[go: up one dir, main page]

JP4315855B2 - Absorption refrigerator - Google Patents

Absorption refrigerator Download PDF

Info

Publication number
JP4315855B2
JP4315855B2 JP2004118972A JP2004118972A JP4315855B2 JP 4315855 B2 JP4315855 B2 JP 4315855B2 JP 2004118972 A JP2004118972 A JP 2004118972A JP 2004118972 A JP2004118972 A JP 2004118972A JP 4315855 B2 JP4315855 B2 JP 4315855B2
Authority
JP
Japan
Prior art keywords
exhaust heat
absorption liquid
regenerator
refrigerant
absorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004118972A
Other languages
Japanese (ja)
Other versions
JP2005300069A (en
Inventor
伸一 上篭
洋介 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2004118972A priority Critical patent/JP4315855B2/en
Priority to CNB2004100115919A priority patent/CN100342190C/en
Priority to KR1020050005187A priority patent/KR100585352B1/en
Publication of JP2005300069A publication Critical patent/JP2005300069A/en
Application granted granted Critical
Publication of JP4315855B2 publication Critical patent/JP4315855B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47GHOUSEHOLD OR TABLE EQUIPMENT
    • A47G19/00Table service
    • A47G19/22Drinking vessels or saucers used for table service
    • A47G19/2205Drinking glasses or vessels
    • A47G19/2266Means for facilitating drinking, e.g. for infants or invalids
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47GHOUSEHOLD OR TABLE EQUIPMENT
    • A47G2200/00Details not otherwise provided for in A47G
    • A47G2200/16Temperature
    • A47G2200/163Temperature indicator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B29/00Combined heating and refrigeration systems, e.g. operating alternately or simultaneously
    • F25B29/006Combined heating and refrigeration systems, e.g. operating alternately or simultaneously of the sorption type system
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • Y02P80/15On-site combined power, heat or cool generation or distribution, e.g. combined heat and power [CHP] supply

Landscapes

  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Pediatric Medicine (AREA)
  • Sorption Type Refrigeration Machines (AREA)

Description

本発明は、吸収液を加熱して冷媒を蒸発分離する再生器の熱源として、他の設備から供給される排熱なども利用する吸収冷凍機に係わるものである。   The present invention relates to an absorption refrigerator that uses exhaust heat supplied from other equipment as a heat source of a regenerator that evaporates and separates a refrigerant by heating an absorption liquid.

この種の吸収冷凍機としては、例えば図3に示したように吸収液を加熱し、沸騰させて蒸発器6に送る冷媒を蒸発分離すると共に、吸収液を濃縮再生する再生器として、ガスバーナ1Aにおいて発生する燃焼熱を吸収液の加熱源とする高温再生器1と、高温再生器1から供給される冷媒蒸気を吸収液の加熱源とする低温再生器2と、コ・ジェネレーションシステムなどの他の設備から供給される排熱流体を加熱源とする排熱再生器3とを備えて構成さる吸収冷凍機100Xが周知である(例えば、特許文献1参照。)。   As this type of absorption refrigerator, for example, as shown in FIG. 3, the absorbent is heated and boiled to evaporate and separate the refrigerant sent to the evaporator 6, and as a regenerator for concentrating and regenerating the absorbent, the gas burner 1A Others such as a high-temperature regenerator 1 using the combustion heat generated in the heat source as a heating source for the absorption liquid, a low-temperature regenerator 2 using the refrigerant vapor supplied from the high-temperature regenerator 1 as a heating source for the absorption liquid, and a cogeneration system An absorption refrigerator 100X including a waste heat regenerator 3 that uses a waste heat fluid supplied from the above facility as a heating source is well known (see, for example, Patent Document 1).

なお、図中4は低温再生器2内で吸収液から蒸発分離された冷媒蒸気が流入可能に低温再生器2に並設された凝縮器、5は排熱再生器3内で吸収液から蒸発分離された冷媒蒸気が流入可能に排熱再生器3に並設された排熱凝縮器、7は蒸発器6内で蒸発した冷媒蒸気が流入可能に蒸発器6に並設された吸収器、8は低温熱交換器、9は高温熱交換器、10は冷媒ポンプ、11と12は吸収液ポンプ、13は三方弁からなる流量制御弁、14〜17は開閉弁、18〜23は吸収液管、24〜29は冷媒管、30は排熱流体供給管、31はバイパス管、32は冷温水管、33は冷却水管、34は均圧管であり、図3に示したように配管接続されて、蒸発器6内に設置された伝熱管6Aの管壁を介して所定温度に冷却/または加熱された水が、冷温水管32を介して図示しない熱負荷に循環供給可能に構成されている。   In the figure, 4 is a condenser arranged in parallel with the low-temperature regenerator 2 so that refrigerant vapor evaporated and separated from the absorbent in the low-temperature regenerator 2 can flow in, and 5 is evaporated from the absorbent in the exhaust heat regenerator 3. An exhaust heat condenser arranged in parallel with the exhaust heat regenerator 3 so that the separated refrigerant vapor can flow in; an absorber arranged in parallel with the evaporator 6 so that the refrigerant vapor evaporated in the evaporator 6 can flow in; 8 is a low-temperature heat exchanger, 9 is a high-temperature heat exchanger, 10 is a refrigerant pump, 11 and 12 are absorption liquid pumps, 13 is a flow control valve composed of a three-way valve, 14 to 17 are on-off valves, and 18 to 23 are absorption liquids. Pipes 24 to 29 are refrigerant pipes, 30 is a waste heat fluid supply pipe, 31 is a bypass pipe, 32 is a cold / hot water pipe, 33 is a cooling water pipe, 34 is a pressure equalizing pipe, and are connected as shown in FIG. The water cooled / heated to a predetermined temperature through the tube wall of the heat transfer tube 6A installed in the evaporator 6 Through the pipe 32 is circulated and supplied can be configured to the heat load (not shown).

上記構成の吸収冷凍機100Xにおいては、ガスバーナ1Aで天然ガスなどを燃やしたときに出る燃焼熱と、排熱流体供給管30を介してコ・ジェネレーションシステムなどの他の設備から供給される排熱流体とを熱源として吸収液を加熱し沸騰させるので、熱効率が高い。したがって、省資源であり、また、二酸化炭素の排出量を削減することができる、と云ったメリットもある。
特開平8−54153号公報
In the absorption refrigerator 100X having the above-described configuration, combustion heat generated when natural gas or the like is burned by the gas burner 1A and exhaust heat supplied from other facilities such as a co-generation system via the exhaust heat fluid supply pipe 30. Since the absorbing liquid is heated and boiled using the fluid as a heat source, the thermal efficiency is high. Therefore, there is a merit that it is resource saving and the amount of carbon dioxide emission can be reduced.
JP-A-8-54153

しかし、特許文献1に開示された吸収冷凍機においては、熱負荷が小さいときにコ・ジェネレーションシステムなどの他の設備から供給されて排熱再生器に流入している排熱流体の流量制御が不能になって、排熱再生器への供給量削減ができなくなったときには、イ)蒸発器で冷却して供給する冷水の温度が低下し過ぎる、ロ)吸収液ポンプの運転を停止しても排熱再生器は空にならないので、排熱再生器に残っている吸収液が排熱流体により加熱され続けて、吸収液の濃縮が過剰に進み結晶化する、などと云った問題点があった。   However, in the absorption refrigerator disclosed in Patent Document 1, when the heat load is small, the flow control of the exhaust heat fluid supplied from other equipment such as a co-generation system and flowing into the exhaust heat regenerator is performed. If it becomes impossible to reduce the amount of supply to the exhaust heat regenerator, b) the temperature of the chilled water supplied by cooling with the evaporator is too low, b) even if the operation of the absorption pump is stopped Since the exhaust heat regenerator does not become empty, the absorption liquid remaining in the exhaust heat regenerator continues to be heated by the exhaust heat fluid, resulting in excessive concentration of the absorption liquid and crystallization. It was.

そのため、排熱流体の流量制御が不能になって吸収液に対する加熱再生作用が過剰に行われても、冷水温度の異常低下による運転不能に陥ったり、吸収液が結晶化することがないようにする必要があり、それが解決すべき課題となっていた。   Therefore, even if the flow control of the exhaust heat fluid becomes impossible and the heat regeneration action on the absorbing liquid is excessively performed, it will not be impossible to operate due to an abnormal decrease in the temperature of the cold water, and the absorbing liquid will not crystallize. It was necessary to do it, and it was a problem to be solved.

本発明は、上記の課題を解決するため、
蒸発器からの冷媒蒸気を吸収器で吸収させた希吸収液を吸収液ポンプにより送出し、他設備から供給される排熱流体を流通する伝熱管(すなわち、排熱伝熱管)を中段部分に設けた排熱再生器の上記の排熱伝熱管の上方から上記の吸収液を散布して冷媒を蒸発させて凝縮させた濃吸収液を上記の排熱伝熱管よりも下方に設けた吐出口から吐出させて上記の吸収器内の冷却水管の上方から散布するとともに、
上記の排熱再生器で蒸発させた冷媒を排熱凝縮器内の冷却水管によって凝縮させた冷媒液とし、冷却負荷に与える冷却流体(すなわち、負荷流体)を流通する伝熱管(すなわち、負荷伝熱管)を中段部分に設けた蒸発器の上記の負荷伝熱管の上方から上記の冷媒液を散布して蒸発させた冷媒蒸気を上記の吸収器に入れ込むことにより、
上記の負荷流体の冷却を行う構成を設けたことを特徴とする吸収冷凍機において、
上記の排熱再生器に供給している上記の排熱流体の供給量の削減が不能な状態になったときに、上記の吸収液ポンプの運転を停止し又は上記のポンプの回転数を削減すること(すなわち、ポンプ運転停減)により、上記の排熱再生器内の濃吸収液の上面が上記の排熱伝熱管よりも下方に位置づけられるように制御する制御手段を設けたことを特徴とする吸収式冷凍機と、
上記の吸収冷凍機において、上記の負荷伝熱管から吐出される上記の負荷流体の温度が設定温度よりも低下したときに、上記の制御手段が上記のポンプ運転停減を行うことを特徴とする吸収式冷凍機とを提供するものである。
In order to solve the above problems , the present invention
A dilute absorption liquid in which the refrigerant vapor from the evaporator is absorbed by the absorber is sent out by the absorption liquid pump, and the heat transfer pipe (that is, the exhaust heat transfer pipe) that circulates the exhaust heat fluid supplied from other equipment is placed in the middle section. Discharge port in which the concentrated absorption liquid obtained by spraying the absorption liquid from above the exhaust heat transfer pipe of the provided exhaust heat regenerator and evaporating and condensing the refrigerant is provided below the exhaust heat transfer pipe. And spray from above the cooling water pipe in the absorber,
The refrigerant evaporated in the exhaust heat regenerator is converted into a refrigerant liquid condensed by the cooling water pipe in the exhaust heat condenser, and the heat transfer pipe (that is, the load transfer pipe) that circulates the cooling fluid (that is, the load fluid) that is applied to the cooling load. By putting the refrigerant vapor evaporated by spraying the refrigerant liquid from above the load heat transfer tube of the evaporator provided with the heat pipe in the middle part, into the absorber,
In the absorption refrigerator characterized by providing a configuration for cooling the load fluid,
When the supply amount of the exhaust heat fluid supplied to the exhaust heat regenerator cannot be reduced, the operation of the absorption liquid pump is stopped or the rotation speed of the pump is reduced. (I.e., by reducing the pump operation), a control means is provided for controlling so that the upper surface of the concentrated absorbent in the exhaust heat regenerator is positioned below the exhaust heat transfer tube. An absorption refrigerator and
In the absorption refrigerator described above, when the temperature of the load fluid discharged from the load heat transfer tube is lower than a set temperature, the control means performs the pump operation stoppage. An absorption refrigerator is provided .

本発明の吸収冷凍機においては、排熱再生器内の伝熱管への排熱流体の供給量削減が不能になったときには、吸収液ポンプの運転を停止するか回転数を減らして、吸収器から排熱再生器への吸収液の搬送量を制限することが可能である。   In the absorption refrigerator of the present invention, when it becomes impossible to reduce the supply amount of the exhaust heat fluid to the heat transfer pipe in the exhaust heat regenerator, the operation of the absorption liquid pump is stopped or the rotation speed is reduced, and the absorber It is possible to limit the transport amount of the absorbing liquid from the waste heat regenerator.

したがって、冷却負荷が小さく、蒸発器で冷却して循環供給する冷水の温度が異常に低下したようなときには、排熱再生器の中段部に設けられている伝熱管より吸収液の液面が低くなるように、吸収液ポンプの運転を停止するか回転数を減らして吸収器から排熱再生器への吸収液の搬送量を制限することで、排熱再生器での排熱流体により吸収液の加熱をなくすか、削減することができる。   Therefore, when the cooling load is small and the temperature of the chilled water that is circulated and cooled by the evaporator drops abnormally, the liquid level of the absorbed liquid is lower than the heat transfer tube provided in the middle stage of the exhaust heat regenerator. Therefore, by stopping the operation of the absorption liquid pump or reducing the number of rotations to limit the amount of absorption liquid transported from the absorber to the exhaust heat regenerator, the absorption liquid can be absorbed by the exhaust heat fluid in the exhaust heat regenerator. Heating can be eliminated or reduced.

そのため、排熱再生器における冷媒蒸気の発生と、吸収液の濃縮再生がなくなるか、少なくなるので、蒸発器で冷却して供給する冷水の温度が異常に低下することも、吸収液が結晶化することもなくなる。   For this reason, generation of refrigerant vapor in the exhaust heat regenerator and concentration / regeneration of the absorption liquid are eliminated or reduced, so that the temperature of the chilled water supplied by cooling with the evaporator may be abnormally decreased. You do n’t have to.

冷媒を吸収した吸収液を加熱し、冷媒を蒸発分離して吸収液を濃縮再生する熱源として、他設備から供給される排熱流体が用いられる排熱再生器を備えた吸収冷凍機において、排熱再生器の中段部分に排熱流体が内部を流れる伝熱管を設けると共に、伝熱管の上方に吸収液散布器を、下方に吸収液吐出口を設け、さらに蒸発器で蒸発する冷媒により冷却されて蒸発器から吐出した冷水の温度が設定温度より低下したとき、排熱流体の伝熱管内への供給量削減操作不能と判断して吸収液ポンプの運転を停止するか、回転数を減らして吸収器から排熱再生器への吸収液の搬送量を制限することの可能な制御手段を設けるようにした吸収冷凍機。   In an absorption refrigerator equipped with an exhaust heat regenerator in which exhaust heat fluid supplied from other equipment is used as a heat source for heating the absorption liquid that has absorbed the refrigerant and evaporating and separating the refrigerant to concentrate and regenerate the absorption liquid. In the middle part of the heat regenerator, there is provided a heat transfer tube through which the exhaust heat fluid flows, an absorption liquid spreader is provided above the heat transfer tube, an absorption liquid discharge port is provided below, and the heat regenerator is cooled by the refrigerant evaporated by the evaporator. When the temperature of the chilled water discharged from the evaporator drops below the set temperature, it is judged that the operation to reduce the supply amount of exhaust heat fluid into the heat transfer tube is impossible, and the operation of the absorption pump is stopped or the rotation speed is reduced. An absorption refrigerating machine provided with a control means capable of limiting the amount of absorption liquid transported from the absorber to the exhaust heat regenerator.

以下、本発明の一実施形態を図1と図2に基づいて詳細に説明する。図1に例示した本発明の吸収冷凍機100は、冷媒に水を、吸収液に臭化リチウム(LiBr)水溶液を使用して、図示しない負荷に冷水または温水を循環供給することが可能な吸収冷凍機である。なお、理解を容易にするため、図1においても前記図3において説明した部分と同様の機能を有する部分には、同一の符号を付した。   Hereinafter, an embodiment of the present invention will be described in detail with reference to FIGS. 1 and 2. The absorption refrigerator 100 of the present invention illustrated in FIG. 1 can absorb cold water or hot water to a load (not shown) by using water as a refrigerant and an aqueous lithium bromide (LiBr) solution as an absorbent. It is a refrigerator. For ease of understanding, the same reference numerals are given to the portions having the same functions as those described in FIG. 3 in FIG.

図1に例示した本発明の吸収冷凍機100が、前記図3に示した吸収冷凍機100Xと相違する主な点は、排熱再生器3の構成にある。すなわち、図3に示した吸収冷凍機100Xにおいては、排熱再生器3の側壁の中段部分に吸収液の吐出口3Aが設けられ、その吐出口3Aに吸収液管19の一端が接続されて、 吐出口3Aより高い位置にある排熱再生器3の吸収液が吸収液管19に介在する吸収液ポンプ12の運転により高温再生器1に搬送可能に設けられており、図1に例示した本発明の吸収冷凍機100では、吸収液の吐出口3Aは排熱再生器3の底部に設けられ、そこに吸収液管19の一端が接続されている。ここで、上記の吸収液ポンプ12が上記の〔課題を解決するための手段〕における第2の吸収液ポンプに相当するものである。 The absorption chiller 100 of the present invention illustrated in FIG. 1 is different from the absorption chiller 100X shown in FIG. 3 in the configuration of the exhaust heat regenerator 3. That is, in the absorption refrigerator 100X shown in FIG. 3, an absorption liquid discharge port 3A is provided in the middle portion of the side wall of the exhaust heat regenerator 3, and one end of the absorption liquid pipe 19 is connected to the discharge port 3A. The absorption liquid of the exhaust heat regenerator 3 located higher than the discharge port 3A is provided so as to be transported to the high temperature regenerator 1 by the operation of the absorption liquid pump 12 interposed in the absorption liquid pipe 19, and is illustrated in FIG. In the absorption refrigerator 100 of the present invention, the absorption liquid discharge port 3A is provided at the bottom of the exhaust heat regenerator 3, and one end of the absorption liquid pipe 19 is connected thereto. Here, the above-mentioned absorption liquid pump 12 corresponds to the second absorption liquid pump in the above [Means for Solving the Problems].

そして、図3に示した吸収冷凍機100Xにおいては、両端に排熱流体供給管30が接続される排熱再生器3内の伝熱管3Bは排熱再生器3の底側に片寄せて、すなわち側壁中段部分に設けられた吸収液の吐出口3Aより低い部位にも設置されており、図1に例示した本発明の吸収冷凍機100においては、伝熱管3Bは排熱再生器3の中段部分に、すなわち全体が吸収液の吐出口3Aの上方に位置するように設置されている。   And in the absorption refrigerator 100X shown in FIG. 3, the heat transfer pipe 3B in the exhaust heat regenerator 3 to which the exhaust heat fluid supply pipe 30 is connected at both ends is shifted to the bottom side of the exhaust heat regenerator 3, That is, it is also installed at a portion lower than the discharge port 3A of the absorbing liquid provided in the middle stage of the side wall. In the absorption refrigerator 100 of the present invention illustrated in FIG. 1, the heat transfer tube 3B is the middle stage of the exhaust heat regenerator 3. It is installed in a part, that is, so that the whole is located above the discharge port 3A of the absorbing liquid.

また、本発明の吸収冷凍機100においては、伝熱管3Bの上方に散布器3Cが設置され、その散布器3Cに吸収液管18の一端が接続されて、吸収液管18に 介在する吸収液ポンプ11の運転により、冷媒を吸収して濃度が低下した吸収器7内の稀吸収液が伝熱管3Bの上に散布可能に構成されている。ここで、上記の吸収液ポンプ11が上記の〔課題を解決するための手段〕における第1の吸収液ポンプに相当するものである。 Further, in the absorption refrigerator 100 of the present invention, the spreader 3C is installed above the heat transfer tube 3B, and one end of the absorption liquid pipe 18 is connected to the spreader 3C, and the absorption liquid interposed in the absorption liquid pipe 18 By the operation of the pump 11, the rare absorbent in the absorber 7 whose concentration has been reduced by absorbing the refrigerant is configured to be sprayed on the heat transfer tube 3B. Here, the absorption liquid pump 11 corresponds to the first absorption liquid pump in the above [Means for Solving the Problems].

また、冷温水管32の蒸発器6出口側に温度センサ35が設けられて、蒸発器6内の伝熱管6Aの管壁を介して冷媒と熱交換し、冷媒が蒸発する際の潜熱により冷却されて蒸発器6から吐出した冷温水の温度が計測可能に構成されている。また、温度センサ35が計測した冷温水の温度に基づいて、ガスバーナ1A、冷媒ポンプ10、吸収液ポンプ11、12、流量制御弁13などを制御するための制御器36も設けられている。   In addition, a temperature sensor 35 is provided on the outlet side of the evaporator 6 in the cold / hot water pipe 32 to exchange heat with the refrigerant through the tube wall of the heat transfer pipe 6A in the evaporator 6 and is cooled by latent heat when the refrigerant evaporates. Thus, the temperature of the cold / hot water discharged from the evaporator 6 can be measured. A controller 36 for controlling the gas burner 1 </ b> A, the refrigerant pump 10, the absorption liquid pumps 11 and 12, the flow rate control valve 13 and the like based on the temperature of the cold / hot water measured by the temperature sensor 35 is also provided.

上記構成の吸収冷凍機100においては、開閉弁14〜17を閉弁した状態で冷却水管33に冷却水を流し、ガスバーナ1Aで天然ガスなどを燃焼させると共に、排熱流体供給管30を介して排熱再生器3内に設けられた伝熱管3Bにコ・ジェネレーションシステムなどから供給される高温・高圧の水蒸気、高温水などの排熱流体を流しながら、吸収液ポンプ11を運転して吸収器7の吸収液溜りに溜まった吸収液を散布器3Cから伝熱管3Bの上に散布すると、吸収液から蒸発分離された冷媒蒸気と、冷媒蒸気を分離して吸収液の濃度が高くなった吸収液とが高温再生器1および排熱再生器3において得られる。   In the absorption refrigerator 100 having the above-described configuration, the cooling water is allowed to flow through the cooling water pipe 33 with the on-off valves 14 to 17 being closed, and natural gas or the like is combusted by the gas burner 1A, and the exhaust heat fluid supply pipe 30 is used. The absorber pump 11 is operated while flowing the exhaust heat fluid such as high-temperature / high-pressure steam or high-temperature water supplied from the co-generation system to the heat transfer tube 3B provided in the exhaust heat regenerator 3, and the absorber When the absorption liquid accumulated in the absorption liquid reservoir 7 is spread on the heat transfer tube 3B from the spreader 3C, the refrigerant vapor evaporated from the absorption liquid is separated from the refrigerant vapor, and the absorption liquid has a high concentration. The liquid is obtained in the high temperature regenerator 1 and the exhaust heat regenerator 3.

高温再生器1で生成された高温の冷媒蒸気は、冷媒管24を通って低温再生器2に入り、高温再生器1で濃縮され、吸収液管20により高温熱交換器9を経由して低温再生器2に入った吸収液を加熱して放熱凝縮し、凝縮器4に入る。   The high-temperature refrigerant vapor generated in the high-temperature regenerator 1 enters the low-temperature regenerator 2 through the refrigerant pipe 24, is concentrated in the high-temperature regenerator 1, and passes through the high-temperature heat exchanger 9 through the high-temperature regenerator 1. The absorption liquid that has entered the regenerator 2 is heated and condensed by heat dissipation, and then enters the condenser 4.

また、低温再生器2における加熱により吸収液から分離された冷媒蒸気は凝縮器4に入り、冷却水管33内を流れる冷却水と熱交換して凝縮液化し、冷媒管24から凝縮して供給される冷媒と一緒になって冷媒管26を通って蒸発器6に入る。   Further, the refrigerant vapor separated from the absorption liquid by heating in the low temperature regenerator 2 enters the condenser 4, is heat-exchanged with the cooling water flowing in the cooling water pipe 33 to be condensed and liquefied, and is condensed and supplied from the refrigerant pipe 24. The refrigerant enters the evaporator 6 through the refrigerant pipe 26 together with the refrigerant.

排熱再生器3で生成された高温の冷媒蒸気も排熱凝縮器5に入り、冷却水管33内を流れる冷却水と熱交換して凝縮液化し、冷媒管27、26を通って蒸発器6に入る。   The high-temperature refrigerant vapor generated in the exhaust heat regenerator 3 also enters the exhaust heat condenser 5 and exchanges heat with the cooling water flowing in the cooling water pipe 33 to be condensed and liquefied. to go into.

蒸発器6に入って冷媒液溜りに溜った冷媒液は、冷温水管32が接続された伝熱管6Aの上に冷媒ポンプ10によって散布され、冷温水管32を介して循環供給される水と熱交換して蒸発し、伝熱管6Aの内部を流れる水を冷却する。   The refrigerant liquid that has entered the evaporator 6 and accumulated in the refrigerant liquid reservoir is sprayed by the refrigerant pump 10 on the heat transfer pipe 6A to which the cold / hot water pipe 32 is connected, and exchanges heat with water that is circulated and supplied through the cold / hot water pipe 32. Then, it evaporates and cools the water flowing inside the heat transfer tube 6A.

そして、蒸発器6で蒸発した冷媒は吸収器7に入り、低温再生器2で加熱されて冷媒を蒸発分離し、吸収液の濃度が一層高まって再生された吸収液、すなわち吸収液管21により低温熱交換器8を経由して供給され、上方から散布される濃吸収液に吸収される。   Then, the refrigerant evaporated by the evaporator 6 enters the absorber 7 and is heated by the low-temperature regenerator 2 to evaporate and separate the refrigerant. By the absorption liquid regenerated by increasing the concentration of the absorption liquid, that is, the absorption liquid pipe 21. It is supplied via the low-temperature heat exchanger 8 and is absorbed by the concentrated absorbent dispersed from above.

吸収器7で冷媒を吸収して濃度の薄くなった吸収液、すなわち稀吸収液は吸収液ポンプ11の運転により低温熱交換器8を経由して排熱再生器3に搬送され、散布器3Cから伝熱管3Bの上に散布され、前記したように排熱流体供給管30から供給される排熱流体と熱交換して加熱され、冷媒を蒸発分離して濃縮される。   Absorbing liquid whose concentration has been reduced by absorbing the refrigerant in the absorber 7, that is, the rare absorbing liquid, is transported to the exhaust heat regenerator 3 via the low-temperature heat exchanger 8 by the operation of the absorbing liquid pump 11, and spreader 3 </ b> C. The heat is then sprayed onto the heat transfer pipe 3B and heated by exchanging heat with the exhaust heat fluid supplied from the exhaust heat fluid supply pipe 30 as described above, and concentrated by evaporating and separating the refrigerant.

上記のように運転が行われると、蒸発器6内の伝熱管6Aにおいて冷媒の気化熱によって冷却された冷水が、冷温水管32を介して図示しない熱負荷に循環供給できるので、冷房などの冷却運転が行える。   When the operation is performed as described above, the cold water cooled by the heat of vaporization of the refrigerant in the heat transfer pipe 6A in the evaporator 6 can be circulated and supplied to a heat load (not shown) via the cold / hot water pipe 32. You can drive.

なお、排熱流体供給管30から伝熱管3Bへの排熱流体の供給が、ガスバーナ1Aでの天然ガスなどの燃焼に優先される。すなわち、制御器36は、温度センサ35が計測する冷温水の温度が所定の設定温度、例えば7℃まで低下するように、先ず流量制御弁13が制御され、伝熱管3Bに流れる排熱流体の量を最大にしても、温度センサ35が計測する冷温水の温度が設定温度の7℃まで低下しないときに、ガスバーナ1Aにより吸収液の加熱を行って、高温再生器1でも冷媒蒸気の生成と、吸収液の濃縮再生を行い、蒸発器6で冷却されて冷温水管32に吐出する冷温水の温度が設定温度の7℃になるように制御され、ガスバーナ1Aによる加熱量を最少に絞っても、温度センサ35が計測する冷温水の温度が設定温度の7℃まで上昇しないと、ガスバーナ1Aによる加熱を停止し、さらに流量制御弁13を制御して伝熱管3Bへの排熱流体の供給量を絞り、蒸発器6で冷却されて冷温水管32に吐出する冷温水の温度が設定温度の7℃になるように構成されている。   The supply of the exhaust heat fluid from the exhaust heat fluid supply pipe 30 to the heat transfer pipe 3B is prioritized over the combustion of natural gas or the like in the gas burner 1A. That is, the controller 36 first controls the flow rate control valve 13 so that the temperature of the cold / hot water measured by the temperature sensor 35 is lowered to a predetermined set temperature, for example, 7 ° C., and the exhaust heat fluid flowing through the heat transfer tube 3B. Even when the amount is maximized, when the temperature of the cold / hot water measured by the temperature sensor 35 does not drop to the set temperature of 7 ° C., the absorption liquid is heated by the gas burner 1A, and the high-temperature regenerator 1 generates refrigerant vapor. The concentration of the absorbent is regenerated, and the temperature of the chilled / hot water cooled by the evaporator 6 and discharged to the chilled / hot water pipe 32 is controlled to a preset temperature of 7 ° C., and the heating amount by the gas burner 1A is minimized. If the temperature of the cold / hot water measured by the temperature sensor 35 does not rise to the set temperature of 7 ° C., the heating by the gas burner 1A is stopped, and the flow rate control valve 13 is further controlled to supply the exhaust heat fluid to the heat transfer tube 3B. Squeeze Cooled in Hatsuki 6 the temperature of the hot and cold water to be discharged to the cold and hot water pipe 32 is configured to be 7 ° C. set temperature.

そして、本発明の吸収冷凍機100においては、前記したように排熱再生器3の吸収液の吐出口3Aは底の部分に設けられているので、吸収液ポンプ11の運転を停止すると、排熱再生器3内は空になる。すなわち、ガスバーナ1Aの燃焼が停止中は、制御器36により吸収液ポンプ12の運転は停止されるので、排熱再生器3と吸収器7との圧力差により、排熱再生器3内の吸収液は吸収液管19、22、21を介して吸収器7に戻され、ガスバーナ1Aの燃焼中は制御器36により吸収液ポンプ12も運転されるので、排熱再生器3内の吸収液は吸収液管19を介して高温高圧の高温再生器1に送られる。   In the absorption refrigerator 100 of the present invention, the absorption liquid discharge port 3A of the exhaust heat regenerator 3 is provided at the bottom portion as described above. Therefore, when the operation of the absorption liquid pump 11 is stopped, The heat regenerator 3 becomes empty. That is, while the combustion of the gas burner 1A is stopped, the operation of the absorption liquid pump 12 is stopped by the controller 36. Therefore, the absorption in the exhaust heat regenerator 3 is caused by the pressure difference between the exhaust heat regenerator 3 and the absorber 7. The liquid is returned to the absorber 7 through the absorption liquid pipes 19, 22, and 21, and the absorption liquid pump 12 is also operated by the controller 36 during the combustion of the gas burner 1 </ b> A, so that the absorption liquid in the exhaust heat regenerator 3 is It is sent to the high-temperature and high-pressure regenerator 1 through the absorption liquid pipe 19.

したがって、流量制御弁13が不調になり、排熱流体供給管30から排熱再生器3の伝熱管3Bに供給する排熱流体の流量制限ができなくなったときには、吸収液ポンプ11の運転を停止するか、回転数を削減し、排熱再生器3内の吸収液の液面が伝熱管3Bの下になるように吸収器7から排熱再生器3への吸収液の搬送量を制限することにより、コ・ジェネレーションシステムなどから供給される高温・高圧の水蒸気、高温水などの排熱流体が排熱流体供給管30から伝熱管3Bに供給され続けても、排熱再生器3では吸収液は加熱されないか加熱量が抑えられるので、排熱再生器3における冷媒蒸気の発生をなくし、吸収器7に供給する吸収液が結晶化しないようにすることができる。   Therefore, when the flow rate control valve 13 becomes unstable and the flow rate of the exhaust heat fluid supplied from the exhaust heat fluid supply pipe 30 to the heat transfer pipe 3B of the exhaust heat regenerator 3 cannot be restricted, the operation of the absorbent pump 11 is stopped. Or the number of rotations is reduced, and the amount of absorption liquid transported from the absorber 7 to the exhaust heat regenerator 3 is limited so that the liquid level of the absorption liquid in the exhaust heat regenerator 3 is below the heat transfer pipe 3B. As a result, even if exhaust heat fluid such as high-temperature / high-pressure steam and high-temperature water supplied from a co-generation system continues to be supplied from the exhaust heat fluid supply pipe 30 to the heat transfer pipe 3B, the exhaust heat regenerator 3 absorbs it. Since the liquid is not heated or the heating amount is suppressed, generation of refrigerant vapor in the exhaust heat regenerator 3 can be eliminated, and the absorption liquid supplied to the absorber 7 can be prevented from crystallizing.

そのため、吸収液ポンプ11の運転は、温度センサ35が計測した冷温水の温度に基づいて、制御器36により例えば図2(A)のように制御されるように構成されている。   Therefore, the operation of the absorption liquid pump 11 is configured to be controlled by the controller 36 as shown in FIG. 2A based on the temperature of the cold / hot water measured by the temperature sensor 35, for example.

すなわち、制御器36は温度センサ35が計測した冷温水の温度が、例えば4.5℃以下であるときと、4.5℃以下の状態から5.5℃まで上昇する間は吸収液ポンプ11を停止し、5.5℃以上にあるときと、5.5℃以上の状態から4.5℃まで低下する間は吸収液ポンプ11を運転するための所要の制御信号を出力するように構成されている。   That is, the controller 36 absorbs the absorbing liquid pump 11 when the temperature of the cold / hot water measured by the temperature sensor 35 is, for example, 4.5 ° C. or lower and while the temperature rises from 4.5 ° C. or lower to 5.5 ° C. Is configured to output a necessary control signal for operating the absorption liquid pump 11 when the temperature is 5.5 ° C. or higher and when the temperature drops from 5.5 ° C. or higher to 4.5 ° C. Has been.

したがって、本発明の吸収冷凍機100においては、流量制御弁13が不調になり、排熱流体供給管30から排熱再生器3の伝熱管3Bに供給する排熱流体の流量制限ができなくなり、ガスバーナ1Aによる加熱を停止しても、蒸発器6の伝熱管6Aで冷却されて冷温水管32に吐出する冷温水の温度が4.5℃より下がり、温度センサ35がそれを計測すると、吸収液ポンプ11の運転が制御器36により停止される。   Therefore, in the absorption refrigerator 100 of the present invention, the flow rate control valve 13 becomes unstable, and the flow rate of the exhaust heat fluid supplied from the exhaust heat fluid supply pipe 30 to the heat transfer pipe 3B of the exhaust heat regenerator 3 cannot be limited. Even if the heating by the gas burner 1A is stopped, the temperature of the cold / hot water cooled by the heat transfer pipe 6A of the evaporator 6 and discharged to the cold / hot water pipe 32 falls below 4.5 ° C., and the temperature sensor 35 measures it. The operation of the pump 11 is stopped by the controller 36.

そのため、排熱再生器3内は空になり、コ・ジェネレーションシステムなどから供給される高温・高圧の水蒸気、高温水などの排熱流体が排熱流体供給管30から伝熱管3Bに供給され続けても、排熱再生器3では吸収液は加熱されなくなるので、排熱再生器3における冷媒蒸気の発生はないし、吸収液が濃縮され過ぎて結晶化することもない。   Therefore, the exhaust heat regenerator 3 becomes empty, and exhaust heat fluid such as high-temperature and high-pressure steam and high-temperature water supplied from a cogeneration system or the like continues to be supplied from the exhaust heat fluid supply pipe 30 to the heat transfer pipe 3B. However, since the absorption liquid is no longer heated in the exhaust heat regenerator 3, the refrigerant vapor is not generated in the exhaust heat regenerator 3, and the absorption liquid is not excessively concentrated and crystallized.

吸収液ポンプ11は、制御器36により例えば図2(B)に示したように、すなわち温度センサ35が計測した冷温水の温度が例えば4.5℃以下であるときは、吸収液ポンプ11を駆動する電動モータに与える電力周波数を0Hz、前記冷温水の温度が5.5℃以上あるときは規定の最大周波数、例えば60Hzとし、前記冷温水の温度が4.5℃と5.5℃の間にあるときには、電動モータに与える電力周波数は前記冷温水の温度に比例するものとして電力周波数を選択し、そのようにして回転が制御されても良い。   As shown in FIG. 2 (B) by the controller 36, for example, when the temperature of the cold / hot water measured by the temperature sensor 35 is 4.5 ° C. or less, the absorbent pump 11 When the electric power frequency applied to the electric motor to be driven is 0 Hz and the temperature of the cold / hot water is 5.5 ° C. or higher, the specified maximum frequency is set to 60 Hz, for example, and the temperature of the cold / hot water is 4.5 ° C. and 5.5 ° C. When it is in between, the power frequency applied to the electric motor may be selected as being proportional to the temperature of the cold / hot water, and the rotation may be controlled in this way.

なお、上記構成の本発明の吸収冷凍機100においては、開閉弁14〜17を開弁し、ガスバーナ1Aで天然ガスなどを燃焼させて高温再生器1内の吸収液を加熱し、沸騰させると、吸収液から蒸発分離されて冷媒管24、25を経て吸収器7に流入し、さらに蒸発器6に入った冷媒蒸気が伝熱管6Aの管壁に触れて凝縮する。そして、伝熱管6A内を流れている水が、主に冷媒の凝縮熱により加熱されるので、その加熱された水を負荷に循環供給することで、暖房などの加熱運転が行える。   In the absorption refrigerator 100 of the present invention configured as described above, when the on-off valves 14 to 17 are opened and the natural gas or the like is burned by the gas burner 1A to heat the absorption liquid in the high-temperature regenerator 1 and boil it. Then, it is evaporated and separated from the absorption liquid, flows into the absorber 7 through the refrigerant tubes 24 and 25, and further, the refrigerant vapor entering the evaporator 6 touches the tube wall of the heat transfer tube 6A and condenses. Since the water flowing in the heat transfer tube 6A is heated mainly by the heat of condensation of the refrigerant, a heating operation such as heating can be performed by circulating and supplying the heated water to the load.

ところで、本発明は上記実施形態に限定されるものではないので、特許請求の範囲に記載の趣旨から逸脱しない範囲で各種の変形実施が可能である。   By the way, the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit described in the claims.

例えば、吸収器7で冷媒を吸収して濃度が低下した稀吸収液を、先ず排熱再生器3に搬送して濃縮し、その濃縮された吸収液を低温再生器2に搬送して濃縮し、最後に高温再生器1に搬送して濃縮するように、吸収液管を配管しても良いし、吸収器7で冷媒を吸収して濃度が低下した稀吸収液を、高温再生器1と排熱再生器3とに分岐して搬送し、高温再生器1と排熱再生器3とで濃縮した吸収液を低温再生器2に搬送して濃縮するように、吸収液管が配管されても良い。   For example, a rare absorbent whose concentration has been reduced by absorbing the refrigerant in the absorber 7 is first transported to the exhaust heat regenerator 3 and concentrated, and the concentrated absorbent is transported to the low temperature regenerator 2 and concentrated. Finally, an absorption liquid pipe may be piped so as to be transported to the high temperature regenerator 1 and concentrated, or a rare absorption liquid whose concentration has been reduced by absorbing the refrigerant in the absorber 7 is reduced with the high temperature regenerator 1. The absorption liquid pipe is piped so as to be branched and transported to the exhaust heat regenerator 3, and the absorbent concentrated in the high temperature regenerator 1 and the exhaust heat regenerator 3 is transported to the low temperature regenerator 2 and concentrated. Also good.

また、開閉弁17が介在する冷媒管29は、図3に示した吸収冷凍機100Xのように、すなわち冷媒ポンプ10の下流側と吸収器7との間に設けても良い。   Further, the refrigerant pipe 29 in which the on-off valve 17 is interposed may be provided as in the absorption refrigerator 100X shown in FIG. 3, that is, between the downstream side of the refrigerant pump 10 and the absorber 7.

さらに、高温再生器1と低温再生器2とを備えず、吸収液が排熱再生器3と吸収器7との間で循環するように構成された吸収冷凍機であっても良い。   Further, an absorption refrigerator that does not include the high-temperature regenerator 1 and the low-temperature regenerator 2 and is configured such that the absorption liquid circulates between the exhaust heat regenerator 3 and the absorber 7 may be used.

本発明の吸収冷凍機の説明図である。It is explanatory drawing of the absorption refrigerator of this invention. 吸収液ポンプの制御例を示す説明図である。It is explanatory drawing which shows the example of control of an absorption liquid pump. 従来技術の説明図である。It is explanatory drawing of a prior art.

符号の説明Explanation of symbols

1 高温再生器
2 低温再生器
3 排熱再生器
3A (吸収液の)吐出口
3B 伝熱管
3C 散布器
4 凝縮器
5 排熱凝縮器
6 蒸発器
6A 伝熱管
7 吸収器
8 低温熱交換器
9 高温熱交換器
10 冷媒ポンプ
11、12 吸収液ポンプ
13 流量制御弁(三方弁)
14〜17 開閉弁
18〜23 吸収液管
24〜29 冷媒管
30 排熱流体供給管
31 バイパス管
32 冷温水管
33 冷却水管
34 均圧管
35 温度センサ
36 制御器
100、100X 吸収冷凍機
DESCRIPTION OF SYMBOLS 1 High temperature regenerator 2 Low temperature regenerator 3 Waste heat regenerator 3A (absorption liquid) discharge port 3B Heat transfer tube 3C Spreader 4 Condenser 5 Exhaust heat condenser 6 Evaporator 6A Heat transfer tube 7 Absorber 8 Low temperature heat exchanger 9 High-temperature heat exchanger 10 Refrigerant pump 11, 12 Absorption liquid pump 13 Flow control valve (three-way valve)
14-17 On-off valve 18-23 Absorption liquid pipe 24-29 Refrigerant pipe 30 Waste heat fluid supply pipe 31 Bypass pipe 32 Cold / hot water pipe 33 Cooling water pipe 34 Pressure equalizing pipe 35 Temperature sensor 36 Controller 100, 100X Absorption refrigerator

Claims (2)

蒸発器からの冷媒蒸気を吸収器で吸収させた希吸収液を第1の吸収液ポンプにより送出し、他設備から供給される排熱流体を流通する伝熱管(以下、排熱伝熱管という)を中段部分に設けた排熱再生器の前記排熱伝熱管の上方から前記吸収液を散布して冷媒を蒸発させて凝縮させた吸収液を、前記排熱伝熱管よりも下方に設けた吐出口から吐出させて、前記吸収器内の冷却水管の上方から散布するとともに、第2の吸収液ポンプにより、燃料の燃焼熱を加熱源として前記吸収液を加熱する高温再生器に送出する構成と、
前記排熱再生器で蒸発させた冷媒を前記排熱凝縮器3内の冷却水管によって凝縮させた冷媒液とし、冷却負荷に与える冷却流体(以下、負荷流体という)を流通する伝熱管(以下、負荷伝熱管という)を中段部分に設けた蒸発器の前記負荷伝熱管の上方から前記冷媒液を散布して蒸発させた冷媒蒸気を前記吸収器に入れ込むことにより、前記負荷流体の冷却を行う構成と
を設けたことを特徴とする吸収冷凍機において、
前記排熱再生器に供給している前記排熱流体の供給量の削減が不能な状態になったときに、前記高温再生器の加熱を停止して前記第2の吸収液ポンプを運転するとともに、前記第1の吸収液ポンプの運転を停止し又は前記第1の吸収液ポンプの回転数を削減すること(以下、ポンプ運転停減という)により、前記排熱再生器内の吸収液の上面が前記排熱伝熱管よりも下方に位置づけられるように制御する制御手段
を設けたことを特徴とする吸収式冷凍機。
A heat absorption tube (hereinafter referred to as an exhaust heat transfer tube) that sends out a diluted absorption liquid in which the refrigerant vapor from the evaporator is absorbed by the absorber by the first absorption liquid pump and distributes the exhaust heat fluid supplied from other equipment. In the exhaust heat regenerator of the exhaust heat regenerator provided in the middle stage, the absorption liquid, which has been condensed by evaporation of the refrigerant by evaporating the refrigerant from above the exhaust heat transfer tube, is provided below the exhaust heat transfer tube. A structure that is discharged from the outlet and sprayed from above the cooling water pipe in the absorber, and is sent to a high-temperature regenerator that heats the absorption liquid by using a combustion heat of fuel as a heating source by a second absorption liquid pump. ,
The refrigerant evaporated in the exhaust heat regenerator is made into a refrigerant liquid condensed by the cooling water pipe in the exhaust heat condenser 3, and a heat transfer pipe (hereinafter referred to as load fluid) that circulates a cooling fluid applied to a cooling load (hereinafter referred to as load fluid). The load fluid is cooled by introducing into the absorber the refrigerant vapor that has been evaporated by spraying the refrigerant liquid from above the load heat transfer pipe of the evaporator provided with a load heat transfer pipe in the middle stage. Configuration and
In the absorption refrigerator characterized by providing
When the supply amount of the exhaust heat fluid supplied to the exhaust heat regenerator cannot be reduced, the heating of the high temperature regenerator is stopped and the second absorption liquid pump is operated. The upper surface of the absorption liquid in the exhaust heat regenerator by stopping the operation of the first absorption liquid pump or reducing the number of rotations of the first absorption liquid pump (hereinafter referred to as pump operation stoppage). An absorption refrigeration machine comprising a control means for controlling so as to be positioned below the exhaust heat transfer tube .
前記負荷伝熱管から吐出される前記負荷流体の温度が設定温度よりも低下したときに、前記制御手段が前記ポンプ運転停減を行うことを特徴とする請求項1記載の吸収式冷凍機。 2. The absorption chiller according to claim 1 , wherein when the temperature of the load fluid discharged from the load heat transfer tube is lower than a set temperature , the control means performs the pump operation stoppage .
JP2004118972A 2004-04-14 2004-04-14 Absorption refrigerator Expired - Fee Related JP4315855B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2004118972A JP4315855B2 (en) 2004-04-14 2004-04-14 Absorption refrigerator
CNB2004100115919A CN100342190C (en) 2004-04-14 2004-12-21 Absorption refrigerating machine
KR1020050005187A KR100585352B1 (en) 2004-04-14 2005-01-20 Absorption refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004118972A JP4315855B2 (en) 2004-04-14 2004-04-14 Absorption refrigerator

Publications (2)

Publication Number Publication Date
JP2005300069A JP2005300069A (en) 2005-10-27
JP4315855B2 true JP4315855B2 (en) 2009-08-19

Family

ID=35263275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004118972A Expired - Fee Related JP4315855B2 (en) 2004-04-14 2004-04-14 Absorption refrigerator

Country Status (3)

Country Link
JP (1) JP4315855B2 (en)
KR (1) KR100585352B1 (en)
CN (1) CN100342190C (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4776416B2 (en) * 2006-03-28 2011-09-21 三洋電機株式会社 Absorption refrigerator
JP2007309617A (en) * 2006-05-22 2007-11-29 Chugoku Electric Power Co Inc:The Gas cooling system
JP5384072B2 (en) * 2008-09-30 2014-01-08 三洋電機株式会社 Absorption type water heater
US8978397B2 (en) * 2009-04-24 2015-03-17 Thermax Limited Absorption heat pump employing a high/low pressure evaporator/absorber unit a heat recovery unit

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3086594B2 (en) * 1994-08-10 2000-09-11 三洋電機株式会社 Single double effect absorption refrigerator
JP4079576B2 (en) * 2000-06-05 2008-04-23 三洋電機株式会社 Absorption refrigerator
JP4553522B2 (en) * 2001-07-19 2010-09-29 三洋電機株式会社 Absorption refrigerator
CN2536974Y (en) * 2002-03-22 2003-02-19 大连三洋制冷有限公司 Single or double effects combined flue-use absorption refrigerator

Also Published As

Publication number Publication date
JP2005300069A (en) 2005-10-27
CN1683846A (en) 2005-10-19
CN100342190C (en) 2007-10-10
KR100585352B1 (en) 2006-06-02
KR20050101113A (en) 2005-10-20

Similar Documents

Publication Publication Date Title
JP3883838B2 (en) Absorption refrigerator
JP2011089722A (en) Method and device for refrigeration/air conditioning
JP2002147885A (en) Absorption refrigerating machine
JP5384072B2 (en) Absorption type water heater
JP4315855B2 (en) Absorption refrigerator
JP2009243706A (en) Absorption heat pump
JP4901655B2 (en) Absorption chiller / heater
JP2000121196A (en) Cooling/heating system utilizing waste heat
KR101690303B1 (en) Triple effect absorption chiller
JP2007333342A (en) Multi-effect absorption refrigerating machine
JP4315854B2 (en) Absorption refrigerator
JP3883894B2 (en) Absorption refrigerator
KR101137582B1 (en) Single and double effect absorption refrigerator and operation control method therefor
JP3920619B2 (en) Absorption chiller / heater and control method thereof
KR20090103740A (en) Absorption heat pump
JP3889655B2 (en) Absorption refrigerator
JP4308076B2 (en) Absorption refrigerator
JP3851204B2 (en) Absorption refrigerator
JP3754206B2 (en) Single double-effect absorption chiller / heater
JP3729102B2 (en) Steam-driven double-effect absorption chiller / heater
JPH09243197A (en) Cooling water temperature controller for absorption chiller / heater
JP3813348B2 (en) Absorption refrigerator
JP4282225B2 (en) Absorption refrigerator
JP4260099B2 (en) Absorption refrigerator
JP4330522B2 (en) Absorption refrigerator operation control method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090421

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090519

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130529

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130529

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140529

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees