[go: up one dir, main page]

JP4316100B2 - Cleaning method for nuclear power plant - Google Patents

Cleaning method for nuclear power plant Download PDF

Info

Publication number
JP4316100B2
JP4316100B2 JP2000106395A JP2000106395A JP4316100B2 JP 4316100 B2 JP4316100 B2 JP 4316100B2 JP 2000106395 A JP2000106395 A JP 2000106395A JP 2000106395 A JP2000106395 A JP 2000106395A JP 4316100 B2 JP4316100 B2 JP 4316100B2
Authority
JP
Japan
Prior art keywords
cleaning
carbon steel
steel part
reducing agent
stainless steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000106395A
Other languages
Japanese (ja)
Other versions
JP2001289992A (en
Inventor
洋美 青井
健 金崎
大祐 金沢
宣久 斉藤
由美 矢板
仁志 梶沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Plant Systems and Services Corp
Original Assignee
Toshiba Corp
Toshiba Plant Systems and Services Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Plant Systems and Services Corp filed Critical Toshiba Corp
Priority to JP2000106395A priority Critical patent/JP4316100B2/en
Publication of JP2001289992A publication Critical patent/JP2001289992A/en
Application granted granted Critical
Publication of JP4316100B2 publication Critical patent/JP4316100B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Landscapes

  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、原子力発電所において、作業者の放射線被ばく低減を目的とする原子力発電プラントの洗浄方法であり、炭素鋼、ステンレス鋼またはニッケル基合金等からなる配管および機器を連続的に同時洗浄する原子力発電プラントの洗浄方法に関するものである。
【0002】
【従来の技術】
原子力発電プラントにおける一次冷却系に使用されている配管および炉内構造物などには、ステンレス鋼またはNi基合金等が使われている。これらの金属は長時間使用されると腐食損傷を受けて、構成金属元素が原子炉冷却水中に溶出し、原子炉圧力容器内に持ち込まれる。溶出金属元素は、大半が酸化物となって燃料棒に付着し、中性子照射を受ける。その結果、コバルト60、コバルト58、クロム51などの放射性核種が生成し、これらの放射性核種は一次冷却水中に再溶出してイオンまたは不溶性固体成分(以下、クラッドと称する)として浮遊する。クラッドの一部は炉水浄化用の脱塩器などで除去されるが、残りは一次冷却系を循環しているうちにステンレス鋼などの構成部材表面に蓄積される。これにより、構成部材表面における線量率が高くなり、保守および点検を実施する際の作業員の放射線被曝が問題となっている。
【0003】
このため、原子炉プラントの保守、点検、および補修期間の前にこの放射能を除去する方策がとられている。
【0004】
近年、一部の原子力発電プラントではSUS鋼の応力腐食割れ対策等から原子炉浄化系配管に炭素鋼が用いられているが、炭素鋼の場合、その放射能上昇は特に著しい。
【0005】
ステンレス鋼やニッケル基合金は、炭素鋼と比較して耐食性に優れているため、還元効果を有する薬品と酸化効果を有する薬品の一方または両方を用い、化学薬品を使用した化学洗浄方式による放射線線量率低下対策を実施していた。
【0006】
【発明が解決しようとする課題】
しかしながら、放射能を含んだ酸化皮膜が付着した炭素鋼系統の配管および機器については、化学的な洗浄方法では母材の腐食を抑制することが困難であることから、高圧水を用いた機械方式による放射線線量率低下対策を実施しており、同一の洗浄方法を用いて炭素鋼部、ステンレス鋼部およびニッケル基合金部を同時に洗浄するのは困難であるという問題を有していた。
【0007】
本発明は、このような問題を解決するためになされたものであり、炭素鋼部を隔離して、化学洗浄により炭素鋼部、ステンレス鋼部およびニッケル基合金部を同時に洗浄できる原子力発電プラントの洗浄方法を提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明者らは、上記目的を達成するために種々研究した結果、本発明に至ったものである。
【0009】
すなわち、請求項1記載の発明は、炭素鋼、ステンレス鋼およびニッケル基合金が配管または構造部材として適用された炭素鋼部、ステンレス鋼部およびニッケル基合金部を備える原子力発電プラントの洗浄方法において、還元剤を注入して還元洗浄を行う還元洗浄工程と、この還元洗浄工程で適用した還元剤を分解して浄化を行う還元剤分解浄化工程とを有し、前記還元洗浄工程および前記還元剤分解浄化工程において炭素鋼部を隔離して洗浄しない工程を備え、前記還元洗浄工程は、炭素鋼部を隔離して、ステンレス鋼部またはニッケル基合金部のみを洗浄範囲として還元洗浄した後、洗浄範囲に炭素鋼部を含めて還元洗浄し、その後、再度炭素鋼部を隔離してステンレス鋼部またはニッケル基合金部を洗浄範囲として還元洗浄することを特徴とする。
【0010】
通常、化学薬品を用いた原子力発電プラントの洗浄方法では、主に鉄やニッケル酸化物を溶解するための薬品として還元剤を使用し、クロム酸化物を溶解するための薬品として酸化剤を使用する。還元剤の代表的な薬品はジカルボン酸、特にシュウ酸であり、酸化剤の代表的な薬品は過マンガン酸や過マンガン酸カリ、または過酸化水素やオゾンである。本発明によれば、このような還元剤または酸化剤などの化学薬品を用い、酸化皮膜が付着した炭素鋼の配管や機器を洗浄範囲に含む場合であっても、炭素鋼部、ステンレス鋼部およびニッケル基合金部を連続して同時に洗浄することができる。
【0012】
炭素鋼部の洗浄対象を原子炉残留熱除去系統(RHR系統)と原子炉水浄化系統(CUW系統)とし、ステンレス鋼部の洗浄対象として原子炉再循環系統(PLR系統)および炉内、ニッケル基合金部の洗浄対象として、炉内構造材料を選定した。以下の説明において、材料の選定を同一にして説明する。
【0013】
本発明によれば、シュウ酸を用いて、還元洗浄工程の最初に炉内およびPLR系統のみを洗浄し、その後RHR系統やCUW系統まで広げて洗浄することにより、洗浄面積の大きい炉内およびPLR系統を先に洗浄し、溶解してくるクラッド酸化物の量をある程度低下させた後にRHR系統やCUW系統のクラッド酸化物を溶解できるため、RHR系統やCUW系統からのクラッド溶出量を十分把握することができる。RHR系統やCUW系統からのクラッド溶出が殆ど無くなった時点で再度炭素鋼系統を隔離し、炉内およびPLR系統の洗浄を実施することにより、炉内およびPLR系統洗浄の洗浄効果を確認することができる。炉内およびPLR系統の洗浄効果が十分得られていない場合には、炭素鋼系統を隔離した後、さらに炉内およびPLR系統に十分な洗浄効果が得られるまで洗浄を続けることができる。
【0014】
また、請求項2記載の発明は、炭素鋼、ステンレス鋼およびニッケル基合金が配管または構造部材として適用された炭素鋼部、ステンレス鋼部およびニッケル基合金部を備える原子力発電プラントの洗浄方法において、還元剤を注入して還元洗浄を行う還元洗浄工程と、この還元洗浄工程で適用した還元剤を分解して浄化を行う還元剤分解浄化工程とを有し、前記還元洗浄工程および前記還元剤分解浄化工程において炭素鋼部を隔離して洗浄しない工程を備え、前記還元洗浄工程は、炭素鋼部まで含んだ全体を洗浄範囲として還元洗浄した後、炭素鋼部を隔離してステンレス鋼部およびニッケル合金部のみを洗浄範囲として還元洗浄することを特徴とする。
【0015】
本発明によれば、シュウ酸を用いた還元洗浄工程の最初に炉内、PLR系統、RHR系統やCUW系統を含んだ全体洗浄を実施し、その後、RHR系統やCUW系統を隔離して洗浄することにより、洗浄初期に溶解するクラッド酸化物の溶解量が大きいため、炭素鋼の不働態域で炭素鋼系統を洗浄することができる。その結果、十分な炭素鋼の腐食抑制対策を取った洗浄ができる。その後、RHR系統やCUW系統を隔離して洗浄することにより、PLR系統や炉内のクラッド溶解性も十分に確認することができる。
【0016】
さらに、請求項3記載の発明は、炭素鋼、ステンレス鋼およびニッケル基合金が配管または構造部材として適用された炭素鋼部、ステンレス鋼部およびニッケル基合金部を備える原子力発電プラントの洗浄方法において、還元剤を注入して還元洗浄を行う還元洗浄工程と、この還元洗浄工程で適用した還元剤を分解して浄化を行う還元剤分解浄化工程とを有し、前記還元洗浄工程および前記還元剤分解浄化工程において炭素鋼部を隔離して洗浄しない工程を備え、前記還元洗浄工程は、炭素鋼部を隔離して、ステンレス鋼部またはニッケル基合金部のみを洗浄範囲として還元洗浄した後、洗浄範囲に炭素鋼部を含めて還元洗浄することを特徴とする。
【0017】
本発明によれば、シュウ酸を用いた還元洗浄工程の最初に炉内およびPLR系統のみを洗浄し、その後RHR系統やCUW系統まで広げて洗浄することにより、洗浄面積の大きい炉内およびPLR系統を先に洗浄し、溶解してくるクラッド酸化物の量を十分低下させた後にRHR系統やCUW系統のクラッド酸化物を溶解できるため、RHR系統やCUW系統からのクラッド溶出量を十分把握することができる。
【0018】
また、請求項4記載の発明は、炭素鋼、ステンレス鋼およびニッケル基合金が配管または構造部材として適用された炭素鋼部、ステンレス鋼部およびニッケル基合金部を備える原子力発電プラントの洗浄方法において、還元剤を注入して還元洗浄を行う還元洗浄工程と、この還元洗浄工程で適用した還元剤を分解して浄化を行う還元剤分解浄化工程とを有し、前記還元洗浄工程および前記還元剤分解浄化工程において炭素鋼部を隔離して洗浄しない工程を備え、前記還元剤分解浄化工程は、炭素鋼部を隔離して、ステンレス鋼部またはニッケル基合金部のみを範囲として還元剤の分解を開始し、還元剤の濃度が低下した後、炭素鋼部まで含んだ全範囲で、還元剤を分解して洗浄することを特徴とする。
【0019】
本発明によれば、最初に炉内およびPLR系統の洗浄剤を分解および除去し、還元洗浄剤の濃度が低下した後、RHR系統やCUW系統まで広げた洗浄剤の分解および除去を実施することにより、炭素鋼の腐食が懸念される高濃度の洗浄剤の炭素鋼部への流動を抑制することができる。
【0020】
さらに、請求項5記載の発明は、炭素鋼、ステンレス鋼およびニッケル基合金が配管または構造部材として適用された炭素鋼部、ステンレス鋼部およびニッケル基合金部を備える原子力発電プラントの洗浄方法において、還元剤を注入して還元洗浄を行う還元洗浄工程と、この還元洗浄工程で適用した還元剤を分解して浄化を行う還元剤分解浄化工程とを有し、前記還元洗浄工程および前記還元剤分解浄化工程において炭素鋼部を隔離して洗浄しない工程を備え、前記還元剤分解浄化工程は、炭素鋼部を隔離して、ステンレス鋼部またはニッケル基合金部のみを範囲として還元剤の分解を開始し、還元剤の濃度が低下した後、炭素鋼部を含めた全範囲の洗浄液を一定濃度まで低下した洗浄液で置換し、その後再度炭素鋼部を隔離して、ステンレス鋼部またはニッケル基合金部のみを範囲として還元剤を分解した後、炭素鋼部を含めた範囲の洗浄液を一定濃度まで低下した洗浄液での置換を繰り返し、この洗浄液中の還元剤の濃度が初期濃度の半分以下になった時点で、炭素鋼部まで含んだ範囲で、還元剤を分解して洗浄することを特徴とする。
【0021】
本発明によれば、最初に炉内およびPLR系統の洗浄剤を分解および除去し、還元洗浄剤の濃度が低下した後で、その後RHR系統やCUW系統の洗浄液を一定濃度まで低下した炉内の洗浄液で置換し炭素鋼部の洗浄液の濃度を下げた後、再度炭素鋼部を隔離する。その後、更に炉内の除染液を分解および除去して、RHR系統、CUW系統の洗浄液を置換して、還元剤の濃度が初期濃度の半分以下になった時点でRHR系統、CUW系統まで広げた洗浄剤の分解および除去を実施することにより、炭素鋼の腐食が懸念される高濃度の洗浄剤の炭素鋼部への流動を抑制することができる。さらに、全体の洗浄液の濃度が完全に低下するまで炭素鋼部を高濃度の洗浄液にさらすことが無いため、更なる炭素鋼部の腐食抑制を図れる。
【0022】
請求項6記載の発明は、請求項1から5のいずれか1項記載の原子力発電プラントの洗浄方法において、既設または仮設の弁を使用し、または既設の弁内部に隔離治具を設置し、炭素鋼部を隔離して洗浄することを特徴とする。
【0023】
本発明において、還元洗浄工程にて炭素鋼部を隔離するために、既設の弁である第一隔離弁を閉じることにより、炭素鋼部を隔離して洗浄を行える。また、既設弁の弁体を取出し、隔離治具を挿入することにより、炭素鋼部を隔離して洗浄を行える。
【0024】
請求項7記載の発明は、請求項1から5のいずれか1項記載の原子力発電プラントの洗浄方法において、洗浄設備に備えられた手元弁を使用して炭素鋼部の洗浄範囲を隔離することを特徴とする。
【0025】
本発明において、還元洗浄工程および還元剤分解浄化工程にて、炭素鋼部を隔離するため、洗浄設備に備えられた元弁を閉じることにより、炭素鋼部を容易に洗浄液の循環から隔離することができる。
【0026】
【発明の実施の形態】
以下、本発明の原子力発電プラントの洗浄方法について、表1、図1〜図9を用いて説明する。なお、本実施形態においては、原子力発電プラントの熱出力を伴わない原子炉停止時に、還元剤および酸化剤を注入して原子炉発電プラントの洗浄を行った。
【0027】
図1は、原子力発電プラントの一部を概略的に示す図であり、この図を用いて原子力発電プラントの洗浄範囲を説明する。
【0028】
図1に示すように、原子力発電プラント1では、原子炉圧力容器2に、原子炉再循環系統(PLR系統)3を備え、この原子炉再循環系統3には分岐して接続された原子炉水浄化系統(CUW系統)4と、原子炉残留熱除去系統(RHR系統)5とを備える。また、原子炉圧力容器2内には、原子炉再循環系統3を構成するジェットポンプ6を備える。なお、原子炉残留熱除去系統5および原子炉水浄化系統4は炭素鋼部、原子炉再循環系統3および炉内構造物はステンレス鋼部からなり、原子炉圧力容器2内のジェットポンプ6などの炉内構造部はNi基合金部からなる。本実施形態では、炭素鋼部、ステンレス鋼部およびニッケル基合金部を洗浄対象としている。
【0029】
また、図1に示すように、原子炉再循環系統3から分岐して接続された各系統には、第一隔離弁7が設置されており、さらに既設取り合い弁8および既設弁9が備えられている。
【0030】
そして、図1に示す各既設取り合い弁9には、洗浄配管10を介して洗浄設備11が仮設される。この洗浄設備11は、洗浄配管に接続された手元弁12を有し、この手元弁12の後段に、フィルタ13、樹脂塔14、ポンプ15、ヒータ16および紫外線照射装置17を備える。そして、紫外線照射装置17に接続された洗浄配管18の他端は、原子炉圧力容器2に接続され、洗浄設備により洗浄された浄化液が原子炉圧力容器2内に導入される。
【0031】
本実施形態において、原子力発電プラント1における炭素鋼の洗浄範囲と、ステンレス鋼やニッケル基合金からなる他の洗浄範囲とを隔離する場合には、PLR系統3からRHR系統5およびCUW系統4に分岐した位置に設置された第一隔離弁7を閉じることにより、炭素鋼部の洗浄部位を完全に隔離することができる。
【0032】
また、第一隔離弁7や既設弁9は開のままとし、洗浄設備11の手元弁12を閉じて炭素鋼部を隔離しても良い。
【0033】
さらに、既設弁9の弁体を取出して開放し、図2に示す隔離治具19を既設弁9内部に設置することにより、炭素鋼部を隔離しても良い。
【0034】
図2(a)は、既設弁9内部に隔離治具19を設置した断面図を示すものであり、図2(b)は、隔離治具19を拡大して示す図である。図2(a)および図2(b)に示すように、隔離治具19は、外周に複数個の円形孔を有する除染側の円盤部21aと、非除染側の円盤部21bとを有する。この2つの円盤部21a,21bは、伸縮可能なネジ22により接続され、このネジ22の伸縮によりベント23から導入される洗浄液の流れを制御することができる。また、これらの円盤部21a,21bの外周にはゴム24(EPDM;ethylene propylen dien monomer)が備えられている。
【0035】
次に、図1に示す原子力発電プラント1にて炭素鋼部を隔離して原子力発電プラントの洗浄を行う手順について説明する。
【0036】
図3は、原子力発電プラントの洗浄方法の手順を示す図である。
【0037】
図3に示すように、原子力発電プラントの洗浄方法は、第1サイクルから第3サイクルまであり、第1サイクルは、還元洗浄工程の後、還元剤分解浄化工程を行った。第2サイクルでは、炭素鋼部を隔離して酸化剤洗浄を行う酸化剤工程を経た後、還元洗浄工程、還元剤分解浄化工程を行った。さらに、第3サイクルでは、炭素鋼部を隔離して酸化剤工程後、還元洗浄工程、および還元剤分解浄化工程を行った。なお、第2サイクルおよび第3サイクルにおいて、炭素鋼部には酸化剤洗浄を行わなかったが、これは、以下に示す理由による。
【0038】
まず、表1に炭素鋼STS410とステンレス鋼SUS304の主な化学成分を示す。表1に示すように、炭素鋼STS410は化学成分としてクロムを含まない。
【0039】
【表1】

Figure 0004316100
【0040】
次に、表1に示す炭素鋼STS410を試験片とし、この試験片を還元剤(シュウ酸)のみで洗浄した場合と、還元剤(シュウ酸)および酸化剤(過マンガン酸)の組合わせにより除染した場合の洗浄効果を比較した。その結果を図4に示す。なお、除染条件は、図4に示すように、洗浄温度を95℃、シュウ酸2000ppm、過マンガン酸300ppmとして、シュウ酸洗浄を5時間、過マンガン酸洗浄を2時間行った。
【0041】
図4に示すように、炭素鋼を還元剤のみで洗浄した場合と還元剤と酸化剤の組合せにより洗浄した場合の洗浄効果線量低減効果はほぼ同程度であった。すなわち、炭素鋼は表1に示すようにクロムを含まないことから、炭素鋼を洗浄する場合には、クロム酸化物溶解のための酸化剤を用いても洗浄効果が極端に良くなることはない。このため、炭素鋼に付着したクラッド酸化物を化学薬品で溶解するためには還元洗浄剤の溶解力で十分である。上記のような理由により、図3に示すように、炭素鋼部には酸化処理工程を省くことができる。
【0042】
なお、図3に示す洗浄方法の手順は、本実施形態の一例を示すものであり、第1サイクルおよび第2サイクルの還元洗浄工程は、以下に示す図5ないし図7の手順により行っても良い。また、第1サイクルおよび第2サイクルの還元剤分解浄化工程は、以下に示す図8または図9の手順により行っても良く、還元剤分解浄化工程では、還元剤に加えて、過酸化水素を注入することにより、還元剤の分解を行う。なお、還元洗浄工程と還元剤分解浄化工程との組合わせは、浄化目的に応じて適宜選択すると良い。
【0043】
還元洗浄工程における、具体的な洗浄手順について、図5ないし図7を用いて説明する。なお、以下に示す図5ないし図7では、洗浄範囲の中に、炭素鋼と、ステンレス鋼やニッケル基合金、ステライト鋼などのコバルト基合金などの他の金属を含み、これらを同時にシュウ酸などの還元薬品により還元洗浄する場合を示す。
【0044】
図5は、還元洗浄工程における洗浄手順の一例を示す図であり、洗浄範囲と洗浄時間の経過を示す。
【0045】
図5に示す洗浄手順は、まず最初に炭素鋼部を隔離して、ステンレス鋼部またはニッケル基合金部のみを洗浄範囲として還元洗浄した後、洗浄範囲に炭素鋼部を含めて還元洗浄し、その後、再度炭素鋼部を隔離してステンレス鋼部またはニッケル基合金部を洗浄範囲として還元洗浄したものである。
【0046】
このように、洗浄面積の大きいステンレス鋼やニッケル基合金などの洗浄範囲を先に洗浄することにより、Fe2+濃度を保持することなく、溶出してきた鉄酸化物を除去することができる。その場合、ステンレス鋼腐食電位または酸化還元電位は、200mv−SHE以上というステンレス鋼の不働態域となり、ステンレス鋼の保護が容易となる。炭素鋼部を洗浄範囲に加えた時点では炭素鋼部から溶出してくるクラッド溶出量を十分把握することができるため、炭素鋼部から母材の溶出挙動を最小限に抑制することができる。その後、更に炭素鋼部を隔離し、再度ステンレス鋼部やニッケル基合金部等に対してシュウ酸などの還元洗浄を実施することにより、ステンレス鋼部やニッケル基合金部についての洗浄効果の再確認を実施することができる。
【0047】
また、図6は、還元洗浄工程における他の洗浄手順の一例を示す図であり、洗浄範囲と洗浄時間の経過を示す。
【0048】
図6に示す洗浄手順は、最初に炭素鋼部まで含んだ全体を洗浄範囲として還元洗浄した後、炭素鋼部を隔離してステンレス鋼部およびニッケル合金部のみを洗浄範囲として還元洗浄したものである。
【0049】
この手順のように、最初に全洗浄範囲を一度にシュウ酸に浸漬させることにより、洗浄初期に溶解するクラッド酸化物の溶解量を多くすることができる。主な溶解クラッドはヘマタイトが溶解した鉄クラッドであるため、鉄イオンの形態で溶出する。特に、Fe2+イオンは炭素鋼の腐食抑制効果を有するため、溶解するクラッド酸化物の量が多い場合は炭素鋼の腐食抑制運転を容易にコントロールして洗浄することができる。その後、炭素鋼部を隔離し、ステンレス鋼部やニッケル基合金部などを再度洗浄することにより、ステンレス鋼部やニッケル基合金部に対する洗浄効果も十分に得ることができる。
【0050】
また、図7は還元洗浄工程のさらに別の洗浄手順を示す図であり、洗浄範囲と洗浄時間の経過を示す。
【0051】
図7に示す洗浄手順は、最初に炭素鋼部を隔離して、ステンレス鋼部またはニッケル基合金部のみを洗浄範囲として還元洗浄した後、洗浄範囲に炭素鋼部を含めて還元洗浄したものである。
【0052】
このように、洗浄面積の大きいステンレス鋼やニッケル基合金などの洗浄範囲を先に洗浄することにより、酸化クラッドの溶出量を制御することができる。その後、炭素鋼部を洗浄範囲に加えた時点では炭素鋼部から溶出してくるクラッド溶出量を十分把握することができるため、放射能の溶出傾向とFe2+イオンの溶出傾向により炭素鋼の腐食挙動を把握することができ、炭素鋼部から母材の溶出挙動を最小限に抑制することができる。
【0053】
また、還元洗浄工程の後に行われる工程である還元剤分解浄化工程は、図8または図9に示す洗浄手順を用いても良い。なお、図8および図9は、洗浄範囲の中に、炭素鋼とステンレス鋼やニッケル基合金、ステライト鋼などのコバルト基合金などの他の金属を含む場合を示すものである。
【0054】
図8は、還元剤分解浄化工程の具体的な通水手順の一例を示す図であり、通水範囲と、初期濃度を100%とした場合の還元剤濃度(%)を示す。
【0055】
図8に示す手順は、最初に炭素鋼部を隔離して、ステンレス鋼部またはニッケル基合金部のみを範囲として還元剤の分解を開始し、還元剤の濃度が低下した後、炭素鋼部まで含んだ全範囲で、還元剤を分解して洗浄するものである。
【0056】
この手順によれば、最初に、還元剤として使用する化学薬品を洗浄浄化することで、炭素鋼の腐食が懸念される高濃度の洗浄剤の炭素鋼部への流動を抑制することができる。また、高濃度の還元薬剤を浄化する際、炭素鋼部を除外することにより、浄化工程におけるFe2+イオンの保持という鉄イオンコントロールを緩和することが可能となる。その後、RHR系統5やCUW系統4まで広げた範囲で洗浄剤の分解および除去を実施することにより、炭素鋼部の還元洗浄剤の濃度は速やかに炭素鋼の腐食を緩和する濃度にまで下げることができる。
【0057】
また、図9は、還元剤分解浄化工程の他の具体的な通水手順の一例を示す図であり、通水範囲と、初期濃度を100%とした場合の還元剤濃度(%)を示す。
【0058】
図9に示す手順は、最初に炭素鋼部を隔離して、ステンレス鋼部またはニッケル基合金部のみを範囲として還元剤の分解を開始し、還元剤の濃度が低下した後、炭素鋼部を含めた全範囲の洗浄液を一定濃度まで低下した洗浄液で置換し、その後再度炭素鋼部を隔離して、ステンレス鋼部またはニッケル基合金部のみを範囲として還元剤を分解した後、炭素鋼部を含めた範囲の洗浄液を一定濃度まで低下した洗浄液での置換を繰り返し、この洗浄液中の還元剤の濃度が初期濃度の半分以下になった時点で、炭素鋼部まで含んだ範囲で、還元剤を分解して洗浄するものである。
【0059】
前述した図8に示す手順では、炭素鋼部に保持している還元洗浄剤の濃度は還元洗浄初期の高濃度のまま一定に保持されるが、この図9に示す手順によれば、炭素鋼部の還元洗浄剤を低濃度化した洗浄剤と置換して洗浄剤を低濃度化しているため、図8に示す手順よりも一層、炭素鋼の腐食を抑制できる。その後、更に炉内の除染液を分解除去し、RHR系統5、CUW系統4における洗浄液の置換を行い、還元剤の濃度が初期濃度の半分以下になった時点、すなわち、炭素鋼部への極端な腐食に対する影響がなくなった時点で、RHR系統5、CUW系統4まで広げた洗浄剤の分解除去を実施しているため、炭素鋼の腐食が懸念される高濃度の洗浄剤の炭素鋼部への流動を効果的に抑制することができる。
【0060】
本実施形態によれば、第一隔離弁7を閉じ、または既設弁9等に隔離治具19を設置する等により炭素鋼部を隔離して還元洗浄および還元剤分解浄化を行うことにより、炭素鋼部から母材の溶出挙動を最小限に抑制して、炭素鋼部およびステンレス鋼部およびニッケル基合金部を連続的に同時に洗浄を行えることから、洗浄処理を容易とすることができる。
【0061】
また、本実施形態によれば、炭素鋼部とステンレス鋼部を同時に洗浄する際、仮設した洗浄設備11の手元弁12の操作により、炭素鋼部への洗浄液の流動を制御できるため、通水条件の変更が容易であり、従って、酸化処理工程の省略手法や還元処理工程の炭素鋼通水運転制御を容易に実施できる。
【0062】
【発明の効果】
以上説明したように、本発明の原子力発電プラントの洗浄方法によれば、酸化皮膜が付着した炭素鋼の配管や機器を洗浄範囲に含む場合であっても、炭素鋼部、ステンレス鋼部およびニッケル基合金部を連続的に同時洗浄を行えるため洗浄処理の簡便化を図れるとともに、還元洗浄工程時や還元剤分解浄化工程時のステンレス鋼部やニッケル基合金部と炭素鋼部への通水方法を洗浄目的に応じて選定することにより、洗浄効果の向上を図ることができる。
【図面の簡単な説明】
【図1】本発明の実施形態における、原子炉発電プラントの一部を概略的に示す図。
【図2】本発明の実施形態を説明する図で、(a)は既設弁内部に隔離治具を設置した断面図であり、(b)は、隔離治具を拡大して示す図。
【図3】本発明の実施形態における、原子力発電プラントの洗浄方法の一例を示す図。
【図4】炭素鋼に対する還元剤の洗浄性能と還元剤の洗浄性能に酸化剤の洗浄性能を追加した場合の洗浄性能評価試験結果を示す図。
【図5】本発明の実施形態における、還元洗浄工程における洗浄手順の一例を示す図。
【図6】本発明の実施形態における、還元洗浄工程における他の洗浄手順の一例を示す図。
【図7】本発明の実施形態における、還元洗浄工程における他の洗浄手順の一例を示す図。
【図8】本発明の実施形態における、還元剤分解浄化工程の具体的な通水手順の一例を示す図。
【図9】本発明の実施形態における、還元剤分解浄化工程の具体的な通水手順の他の例を示す図。
【符号の説明】
1 原子力発電プラント
2 原子炉圧力容器
3 原子炉再循環系統(PLR系統)
4 原子炉冷却材浄化系統(CUW系統)
5 原子炉残留熱除去系統(RHR系統)
6 ジェットポンプ
7 第一隔離弁
8 既設取合い弁
9 既設弁
10 洗浄配管
11 洗浄設備
12 手元弁
13 フィルタ
14 樹脂塔
15 ポンプ
16 ヒータ
17 紫外線照射装置
18 洗浄配管
19 隔離治具
20 円形孔
21a,21b 円盤部
22 伸縮可能ネジ
23 ベント
24 ゴム(EPDM)[0001]
BACKGROUND OF THE INVENTION
The present invention is a nuclear power plant cleaning method for reducing radiation exposure of workers in a nuclear power plant, and continuously and simultaneously cleans piping and equipment made of carbon steel, stainless steel, nickel-base alloy, or the like. The present invention relates to a method for cleaning a nuclear power plant.
[0002]
[Prior art]
Stainless steel, Ni-based alloys, and the like are used for piping and furnace structures used for the primary cooling system in nuclear power plants. When these metals are used for a long time, they are damaged by corrosion, and the constituent metal elements are eluted into the reactor cooling water and brought into the reactor pressure vessel. Most of the eluted metal element becomes an oxide and adheres to the fuel rod and is irradiated with neutrons. As a result, radionuclides such as cobalt 60, cobalt 58, and chromium 51 are generated, and these radionuclides re-elute in the primary cooling water and float as ions or insoluble solid components (hereinafter referred to as cladding). A part of the clad is removed by a desalinator for purifying reactor water, and the rest is accumulated on the surface of a component such as stainless steel while circulating through the primary cooling system. As a result, the dose rate on the surface of the component member becomes high, and the radiation exposure of workers during maintenance and inspection is a problem.
[0003]
For this reason, measures are taken to remove this radioactivity prior to the maintenance, inspection and repair period of the reactor plant.
[0004]
In recent years, in some nuclear power plants, carbon steel is used for reactor purification system piping in order to prevent stress corrosion cracking of SUS steel. In the case of carbon steel, the increase in radioactivity is particularly significant.
[0005]
Stainless steel and nickel-base alloys have superior corrosion resistance compared to carbon steel, so radiation doses from chemical cleaning methods using chemicals using one or both of chemicals with a reducing effect and chemicals with an oxidizing effect. We were taking measures to reduce the rate.
[0006]
[Problems to be solved by the invention]
However, for carbon steel pipes and equipment to which an oxide film containing radioactivity is attached, it is difficult to suppress corrosion of the base metal by a chemical cleaning method. Measures against radiation dose rate reduction due to the use of the same cleaning method, it was difficult to simultaneously clean the carbon steel part, stainless steel part and nickel base alloy part using the same cleaning method.
[0007]
The present invention has been made in order to solve such problems. The nuclear power plant is capable of isolating the carbon steel part and simultaneously cleaning the carbon steel part, the stainless steel part, and the nickel-based alloy part by chemical cleaning. An object is to provide a cleaning method.
[0008]
[Means for Solving the Problems]
As a result of various studies to achieve the above object, the present inventors have arrived at the present invention.
[0009]
That is, the invention according to claim 1 is a method of cleaning a nuclear power plant including a carbon steel part, a stainless steel part, and a nickel-base alloy part to which carbon steel, stainless steel, and a nickel-base alloy are applied as a pipe or a structural member. A reduction cleaning process for performing reduction cleaning by injecting a reducing agent, and a reduction agent decomposition purification process for decomposing and purifying the reducing agent applied in the reduction cleaning process. Possess And a step of isolating and not cleaning the carbon steel part in the reduction cleaning step and the reducing agent decomposition purification step In the reduction cleaning step, the carbon steel part is isolated and subjected to reduction cleaning with only the stainless steel part or nickel-base alloy part as the cleaning range, and then the carbon steel part is included in the cleaning range, followed by reduction cleaning. Isolate the steel part and perform reduction cleaning with the stainless steel part or nickel base alloy part as the cleaning range. It is characterized by that.
[0010]
Normally, in nuclear power plant cleaning methods using chemicals, a reducing agent is mainly used as a chemical to dissolve iron and nickel oxide, and an oxidizing agent is used as a chemical to dissolve chromium oxide. . Typical chemicals for the reducing agent are dicarboxylic acids, especially oxalic acid, and typical chemicals for the oxidizing agent are permanganic acid, potassium permanganate, hydrogen peroxide, and ozone. According to the present invention, even when a chemical agent such as a reducing agent or an oxidizing agent is used and the piping and equipment of carbon steel to which an oxide film is attached are included in the cleaning range, the carbon steel part, the stainless steel part And the nickel base alloy part can be continuously and simultaneously cleaned.
[0012]
The carbon steel part to be cleaned is the reactor residual heat removal system (RHR system) and the reactor water purification system (CUW system), and the stainless steel part is to be cleaned in the reactor recirculation system (PLR system) and in the reactor, nickel In-furnace structural material was selected as the cleaning target for the base alloy part. In the following description, the selection of materials is the same.
[0013]
According to the present invention, by using oxalic acid, the inside of the furnace and the PLR system are cleaned at the beginning of the reduction cleaning process, and then expanded to the RHR system and the CUW system for cleaning. Since the clad oxide from the RHR system and the CUW system can be dissolved after the system is first cleaned and the amount of the clad oxide dissolved is reduced to some extent, the amount of clad elution from the RHR system and the CUW system is fully understood. be able to. When the clad elution from the RHR system and CUW system almost disappears, the carbon steel system is isolated again, and the cleaning effect in the furnace and the PLR system can be confirmed by cleaning the furnace and the PLR system. it can. If the cleaning effect in the furnace and the PLR system is not sufficiently obtained, after the carbon steel system is isolated, the cleaning can be continued until a sufficient cleaning effect is obtained in the furnace and the PLR system.
[0014]
Claim 2 The invention of In a cleaning method of a nuclear power plant including a carbon steel part, a stainless steel part, and a nickel base alloy part to which carbon steel, stainless steel, and a nickel base alloy are applied as a pipe or a structural member, a reducing agent is injected to perform reduction cleaning. A reductive cleaning step and a reductant decomposition purification step for decomposing and purifying the reducing agent applied in the reductive cleaning step, and isolating the carbon steel part in the reductive cleaning step and the reductant decomposition purification step Comprising a step of not washing, The reduction cleaning process is characterized in that after the entire reduction including the carbon steel part is reduced and cleaned as a cleaning range, the carbon steel part is isolated and only the stainless steel part and the nickel alloy part are reduced and cleaned as a cleaning range.
[0015]
According to the present invention, the entire cleaning process including the inside of the furnace, the PLR system, the RHR system and the CUW system is performed at the beginning of the reduction cleaning process using oxalic acid, and then the RHR system and the CUW system are isolated and cleaned. As a result, the amount of clad oxide dissolved in the initial stage of cleaning is large, so that the carbon steel system can be cleaned in the passive state region of the carbon steel. As a result, it is possible to perform cleaning with sufficient anti-corrosion measures for carbon steel. Then, by isolating and cleaning the RHR system and the CUW system, the cladding solubility in the PLR system and the furnace can be sufficiently confirmed.
[0016]
Furthermore, claim 3 The invention of In a cleaning method of a nuclear power plant including a carbon steel part, a stainless steel part, and a nickel base alloy part to which carbon steel, stainless steel, and a nickel base alloy are applied as a pipe or a structural member, a reducing agent is injected to perform reduction cleaning. A reductive cleaning step and a reductant decomposition purification step for decomposing and purifying the reducing agent applied in the reductive cleaning step, and isolating the carbon steel part in the reductive cleaning step and the reductant decomposition purification step Comprising a step of not washing, The reduction cleaning step is characterized in that the carbon steel part is isolated and subjected to reduction cleaning using only the stainless steel part or the nickel-base alloy part as a cleaning range, and then including the carbon steel part in the cleaning range.
[0017]
According to the present invention, only the inside of the furnace and the PLR system are cleaned at the beginning of the reduction cleaning process using oxalic acid, and then expanded to the RHR system and the CUW system for cleaning, so that the inside of the furnace and the PLR system having a large cleaning area are cleaned. Since the RHR system and CUW system cladding oxide can be dissolved after the amount of dissolved cladding oxide is sufficiently reduced, the amount of cladding dissolved from the RHR system and CUW system must be fully understood. Can do.
[0018]
Claim 4 The invention of In a cleaning method of a nuclear power plant including a carbon steel part, a stainless steel part, and a nickel base alloy part to which carbon steel, stainless steel, and a nickel base alloy are applied as a pipe or a structural member, a reducing agent is injected to perform reduction cleaning. A reductive cleaning step and a reductant decomposition purification step for decomposing and purifying the reducing agent applied in the reductive cleaning step, and isolating the carbon steel part in the reductive cleaning step and the reductant decomposition purification step Comprising a step of not washing, The reducing agent decomposition purification process isolates the carbon steel part, starts decomposition of the reducing agent only in the stainless steel part or the nickel base alloy part, and includes the carbon steel part after the concentration of the reducing agent decreases. It is characterized by decomposing and washing the reducing agent over the entire range.
[0019]
According to the present invention, the cleaning agent in the furnace and the PLR system is first decomposed and removed, and after the concentration of the reducing cleaning agent is reduced, the cleaning agent expanded to the RHR system and the CUW system is decomposed and removed. Thereby, the flow to the carbon steel part of the high concentration cleaning agent in which corrosion of carbon steel is a concern can be suppressed.
[0020]
Furthermore, claim 5 The invention of In a cleaning method of a nuclear power plant including a carbon steel part, a stainless steel part, and a nickel base alloy part to which carbon steel, stainless steel, and a nickel base alloy are applied as a pipe or a structural member, a reducing agent is injected to perform reduction cleaning. A reductive cleaning step and a reductant decomposition purification step for decomposing and purifying the reducing agent applied in the reductive cleaning step, and isolating the carbon steel part in the reductive cleaning step and the reductant decomposition purification step Comprising a step of not washing, The reducing agent decomposition purification process isolates the carbon steel part, starts decomposition of the reducing agent in the range of only the stainless steel part or the nickel-based alloy part, and includes the carbon steel part after the concentration of the reducing agent decreases. The cleaning solution in the entire range was replaced with a cleaning solution that had been reduced to a certain concentration, and then the carbon steel part was isolated again, and the reducing agent was decomposed only in the stainless steel part or nickel base alloy part, and then the carbon steel part was included. Repeat the replacement of the cleaning solution in the range with a cleaning solution that has been reduced to a certain concentration, and when the concentration of the reducing agent in this cleaning solution is less than half of the initial concentration, decompose the reducing agent in the range that includes the carbon steel part. It is characterized by washing.
[0021]
According to the present invention, the cleaning agent in the furnace and the PLR system is first decomposed and removed, and after the concentration of the reduced cleaning agent is lowered, the cleaning solution in the RHR system and the CUW system is then reduced to a certain concentration. After replacing with the cleaning liquid to lower the concentration of the cleaning liquid in the carbon steel part, the carbon steel part is isolated again. After that, the decontamination solution in the furnace is further decomposed and removed, and the RHR system and CUW system cleaning solution are replaced. When the concentration of the reducing agent becomes less than half of the initial concentration, it is expanded to the RHR system and the CUW system. By carrying out the decomposition and removal of the cleaning agent, it is possible to suppress the flow of the high concentration cleaning agent, which is concerned about the corrosion of the carbon steel, to the carbon steel part. Furthermore, since the carbon steel part is not exposed to the high-concentration cleaning liquid until the concentration of the entire cleaning liquid is completely reduced, further corrosion inhibition of the carbon steel part can be achieved.
[0022]
Claim 6 The invention described is Any one of Claim 1 to 5 In the method of cleaning a nuclear power plant of the present invention, an existing or temporary valve is used, or an isolation jig is installed inside the existing valve, and the carbon steel part is isolated and cleaned.
[0023]
In the present invention, in order to isolate the carbon steel part in the reduction cleaning process, the carbon steel part can be isolated and cleaned by closing the first isolation valve which is an existing valve. Further, by removing the valve body of the existing valve and inserting an isolation jig, the carbon steel part can be isolated and cleaned.
[0024]
Claim 7 The invention described is Any one of Claim 1 to 5 In the nuclear power plant cleaning method of Hand valve Use the carbon steel part cleaning range Isolate It is characterized by that.
[0025]
In the present invention, in order to isolate the carbon steel part in the reduction cleaning process and the reducing agent decomposition purification process, the carbon steel part can be easily isolated from the circulation of the cleaning liquid by closing the main valve provided in the cleaning equipment. Can do.
[0026]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the nuclear power plant cleaning method of the present invention will be described with reference to Table 1 and FIGS. In the present embodiment, the reactor power plant is cleaned by injecting a reducing agent and an oxidant when the nuclear reactor power plant is stopped without heat output.
[0027]
FIG. 1 is a diagram schematically showing a part of a nuclear power plant, and the cleaning range of the nuclear power plant will be described with reference to this diagram.
[0028]
As shown in FIG. 1, in a nuclear power plant 1, a reactor pressure vessel 2 is provided with a reactor recirculation system (PLR system) 3, and the reactor recirculation system 3 is branched and connected to the reactor. A water purification system (CUW system) 4 and a reactor residual heat removal system (RHR system) 5 are provided. In addition, the reactor pressure vessel 2 is provided with a jet pump 6 constituting the reactor recirculation system 3. The reactor residual heat removal system 5 and the reactor water purification system 4 are made of carbon steel, the reactor recirculation system 3 and the reactor internal structure are made of stainless steel, a jet pump 6 in the reactor pressure vessel 2, etc. The in-furnace structural part is made of a Ni-based alloy part. In this embodiment, the carbon steel part, the stainless steel part, and the nickel base alloy part are to be cleaned.
[0029]
Further, as shown in FIG. 1, a first isolation valve 7 is installed in each system branched and connected from the reactor recirculation system 3, and an existing joint valve 8 and an existing valve 9 are further provided. ing.
[0030]
A cleaning equipment 11 is temporarily installed in each existing joint valve 9 shown in FIG. This cleaning equipment 11 has a hand valve 12 connected to the cleaning pipe, and is provided with a filter 13, a resin tower 14, a pump 15, a heater 16, and an ultraviolet irradiation device 17 in the subsequent stage of the hand valve 12. The other end of the cleaning pipe 18 connected to the ultraviolet irradiation device 17 is connected to the reactor pressure vessel 2, and the cleaning liquid cleaned by the cleaning equipment is introduced into the reactor pressure vessel 2.
[0031]
In this embodiment, when the cleaning range of carbon steel in the nuclear power plant 1 is separated from another cleaning range made of stainless steel or a nickel-based alloy, the PLR system 3 branches to the RHR system 5 and the CUW system 4. By closing the first isolation valve 7 installed at the position, the cleaning part of the carbon steel part can be completely isolated.
[0032]
Alternatively, the first isolation valve 7 and the existing valve 9 may be left open, and the hand valve 12 of the cleaning equipment 11 may be closed to isolate the carbon steel part.
[0033]
Furthermore, the carbon steel part may be isolated by taking out and opening the valve body of the existing valve 9 and installing the isolation jig 19 shown in FIG. 2 inside the existing valve 9.
[0034]
FIG. 2A shows a cross-sectional view in which an isolation jig 19 is installed inside the existing valve 9, and FIG. 2B is an enlarged view of the isolation jig 19. As shown in FIGS. 2 (a) and 2 (b), the separating jig 19 includes a decontamination side disc portion 21a having a plurality of circular holes on the outer periphery and a non-decontamination side disc portion 21b. Have. The two disk portions 21a and 21b are connected by an extendable screw 22, and the flow of the cleaning liquid introduced from the vent 23 can be controlled by the extension and contraction of the screw 22. Further, rubber discs (EPDM) are provided on the outer circumferences of the disk portions 21a and 21b.
[0035]
Next, a procedure for cleaning the nuclear power plant by isolating the carbon steel part in the nuclear power plant 1 shown in FIG. 1 will be described.
[0036]
FIG. 3 is a diagram illustrating a procedure of a cleaning method for a nuclear power plant.
[0037]
As shown in FIG. 3, the nuclear power plant cleaning method is from the first cycle to the third cycle. In the first cycle, the reducing agent decomposition purification process was performed after the reduction cleaning process. In the second cycle, the carbon steel part was isolated and the oxidant process for oxidant cleaning was performed, and then the reduction cleaning process and the reducing agent decomposition purification process were performed. Further, in the third cycle, the carbon steel part was isolated, and after the oxidizing agent process, a reduction cleaning process and a reducing agent decomposition purification process were performed. In the second cycle and the third cycle, the carbon steel part was not cleaned with the oxidant for the following reason.
[0038]
First, Table 1 shows main chemical components of carbon steel STS410 and stainless steel SUS304. As shown in Table 1, carbon steel STS410 does not contain chromium as a chemical component.
[0039]
[Table 1]
Figure 0004316100
[0040]
Next, carbon steel STS410 shown in Table 1 was used as a test piece, and this test piece was washed with a reducing agent (oxalic acid) only, and a combination of a reducing agent (oxalic acid) and an oxidizing agent (permanganic acid). The cleaning effect when decontaminated was compared. The result is shown in FIG. As shown in FIG. 4, the decontamination conditions were 95 ° C., 2000 ppm oxalic acid, 300 ppm permanganic acid, oxalic acid cleaning for 5 hours, and permanganic acid cleaning for 2 hours.
[0041]
As shown in FIG. 4, the cleaning effect dose reduction effect when the carbon steel was cleaned with only the reducing agent and when the carbon steel was cleaned with the combination of the reducing agent and the oxidizing agent was substantially the same. That is, since carbon steel does not contain chromium as shown in Table 1, when carbon steel is cleaned, the cleaning effect is not extremely improved even if an oxidizing agent for dissolving chromium oxide is used. . For this reason, in order to dissolve the clad oxide adhering to the carbon steel with a chemical, the dissolving power of the reducing detergent is sufficient. For the reasons as described above, as shown in FIG. 3, the carbon steel part can be omitted from the oxidation treatment step.
[0042]
The procedure of the cleaning method shown in FIG. 3 shows an example of this embodiment, and the reduction cleaning process of the first cycle and the second cycle may be performed by the procedure of FIGS. 5 to 7 shown below. good. Further, the reducing agent decomposition / purification step of the first cycle and the second cycle may be performed by the procedure shown in FIG. 8 or FIG. 9 shown below. In the reducing agent decomposition / purification step, hydrogen peroxide is added in addition to the reducing agent. By injecting, the reducing agent is decomposed. Note that the combination of the reduction cleaning step and the reducing agent decomposition purification step may be appropriately selected depending on the purpose of purification.
[0043]
A specific cleaning procedure in the reduction cleaning process will be described with reference to FIGS. In FIGS. 5 to 7 shown below, the cleaning range includes carbon steel and other metals such as stainless steel, nickel base alloy, cobalt base alloy such as stellite steel, etc., and these are simultaneously mixed with oxalic acid or the like. This shows the case of reducing and cleaning with a reducing chemical.
[0044]
FIG. 5 is a diagram showing an example of the cleaning procedure in the reduction cleaning step, and shows the cleaning range and the cleaning time.
[0045]
The cleaning procedure shown in FIG. 5 first isolates the carbon steel part, and after reducing and cleaning only the stainless steel part or the nickel-based alloy part as the cleaning range, including the carbon steel part in the cleaning range, reducing and cleaning, Thereafter, the carbon steel part is again isolated and subjected to reduction cleaning with the stainless steel part or nickel base alloy part as the cleaning range.
[0046]
Thus, by cleaning the cleaning range of stainless steel or nickel base alloy having a large cleaning area first, Fe 2+ The eluted iron oxide can be removed without maintaining the concentration. In that case, the stainless steel corrosion potential or oxidation-reduction potential becomes a passive state region of the stainless steel of 200 mv-SHE or more, and the stainless steel is easily protected. When the carbon steel part is added to the cleaning range, the amount of clad eluted from the carbon steel part can be sufficiently grasped, so that the elution behavior of the base material from the carbon steel part can be minimized. After that, the carbon steel part is further isolated and the cleaning effect on the stainless steel part and nickel base alloy part is reconfirmed by carrying out reduction cleaning such as oxalic acid on the stainless steel part and nickel base alloy part again. Can be implemented.
[0047]
Moreover, FIG. 6 is a figure which shows an example of the other washing | cleaning procedure in a reduction | restoration washing process, and shows progress of washing | cleaning range and washing | cleaning time.
[0048]
The cleaning procedure shown in FIG. 6 is the one in which the entire carbon steel part including the carbon steel part is first subjected to reduction cleaning, and then the carbon steel part is isolated and only the stainless steel part and nickel alloy part are subjected to reduction cleaning. is there.
[0049]
As in this procedure, by first immersing the entire cleaning range in oxalic acid at a time, it is possible to increase the amount of clad oxide dissolved in the initial stage of cleaning. Since the main dissolution cladding is an iron cladding in which hematite is dissolved, it elutes in the form of iron ions. In particular, Fe 2+ Since ions have the effect of inhibiting the corrosion of carbon steel, when the amount of dissolved cladding oxide is large, the corrosion inhibition operation of the carbon steel can be easily controlled and cleaned. Thereafter, the carbon steel part is isolated, and the stainless steel part and the nickel base alloy part are washed again, so that the cleaning effect on the stainless steel part and the nickel base alloy part can be sufficiently obtained.
[0050]
FIG. 7 is a diagram showing still another cleaning procedure of the reduction cleaning process, and shows the cleaning range and the cleaning time.
[0051]
The cleaning procedure shown in FIG. 7 is the one in which the carbon steel part is first isolated and subjected to reduction cleaning with only the stainless steel part or the nickel base alloy part as the cleaning range, and then including the carbon steel part in the cleaning range. is there.
[0052]
Thus, the elution amount of the oxide clad can be controlled by first cleaning the cleaning range of stainless steel or nickel-base alloy having a large cleaning area. After that, when the carbon steel part is added to the cleaning range, it is possible to sufficiently grasp the clad elution amount eluted from the carbon steel part. 2+ The corrosion behavior of carbon steel can be grasped from the ion elution tendency, and the elution behavior of the base material from the carbon steel portion can be minimized.
[0053]
Moreover, the reducing agent decomposition purification process which is a process performed after a reduction cleaning process may use the cleaning procedure shown in FIG. 8 or FIG. 8 and 9 show the case where the cleaning range includes other metals such as carbon steel and stainless steel, nickel base alloy, cobalt base alloy such as stellite steel.
[0054]
FIG. 8 is a diagram showing an example of a specific water flow procedure in the reducing agent decomposition purification process, showing the water flow range and the reducing agent concentration (%) when the initial concentration is 100%.
[0055]
The procedure shown in FIG. 8 is to first isolate the carbon steel part, start decomposition of the reducing agent only in the stainless steel part or the nickel base alloy part, and after reducing the concentration of the reducing agent, to the carbon steel part In the entire range, the reducing agent is decomposed and washed.
[0056]
According to this procedure, by first cleaning and purifying the chemical used as the reducing agent, it is possible to suppress the flow of the high-concentration cleaning agent that is likely to corrode the carbon steel to the carbon steel part. Further, when purifying a high concentration reducing agent, by removing the carbon steel part, Fe in the purification process 2+ It becomes possible to relax the iron ion control of ion retention. After that, by decomposing and removing the cleaning agent in the range extended to the RHR system 5 and the CUW system 4, the concentration of the reducing cleaning agent in the carbon steel part is quickly lowered to a concentration that alleviates the corrosion of the carbon steel. Can do.
[0057]
Moreover, FIG. 9 is a figure which shows an example of the other specific water flow procedure of a reducing agent decomposition purification process, and shows a water flow range and a reducing agent density | concentration (%) when an initial concentration is set to 100%. .
[0058]
The procedure shown in FIG. 9 is to first isolate the carbon steel part, start decomposition of the reducing agent only in the stainless steel part or the nickel base alloy part, and after reducing the concentration of the reducing agent, Replace the cleaning solution in the entire range with the cleaning solution reduced to a certain concentration, then isolate the carbon steel part again, decompose the reducing agent only in the stainless steel part or nickel base alloy part, and then replace the carbon steel part. Repeated replacement of the included cleaning solution with a cleaning solution that has been reduced to a certain concentration.When the concentration of the reducing agent in this cleaning solution is less than half of the initial concentration, the reducing agent is added to the carbon steel part. Disassemble and clean.
[0059]
In the procedure shown in FIG. 8 described above, the concentration of the reducing cleaning agent retained in the carbon steel portion is kept constant at a high concentration at the initial stage of the reduction cleaning, but according to the procedure shown in FIG. Since the concentration of the cleaning agent is reduced by substituting the reduced cleaning agent for the portion with a reduced concentration, the corrosion of the carbon steel can be further suppressed as compared with the procedure shown in FIG. Thereafter, the decontamination liquid in the furnace is further decomposed and removed, and the cleaning liquid in the RHR system 5 and the CUW system 4 is replaced. When the concentration of the reducing agent becomes less than half of the initial concentration, that is, to the carbon steel part At the time when the influence on the extreme corrosion disappears, the cleaning agent expanded to the RHR system 5 and the CUW system 4 is decomposed and removed, so the carbon steel part of the high concentration cleaning agent that is concerned about the corrosion of the carbon steel. Can be effectively suppressed.
[0060]
According to this embodiment, the first isolation valve 7 is closed, or the carbon steel part is isolated by, for example, installing an isolation jig 19 on the existing valve 9 etc. Since the elution behavior of the base material from the steel part can be suppressed to the minimum and the carbon steel part, the stainless steel part and the nickel-base alloy part can be continuously and simultaneously cleaned, the cleaning process can be facilitated.
[0061]
Further, according to the present embodiment, when the carbon steel part and the stainless steel part are simultaneously cleaned, the flow of the cleaning liquid to the carbon steel part can be controlled by the operation of the hand valve 12 of the temporary cleaning equipment 11. The conditions can be easily changed, and therefore, the method for omitting the oxidation treatment process and the carbon steel water flow operation control in the reduction treatment process can be easily performed.
[0062]
【The invention's effect】
As described above, according to the method for cleaning a nuclear power plant of the present invention, the carbon steel part, the stainless steel part, and the nickel are included even if the cleaning range includes carbon steel pipes and equipment to which an oxide film is attached. The base alloy part can be cleaned simultaneously and simultaneously, simplifying the cleaning process, and passing water through the stainless steel part, nickel base alloy part, and carbon steel part during the reduction cleaning process and reducing agent decomposition purification process By selecting according to the cleaning purpose, it is possible to improve the cleaning effect.
[Brief description of the drawings]
FIG. 1 is a diagram schematically showing a part of a nuclear power plant in an embodiment of the present invention.
2A and 2B are diagrams illustrating an embodiment of the present invention, in which FIG. 2A is a cross-sectional view in which an isolation jig is installed inside an existing valve, and FIG. 2B is an enlarged view of the isolation jig.
FIG. 3 is a diagram showing an example of a nuclear power plant cleaning method in the embodiment of the present invention.
FIG. 4 is a view showing a cleaning performance evaluation test result when an oxidizing agent cleaning performance is added to the reducing agent cleaning performance and reducing agent cleaning performance for carbon steel.
FIG. 5 is a diagram showing an example of a cleaning procedure in a reduction cleaning process in the embodiment of the present invention.
FIG. 6 is a diagram showing an example of another cleaning procedure in the reduction cleaning step in the embodiment of the present invention.
FIG. 7 is a diagram showing an example of another cleaning procedure in the reduction cleaning step in the embodiment of the present invention.
FIG. 8 is a diagram showing an example of a specific water flow procedure in a reducing agent decomposition purification process in the embodiment of the present invention.
FIG. 9 is a diagram showing another example of a specific water flow procedure in the reducing agent decomposition purification process in the embodiment of the present invention.
[Explanation of symbols]
1 Nuclear power plant
2 Reactor pressure vessel
3. Reactor recirculation system (PLR system)
4 Reactor coolant purification system (CUW system)
5 Reactor residual heat removal system (RHR system)
6 Jet pump
7 First isolation valve
8 Existing joint valve
9 Existing valves
10 Cleaning piping
11 Cleaning equipment
12 Hand valve
13 Filter
14 Resin tower
15 Pump
16 Heater
17 UV irradiation equipment
18 Cleaning piping
19 Isolation jig
20 circular holes
21a, 21b Disc part
22 Retractable screw
23 Vent
24 Rubber (EPDM)

Claims (7)

炭素鋼、ステンレス鋼およびニッケル基合金が配管または構造部材として適用された炭素鋼部、ステンレス鋼部およびニッケル基合金部を備える原子力発電プラントの洗浄方法において、
還元剤を注入して還元洗浄を行う還元洗浄工程と、
この還元洗浄工程で適用した還元剤を分解して浄化を行う還元剤分解浄化工程とを有し、
前記還元洗浄工程および前記還元剤分解浄化工程において炭素鋼部を隔離して洗浄しない工程を備え、
前記還元洗浄工程は、炭素鋼部を隔離して、ステンレス鋼部またはニッケル基合金部のみを洗浄範囲として還元洗浄した後、洗浄範囲に炭素鋼部を含めて還元洗浄し、その後、再度炭素鋼部を隔離してステンレス鋼部またはニッケル基合金部を洗浄範囲として還元洗浄することを特徴とする原子力発電プラントの洗浄方法。
In a method for cleaning a nuclear power plant including a carbon steel part, a stainless steel part, and a nickel base alloy part to which carbon steel, stainless steel, and a nickel base alloy are applied as piping or a structural member,
A reduction cleaning step of injecting a reducing agent to perform reduction cleaning;
A reductant decomposition purification process for decomposing and purifying the reductant applied in the reductive cleaning process,
In the reduction cleaning step and the reducing agent decomposition purification step, the carbon steel part is isolated and not cleaned.
In the reduction cleaning step, the carbon steel part is isolated and subjected to reduction cleaning using only the stainless steel part or the nickel base alloy part as the cleaning range, and then the reduction cleaning is performed including the carbon steel part in the cleaning range, and then the carbon steel is again used. A cleaning method for a nuclear power plant characterized in that the stainless steel part or nickel base alloy part is subjected to reduction cleaning with the part being isolated and the cleaning range being the cleaning range.
炭素鋼、ステンレス鋼およびニッケル基合金が配管または構造部材として適用された炭素鋼部、ステンレス鋼部およびニッケル基合金部を備える原子力発電プラントの洗浄方法において、
還元剤を注入して還元洗浄を行う還元洗浄工程と、
この還元洗浄工程で適用した還元剤を分解して浄化を行う還元剤分解浄化工程とを有し、
前記還元洗浄工程および前記還元剤分解浄化工程において炭素鋼部を隔離して洗浄しない工程を備え、
前記還元洗浄工程は、炭素鋼部まで含んだ全体を洗浄範囲として還元洗浄した後、炭素鋼部を隔離してステンレス鋼部およびニッケル合金部のみを洗浄範囲として還元洗浄することを特徴とする原子力発電プラントの洗浄方法。
In a method for cleaning a nuclear power plant including a carbon steel part, a stainless steel part, and a nickel base alloy part to which carbon steel, stainless steel, and a nickel base alloy are applied as piping or a structural member,
A reduction cleaning step of injecting a reducing agent to perform reduction cleaning;
A reductant decomposition purification process for decomposing and purifying the reductant applied in the reductive cleaning process,
In the reduction cleaning step and the reducing agent decomposition purification step, the carbon steel part is isolated and not cleaned.
The reduction cleaning step comprises reducing and cleaning the entire carbon steel part including a cleaning range, isolating the carbon steel part and reducing and cleaning only the stainless steel part and the nickel alloy part as a cleaning range. How to clean a power plant.
炭素鋼、ステンレス鋼およびニッケル基合金が配管または構造部材として適用された炭素鋼部、ステンレス鋼部およびニッケル基合金部を備える原子力発電プラントの洗浄方法において、
還元剤を注入して還元洗浄を行う還元洗浄工程と、
この還元洗浄工程で適用した還元剤を分解して浄化を行う還元剤分解浄化工程とを有し、
前記還元洗浄工程および前記還元剤分解浄化工程において炭素鋼部を隔離して洗浄しない工程を備え、
前記還元洗浄工程は、炭素鋼部を隔離して、ステンレス鋼部またはニッケル基合金部のみを洗浄範囲として還元洗浄した後、洗浄範囲に炭素鋼部を含めて還元洗浄することを特徴とする原子力発電プラントの洗浄方法。
In a method for cleaning a nuclear power plant including a carbon steel part, a stainless steel part, and a nickel base alloy part to which carbon steel, stainless steel, and a nickel base alloy are applied as piping or a structural member,
A reduction cleaning step of injecting a reducing agent to perform reduction cleaning;
A reductant decomposition purification process for decomposing and purifying the reductant applied in the reductive cleaning process,
In the reduction cleaning step and the reducing agent decomposition purification step, the carbon steel part is isolated and not cleaned.
The reduction cleaning step isolates the carbon steel part, performs reduction cleaning using only the stainless steel part or the nickel base alloy part as a cleaning range, and then includes the carbon steel part in the cleaning range to perform reduction cleaning. How to clean a power plant.
炭素鋼、ステンレス鋼およびニッケル基合金が配管または構造部材として適用された炭素鋼部、ステンレス鋼部およびニッケル基合金部を備える原子力発電プラントの洗浄方法において、
還元剤を注入して還元洗浄を行う還元洗浄工程と、
この還元洗浄工程で適用した還元剤を分解して浄化を行う還元剤分解浄化工程とを有し、
前記還元洗浄工程および前記還元剤分解浄化工程において炭素鋼部を隔離して洗浄しない工程を備え、
前記還元剤分解浄化工程は、炭素鋼部を隔離して、ステンレス鋼部またはニッケル基合金部のみを範囲として還元剤の分解を開始し、還元剤の濃度が低下した後、炭素鋼部まで含んだ全範囲で、還元剤を分解して洗浄することを特徴とする原子力発電プラントの洗浄方法。
In a method for cleaning a nuclear power plant including a carbon steel part, a stainless steel part, and a nickel base alloy part to which carbon steel, stainless steel, and a nickel base alloy are applied as piping or a structural member,
A reduction cleaning step of injecting a reducing agent to perform reduction cleaning;
A reductant decomposition purification process for decomposing and purifying the reductant applied in the reductive cleaning process,
In the reduction cleaning step and the reducing agent decomposition purification step, the carbon steel part is isolated and not cleaned.
The reducing agent decomposition purification process isolates the carbon steel part, starts decomposition of the reducing agent only in the stainless steel part or the nickel base alloy part, and includes the carbon steel part after the concentration of the reducing agent decreases. However, a method for cleaning a nuclear power plant characterized by decomposing and cleaning the reducing agent over the entire range.
炭素鋼、ステンレス鋼およびニッケル基合金が配管または構造部材として適用された炭素鋼部、ステンレス鋼部およびニッケル基合金部を備える原子力発電プラントの洗浄方法において、
還元剤を注入して還元洗浄を行う還元洗浄工程と、
この還元洗浄工程で適用した還元剤を分解して浄化を行う還元剤分解浄化工程とを有し、
前記還元洗浄工程および前記還元剤分解浄化工程において炭素鋼部を隔離して洗浄しない工程を備え、
前記還元剤分解浄化工程は、炭素鋼部を隔離して、ステンレス鋼部またはニッケル基合金部のみを範囲として還元剤の分解を開始し、還元剤の濃度が低下した後、炭素鋼部を含めた全範囲の洗浄液を一定濃度まで低下した洗浄液で置換し、その後再度炭素鋼部を隔離して、ステンレス鋼部またはニッケル基合金部のみを範囲として還元剤を分解した後、炭素鋼部を含めた範囲の洗浄液を一定濃度まで低下した洗浄液での置換を繰り返し、この洗浄液中の還元剤の濃度が初期濃度の半分以下になった時点で、炭素鋼部まで含んだ範囲で、還元剤を分解して洗浄することを特徴とする原子力発電プラントの洗浄方法。
In a method for cleaning a nuclear power plant including a carbon steel part, a stainless steel part, and a nickel base alloy part to which carbon steel, stainless steel, and a nickel base alloy are applied as piping or a structural member,
A reduction cleaning step of injecting a reducing agent to perform reduction cleaning;
A reductant decomposition purification process for decomposing and purifying the reductant applied in the reductive cleaning process,
In the reduction cleaning step and the reducing agent decomposition purification step, the carbon steel part is isolated and not cleaned.
The reducing agent decomposition purification process isolates the carbon steel part, starts decomposition of the reducing agent in the range of only the stainless steel part or the nickel base alloy part, and after the concentration of the reducing agent is reduced, the carbon steel part is included. After replacing the cleaning solution in the entire range with the cleaning solution reduced to a certain concentration, isolate the carbon steel part again, decompose the reducing agent only in the stainless steel part or nickel base alloy part, and then include the carbon steel part. When the concentration of the reducing agent in the cleaning solution has been reduced to a certain concentration, the reducing agent is decomposed within the range including the carbon steel part when the concentration of the reducing agent in the cleaning solution is less than half of the initial concentration. And cleaning the nuclear power plant.
請求項1から5のいずれか1項記載の原子力発電プラントの洗浄方法において、既設または仮設の弁を使用し、または既設の弁内部に隔離治具を設置し、炭素鋼部を隔離して洗浄することを特徴とする原子力発電プラントの洗浄方法。 The nuclear power plant cleaning method according to any one of claims 1 to 5, wherein an existing or temporary valve is used, or an isolation jig is installed inside the existing valve to isolate and clean the carbon steel part. A method for cleaning a nuclear power plant, comprising: 請求項1から5のいずれか1項記載の原子力発電プラントの洗浄方法において、洗浄設備に備えられた手元弁を使用して炭素鋼部の洗浄範囲を隔離することを特徴とする原子力発電プラントの洗浄方法。 The nuclear power plant cleaning method according to any one of claims 1 to 5, wherein the cleaning range of the carbon steel part is isolated using a hand valve provided in the cleaning facility. Cleaning method.
JP2000106395A 2000-04-07 2000-04-07 Cleaning method for nuclear power plant Expired - Lifetime JP4316100B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000106395A JP4316100B2 (en) 2000-04-07 2000-04-07 Cleaning method for nuclear power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000106395A JP4316100B2 (en) 2000-04-07 2000-04-07 Cleaning method for nuclear power plant

Publications (2)

Publication Number Publication Date
JP2001289992A JP2001289992A (en) 2001-10-19
JP4316100B2 true JP4316100B2 (en) 2009-08-19

Family

ID=18619568

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000106395A Expired - Lifetime JP4316100B2 (en) 2000-04-07 2000-04-07 Cleaning method for nuclear power plant

Country Status (1)

Country Link
JP (1) JP4316100B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5562215B2 (en) * 2010-11-18 2014-07-30 日立Geニュークリア・エナジー株式会社 Chemical decontamination method
JP6773463B2 (en) * 2016-06-20 2020-10-21 株式会社東芝 Chemical decontamination method for pressurized water nuclear power plant
JP6408053B2 (en) * 2017-03-21 2018-10-17 株式会社東芝 Nickel-based alloy decontamination method
JP6505810B1 (en) * 2017-10-27 2019-04-24 株式会社東芝 Decontamination implementation method and decontamination implementation device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59126996A (en) * 1983-01-12 1984-07-21 株式会社日立製作所 Nuclear plant manufacturing method
JP3172127B2 (en) * 1997-10-08 2001-06-04 東芝エンジニアリング株式会社 Chemical decontamination method for facilities in nuclear power plants
JP3859902B2 (en) * 1998-06-23 2006-12-20 株式会社東芝 Chemical decontamination method and apparatus for structural parts of radiation handling facilities
JP3810923B2 (en) * 1998-07-24 2006-08-16 株式会社東芝 System isolation method in chemical decontamination method
JP2000056087A (en) * 1998-08-06 2000-02-25 Hitachi Ltd Chemical decontamination method and apparatus

Also Published As

Publication number Publication date
JP2001289992A (en) 2001-10-19

Similar Documents

Publication Publication Date Title
EP2596502B1 (en) Reactor decontamination system and process
JP3977963B2 (en) Chemical decontamination method
JP2015052512A (en) Method for chemically decontaminating carbon steel member of nuclear power plant
JP2003098294A (en) Decontamination method and device using ozone
JP2016161466A (en) Method of suppressing sticking of radioactive nuclide on atomic power plant constitution member
JP4944542B2 (en) Method for suppressing elution of nickel and cobalt from structural materials
JP4316100B2 (en) Cleaning method for nuclear power plant
JP3849925B2 (en) Chemical decontamination method
CA1224123A (en) Hypohalite oxidation in decontamination nuclear reactors
JP2019191075A (en) Chemical decontamination method and chemical decontamination apparatus
JP2002131473A (en) Water quality control method
JP6751044B2 (en) Method for depositing precious metal on carbon steel member of nuclear power plant, and method for suppressing deposition of radionuclide on carbon steel member of nuclear power plant
JP4551843B2 (en) Chemical decontamination method
JP2013164269A (en) Radiation amount reducing method for nuclear power plant constitution member and nuclear power plant
JP6088173B2 (en) Method for suppressing radionuclide adhesion to components of nuclear power plant
JPH0480357B2 (en)
JP6751010B2 (en) Method for forming radioactive substance adhesion suppression film
JP7385505B2 (en) Chemical decontamination methods
JP6591225B2 (en) Decontamination method
JP2020160031A (en) Method for suppressing corrosion of carbon steel pipe
JP4959196B2 (en) Nuclear power plant replacement member and nuclear power plant member handling method
Park et al. Chemical Decontamination Process for Primary Coolant System in Nuclear Facility
JP2015028432A (en) Method for chemically decontaminating carbon steel members of nuclear power plant
JP7411502B2 (en) Chemical decontamination method for carbon steel parts of nuclear power plants
JP3146445B2 (en) Repair method of primary reactor piping

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040319

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080826

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081022

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090428

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090520

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4316100

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130529

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130529

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140529

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term