[go: up one dir, main page]

JP4318277B2 - Heat storage device for air conditioning - Google Patents

Heat storage device for air conditioning Download PDF

Info

Publication number
JP4318277B2
JP4318277B2 JP2001245761A JP2001245761A JP4318277B2 JP 4318277 B2 JP4318277 B2 JP 4318277B2 JP 2001245761 A JP2001245761 A JP 2001245761A JP 2001245761 A JP2001245761 A JP 2001245761A JP 4318277 B2 JP4318277 B2 JP 4318277B2
Authority
JP
Japan
Prior art keywords
heat storage
heat
electric
way valve
pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001245761A
Other languages
Japanese (ja)
Other versions
JP2003021364A5 (en
JP2003021364A (en
Inventor
正明 廣瀬
Original Assignee
有限会社アイ・エス・エンジニアズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 有限会社アイ・エス・エンジニアズ filed Critical 有限会社アイ・エス・エンジニアズ
Priority to JP2001245761A priority Critical patent/JP4318277B2/en
Publication of JP2003021364A publication Critical patent/JP2003021364A/en
Publication of JP2003021364A5 publication Critical patent/JP2003021364A5/ja
Application granted granted Critical
Publication of JP4318277B2 publication Critical patent/JP4318277B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、低廉な夜間電力を用いて蓄熱槽で製氷を行い、昼間のビル内の冷房時に蓄熱槽に潜熱として蓄えられた冷熱を空調機を通して冷房に用い、更に夜間電力を用いて蓄熱槽で蓄熱体を加熱し、昼間のビル内の暖房時に蓄熱槽に蓄えられた温熱を空調機を通して暖房にも用いる冷暖房用蓄熱装置に関する。
【0002】
【従来の技術】
従来より、冷房時期において、夜間電力を用いて製氷し、その蓄えられた冷熱を昼間のビル内の冷房熱源として利用する氷蓄熱システムが提案されている。この氷蓄熱システムに利用される氷蓄熱装置は、図6に示すように、夜間の製氷運転時にはチラー51により冷却されたブラインを蓄熱槽52に送り、この蓄熱槽52内の蓄熱剤を氷結させ、昼間の解凍運転時に蓄熱剤の解凍により冷却されたブラインを空調機あるいは熱交換器53に送って冷房を行っていた。
【0003】
【発明が解決しようとする課題】
上述した従来の蓄熱装置では、空調機あるいは熱交換器53からチラー51への戻り温度Tiを検知してチラー51の能力制御が行われている。この戻り温度Tiが所定の設定温度Ti1より下方に変化すると、チラー51は減量運転に入り、所定の設定温度Ti2より上方に変化すると、このチラー51の運転能力は復帰する。これをディファレンシャルといい、(Ti2−Ti1)は通常2℃程度の温度差を付けている。このため、空調機あるいは熱交換器53の空調負荷がある程度低い時、即ちチラー51への戻り温度TiがTi1とTi2の間にあるときは、チラー51の能力は減量した状態あるいは最大能力運転か運転状態が確定しない。このことは、チラー51の出口温度が確定しない事を意味する。換言すれば、このチラー51の入口温度Tiが一定の時はチラー51の出口温度Toの温度の時間平均値は一定となるものの、入口温度Tiが変化する時は必ずしもその温度が一定とならない。
【0004】
蓄熱運転時には、チラー51により冷却されたブラインを蓄熱槽52に送り、この蓄熱槽52内の蓄熱剤を冷却凝固し、放熱運転時には蓄熱剤が融解することにより冷却されたブラインを空調機あるいは熱交換器53に送って冷房を行う蓄熱装置では、蓄熱槽52の入口温度Toが変化すると蓄熱剤の融解量も変化することになる。この蓄熱槽52においては、槽入口温度が一定であることを前提とし、一日に亘る解氷量を決定している。そこで、空調負荷が変動する情況で槽入口温度が一定とならない場合は、一日の空調時間帯に蓄熱した冷熱を使い切ることができるか、また不足するか定かでないという問題を有していた。
【0005】
本発明は、上述した問題点を解決するために創案されたものである。すなわち本発明の目的は、放熱循環経路において空調機あるいは熱交換器(空調負荷)の直下流に蓄熱槽を配列することによって、空調負荷の変動を蓄熱槽の上流で直に感知し、戻り温度Ti×水槽還流流量qiが一定となるように積極的に制御することによって、蓄熱槽からの放熱量又は解氷量を一定に保つことができ、昼間の空調時間帯に正確に蓄熱槽に蓄えられた冷熱を負荷(冷房機)に供給することができる冷房用蓄熱装置を提供することにある。
【0006】
また、本発明は、上述した冷房運転時のみならず、暖房運転時に戻り温度Tiの検知点を温水系統に変更し、かつ設定温度を変更することによって、寒冷時に頻発するヒートポンプチラーのデフロスト時に蓄熱槽に蓄えられた温熱を暖房機に供給することができる暖房用蓄熱装置を供給することにある。
【0007】
【課題を解決するための手段】
本発明を冷房運転に用いる冷暖房用蓄熱装置は、ヒートポンプチラー(3)により冷却されたブラインを蓄熱槽(2)に送り、該蓄熱槽(2)内の蓄熱剤を氷結させて製氷運転し、該蓄熱剤の解凍により冷却されたブラインを空調機(1)に送って解凍運転することにより冷房を行う冷暖房用蓄熱装置であって、前記ヒートポンプチラー(3)と連結された配管を通じて冷却されたブラインで冷房を行う空調機(1)前記空調機(1)の下流に配管で順次直列に連結された、前記ブラインを閉止する閉鎖弁(4)と第2電動二方弁(5B)間に設けられた蓄熱槽(2)と、前記蓄熱槽(2)の下流に、ブラインの解氷循環経路を形成するために、配管で順次直列に連結された、第2開度調節弁(8B)、放熱ポンプ(6)、放熱ポンプ吐出逆止弁(7)と、前記蓄熱槽(2)をバイパスするバイパス経路を形成するために、前記第2電動二方弁(5B)の下流側から前記放熱ポンプ(6)の吸入側を連結する配管に順次直列に設けられた第1電動二方弁(5A)、第1開度調節弁(8A)と、前記蓄熱槽(2)の下流に、ブラインの製氷循環経路を形成するために、第1電動二方弁(5A)と前記第1開度調節弁(8A)を連結する配管の中間と、前記ヒートポンプチラー(3)と前記放熱ポンプ吐出逆止弁(7)を連結する配管の中間に設けられた、蓄熱ポンプ(9)、蓄熱ポンプ吐出逆止弁(10)と、更に該ヒートポンプチラー(3)と空調機(1)を連結する配管の中間と、第2開度調節弁(8B)と該蓄熱槽(2)を連結する配管の中間に順次直列に設けられた、第4電動二方弁(5D)、前記閉鎖弁(4)第3電動二方弁(5C)と、を備え、製氷運転時には、ブラインを前記製氷循環経路に循環させるために、第2電動二方弁(5B)を「閉」とし、第1電動二方弁(5A)、第4電動二方弁(5D)及び第3電動二方弁(5C)を「開」とし、更に放熱ポンプ(6)を停止し、蓄熱ポンプ(9)を稼働させることにより前記蓄熱槽(2)内の蓄熱剤を冷却させ、解氷運転時には、ブラインを前記解氷循環経路に循環させるために、第1電動二方弁(5A)及び第2電動二方弁(5B)を「開」とし、第3電動二方弁(5C)及び第4電動二方弁(5D)を「閉」とし、蓄熱ポンプ(9)を停止し、放熱ポンプ(6)を稼働させ、前記蓄熱剤により冷却されたブラインを空調機(1)に送って冷房を行うように構成した、ことを特徴とする冷暖房用蓄熱装置が提供される。
【0008】
上記発明の構成では、冷房時において、解氷時にブラインは蓄熱槽(2)、ヒートポンプチラー(3)、空調機(1)を循環するために、空調の負荷の大小、即ち空調機(1)の出口温度が上下するにもかかわらず、解氷が先ず優先される。また、高温のブラインが直接蓄熱槽(2)に入るので、急速解氷することができる。
ブラインの蓄熱槽(2)の流れとバイパス経路第1開度調節弁(8A)の流れは、第2電動二方弁(5B)の開度をそれぞれ例えば、タイマ(13)で調節することにより、解氷量を積極的に調節することができる。また、製氷運転時には、ブラインが蓄熱槽(2)の底部から上部に向けて流れ、解氷時には蓄熱槽(2)の上部から底部に向けて流れるので、製氷及び解氷が安定に行なわれる。
【0009】
また、暖房運転に用いる冷暖房用蓄熱装置は、ヒートポンプチラー(3)により加熱されたブラインを蓄熱槽(2)に送り、該蓄熱槽(2)内の蓄熱剤及びブラインを加熱蓄熱して温熱蓄熱運転し、前記蓄熱剤及びブラインに蓄熱されている温熱について、ブラインを循環させて空調機(1)に送り、暖房放熱運転することにより暖房を行う冷暖房用蓄熱装置であって、前記ヒートポンプチラー(3)と連結された配管を通じて循環されるブラインを利用して暖房を行う空調機(1)前記空調機(1)の下流に配管で順次直列に連結された、ブラインを閉止する閉鎖弁(4)と第2電動二方弁(5B)間に設けられた蓄熱槽(2)と、前記空調機(1)の下流に、暖房放熱循環経路を形成するために、配管で順次直列に連結された、第3電動二方弁(5C)、蓄熱槽(2)、第1電動二方弁(5A)、第1開度調節弁(8A)、放熱ポンプ(6)、放熱ポンプ吐出逆止弁(7)と、前記蓄熱槽(2)バイパスするバイパス経路を形成するために、前記第3電動二方弁(5C)と該蓄熱槽(2)に連結する配管(11)の中間と前記放熱ポンプ(6)の吸入側とに設けられた第2開度調節弁(8B)と、前記蓄熱槽(2)の下流に、温熱蓄熱循環経路を形成するために、第1電動二方弁(5A)と前記第1開度調節弁(8A)を連結する配管の中間と、前記ヒートポンプチラー(3)と前記放熱ポンプ吐出逆止弁(7)を連結する配管の中間に設けられた、蓄熱ポンプ(9)、蓄熱ポンプ吐出逆止弁(10)と、更に該ヒートポンプチラー(3)と空調機(1)を連結する配管の中間と、第1電動二方弁(5A)と蓄熱槽(2)を連結する配管(12)の中間に設けられた第4電動二方弁(5D)と第2電動二方弁(5B)と、を備え、温熱蓄熱運転時には、ブラインを前記温熱蓄熱循環経路に循環させるために、前記閉鎖弁(4)、前記第1電動二方弁(5A)及び第3電動二方弁(5C)を「閉」とし、第2電動二方弁(5B)及び第4電動二方弁(5D)を「開」とし、更に放熱ポンプ(6)を停止し、蓄熱ポンプ(9)を稼働させることにより前記蓄熱槽(2)内の蓄熱剤を加熱させ、暖房放熱運転時には、ブラインを前記暖房放熱循環経路に循環させるために、第1電動二方弁(5A)は空調機(1)の温水出口温度が所定のしきい値以下となった場合に「開」とし、前記閉鎖弁(4)と第2電動二方弁(5B)を「閉」とし、第3電動二方弁(5C)を「開」とし、更に蓄熱ポンプ(9)を停止し、放熱ポンプ(6)を稼働させ、前記蓄熱剤により加熱されたブラインを空調機(1)に送って暖房を行うように構成したものである。前記しきい値は25〜40℃が好ましい。
なお、空調機(1)に熱交換器を連結することも可能である。
【0010】
上記発明の構成では、暖房時において、ヒートポンプチラー(3)のデフロスト時に、空調機(1)を出る温水温度が低下する。このとき、例えば、設定しきい値30℃のときに、第1電動二方弁(5A)を全開することにより、蓄熱槽(2)の50℃のブラインが供給され、暖房は継続される。ヒートポンプチラー(3)が稼動すると、第1電動二方弁(5A)は「閉」にする。そこで、ブラインは、温熱蓄熱時には蓄熱槽(2)の上部から下部に向けて流れ、温熱放熱時には蓄熱槽(2)の下部から上部に流れるので、効率良く熱交換することができる。
【0011】
このように、本発明は、第1〜第3電動二方弁(5A,5B,5C)の開閉操作、放熱ポンプ(6)と蓄熱ポンプ(9)の稼動と停止の組み合わせを可変するだけで、冷却の蓄熱のみならず、温熱の蓄熱も同一の冷暖房用蓄熱装置で行うことができる。
【0012】
【発明の実施の形態】
以下、本発明の好ましい実施の形態を図面を参照して説明する。
図1は本発明の冷暖房用蓄熱装置の基本原理を示すブロック図である。図2は本発明の冷暖房用蓄熱装置を示すブロック図である。
本発明の冷暖房用蓄熱装置は、昼間のビル内の冷暖房を行う際に、蓄熱槽2に入れた蓄熱剤により冷却又は加熱されたブラインを空調機1又は熱交換器(図示していない)を介して空調機1に送る放熱循環経路と、この蓄熱槽2をバイパスするためのバイパス経路と、低廉な夜間電力を用いて蓄熱する際に、ヒートポンプチラー3により冷却又は加熱されたブラインを蓄熱槽に送るための蓄熱循環経路とを有するものである。
【0013】
図3は本発明の冷暖房用蓄熱装置を冷房運転するときの実施の形態を示すブロック図であり、(a)は製氷運転時の状態、(b)は解氷運転時の状態である。図中、実線矢印は昼間における放熱(冷房)運転時のブラインの流れを示し、点線矢印は夜間の蓄熱(凍結)運転時のブラインの流れを示すものである。
冷暖房用蓄熱装置の解氷循環経路(放熱循環経路)は、ブラインをヒートポンプチラー3、空調機1又は熱交換器を介して、閉鎖弁4、第2電動二方弁5B、蓄熱槽2、第2開度調節弁8B、放熱ポンプ6、放熱ポンプ吐出逆止弁7それぞれを配管で順次直列に配置したものである。
バイパス経路は、第2電動二方弁5Bの下流側から蓄熱槽2をバイパスし、放熱ポンプ6の吸入側とを結び、途中に第1開度調節弁8Aを配置したものである。
製氷循環経路(蓄熱循環経路)は、第1電動二方弁5Aと第1開度調節弁8Aの中間と、ヒートポンプチラー3と放熱ポンプ吐出逆止弁7との中間とを結び途中に蓄熱ポンプ9、蓄熱ポンプ吐出逆止弁10とを配置したものである。
この蓄熱槽2に対しては、第2開度調節弁8Bに通じる配管11は、蓄熱槽2の底部に近い所に連結し、第1電動二方弁5Aと第2電動二方弁5Bとの中間に通じる配管12は蓄熱槽2の上部に近い所に連結してる。タイマ13は、これらの第1から第4電動二方弁5A,5B,5C,5D、ヒートポンプチラー3及び放熱ポンプ6等をそれぞれ予め設定した時間に制御するものである。第1、第2開度調節弁8A及び8Bは、各冷房運転及び暖房運転期間を通じて開度を一定に保持する。
【0014】
本発明の冷暖房用蓄熱装置を冷房運転に用いるときは、夜間における製氷運転時には、図3(a)において点線矢印で表現した製氷循環経路(蓄熱循環経路)に示すように、第2電動二方弁5Bを「閉」とし、かつ第1電動二方弁5A及び第3電動二方弁5Cを「開」とし、更に放熱ポンプ6を停止し、蓄熱ポンプ9を稼働させることにより、ヒートポンプチラー3により冷却されたブラインを蓄熱槽2に送り、蓄熱槽2内の蓄熱剤を氷結させる。この製氷運転時では、ヒートポンプチラー3から閉鎖弁4、第3電動二方弁5Cbを通って蓄熱槽2を連結する配管14は、夜間の蓄熱運転時に利用される。
【0015】
昼間における解氷運転時には、図3(b)において実線矢印で表現した解氷循環経路(放熱循環経路)に示すように、第1電動二方弁5A及び第2電動二方弁5Bを「開」とし、かつ第3電動二方弁5C及び第4電動二方弁5Dを「閉」とし、蓄熱ポンプ9を停止し、放熱ポンプ6を稼働させることにより、蓄熱槽2内の蓄熱剤の解凍により冷却されたブラインを空調機1に送って冷房を行うようになっている。この解氷運転時にブラインは、蓄熱槽2、ヒートポンプチラー3、空調機1を循環するために、空調の負荷の大小、即ち空調機1又は途中介在させた熱交換器を介して空調機1の出口温度が上下するにもかかわらず、解氷が先ず優先される。また、高温のブラインが直接蓄熱槽2に入るので、急速解氷することができる。
【0016】
図4は本発明の冷暖房用蓄熱装置の解氷時の解氷量を示すグラフである。
蓄熱槽2のブラインの流れとバイパス経路第1開度調節弁8Aの流れは、第2電動二方弁5Bの開度をそれぞれタイマ13で調節することにより、解氷量を積極的に調節することができる。本発明の冷暖房用蓄熱装置では、氷蓄熱槽2の出口温度は、氷がある限り0℃に近い温度である。空調機1よりの戻り温度(Ti)は負荷(KCal/h)の大きさに比例する。
解氷量 Q(KCal/h)=ρC×q1×(Ti−T0)
ρ:流体の比重
C:流体の比熱
q1:水槽還流流量
Ti:戻り温度
T0:槽出口温度=0℃
で、ρ、C及びT0は略定数と考えて良いから、
Q(KCal/h)=e×q1×Ti … (1)式
となる。
e:定数
従って、(1)式より、q1×Ti=一定となるようにq1を制御すれば、蓄熱槽2からの取り出し熱量を一定にすることができる。そこで、図4のグラフに示すように、夜間に蓄熱した冷熱を優先的に、しかも一定量を確実に解凍することができる。
【0017】
本発明の蓄熱槽2は、第2開度調節弁8Bに通じる配管11を蓄熱槽2の底部に近い所に連結し、第1電動二方弁5Aと第2電動二方弁5Bとの中間に通じる配管12を蓄熱槽2の上部に近い所に連結した構造で、製氷運転時においては、ブラインを蓄熱槽2の底部に近い所に流入させ、蓄熱槽2の上部に近い所から流出させるようになっている。また、解氷運転時においては、ブラインを蓄熱槽2の上部に近い所から流入させ、底部に近い所から流出させることができるために、ブラインが氷蓄熱槽1の上部から底部に向けて流れるので、製氷及び解氷が安定に行なわれる。
【0018】
図5は本発明の冷暖房用蓄熱装置を暖房運転するときの実施の形態を示すブロック図であり、(a)は温熱蓄熱運転時の状態、(b)は暖房放熱運転時の状態である。図中、実線矢印は昼間の放熱(暖房)運転時のブラインの流れを示し、点線矢印は夜間の蓄熱(加熱)運転時のブラインの流れを示すものである。
【0019】
本発明の冷暖房用蓄熱装置を暖房運転に用いるときは、夜間における温蓄熱運転時には、図5(a)において点線矢印で表現した温熱蓄熱循環経路(蓄熱循環経路)に示すように、第1電動二方弁5A及び第3電動二方弁5Cを「閉」とし、かつ第4電動二方弁5D及び第2電動二方弁5Bを「開」とし、更に放熱ポンプ6を停止し、蓄熱ポンプ9を稼働させることにより、ヒートポンプチラー3により加熱されたブラインを蓄熱槽2に送り、蓄熱槽2内の蓄熱剤及びブラインを加熱蓄熱することができる。なお、暖房時期においては、閉鎖弁4は常時「閉」となる。
【0020】
昼間における暖房放熱運転時には、図5(b)において実線矢印で表現した暖房放熱循環経路(放熱循環経路)に示すように、第1電動二方弁5Aは空調機1の温水出口温度が所定のしきい値以下となった場合に「開」とし、かつ、第2電動二方弁5Bを「閉」とし、第3電動二方弁5Cを「開」とし、更に蓄熱ポンプ9を停止し、放熱ポンプ6を稼働させることにより、蓄熱剤で過熱されたブラインを空調機1に送って暖房を行うようになっている。例えば、ヒートポンプチラー3のデフロスト時に、空調機1を出る温水温度が低下する。本実施の形態では、設定しきい値が30℃のときに、第1電動二方弁5Aを全開することにより、蓄熱槽2の50℃のブラインが供給され、暖房が継続されるようになっている。ヒートポンプチラー3が稼動すると、第1電動二方弁5Aは「閉」にする。但し、このしきい値は25〜40℃の範囲内で設定することができる。
【0021】
蓄熱運転時においては、ブラインを蓄熱槽2の上部に近い所から流入させ、下部に近い所から流出させ、暖房運転時においては、ブラインを蓄熱槽2の下部に近い所から流入させ、上部に近い所から流出させることが好ましい。これは、蓄熱時には、ブラインが蓄熱槽2を上部から下部に向けて流れ、暖房放熱運転時にはブラインが蓄熱槽2を下部から上部に向けて流れるので、効率良く熱交換させるためである。
【0022】
【発明の効果】
上述したように、本発明の冷暖房用蓄熱装置は、放熱循環経路において空調機の上流側にヒートポンプチラーを配列することで、解氷等の放熱時にブラインは蓄熱槽、ヒートポンプチラー、空調機を循環するために、空調の負荷の大小、即ち空調機の出口温度が上下するにもかかわらず、解氷が先ず優先される。そこで、高温のブラインが直接蓄熱槽に入るので、急速解氷することができる。また、蓄熱槽の流れとバイパス経路第1、第2開度調節弁の流れを、第1〜第4電動二方弁の開度を調節することで、解氷量又は放熱量を一定に保つことができる。
【0023】
また、本発明の冷暖房用蓄熱装置は、このように温度を一定に保持できるために、氷のように潜熱として蓄熱することができない温水蓄熱装置であっても効率良く蓄熱することができるので、暖房にも利用することができる、等の効果がある。
【図面の簡単な説明】
【図1】本発明の冷暖房用蓄熱装置の基本原理を示すブロック図である。
【図2】本発明の冷暖房用蓄熱装置を示すブロック図である。
【図3】本発明の冷暖房用蓄熱装置を冷房運転するときの実施の形態を示すブロック図であり、(a)は製氷運転時の状態、(b)は解氷運転時の状態である。
【図4】本発明の冷暖房用蓄熱装置の解氷時の解氷量を示すグラフである。
【図5】本発明の冷暖房用蓄熱装置を暖房運転するときの実施の形態を示すブロック図であり、(a)は温熱蓄熱運転時の状態、(b)は暖房放熱運転時の状態である。
【図6】従来の冷房専用蓄熱装置を示すブロック図である。
【符号の説明】
1 空調機(熱交換器)
2 蓄熱槽
3 ヒートポンプチラー
4 閉鎖弁
5A 第1電動二方弁
5B 第2電動二方弁
5C 第3電動二方弁
5D 第4電動二方弁
6 放熱ポンプ
7 放熱ポンプ吐出逆止弁
8A 第1開度調節弁
8B 第2開度調節弁
9 蓄熱ポンプ
10 蓄熱ポンプ吐出逆止弁
13 タイマ
[0001]
BACKGROUND OF THE INVENTION
The present invention performs ice making in a heat storage tank using inexpensive nighttime power, uses the cold energy stored as latent heat in the heat storage tank during cooling in the daytime building for cooling through the air conditioner, and further uses the nighttime power to store the heat storage tank. It is related with the thermal storage apparatus for an air conditioning which heats a thermal storage body and uses the thermal energy stored in the thermal storage tank at the time of heating in a daytime building also for heating through an air conditioner.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, an ice heat storage system has been proposed in which ice is made using nighttime electric power during the cooling period, and the stored cold energy is used as a cooling heat source in the daytime building. As shown in FIG. 6 , the ice heat storage device used in this ice heat storage system sends the brine cooled by the chiller 51 to the heat storage tank 52 during the ice making operation at night, and freezes the heat storage agent in the heat storage tank 52. In the daytime thawing operation, the brine cooled by the thawing of the heat storage agent is sent to the air conditioner or heat exchanger 53 for cooling.
[0003]
[Problems to be solved by the invention]
In the conventional heat storage device described above, the temperature control of the chiller 51 is performed by detecting the return temperature Ti from the air conditioner or heat exchanger 53 to the chiller 51. When the return temperature Ti changes below the predetermined set temperature Ti1, the chiller 51 enters a reduction operation, and when the return temperature Ti changes above the predetermined set temperature Ti2, the operating capacity of the chiller 51 is restored. This is called a differential, and (Ti2-Ti1) usually has a temperature difference of about 2 ° C. For this reason, when the air conditioning load of the air conditioner or heat exchanger 53 is low to some extent, that is, when the return temperature Ti to the chiller 51 is between Ti1 and Ti2, the capacity of the chiller 51 is in a reduced state or the maximum capacity operation. The operating state is not fixed. This means that the outlet temperature of the chiller 51 is not fixed. In other words, when the inlet temperature Ti of the chiller 51 is constant, the time average value of the temperature of the outlet temperature To of the chiller 51 is constant, but when the inlet temperature Ti changes, the temperature is not necessarily constant.
[0004]
During the heat storage operation, the brine cooled by the chiller 51 is sent to the heat storage tank 52, the heat storage agent in the heat storage tank 52 is cooled and solidified, and during the heat radiation operation, the brine cooled by melting the heat storage agent is supplied to the air conditioner or heat. In the heat storage device that performs cooling by sending it to the exchanger 53, when the inlet temperature To of the heat storage tank 52 changes, the melting amount of the heat storage agent also changes. In this heat storage tank 52, the amount of ice melting over one day is determined on the assumption that the tank inlet temperature is constant. Therefore, when the temperature at the tank inlet does not become constant in a situation where the air conditioning load fluctuates, there is a problem that it is uncertain whether the heat stored in the air conditioning time zone can be used up or insufficient.
[0005]
The present invention has been developed to solve the above-described problems. That is, an object of the present invention is to arrange a heat storage tank immediately downstream of an air conditioner or a heat exchanger (air conditioning load) in a heat dissipation circulation path so that a change in the air conditioning load is directly detected upstream of the heat storage tank, and a return temperature. By actively controlling so that Ti x water tank recirculation flow rate qi is constant, the amount of heat released or defrosted from the heat storage tank can be kept constant, and stored accurately in the heat storage tank during the daytime air conditioning time period. to provide a cooling and heating tuft heat storage device capable of supplying a cold heat that is the load (cooling machine).
[0006]
Further, the present invention is not limited to the above-described cooling operation, but also changes the detection point of the return temperature Ti during the heating operation to the hot water system, and changes the set temperature, thereby storing heat during defrosting of the heat pump chiller that occurs frequently during cold weather. it is to provide a cold heating heat storage device capable of supplying the heat stored in the tank to the heating unit.
[0007]
[Means for Solving the Problems]
The heat storage device for cooling and heating using the present invention for cooling operation sends the brine cooled by the heat pump chiller (3) to the heat storage tank (2), freezes the heat storage agent in the heat storage tank (2), and performs ice making operation. a heating and cooling thermal storage system that performs cooling by decompressing operation by sending the brine cooled by the thawing of the heat storage agent in the air conditioner (1), is cooled through to piping connected to the heat pump chillers (3) air conditioner performs the cooling brine (1), which are connected sequentially in series in the piping downstream of the air conditioner (1), closing valve to close the brine (4) and the second electric two-way valve (5B) and There thermal storage tank which is provided between (2), downstream of the heat storage tank (2), in order to form a deicing circulation path of the brine, which is connected sequentially in series by a pipe, the second opening adjustment valve (8B), Radiation pump (6), Radiation pump And Degyakutomeben (7), to form a bypass path for bypassing the heat storage tank (2), the suction side of the second electric two-way valve the radiator pump from the downstream side of (5B) (6) In order to form an ice-making circulation path for brine downstream of the first electric two-way valve (5A), the first opening degree adjusting valve (8A), and the heat storage tank (2), which are sequentially provided in series with the pipe to be connected. In the middle of the pipe connecting the first electric two-way valve (5A) and the first opening control valve (8A), the heat pump chiller (3) and the heat dissipation pump discharge check valve (7) are connected. provided in the middle of the pipe, the heat storage pump (9), a heat storage pump discharge check valve (10), and further intermediate piping connecting the heat pump chillers (3) and the air conditioner (1), second opening provided sequentially in series in the middle of the piping connecting the control valve (8B) and the heat storage tank (2), 4 electric two-way valve (5D), wherein the closing valve (4) and the third electric two-way valve and (5C), comprises a, during ice-making operation, for circulating the brine to the ice making circulation path, the second electric two The direction valve (5B) is set to “closed”, the first electric two-way valve (5A), the fourth electric two-way valve (5D), and the third electric two-way valve (5C) are set to “open”. 6) stop by Rukoto operate the heat accumulating pump (9), the allowed to cool heat storage agent of the heat storage tank (2) inside, at the time of thawing operation, for circulating the brine to the ice-circulation path, The first electric two-way valve (5A) and the second electric two-way valve (5B) are “open”, the third electric two-way valve (5C) and the fourth electric two-way valve (5D) are “closed”, stop heat accumulating pump (9), the heat radiation pump (6) is running, send a brine cooled by the heat storage agent in the air conditioner (1) cold And configured to perform, cooling and heating heat storage device is provided, characterized in that.
[0008]
In the configuration of the present invention, during cooling, since the brine circulates in the heat storage tank (2), the heat pump chiller (3), and the air conditioner (1) during defrosting, the load of the air conditioner is small or large, that is, the air conditioner (1). In spite of the rise and fall of the outlet temperature, the de-icing is given priority first. In addition, since the high-temperature brine directly enters the heat storage tank (2), the ice can be rapidly thawed.
For the flow of the brine heat storage tank (2) and the flow of the first opening degree adjustment valve (8A) of the bypass path , the opening degree of the second electric two-way valve (5B) is adjusted by , for example, a timer (13). Thus, the amount of ice melting can be positively adjusted. In addition, since the brine flows from the bottom to the top of the heat storage tank (2) during the ice making operation and flows from the top to the bottom of the heat storage tank (2) during ice melting, ice making and ice melting are performed stably.
[0009]
Moreover, the heat storage device for air conditioning used for heating operation sends the brine heated by the heat pump chiller (3) to the heat storage tank (2), heats and stores the heat storage agent and the brine in the heat storage tank (2), and stores the heat. operated, the heat which is accumulated in the heat storage agent and brine, feed by circulating brine air conditioner (1), a heating and cooling thermal storage apparatus which performs heating by the heating radiating operation, the heat pump chillers ( 3) and ligated using the brine is circulated through the pipe air conditioner perform heating and (1), are sequentially connected in series with the pipe downstream of the air conditioner (1), closed to close the brine A heat storage tank (2) between which the valve (4) and the second electric two-way valve (5B) are provided, and in order to form a heating and heat radiation circulation path downstream of the air conditioner (1) , sequentially in piping Connected in series, the second Electric two-way valve (5C), the heat storage tank (2), the first electric two-way valve (5A), first opening adjustment valve (8A), the heat radiation pump (6), and the heat radiating pump discharge check valve (7) In order to form a bypass path for bypassing the heat storage tank (2), the third electric two-way valve (5C) and the middle of the pipe (11) connected to the heat storage tank (2) , and the heat dissipation pump ( 6) A first electric two-way valve (5A) for forming a thermal heat storage circulation path downstream of the second heat regulation tank ( 2B) and the heat storage tank (2) provided on the suction side of 6) And a heat storage pump ( in the middle of the pipe connecting the first opening control valve (8A) and the pipe connecting the heat pump chiller (3) and the heat radiation pump discharge check valve (7) ( 9), is connected to the thermal storage pump discharge check valve (10), further the heat pump chillers (3) and the air conditioner (1) is An intermediate tube, provided in the middle of the pipe (12) connecting the first electric two-way valve (5A) and the heat storage tank (2), the fourth electric two-way valve (5D) and the second electric two-way valve (5B), and in order to circulate brine in the thermal heat storage circulation path during the thermal heat storage operation , the closing valve (4), the first electric two-way valve (5A), and the third electric two-way valve (5C) is “closed”, the second electric two-way valve (5B) and the fourth electric two-way valve (5D) are “open”, the heat dissipating pump (6) is stopped, and the heat storage pump (9) is turned on. the Rukoto is operated, to heat the heat storage agent of the heat storage tank (2) inside, during the heating radiating operation, for circulating the brine to the heating radiator circulation path, the first electric two-way valve (5A) is the air conditioner When the temperature of the hot water outlet in (1) becomes equal to or lower than a predetermined threshold value, “open” is set, and the closing valve (4) and the second electric motor The direction valve (5B) is set to “closed”, the third electric two-way valve (5C) is set to “open”, the heat storage pump (9) is stopped, the heat release pump (6) is operated, and the heat storage agent is heated. This brine is sent to the air conditioner (1) for heating . The threshold is preferably 25 to 40 ° C.
It is also possible to connect a heat exchanger to the air conditioner (1).
[0010]
In the structure of the said invention, the temperature of the hot water which leaves an air conditioner (1) falls at the time of defrost of a heat pump chiller (3) at the time of heating. At this time, for example, when the set threshold value is 30 ° C., the first electric two-way valve (5A) is fully opened to supply 50 ° C. brine in the heat storage tank (2), and heating is continued. When the heat pump chiller (3) is operated, the first electric two-way valve (5A) is set to “closed”. Therefore, since the brine flows from the upper part to the lower part of the heat storage tank (2) at the time of thermal heat storage, and flows from the lower part to the upper part of the heat storage tank (2) at the time of heat dissipation, heat exchange can be performed efficiently.
[0011]
Thus, the present invention only changes the combination of opening and closing operations of the first to third electric two-way valves (5A, 5B, 5C) and the operation and stop of the heat radiation pump (6) and the heat storage pump (9). In addition to heat storage for cooling, heat storage for warm heat can be performed by the same heat storage device for cooling and heating.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a block diagram showing the basic principle of a heat storage device for cooling and heating according to the present invention. FIG. 2 is a block diagram showing a heat storage device for cooling and heating according to the present invention.
The air-conditioning heat storage apparatus of the present invention uses the air conditioner 1 or a heat exchanger (not shown) for the brine cooled or heated by the heat storage agent placed in the heat storage tank 2 when performing air-conditioning in the building during the daytime. When the heat is stored by using the heat dissipation circulatory path that is sent to the air conditioner 1 through the bypass path for bypassing the heat storage tank 2 and inexpensive nighttime electric power, the brine cooled or heated by the heat pump chiller 3 is stored in the heat storage tank. 2 and a heat storage circulation path for sending to 2 .
[0013]
FIG. 3 is a block diagram showing an embodiment when the air-conditioning heat storage apparatus of the present invention is in a cooling operation, where (a) shows a state during an ice making operation and (b) shows a state during an ice breaking operation. In the figure, solid arrows indicate the flow of brine during heat dissipation (cooling) operation in the daytime, and dotted arrows indicate the flow of brine during heat storage (freezing) operation at night.
Ice-circulation path of the cooling and heating heat storage device (heat radiation circulation path) is a heat pump chiller 3 the brine through the air conditioner 1 or the heat exchanger, closing valve 4, the second electric two-way valve 5B, the heat storage tank 2, the Each of the two opening control valves 8B, the heat dissipation pump 6, and the heat dissipation pump discharge check valve 7 is sequentially arranged in series by piping.
The bypass path bypasses the heat storage tank 2 from the downstream side of the second electric two-way valve 5B, connects the suction side of the heat dissipation pump 6, and arranges the first opening degree adjusting valve 8A in the middle.
The ice making circulation path ( heat storage circulation path) connects the middle of the first electric two-way valve 5A and the first opening control valve 8A and the middle of the heat pump chiller 3 and the heat radiation pump discharge check valve 7 in the middle of the heat storage pump. 9. A heat storage pump discharge check valve 10 is arranged.
For the heat storage tank 2, a pipe 11 leading to the second opening degree adjusting valve 8B is connected to a place near the bottom of the heat storage tank 2, and the first electric two-way valve 5A and the second electric two-way valve 5B pipe leading to the intermediate 12 that are connected as close to the top of the heat storage tank 2. The timer 13 controls the first to fourth electric two-way valves 5A, 5B, 5C, 5D, the heat pump chiller 3, the heat dissipation pump 6, and the like at preset times. The first and second opening degree adjusting valves 8A and 8B keep the opening degree constant throughout the cooling operation and heating operation periods.
[0014]
When the heat storage device for cooling and heating according to the present invention is used for cooling operation, during ice making operation at night, as shown in an ice making circulation path (heat storage circulation path) represented by a dotted arrow in FIG. The heat pump chiller 3 is set by closing the valve 5B and opening the first electric two-way valve 5A and the third electric two-way valve 5C, further stopping the heat radiation pump 6 and operating the heat storage pump 9. The brine cooled by this is sent to the heat storage tank 2, and the heat storage agent in the heat storage tank 2 is frozen. In this ice making operation , the pipe 14 that connects the heat storage tank 2 from the heat pump chiller 3 through the closing valve 4 and the third electric two-way valve 5Cb is used during the night heat storage operation.
[0015]
During the ice-breaking operation in the daytime , the first electric two-way valve 5A and the second electric two-way valve 5B are “opened” as shown in the ice-melting circulation path (heat radiation circulation path) represented by solid arrows in FIG. The third electric two-way valve 5C and the fourth electric two-way valve 5D are closed, the heat storage pump 9 is stopped, and the heat radiation pump 6 is operated, so that the heat storage agent in the heat storage tank 2 is thawed. The brine cooled by the above is sent to the air conditioner 1 for cooling. During this ice-breaking operation, the brine circulates through the heat storage tank 2, the heat pump chiller 3, and the air conditioner 1, so that the load of the air conditioner, that is, the air conditioner 1 or the heat exchanger interposed in the middle of the air conditioner 1 is increased. Even though the outlet temperature goes up and down, de-icing is given first priority. In addition, since the high-temperature brine directly enters the heat storage tank 2, the ice can be rapidly thawed.
[0016]
FIG. 4 is a graph showing the amount of ice melting during ice melting of the air-conditioning heat storage apparatus of the present invention.
The flow of the brine in the heat storage tank 2 and the flow of the first opening degree adjusting valve 8A in the bypass path positively adjust the amount of ice melting by adjusting the opening degree of the second electric two-way valve 5B with the timer 13, respectively. can do. In the heat storage device for cooling and heating according to the present invention , the outlet temperature of the ice heat storage tank 2 is close to 0 ° C. as long as there is ice. The return temperature (Ti) from the air conditioner 1 is proportional to the magnitude of the load (KCal / h).
Amount of ice melt Q (KCal / h) = ρC × q1 × (Ti−T0)
ρ: Specific gravity of fluid C: Specific heat of fluid q1: Water tank reflux flow rate Ti: Return temperature T0: Tank outlet temperature = 0 ° C
Since ρ, C, and T0 can be considered as substantially constants,
Q (KCal / h) = e × q1 × Ti (1)
e: Constant Therefore, the amount of heat taken out from the heat storage tank 2 can be made constant by controlling q1 so that q1 × Ti = constant. Therefore, as shown in the graph of FIG. 4, it is possible to defrost a certain amount with priority over the cold energy stored at night.
[0017]
The heat storage tank 2 of the present invention connects the pipe 11 leading to the second opening degree adjusting valve 8B to a place near the bottom of the heat storage tank 2, and is intermediate between the first electric two-way valve 5A and the second electric two-way valve 5B. in the structure of the pipe 12 was connected to near the top of the heat storage tank 2 leading to, during ice-making operation, to flow into the brine as close to the bottom of the heat storage tank 2, to flow out from close to the top of the heat storage tank 2 It is like that. Further, during the ice-melting operation, since the brine can flow in from a location near the top of the heat storage tank 2 and can flow out from a location near the bottom, the brine flows from the top of the ice heat storage tank 1 toward the bottom. Therefore, ice making and ice melting are performed stably.
[0018]
FIG. 5 is a block diagram showing an embodiment when the air-conditioning heat storage device of the present invention is in a heating operation. FIG. 5A is a state during a heat storage operation , and FIG. 5B is a state during a heat radiation operation. In the figure, solid arrows indicate the flow of brine during daytime heat dissipation (heating) operation, and dotted arrows indicate the flow of brine during nighttime heat storage (heating) operation.
[0019]
When using a cooling and heating heat storage device of the present invention to the heating operation, at the time of temperature heat thermal storage operation at night, as shown in thermal heat storage circulation path represented by the dotted line arrow (heat storage circulation path) in FIG. 5 (a), the first The electric two-way valve 5A and the third electric two-way valve 5C are “closed”, the fourth electric two-way valve 5D and the second electric two-way valve 5B are “open”, and the heat dissipation pump 6 is stopped to store heat. By operating the pump 9, the brine heated by the heat pump chiller 3 can be sent to the heat storage tank 2, and the heat storage agent and brine in the heat storage tank 2 can be heated and stored. In the heating period, the closing valve 4 is always “closed”.
[0020]
At the time of heating heat radiation operation in the daytime , the first electric two-way valve 5A has a predetermined temperature of the hot water outlet of the air conditioner 1 as shown by a heating heat radiation circulation path (heat radiation circulation path) represented by a solid line arrow in FIG. “Open” when the threshold value is below the threshold value, “Close” the second electric two-way valve 5B, “Open” the third electric two-way valve 5C, and stop the heat storage pump 9; By operating the radiating pump 6, the brine heated by the heat storage agent is sent to the air conditioner 1 for heating. For example, when the heat pump chiller 3 is defrosted, the temperature of the hot water leaving the air conditioner 1 decreases. In the present embodiment, when the set threshold value is 30 ° C., the first electric two-way valve 5A is fully opened, whereby the 50 ° C. brine in the heat storage tank 2 is supplied and heating is continued. ing. When the heat pump chiller 3 is operated, the first electric two-way valve 5A is “closed”. However, this threshold value can be set within a range of 25 to 40 ° C.
[0021]
In the warm heat thermal storage operation, caused to flow from the closer the brine to the top of the heat storage tank 2, was allowed to escape near the bottom, at the time of heating operation, it is allowed to flow from the closer the brine at the bottom of the heat storage tank 2, It is preferable to let it flow out from a place near the top. This is because the brine flows from the upper part to the lower part in the heat storage tank 2 during the heat storage, and the brine flows from the lower part to the upper part in the heating and radiating operation, so that heat can be exchanged efficiently.
[0022]
【The invention's effect】
As described above, the heat storage device for cooling and heating according to the present invention arranges the heat pump chiller on the upstream side of the air conditioner in the heat dissipation circulation path , so that the brine circulates through the heat storage tank, the heat pump chiller, and the air conditioner during heat dissipation such as de-icing. In order to do so, de-icing is given priority first, regardless of the load of the air conditioning, that is, the outlet temperature of the air conditioner rises and falls. Therefore, since the high-temperature brine directly enters the heat storage tank, the ice can be rapidly thawed. In addition, by adjusting the opening of the first to fourth electric two-way valves, the flow of the heat storage tank and the flow of the first and second opening adjustment valves of the bypass path , the ice melting amount or the heat dissipation amount is made constant. Can keep.
[0023]
Moreover, since the heat storage device for cooling and heating according to the present invention can keep the temperature constant in this way, even a hot water heat storage device that cannot store heat as latent heat like ice can efficiently store heat, It can be used for heating.
[Brief description of the drawings]
FIG. 1 is a block diagram showing the basic principle of a heat storage device for cooling and heating according to the present invention.
FIG. 2 is a block diagram showing a heat storage device for cooling and heating according to the present invention.
FIG. 3 is a block diagram showing an embodiment when the air-conditioning heat storage device of the present invention is in a cooling operation, where (a) is a state during an ice making operation, and (b) is a state during an ice-breaking operation.
FIG. 4 is a graph showing the amount of ice melting during ice melting of the heat storage device for cooling and heating according to the present invention.
FIG. 5 is a block diagram showing an embodiment when the air-conditioning heat storage device of the present invention is in a heating operation, where (a) is a state during a heat storage operation, and (b) is a state during a heating / radiation operation. .
FIG. 6 is a block diagram showing a conventional cooling-only heat storage device.
[Explanation of symbols]
1 Air conditioner (heat exchanger)
2 heat storage tank 3 heat pump chiller 4 closing valve 5A first electric two-way valve 5B second electric two-way valve 5C third electric two-way valve 5D fourth electric two-way valve 6 heat dissipating pump 7 heat dissipating pump discharge check valve 8A first Opening control valve 8B Second opening control valve 9 Heat storage pump 10 Heat storage pump discharge check valve 13 Timer

Claims (4)

ヒートポンプチラー(3)により冷却されたブラインを蓄熱槽(2)に送り、該蓄熱槽(2)内の蓄熱剤を氷結させて製氷運転し、該蓄熱剤の解凍により冷却されたブラインを空調機(1)に送って解凍運転することにより冷房を行う冷暖房用蓄熱装置であって、
前記ヒートポンプチラー(3)と連結された配管を通じて冷却されたブラインで冷房を行う空調機(1)
前記空調機(1)の下流に配管で順次直列に連結された、前記ブラインを閉止する閉鎖弁(4)と第2電動二方弁(5B)間に設けられた蓄熱槽(2)と、
前記蓄熱槽(2)の下流に、ブラインの解氷循環経路を形成するために、配管で順次直列に連結された、第2開度調節弁(8B)、放熱ポンプ(6)、放熱ポンプ吐出逆止弁(7)と、
前記蓄熱槽(2)をバイパスするバイパス経路を形成するために、前記第2電動二方弁(5B)の下流側から前記放熱ポンプ(6)の吸入側を連結する配管に順次直列に設けられた第1電動二方弁(5A)、第1開度調節弁(8A)と、
前記蓄熱槽(2)の下流に、ブラインの製氷循環経路を形成するために、第1電動二方弁(5A)と前記第1開度調節弁(8A)を連結する配管の中間と、前記ヒートポンプチラー(3)と前記放熱ポンプ吐出逆止弁(7)を連結する配管の中間に設けられた、蓄熱ポンプ(9)、蓄熱ポンプ吐出逆止弁(10)と、
更に該ヒートポンプチラー(3)と空調機(1)を連結する配管の中間と、第2開度調節弁(8B)と該蓄熱槽(2)を連結する配管の中間に順次直列に設けられた、第4電動二方弁(5D)、前記閉鎖弁(4)第3電動二方弁(5C)と、を備え、
製氷運転時には、ブラインを前記製氷循環経路に循環させるために、第2電動二方弁(5B)を「閉」とし、第1電動二方弁(5A)、第4電動二方弁(5D)及び第3電動二方弁(5C)を「開」とし、更に放熱ポンプ(6)を停止し、蓄熱ポンプ(9)を稼働させることにより前記蓄熱槽(2)内の蓄熱剤を冷却させ、
解氷運転時には、ブラインを前記解氷循環経路に循環させるために、第1電動二方弁(5A)及び第2電動二方弁(5B)を「開」とし、第3電動二方弁(5C)及び第4電動二方弁(5D)を「閉」とし、蓄熱ポンプ(9)を停止し、放熱ポンプ(6)を稼働させ、前記蓄熱剤により冷却されたブラインを空調機(1)に送って冷房を行うように構成した、ことを特徴とする冷暖房用蓄熱装置。
Feed brine which is cooled by the heat pump chillers (3) in the thermal storage tank (2), and ice-making operation by freezing the heat storage agent in the heat accumulating tank (2), the air conditioner brine cooled by decompression of the heat storage agent A heat storage device for air conditioning that performs cooling by sending to (1) and performing a thawing operation ,
The heat pump chiller (3) and linked air conditioner performs the cooling brine which is cooled through a pipe (1),
Which are connected successively in series by piping downstream of the air conditioner (1), the heat storage tank closure valve (4) and the second electric two-way valve (5B) is provided between closing the said brine (2) ,
A second opening control valve (8B), a radiating pump (6), and a radiating pump discharge, which are sequentially connected in series with piping to form an ice decirculation circulation path downstream of the heat storage tank (2). A check valve (7) ;
In order to form a bypass path for bypassing the heat storage tank (2), the pipe is connected in series to a pipe connecting the suction side of the heat dissipation pump (6) from the downstream side of the second electric two-way valve (5B). A first electric two-way valve (5A), a first opening control valve (8A) ,
In the downstream of the heat storage tank (2), in order to form an ice making circulation path of brine, the middle of the pipe connecting the first electric two-way valve (5A) and the first opening degree adjustment valve (8A), A heat storage pump (9), a heat storage pump discharge check valve (10) provided in the middle of a pipe connecting the heat pump chiller (3) and the heat dissipation pump discharge check valve (7) ;
Further, the heat pump chiller (3) and the air conditioner (1) are connected in series in the middle of the pipe , and the second opening degree adjusting valve (8B) and the middle of the pipe connecting the heat storage tank (2) . A fourth electric two-way valve (5D) , the closing valve (4), and a third electric two-way valve (5C) ,
During the ice making operation , the second electric two-way valve (5B) is set to “closed” in order to circulate the brine in the ice making circulation path, and the first electric two-way valve (5A) and the fourth electric two-way valve (5D). and the third electric two-way valve (5C) is "open" to stop the further radiator pump (6), by Rukoto operate the heat accumulating pump (9), cooling the heat storage agent of the heat storage tank (2) in Let
During the ice-melting operation , the first electric two-way valve (5A) and the second electric two-way valve (5B) are set to “open” in order to circulate the brine in the ice melting circulation path, and the third electric two-way valve ( 5C) and the fourth electric two-way valve (5D) are closed, the heat storage pump (9) is stopped, the heat dissipation pump (6) is operated , and the brine cooled by the heat storage agent is air-conditioned (1) A heat storage device for cooling and heating, which is configured so as to be cooled by being sent to .
ヒートポンプチラー(3)により加熱されたブラインを蓄熱槽(2)に送り、該蓄熱槽(2)内の蓄熱剤及びブラインを加熱蓄熱して温熱蓄熱運転し、前記蓄熱剤及びブラインに蓄熱されている温熱について、ブラインを循環させて空調機(1)に送り、暖房放熱運転することにより暖房を行う冷暖房用蓄熱装置であって、
前記ヒートポンプチラー(3)と連結された配管を通じて循環されるブラインを利用して暖房を行う空調機(1)
前記空調機(1)の下流に配管で順次直列に連結された、ブラインを閉止する閉鎖弁(4)と第2電動二方弁(5B)間に設けられた蓄熱槽(2)と、
前記空調機(1)の下流に、暖房放熱循環経路を形成するために、配管で順次直列に連結された、第3電動二方弁(5C)、蓄熱槽(2)、第1電動二方弁(5A)、第1開度調節弁(8A)、放熱ポンプ(6)、放熱ポンプ吐出逆止弁(7)と、
前記蓄熱槽(2)バイパスするバイパス経路を形成するために、前記第3電動二方弁(5C)と該蓄熱槽(2)に連結する配管(11)の中間と前記放熱ポンプ(6)の吸入側とに設けられた第2開度調節弁(8B)と、
前記蓄熱槽(2)の下流に、温熱蓄熱循環経路を形成するために、第1電動二方弁(5A)と前記第1開度調節弁(8A)を連結する配管の中間と、前記ヒートポンプチラー(3)と前記放熱ポンプ吐出逆止弁(7)を連結する配管の中間に設けられた、蓄熱ポンプ(9)、蓄熱ポンプ吐出逆止弁(10)と
更に該ヒートポンプチラー(3)と空調機(1)を連結する配管の中間と、第1電動二方弁(5A)と蓄熱槽(2)を連結する配管(12)の中間に設けられた第4電動二方弁(5D)と第2電動二方弁(5B)と、を備え、
温熱蓄熱運転時には、ブラインを前記温熱蓄熱循環経路に循環させるために、前記閉鎖弁(4)、前記第1電動二方弁(5A)及び第3電動二方弁(5C)を「閉」とし、第2電動二方弁(5B)及び第4電動二方弁(5D)を「開」とし、更に放熱ポンプ(6)を停止し、蓄熱ポンプ(9)を稼働させることにより前記蓄熱槽(2)内の蓄熱剤を加熱させ、
暖房放熱運転時には、ブラインを前記暖房放熱循環経路に循環させるために、第1電動二方弁(5A)は空調機(1)の温水出口温度が所定のしきい値以下となった場合に「開」とし、前記閉鎖弁(4)と第2電動二方弁(5B)を「閉」とし、第3電動二方弁(5C)を「開」とし、更に蓄熱ポンプ(9)を停止し、放熱ポンプ(6)を稼働させ、前記蓄熱剤により加熱されたブラインを空調機(1)に送って暖房を行うように構成した、ことを特徴とする冷暖房用蓄熱装置。
The brine heated by the heat pump chiller (3) is sent to the heat storage tank (2), the heat storage agent and the brine in the heat storage tank (2) are heated and stored, and the thermal storage operation is performed, and the heat storage agent and the brine are stored. for heat it is, feed by circulating brine air conditioner (1), a heating and cooling thermal storage apparatus which performs heating by the heating radiating operation,
The heat pump chiller (3) and linked air conditioner perform heating by using a brine circulated through a pipe (1),
Which are connected successively in series by a pipe downstream of the air conditioner (1), closing valve to close the brine (4) and the second electric two-way valve and the heat storage tank (5B) is provided between (2) ,
A third electric two-way valve (5C), a heat storage tank (2), and a first electric two-way , which are sequentially connected in series with piping to form a heating and heat radiation circulation path downstream of the air conditioner (1). A valve (5A), a first opening adjustment valve (8A), a heat dissipation pump (6), a heat dissipation pump discharge check valve (7),
In order to form a bypass path for bypassing the heat storage tank (2) , the middle of the third electric two-way valve (5C) and the pipe (11) connected to the heat storage tank (2) , and the heat dissipation pump (6 ) A second opening degree adjustment valve (8B) provided on the suction side;
The middle of the pipe connecting the first electric two-way valve (5A) and the first opening control valve (8A) to form a thermal heat storage circulation path downstream of the heat storage tank (2), and the heat pump A heat storage pump (9), a heat storage pump discharge check valve (10) provided in the middle of a pipe connecting the chiller (3) and the heat dissipation pump discharge check valve (7) ;
Moreover the intermediate pipe connecting the heat pump chillers (3) and the air conditioner (1), provided in the middle of the pipe (12) to first electric two-way valve and (5A) connecting the heat storage tank (2), A fourth electric two-way valve (5D) and a second electric two-way valve (5B) ,
During the heat storage operation , the closing valve (4), the first electric two-way valve (5A) and the third electric two-way valve (5C) are set to “closed” in order to circulate the brine through the heat storage circuit. , the second electric two-way valve (5B) and the fourth electric two-way valve (5D) is "open", further stops the heat radiation pump (6), by Rukoto operate the heat accumulating pump (9), the heat storage Heat the heat storage agent in the tank (2),
At the time of heating / heat radiation operation, in order to circulate the brine through the heating / heat radiation circulation path, the first electric two-way valve (5A) indicates that the warm water outlet temperature of the air conditioner (1) is equal to or lower than a predetermined threshold value. “Open”, the closing valve (4) and the second electric two-way valve (5B) are “closed”, the third electric two-way valve (5C) is “open”, and the heat storage pump (9) is stopped. The heat storage device for cooling and heating is configured to operate the heat dissipation pump (6) and send the brine heated by the heat storage agent to the air conditioner (1) for heating .
前記しきい値が25〜40℃である、ことを特徴とする請求項の冷暖房用蓄熱装置。The heat storage device for cooling and heating according to claim 2 , wherein the threshold value is 25 to 40 ° C. 前記空調機(1)に熱交換器を連結した、ことを特徴とする請求項1、2又は3の冷暖房用蓄熱装置。The heat storage device for cooling and heating according to claim 1, 2, or 3 , wherein a heat exchanger is connected to the air conditioner (1).
JP2001245761A 2001-07-10 2001-07-10 Heat storage device for air conditioning Expired - Lifetime JP4318277B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001245761A JP4318277B2 (en) 2001-07-10 2001-07-10 Heat storage device for air conditioning

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001245761A JP4318277B2 (en) 2001-07-10 2001-07-10 Heat storage device for air conditioning

Publications (3)

Publication Number Publication Date
JP2003021364A JP2003021364A (en) 2003-01-24
JP2003021364A5 JP2003021364A5 (en) 2004-07-29
JP4318277B2 true JP4318277B2 (en) 2009-08-19

Family

ID=19075444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001245761A Expired - Lifetime JP4318277B2 (en) 2001-07-10 2001-07-10 Heat storage device for air conditioning

Country Status (1)

Country Link
JP (1) JP4318277B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109300385A (en) * 2018-11-24 2019-02-01 福建工程学院 An assembled fan coil unit experimental device and its assembly process

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5472900B2 (en) * 2009-06-01 2014-04-16 株式会社竹中工務店 Heat source system for air conditioning with heat storage tank
JP6234780B2 (en) * 2013-11-06 2017-11-22 株式会社ササクラ Air conditioning system
CN111207502B (en) * 2020-01-17 2021-06-15 广东美的暖通设备有限公司 Operation control method, operation control device, air conditioning system, and storage medium

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109300385A (en) * 2018-11-24 2019-02-01 福建工程学院 An assembled fan coil unit experimental device and its assembly process

Also Published As

Publication number Publication date
JP2003021364A (en) 2003-01-24

Similar Documents

Publication Publication Date Title
USRE29966E (en) Heat pump with frost-free outdoor coil
JP5396246B2 (en) Air conditioner for vehicles
JP5067858B2 (en) Water heater
US8740103B2 (en) Heater coolant flow control for HVAC module
CN107020921A (en) Cabin air-conditioning and battery cooling system
CN104813122A (en) Method and apparatus for defrosting of an evaporator in connection with an air handling unit
US11052722B2 (en) Air-conditioning system
JP2005049002A (en) Air conditioner
JP4318277B2 (en) Heat storage device for air conditioning
JP5383409B2 (en) Ice storage type heat source device
JP2004293857A (en) Heat pump equipment
JP6415702B2 (en) Air conditioner
JP2003021364A5 (en)
JP5166840B2 (en) Heat pump system
JP3432004B2 (en) Control method of heat storage device
JP4169454B2 (en) Hot water storage hot water source
JP2016090174A (en) Hot water supply air conditioning system
JP6969223B2 (en) Heat pump heat source machine
JP2003222416A (en) Heat storage type air conditioner
JP2006336949A (en) Thermal storage air conditioner
JP4144996B2 (en) Hot water storage hot water source
JPS61159072A (en) Refrigeration equipment
JP3846755B2 (en) Refrigerant circulation type air conditioning system
JP3788391B2 (en) Ice heat storage device
JP3464601B2 (en) Thermal storage snow melting equipment using heat pump

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060524

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081009

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090525

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090525

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120605

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4318277

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120605

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130605

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130605

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140605

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term