application of the water-soluble polymer solution is simply dried (ie, solvent Has been found to be significantly improved by subjecting it to a heat treatment (i.e., baking) at a temperature above the level required for removal of the
[0008]
The electrode material for a non-aqueous solvent secondary battery of the present invention is based on such knowledge. More specifically, the average layer surface distance (d 002 ) determined by the X-ray diffraction method is 0.365 nm or more and the specific surface area. A non-graphitic carbon material having a thickness of 3.5 m 2 / g or less is coated with a water-soluble polymer and then baked. Polyvinyl alcohol is particularly preferable as the water-soluble polymer, the baking temperature is preferably in the range of 150 to 250 ° C., and the carbon material (electrode material) preferably has an average particle diameter of 3 to 15 μm, and is preferably 3 to 10 μm. More preferably.
[0009]
The present invention further includes an electrode mixture comprising a mixture of the carbon material and a specific binder solution (polyvinylidene fluoride polar solvent solution), and a non-aqueous material formed by molding the carbon material together with a specific binder (polyvinylidene fluoride). The present invention also provides a solvent secondary battery electrode and a nonaqueous solvent secondary battery including the electrode as a negative electrode.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
The first and main component of the electrode material for a non-aqueous solvent secondary battery of the present invention is a non-graphitic carbon material, which has an average layer surface spacing (d 002 ) of 0 . Those characterized by an over 365nm or more.
[0011]
Non-graphitic carbon materials include coal and petroleum pitches; thermosetting resins such as phenolic resins and furfuryl alcohol resins; or plant-derived carbon-based raw materials such as coconut shells; A carbon material obtained by carbonization at 2000 ° C., preferably 900-1500 ° C., is used.
[0012]
As the pitch-based carbon material preferably used as the non-graphitic carbon material in the present invention, for example, those obtained as follows can be used. That is, a 2- or 3-ring aromatic compound having a boiling point of 200 ° C. or higher or a mixture thereof is added to a petroleum-based or coal-based pitch, heated and melt-mixed, and then molded to obtain a pitch molded body. Next, the additive is extracted and removed from the pitch molded body with a solvent having low solubility with respect to pitch and high solubility with respect to the additive, and the resulting porous pitch is oxidized and infusible. A carbon material is obtained by carbonizing at 900 to 1500 ° C. in an oxidizing atmosphere or under a reduced pressure of 10 kpa or less.
[0013]
In accordance with the present invention, a water-soluble polymer is applied to the non-graphitic carbon material.
[0014]
Application is accomplished by spraying a preferably aqueous solution of the water-soluble polymer onto the particulate carbon material, or mixing under agitation and heating and / or degassing drying. The coating amount (based on solid content) of the water-soluble polymer is preferably about 0.1 to 5% by weight, particularly about 0.3 to 1.0% by weight of the carbon material. If it is less than 0.1% by weight, the effect by coating is poor, and if it exceeds 5% by weight, the discharge capacity is decreased. In order to enable uniform application at a low application amount as described above, the concentration of the water-soluble polymer in the application (water) solution is about 0.1 to 10% by weight, particularly 0.3 to 5.0% by weight. It is preferable that it is about%. Generally, drying is performed at a temperature of about 100 to 120 ° C. Drying is performed in air or in an inert gas atmosphere such as N 2 .
[0015]
The carbon material preferably has an average particle diameter of 15 μm or less, and preferably has an average particle diameter in the range of about 3 to 15 μm, particularly about 3 to 10 μm in consideration of the thickness of the electrode layer to be formed. .
[0016]
On the other hand, as the water-soluble polymer, polyvinyl alcohol, cellulose resin and the like are used. In addition to the coating film suitability, the electrolysis liquid resistance and oxygen permeability resistance are also good, the saponification degree is 70% or more, and the polymerization degree is high. 3000 or less polyvinyl alcohol is particularly suitable.
[0017]
As described above, the carbon material after the application and drying of the water-soluble polymer solution is baked. Thereby, the adhesive strength of the obtained electrode layer to the current collector base can be kept high while reducing the increase in irreversible capacity due to storage of the non-graphitic carbon material in the atmosphere. The baking process is carried out at a temperature higher than that used for drying ordinary aqueous solutions, i.e. about 150-250 [deg.] C, in particular 160-220 [deg.] C. If the temperature is lower than 150 ° C., a decrease in the adhesive strength of the electrode layer to the current collector substrate due to the application of the water-soluble polymer is unavoidable. Indicates. The baking treatment is preferably performed in an inert gas atmosphere such as N 2 or under reduced pressure in order to prevent deterioration of the coated water-soluble polymer layer due to oxidation. The baking time depends on the processing temperature, but about 0.5 to 4 hours is appropriate, and the range in which polyvinyl alcohol shows a weight reduction rate of about 1 to 50%, more preferably about 1 to 30%. Is particularly suitable.
[0018]
If the specific surface area of the electrode material is large, decomposition of the electrolytic solution is promoted, which is not preferable. The specific surface area is preferably 3.5 m 2 / g or less, more preferably 3.0 m 2 / g or less.
[0019]
As described above, the carbon material (electrode material) obtained by applying and baking the water-soluble polymer is used for producing an electrode mixture and an electrode, as in the case of conventional carbon materials.
[0020]
That is, the obtained carbon material is used as it is, or together with a conductive assistant such as 1 to 10% by weight of acetylene black or conductive carbon black such as furnace black, and further a binder (binder). After adding an appropriate amount of an appropriate solvent, kneading and making an electrode mixture paste, for example, by applying and drying to a conductive current collector made of a circular or rectangular metal plate, etc. It is used for electrode production by a method such as forming a layer having a thickness of 10 to 200 μm, for example. The binder is not particularly limited as long as it does not react with the electrolytic solution, such as polyvinylidene fluoride, polytetrafluoroethylene, and SBR. In the case of polyvinylidene fluoride, a polar solvent such as N-methylpyrrolidone (NMP) is preferably used, but an aqueous emulsion such as SBR can also be used. A preferable addition amount of the binder is 0.5 to 10 parts by weight with respect to 100 parts by weight of the electrode material of the present invention. When the amount of the binder added is too large, the electric resistance of the obtained electrode is increased, the internal resistance of the battery is increased, and the battery characteristics are deteriorated. Moreover, when there is too little addition amount of a binder, a coupling | bonding with electrode material particle | grains and a collector is insufficient, and it is unpreferable. The electrode material of the present invention is preferably used in the constitution of a negative electrode for lithium dope as a negative electrode of a non-aqueous solvent type secondary battery, particularly as a negative electrode active material of a lithium secondary battery, utilizing its good doping characteristics.
[0021]
When the negative electrode of the nonaqueous solvent secondary battery is formed using the electrode material of the present invention, other materials constituting the battery such as the positive electrode material, the separator, and the electrolytic solution are not particularly limited, and the nonaqueous solvent secondary battery is not limited. Various materials conventionally used or proposed as secondary batteries can be used.
[0022]
For example, as the positive electrode material, a metal oxide, a metal sulfide, or a specific polymer can be used as an active material according to the type of the target battery. For example, when a non-aqueous electrolyte lithium secondary battery is configured, the positive electrode active material may be a metal sulfide or oxide that does not contain lithium, such as TiS 2 , MoS 2 , NbSe, and V 2 O 5. In order to construct a battery having an energy density, the general formula is mainly Li x MO 2 (wherein M represents one or more transition metals, usually 0.05 ≦ x ≦ 1.10). It is preferable to use a lithium composite oxide or the like. Here, the metal M constituting the lithium composite oxide is preferably Co, Ni, Mn or the like, and specific examples of such lithium composite oxide include LiCoO 2 , LiNiO 2 , Li x Ni y Co 1-y. O 2 (wherein x and y vary depending on the charge / discharge state of the battery, and usually 0.7 <x <1.2 and 0 <y <1), LiMnO 2 , LiMn 2 O 4 and the like. . Such a lithium composite oxide is obtained by pulverizing and mixing lithium carbonate, nitrate, oxide or hydroxide according to a desired composition and firing in an oxidizing gas atmosphere at a temperature range of 600 to 1000 ° C. Can be prepared.
[0023]
Alternatively, the general formula is Li x Mn 2−y O 4 + δ (M is one or more transition metals selected from Ni, Co, Cr, Fe and Cu, 0.9 ≦ x ≦ 1) .2, 0.2 ≦ y ≦ 1.0, 0 <δ ≦ 0.5) is preferably used. Such a lithium manganese composite oxide can be prepared by the method described in JP-A-2003-81637.
[0024]
These positive electrode materials are molded together with a suitable binder and a carbon material for imparting conductivity to the electrode, and a positive electrode is formed by forming a layer on the conductive current collector.
[0025]
The nonaqueous solvent electrolyte used in combination with these positive electrode and negative electrode is generally formed by dissolving an electrolyte in a nonaqueous solvent. Examples of non-aqueous solvents include propylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate, dimethoxyethane, diethoxyethane, γ-butyrolactone, tetrahydrofuran, 2-methyltetrahydrofuran, sulfolane, and 1,3-dioxolane. Alternatively, two or more types can be used in combination. As the electrolyte, LiClO 4, LiPF 6, LiBF 4, LiCF 3 SO 3, LiAsF 6, LiCl, LiBr, LiB (C 6 H 5) 4, LiN (SO 2 CF 3) 2 or the like is used. In secondary batteries, the positive electrode layer and the negative electrode layer formed as described above are generally immersed in an electrolytic solution so that they face each other with a liquid-permeable separator made of a nonwoven fabric or other porous material as necessary. It is formed by doing.
[0026]
The values of d 002 and specific surface area of the carbon material described in this specification are based on the values measured by the following measurement method.
[0027]
“Average layer spacing of carbon materials (d 002 )”
An X-ray diffraction pattern is obtained by a reflective defractometer method, using a CuKα ray (wavelength λ = 0.15418 nm) monochromatized with a graphite monochromator and filled with a carbon material powder in an aluminum sample cell. For correction of the diffraction pattern, correction for the Lorentz polarization factor, absorption factor, atomic scattering factor, etc. was not performed, but only correction of the double lines of Kα 1 and Kα 2 was performed by the Rachinger method. The peak position of the (002) diffraction line is obtained by the centroid method (a method of obtaining the centroid position of the diffraction line and obtaining the peak position by 2θ corresponding thereto), and the (111) diffraction line of the high-purity silicon powder for the standard substance is obtained. And calculated d 002 from the following Bragg formula:
[Expression 1]
[0028]
“Measurement of specific surface area (S BET ) by nitrogen adsorption”
Approximate expression derived from the BET equation
V m = 1 / V (1-x)
At liquid nitrogen temperature using a 1-point method by nitrogen adsorption seeking V m by (relative pressure x = 0.3), it was calculated a specific surface area of the sample by the following equation.
[0029]
[Equation 3]
Specific surface area = 4.35 × V m (m 2 / g)
Here, V m is an adsorption amount (cm 3 / g) necessary for forming a monomolecular layer on the sample surface, V is an actually measured adsorption amount (cm 3 / g), and x is a relative pressure. Specifically, using a “Flow Sorb II 2300” manufactured by MICROMERITICS, the amount of nitrogen adsorbed on the carbon material at the liquid nitrogen temperature was measured as follows. The sample tube is filled with a carbon material pulverized to a particle diameter of about 5 to 50 μm, and the sample tube is cooled to −196 ° C. while flowing a helium gas containing nitrogen gas at a concentration of 30 mol%, so that the carbon material is adsorbed with nitrogen. Let The sample tube is then returned to room temperature. At this time, the amount of nitrogen desorbed from the sample was measured with a thermal conductivity detector, and the amount of adsorbed gas V was obtained.
[0030]
【Example】
Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples.
[0031]
Example 1
Charge a petroleum-based pitch of 68 kg having a softening point of 210 ° C., a quinoline insoluble content of 1% by weight, and an H / C atomic ratio of 0.63, and naphthalene of 32 kg into a pressure-resistant vessel with an internal volume of 300 liters equipped with a stirring blade, After melt mixing, the mixture was cooled to 80 to 90 ° C. and extruded to obtain a string-like molded body having a diameter of about 500 μm. Subsequently, this string-like molded product was crushed so that the ratio of diameter to length was about 1.5, and the obtained crushed product was heated to 93 ° C. and 0.53% by weight of polyvinyl alcohol (degree of saponification of 88 %) Was dissolved in an aqueous solution in which it was dissolved, stirred and dispersed, and cooled to obtain a spherical pitch formed body slurry. After most of the water was removed by filtration, naphthalene in the pitch formed body was extracted and removed with n-hexane having a weight about 6 times that of the spherical pitch formed body. The porous spherical pitch obtained in this way was heated to 260 ° C. while passing through heated air using a fluidized bed, oxidized at 260 ° C. for 1 hour, and insoluble to heat. Spherical oxidized pitch was obtained. The resulting oxidized pitch had an oxygen content of 17% by weight. Next, the oxidation pitch was raised to 600 ° C. in a nitrogen gas atmosphere (normal pressure), held at 600 ° C. for 1 hour, and calcined to obtain a carbon precursor having a volatile content of 2% or less. The obtained carbon precursor was pulverized to obtain a powdery carbon precursor having an average particle size of 12 μm. Next, the powdered carbon precursor was charged into a horizontal firing furnace, the interior was placed in a nitrogen gas atmosphere, heated to 1200 ° C., held for 1 hour, subjected to main firing, then cooled, and the number average particle diameter (D 1 ) = 10 μm, d 002 = 0.385 nm of powdered carbon material was produced.
[0032]
A 0.3% by weight aqueous solution of polyvinyl alcohol (hereinafter referred to as “PVA”) and the powdered carbon material are mixed and stirred, vacuum degassed and vacuum dried at 120 ° C. to obtain PVA as a powdered carbon material. Coated. The amount of PVA coating was 0.3% by weight. After drying, heat treatment (baking treatment) was performed at 180 ° C. for 2 hours in an N 2 atmosphere to obtain the electrode material of the present invention.
[0033]
The summary of the electrode material obtained above is shown together with the summary of the electrode material obtained in the following examples and comparative examples in Table 1 below.
[0034]
(Example 2)
An electrode material was obtained in the same manner as in Example 1 except that the heat treatment (baking treatment) condition was changed from 180 ° C. × 2 hours to 200 ° C. × 2 hours.
[0035]
(Example 3)
An electrode material was obtained in the same manner as in Example 1 except that the baking treatment conditions were changed to 220 ° C. × 2 hours.
[0036]
(Example 4)
An electrode material was obtained in the same manner as in Example 1 except that the PVA coating amount was changed to 0.5% by weight with a 0.5% by weight aqueous solution.
[0037]
(Example 5)
An electrode material was obtained in the same manner as in Example 1 except that the PVA coating amount was changed to 1.0% by weight with a 1.0% by weight aqueous solution.
[0038]
(Comparative Example 1)
An electrode material was obtained in the same manner as in Example 1 except that heat treatment (baking treatment) at 180 ° C. for 2 hours was not performed.
[0039]
(Comparative Example 2)
PVA coating and drying were carried out in the same manner as in Example 1 using a powdery carbon material having an average particle diameter of 5 μm obtained in substantially the same manner as in Example 1, and a baking treatment at 180 ° C. for 2 hours. An electrode material was obtained in the same manner as in Example 1 except that the above was not performed.
[0040]
(Comparative Example 3)
An electrode material was obtained in the same manner as in Comparative Example 2 except that a powdery carbon material having an average particle diameter of 20 μm was used.
[0041]
(Comparative Example 4)
The carbon material before PVA coating in Example 1 was used as an electrode material as it was.
[0042]
(Comparative Example 5)
The petroleum pitch described in Example 1 was calcined for 1 hour at 600 ° C. in a nitrogen atmosphere (normal pressure) without being oxidized, and pulverized to obtain carbon precursor fine particles having an average particle diameter of about 20 μm.
[0043]
Next, the carbon precursor fine particles were heated in an argon atmosphere and graphitized at 2400 ° C. for 1 hour to obtain graphite. The graphite (d 002 = 0.338 nm) before this PVA coating was used as an electrode material as it was.
[0044]
The outlines of the electrode materials of the above Examples and Comparative Examples are summarized in Table 1 below.
[0045]
[Table 1]
Using the electrode materials of Examples and Comparative Examples described above, electrodes were formed as follows, and electrode performance and storage characteristics were evaluated.
[0046]
(A) Electrode preparation NMP is added to 90 parts by weight of the above electrode material (PVA-coated or non-coated carbon material) and 10 parts by weight of PVdF (“KF # 1100” manufactured by Kureha Chemical Industry) to form a paste and uniformly on the copper foil It was applied to. After drying, a punched electrode was produced in a disk shape having a diameter of 15 mm. The amount of the carbon material in the electrode was adjusted to about 20 mg.
[0047]
(B) Preparation of test battery The electrode material of the present invention is suitable for constituting the negative electrode of a non-aqueous solvent secondary battery, but the discharge capacity (undoped capacity) and irreversible capacity (undedoped capacity) of the battery active material. ) Is accurately evaluated without being affected by variations in the performance of the counter electrode, a lithium secondary battery having a lithium metal with stable characteristics as a negative electrode and the electrode obtained above as a positive electrode is formed. Characteristics were evaluated.
[0048]
That is, the diameter obtained by spot welding the disk membrane electrode having a diameter of 15 mm obtained in each of the above examples or comparative examples to the inner lid of a coin size battery can of 2016 size (that is, diameter 20 mm, thickness 1.6 mm). A positive electrode was formed by pressurizing and pressing a 17 mm stainless steel mesh disk.
[0049]
The negative electrode (lithium electrode) was prepared in a glove box in an Ar atmosphere. A spot-welded stainless steel mesh disk with a diameter of 17 mm is pre-spot welded onto the outer lid of a coin-sized battery can of 2016 size, and then a stainless steel mesh disk with a 0.5 mm-thick metal lithium plate punched into a 15 mm diameter disk A negative electrode was formed by pressure bonding.
[0050]
Using the positive electrode and the negative electrode produced in this way, the electrolyte solution is a mixture of propylene carbonate and dimethoxyethane mixed at a volume ratio of 1: 1 and LiClO 4 added at a rate of 1 mol / liter. Then, a polypropylene microporous membrane having a diameter of 17 mm was made to face through a separator, and a 2016 coin-type non-aqueous solvent type lithium secondary battery was assembled in an Ar glove box (however, in Comparative Example 5, graphite was used) Therefore, when propylene carbonate is used as a solvent, the decomposition of the electrolytic solution under the use conditions increases, so that the electrolytic solution is ethylene carbonate / dimethoxyethane / diethoxyethane (weight ratio = 42 / 31.9 / 14.1). ) A mixture of 88 parts by weight of a mixed solvent and 12 parts by weight of LiPF 6 was used).
[0051]
(C) Measurement of charging / discharging ability About the Li secondary battery of the said structure, the charging / discharging test was done using the charging / discharging test apparatus ("TOSCAT" by Toyo System). Charging / discharging was performed by the constant current constant voltage method. Here, “charge” is a discharge reaction as a test battery, but in this case, it is a lithium insertion reaction into a carbon material, and therefore, “charge” is described for convenience. Conversely, “discharge” is a charge reaction in the test battery, but is referred to as “discharge” for convenience because it is a lithium elimination reaction from the carbon material.
[0052]
The constant current and constant voltage charging conditions adopted here are charging at a constant current density of 0.5 mA / cm 2 until the battery voltage reaches 0 V, and then maintaining the voltage at 0 V (holding at a constant voltage). This is a method of continuing charging by changing the current value. At this time, the amount of electricity per unit weight of the carbon material supplied until the current value reached 0.02 μA was defined as the charge amount. After completion of charging, the battery circuit was opened for 30 minutes and then discharged. Discharging was performed at a constant current density of 0.5 mA / cm 2 until the battery voltage reached 1.5 V, and the amount of electricity (mAh / g) per unit carbon material supplied at this time was defined as the amount of discharge. The amount of electricity obtained by subtracting the amount of discharge from the amount of charge is defined as the irreversible capacity (mAh / g). The (discharge) efficiency is calculated as discharge amount / charge amount (= discharge amount + irreversible capacity).
[0053]
The charge / discharge capacity and efficiency were determined by averaging the measured values of the test battery n = 3 produced for the same sample.
[0054]
○ Storage characteristics Immediately after manufacturing (0 days) and temperature: Measure the charge / discharge capacity of electrode materials stored in air with humidity of 25 ° C and dew point of -60 ° C for 10 to 20 days, and evaluate the storage characteristics of electrode materials did.
[0055]
○ Measurement of adhesive strength (peel strength) Separately, the electrode layer was peeled off at one end of a sample obtained by cutting the electrode obtained by forming the electrode layer on the copper foil in (a) into a 1.5 cm × 5 cm strip. The 180 ° peel strength was measured by folding back together with the adhesive tape adhered thereon and applying reverse tension between the exposed copper foil pieces.
[0056]
The results of the evaluation tests conducted on the electrode materials of the above examples and comparative examples are summarized in Table 2 below.
[0057]
[Table 2]
[0058]
【The invention's effect】
According to the results of Tables 1 and 2 above, the increase in irreversible capacity due to storage in the atmosphere, which was a problem for the non-graphitic carbon material as the electrode material for non-aqueous solvent secondary batteries according to the present invention, is water-soluble. It can be seen that the application of the polymer (PVA) and the baking treatment are significantly suppressed, and a decrease in the adhesive strength (peel strength) of the electrode layer is also prevented.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003148007A JP4318487B2 (en) | 2003-05-26 | 2003-05-26 | Nonaqueous solvent secondary battery electrode material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003148007A JP4318487B2 (en) | 2003-05-26 | 2003-05-26 | Nonaqueous solvent secondary battery electrode material |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004349217A JP2004349217A (en) | 2004-12-09 |
JP4318487B2 true JP4318487B2 (en) | 2009-08-26 |
Family
ID=33534371
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003148007A Expired - Fee Related JP4318487B2 (en) | 2003-05-26 | 2003-05-26 | Nonaqueous solvent secondary battery electrode material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4318487B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5411652B2 (en) * | 2009-10-15 | 2014-02-12 | 大阪瓦斯株式会社 | Method for producing lump-dispersed carbon material and method for producing lump-dispersed graphite material |
JP6636758B2 (en) | 2015-09-16 | 2020-01-29 | 株式会社東芝 | Active materials for batteries, electrodes, non-aqueous electrolyte batteries, battery packs and vehicles |
-
2003
- 2003-05-26 JP JP2003148007A patent/JP4318487B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2004349217A (en) | 2004-12-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4061586B2 (en) | Positive electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same | |
JP5341837B2 (en) | Positive electrode, non-aqueous electrolyte battery and battery pack | |
US20070111102A1 (en) | Negative electrode for non-aqueous electrolyte secondary batteries, non-aqueous electrolyte secondary battery having the electrode, and method for producing negative electrode for non-aqueous electrolyte secondary batteries | |
US8647776B2 (en) | Carbon material for lithium ion secondary battery | |
US20090004566A1 (en) | Negative Electrode for Non-Aqueous Electrolyte Secondary Batteries, and Non-Aqueous Electrolyte Secondary Battery Having the Same | |
KR20060044970A (en) | Nonaqueous electrolyte battery | |
JP2007115671A (en) | Negative electrode for lithium-ion secondary battery, and lithium-ion secondary battery using it | |
EP2858149A1 (en) | Negative electrode for lithium ion secondary cell, negative electrode slurry for lithium ion secondary cell, and lithium ion secondary cell | |
JP2017520892A (en) | Positive electrode for lithium battery | |
JP2002251992A (en) | Electrode material for nonaqueous solvent secondary battery, electrode and secondary battery | |
JP2003168429A (en) | Nonaqueous electrolyte secondary battery | |
WO2020003595A1 (en) | Nonaqueous electrolyte secondary battery | |
WO2018179934A1 (en) | Negative electrode material and nonaqueous electrolyte secondary battery | |
JP6285350B2 (en) | Method for producing carbonaceous coated graphite particles and method for producing negative electrode material for lithium ion secondary battery | |
JP7499443B2 (en) | Non-aqueous electrolyte secondary battery | |
JP2002175835A (en) | Manufacturing method of nonaqueous electrolytic liquid and the nonaqueous electrolytic liquid secondary battery | |
JPH09274920A (en) | Nonaqueous electrolyte battery | |
JP3140880B2 (en) | Lithium secondary battery | |
JPH09161778A (en) | Organic electrolyte secondary battery | |
CN111668462B (en) | Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same | |
JPH09199112A (en) | Nonaqueous electrolyte secondary cell | |
JP2004220801A (en) | Nonaqueous electrolyte secondary battery | |
WO2020194385A1 (en) | Electrode, battery and battery pack | |
JP5646661B2 (en) | Positive electrode, non-aqueous electrolyte battery and battery pack | |
JP4318487B2 (en) | Nonaqueous solvent secondary battery electrode material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060406 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20081212 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090106 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090305 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090519 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090526 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120605 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120605 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130605 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |