JP4314065B2 - Ag alloy laminated film, light reflector, optical information recording medium, flat panel display element and reflector - Google Patents
Ag alloy laminated film, light reflector, optical information recording medium, flat panel display element and reflector Download PDFInfo
- Publication number
- JP4314065B2 JP4314065B2 JP2003140599A JP2003140599A JP4314065B2 JP 4314065 B2 JP4314065 B2 JP 4314065B2 JP 2003140599 A JP2003140599 A JP 2003140599A JP 2003140599 A JP2003140599 A JP 2003140599A JP 4314065 B2 JP4314065 B2 JP 4314065B2
- Authority
- JP
- Japan
- Prior art keywords
- alloy
- film
- layer
- laminated film
- reflector
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 229910001316 Ag alloy Inorganic materials 0.000 title claims description 205
- 230000003287 optical effect Effects 0.000 title claims description 17
- 239000000758 substrate Substances 0.000 claims description 35
- 229910052737 gold Inorganic materials 0.000 claims description 17
- 229910052763 palladium Inorganic materials 0.000 claims description 13
- 229910052787 antimony Inorganic materials 0.000 claims description 10
- 229910052797 bismuth Inorganic materials 0.000 claims description 10
- 229910052802 copper Inorganic materials 0.000 claims description 9
- 229910045601 alloy Inorganic materials 0.000 claims description 7
- 239000000956 alloy Substances 0.000 claims description 7
- 239000013078 crystal Substances 0.000 claims description 7
- 229910052761 rare earth metal Inorganic materials 0.000 claims description 6
- 239000011521 glass Substances 0.000 claims description 4
- 238000009751 slip forming Methods 0.000 claims description 4
- 230000005501 phase interface Effects 0.000 claims 1
- 239000010408 film Substances 0.000 description 202
- 239000010410 layer Substances 0.000 description 106
- 238000002310 reflectometry Methods 0.000 description 20
- 230000007613 environmental effect Effects 0.000 description 16
- 238000010438 heat treatment Methods 0.000 description 14
- 239000002356 single layer Substances 0.000 description 14
- 230000003746 surface roughness Effects 0.000 description 13
- 230000000052 comparative effect Effects 0.000 description 12
- 239000000126 substance Substances 0.000 description 12
- 230000007797 corrosion Effects 0.000 description 11
- 238000005260 corrosion Methods 0.000 description 11
- 238000000034 method Methods 0.000 description 9
- 229910000881 Cu alloy Inorganic materials 0.000 description 7
- 229910052697 platinum Inorganic materials 0.000 description 7
- 229910052703 rhodium Inorganic materials 0.000 description 7
- 229910001020 Au alloy Inorganic materials 0.000 description 6
- 239000010409 thin film Substances 0.000 description 6
- 229910001252 Pd alloy Inorganic materials 0.000 description 5
- 241000519995 Stachys sylvatica Species 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 229910052707 ruthenium Inorganic materials 0.000 description 5
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 230000001965 increasing effect Effects 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 229910052709 silver Inorganic materials 0.000 description 4
- 239000000203 mixture Substances 0.000 description 3
- 238000004544 sputter deposition Methods 0.000 description 3
- 229910002696 Ag-Au Inorganic materials 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 239000003989 dielectric material Substances 0.000 description 2
- 230000002708 enhancing effect Effects 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000010030 laminating Methods 0.000 description 2
- 239000004973 liquid crystal related substance Substances 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 238000005477 sputtering target Methods 0.000 description 2
- 229910052779 Neodymium Inorganic materials 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052729 chemical element Inorganic materials 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000002845 discoloration Methods 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 230000016507 interphase Effects 0.000 description 1
- 238000001755 magnetron sputter deposition Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
Landscapes
- Liquid Crystal (AREA)
- Laminated Bodies (AREA)
- Optical Record Carriers And Manufacture Thereof (AREA)
- Optical Elements Other Than Lenses (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、Ag合金積層膜、光反射体、光情報記録媒体、フラットパネルディスプレイ素子およびリフレクターに関する技術分野に属し、特には、CD、DVD 等の光情報記録媒体やフラットパネルディスプレイ素子用反射電極、各種リフレクターに用いられる高耐久性かつ高反射率を有するAg合金積層膜およびそれを用いた光反射体に関する技術分野に属するものである。
【0002】
【従来の技術】
光情報記録媒体やフラットパネルディスプレイ素子用反射電極には、その高い反射率からAg系の反射材料が用いられてきつつある。
【0003】
光情報記録媒体には、読み出し専用ディスク、追記型ディスク、書き換え型ディスクがあるが、これらのディスクは何れもAg、Al、Au等を母材とする反射膜層を設けた構造を有しており、データ読み出し時にはディスクに照射されたレーザー光の位相差や反射差を検出する事により、データの再生を行う。
【0004】
また、フラットパネルディスプレイ素子では、反射型液晶ディスプレイの電極等にAg、Alを母材とする反射膜が設けられている。
【0005】
Agを主成分とする反射膜では、恒温恒湿試験や耐熱性試験において、AuやAl合金系の薄膜より劣るものの、実用波長領域の400 〜800nm で最も高い反射率を示すことから実用化が進められている。
【0006】
Ag合金膜の耐久性を高める方法としては、例えば、米国特許第6007889 号明細書(特許文献1)や、特開平6-208732号公報(特許文献2)には、AgにAu、Cu、Pd、Rh等の元素を添加し、化学的安定性を高める方法が示されている。しかし、これらのAg合金膜においては、Ag基合金薄膜の耐食性の改善はなされるものの、Ag合金膜の加熱時の構造変化を抑制するには不十分であり、実用上の課題が残されている。また、特許第3365762 号公報(特許文献3)においては、AgにNdを添加することにより大きく耐熱性を改善したAg合金膜が提案されている。さらにAg-Nd にAuやPdを添加して、化学的安定性と耐熱性を同時に向上させる方法も提案されている。また、液晶ディスプレイ用反射電極では、保護膜としてITO 、SiO2、TiO2などの酸化物系誘電体材料を積層して耐久性を高める方法が提示されている。
【0007】
しかしながら、これらの何れの方法においても、耐久性を高めるためには、添加元素の量を増加させる必要があり、その結果、特に波長400nm 前後の短波長側で反射率が低下するという問題点があった。また、酸化物系誘電体材料を積層した場合も、酸化膜の吸収や散乱により、反射率が大きく低下する。このため、Agが有する高い反射率を維持させながら耐久性を向上すること、即ち、高い反射率と優れた耐久性〔化学的安定性(耐食性)、耐熱性(加熱時の構造変化が起り難いこと)〕を両立することは、非常に難しい課題であった。
【0008】
【特許文献1】
米国特許第6007889号明細書
【特許文献2】
特開平6−208732号公報
【特許文献3】
特許第3365762号公報
【0009】
【発明が解決しようとする課題】
以上述べたように、光情報記録媒体やフラットパネルディスプレイ素子に用いられる反射膜には、高い反射率と同時に高い耐久性(化学的安定性と耐熱性)が要求される。しかしながら、これらの要求特性の全てを満足する金属薄膜は、未だ得られていない。
【0010】
本発明はこのような事情に着目してなされたものであって、その目的は、反射率が高く、且つ、耐久性(化学的安定性、耐熱性)に優れた金属膜を提供し、また、このように優れた特性を有する金属膜を用いた光反射体、光情報記録媒体、フラットパネルディスプレイ素子およびリフレクターを提供しようとするものである。
【0011】
【課題を解決するための手段】
本発明者らは、上記目的を達成するため、鋭意研究を重ねた結果、本発明を完成するに至った。本発明は、反射率が高く、且つ、耐久性(化学的安定性、耐熱性)に優れたAg合金積層膜、および、このAg合金積層膜を用いた光反射体、光情報記録媒体、フラットパネルディスプレイ素子およびリフレクターであり、上記目的を達成できるものである。
【0012】
このようにして完成され、上記目的を達成することのできた本発明は、Ag合金積層膜、および、このAg合金積層膜を用いた光反射体、光情報記録媒体、フラットパネルディスプレイ素子ならびにリフレクターに係わり、請求項1〜9記載のAg合金積層膜(第1〜9発明に係るAg合金積層膜)、請求項10記載の光反射体、請求項11記載の光情報記録媒体、請求項12記載のフラットパネルディスプレイ素子、請求項13記載のリフレクターであり、それは次のような構成としたものである。
【0013】
即ち、請求項1記載のAg合金積層膜は、少なくとも1種類のAg合金膜が基板上に他層を介することなく形成され、更に該Ag合金膜の上に純Ag膜が他層を介することなく形成されている積層膜において、基板側のAg合金膜がその上層の純Ag膜よりも高い耐熱性を有することを特徴とするAg合金積層膜である〔第1発明〕。
【0014】
請求項2記載のAg合金積層膜は、少なくとも2種類のAg合金膜を基板上に他層を介することなく順次積層したAg合金積層膜において、基板側のAg合金膜がその上層のAg合金膜よりも高い耐熱性を有することを特徴とするAg合金積層膜である〔第2発明〕。
【0015】
請求項3記載のAg合金積層膜は、前記基板側のAg合金膜が希土類元素の1種以上を合計で0.1 〜3.0 原子%含有する請求項1または2記載のAg合金積層膜である〔第3発明〕。
【0016】
請求項4記載のAg合金積層膜は、前記希土類元素がNdおよび/またはYである請求項3記載のAg合金積層膜である〔第4発明〕。
【0017】
請求項5記載のAg合金積層膜は、前記基板側のAg合金膜の上層のAg合金膜がCu、Au、Pd、Bi、Sbの1種以上を含む請求項2〜4のいずれかに記載のAg合金積層膜である〔第5発明〕。
【0018】
請求項6記載のAg合金積層膜は、前記基板側のAg合金膜の上層のAg合金膜が、Au、Cuの1種以上を合計で0.3 〜5.0 原子%、及び/又は、Pdを0.3 〜3.0 原子%、及び/又は、Biを0.01〜0.5 原子%含む請求項5記載のAg合金積層膜である〔第6発明〕。
【0019】
請求項7記載のAg合金積層膜は、前記基板側のAg合金膜の上層のAg合金膜または純Ag膜の膜厚が5〜70nmである請求項1〜6のいずれかに記載のAg合金積層膜である〔第7発明〕。
【0020】
請求項8記載のAg合金積層膜は、前記基板側のAg合金膜とその上層のAg合金膜または純Ag膜とが、結晶構造の異なる異相界面層を介することなく連続的に形成されている請求項1〜7のいずれかに記載のAg合金積層膜である〔第8発明〕。請求項9記載のAg合金積層膜は、前記基板がガラス基板である請求項1〜8のいずれかに記載のAg合金積層膜である〔第9発明〕。
【0021】
請求項10記載の光反射体は、請求項1〜9のいずれかに記載のAg合金積層膜が基板上に形成されていることを特徴とする光反射体である〔第10発明〕。
【0022】
請求項11記載の光情報記録媒体は、請求項1〜9のいずれかに記載のAg合金積層膜を反射層として用いた光情報記録媒体である〔第11発明〕。
【0023】
請求項12記載のフラットパネルディスプレイ素子は、請求項1〜9のいずれかに記載のAg合金積層膜を反射電極および/または反射体として用いたフラットパネルディスプレイ素子である〔第12発明〕。
【0024】
請求項13記載のリフレクターは、請求項1〜9のいずれかに記載のAg合金積層膜を反射層として用いた車載用および/または照明用リフレクターである〔第13発明〕。
【0025】
【発明の実施の形態】
本発明者らは、Agに種々の元素を添加したAg合金スパッタリングターゲットを製作し、これらターゲットまたは純Agスパッタリングターゲット上に種々の元素のチップを配置したものを使用してスパッタリング法により種々の成分・組成のAg合金膜(Ag合金薄膜)を形成し、その組成及び反射膜としての特性を調べた。特に、環境試験(一般的には温度約80℃、湿度約90%RHの環境下で数10〜数100 時間放置する)後に反射率等の低下が認められる原因について、従来より検討されてきた化学的安定性に加え、薄膜の微細構造変化という観点からAg合金膜を2層積層した積層膜〔Ag合金積層膜(2層膜)〕について検討を行い、以下のことを見いだした。
【0026】
(1) 基板(以下、基体ともいう)上にAg-Nd 系Ag合金膜(下部層)を形成し、その上に、単層では耐熱性を持たない純Ag膜や Ag-他元素(Pt,Au,Pd,Rh,Ru,Cu,Bi,Sb)系Ag合金膜(上部層)を積層したAg合金積層膜(2層膜)は、前記環境試験の試験環境下において、粒成長などの構造変化を起こさない(耐熱性に優れている)。なお、純Ag膜や Ag-他元素(Pt,Au,Pd,Rh,Ru,Cu,Bi,Sb)系Ag合金膜からなる前記上部層を説明するにあたり、当該上部層が純Ag膜である場合も含め、代表してAg合金膜ということがある。
【0027】
ここで、上記下部層のAg合金膜(以下、下部Ag合金層ともいう)は、その上部層のAg合金膜(以下、上部Ag合金層ともいう)よりも高い耐熱性を有する。従って、上記のことは、下部層に耐熱性の高い層を用いることによって、膜全体の耐熱性が向上すると換言することができる〔第1、第2発明に関係する事項〕。
【0028】
なお、従来技術では、耐熱性の高い層で表面を保護する方法が一般的であり、上記のように下部層に耐熱性の高い層を用いることによって、膜全体の耐熱性を向上させる方法は新規である。
【0029】
(2) 上部Ag合金層を、Au,Pd,Cu,Pt,Ru,Rh,Bi,Sbの1種以上を含有させたAg合金膜とすることにより、Ag-Nd 系Ag合金膜(単層)では困難であった化学的安定性(特にハロゲン元素に対する耐食性)を向上させることが可能である〔第5発明に関係する事項〕。
【0030】
(3) 上部Ag合金層の膜厚は5〜70nmがよい〔第7発明に関係する事項〕。5nm未満の場合は、反射率の点で下部層のAg-Nd 系Ag合金膜との有意差が無くなる。70nm超の場合は、上部Ag合金層の構造変化が相対的に顕著になり、耐熱性が低下する。耐熱性を重視する場合は、上部Ag合金層の膜厚は5〜30nmが特に良い。高反射率を重視する場合には、上部Ag合金層の膜厚は20〜50nmが特に良い。
【0031】
(4) 上部Ag合金層と下部Ag合金層との間に結晶構造の異なる異相界面層(界面層、酸化膜等)がなく、結晶粒が連続していると、特に耐熱性向上の効果が大きい。即ち、下部Ag合金層と上部Ag合金層とが異相を介することなく連続的に形成されていると、特に耐熱性向上の効果が大きい〔第8発明に関係する事項〕。これは、上部Ag合金層と下部Ag合金層が連続した結晶粒を形成することにより、これら2層は金属結合となるため、これらの結合を破壊して上部Ag合金層が独立に形態変化を起こすことが困難となるからである。このような膜は、下部Ag合金層と上部Ag合金層を連続的に成膜して積層すること(下部Ag合金層の成膜に連続して上部Ag合金層の成膜を行うこと)により、形成することができる。
【0032】
(5) 下部Ag合金層は、希土類元素を0.1 〜3.0 原子%(以下、at%ともいう)含有するAg合金膜であることが望ましく、特にNd、Yの1種以上を合計で0.1 〜3.0 at%含有するAg合金膜であることがより望ましい〔第3発明、第4発明に関係する事項〕。
【0033】
(6) 上部Ag合金層としては、反射率の点では、純Ag膜が良好である。ただし、純Ag膜よりも化学的安定性を高めるために、AgにCu、Au、Pd、Bi、Sb、Pt,Ru,Rhを加えてもよい〔第5発明に関係する事項〕。特に、AuもしくはPdの添加が効果的である。なお、Ag-Pd 系Ag合金膜(単層)では、前述のように耐熱性が低く、容易に構造変化が起こる。
【0034】
このとき、Au,Pdの添加量は 0.3〜3.0 at%がよい。 0.3at%未満では耐食性向上の効果が少なく、3.0 at%超では反射率が低下するからである〔第6発明に関係する事項〕。
【0035】
Bi、Sbの添加量は0.01〜0.5 at%が望ましい。0.01at%未満では耐食性向上の効果が少なく、0.5 at%超では反射率が低下するからである〔第6発明に関係する事項〕。
【0036】
本発明は、上記のような知見に基づき完成されたものである。このようにして完成された本発明に係るAg合金積層膜は、請求項1〜9記載のAg合金積層膜(第1〜9発明に係るAg合金積層膜)であり、反射率が高く、且つ、耐久性(化学的安定性、耐熱性)に優れている。
【0037】
この中、第1発明、第2発明に係るAg合金積層膜が基本的なものである。これらの発明に係るAg合金積層膜は、少なくとも2種類のAg合金膜(上部層が純Ag膜である場合を含む)を基板上に他層を介することなく順次積層したAg合金積層膜において、基板側のAg合金膜がその上層のAg合金膜よりも高い耐熱性を有することを特徴とするAg合金積層膜であることとしている。このAg合金積層膜は、従来の単層膜や誘電体保護膜を積層した反射膜では得られない高反射率および優れた耐久性(化学的安定性、耐熱性)を有することができる。
【0038】
このメカニズムについて、以下説明する。
純Ag膜や Ag-他元素(Au,Pd,Cu,Pt,Ru,Rh,Bi,Sb) 系Ag合金膜は、高い反射率や優れた耐食性を有するが、耐熱性が非常に劣る。一方、Ag-Nd 系Ag合金膜は、優れた耐熱性を有するものの、反射率や耐食性で相対的に劣る。
【0039】
Ag-Nd 系Ag合金膜の上に、純Ag膜や、 Ag-他元素(Au,Pd,Cu,Pt,Ru,Rh,Bi,Sb) 系Ag合金膜を連続的に成膜して積層すると、前者の下部Ag合金層と後者の上部Ag合金層は同じAg主成分の合金であり、かつ、Al合金のように表面に酸化被膜が出来ないことから、結晶粒が連続して成長した(境界がなく成長した)構造の2層膜を得ることができる。
【0040】
このような膜では、下部層に用いたAg-Nd 系Ag合金膜は耐熱性が高いので、加熱によって結晶粒径が増大したり表面粗度が増加したりすることがなく、このため、上部層のAg合金膜〔本来は(このAg合金膜が単層の場合には)加熱により構造変化を起こす〕も下地(下部層のAg合金膜)に固定されて、動かないので、加熱により構造変化を起こすことがなくなる。従って、膜全体の耐熱性が向上し、優れた耐熱性を有することとなる。
【0041】
一方、反射特性(反射率)については、膜の表層部の光学特性によって決まるため、上部層として高い反射率を有するAg合金膜を形成することにより、高反射率が得られる。なお、上部層の膜厚が薄い(30nm以下)場合には、入射光が上部層を透過し、下部層にいたるため、上部層の厚みに応じて反射率が変化する。
【0042】
なお、上記メカニズムは、下部層としてAg-Nd 系Ag合金膜を用い、上部層として純Ag膜や Ag-他元素(Au,Pd,Cu,Pt,Ru,Rh,Bi,Sb) 系Ag合金膜を用いた場合について説明したが、これらに限定されるものではなく、他のAg合金膜を用いた場合も同様である。
【0043】
下部Ag合金層(耐熱性Ag合金膜)としては、Ag-Nd 系が望ましいが、希土類(含むY)やTiなどでも効果はある。
【0044】
特開2002-245674 号公報等には、反射体において2種類の薄膜を積層するという技術が記載されているが、この技術は異種の材料を積層して、意図的に異相界面を形成させて結晶粒の微細化をはかるものであり、本発明とは異なる発明である。
【0045】
本発明に係る光反射体、光情報記録媒体、フラットパネルディスプレイ素子、リフレクターは、上記のような優れた特性を有する本発明に係るAg合金積層膜を反射層、反射膜、反射電極等として用いているので、優れた反射率が得られて機能の向上がはかれ、また、耐久性の向上がはかれる。
【0046】
【実施例】
本発明の実施例および比較例を以下説明する。なお、本発明はこの実施例に限定されるものではなく、本発明の趣旨に適合し得る範囲で適当に変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に含まれる。以下、合金での%は原子%(at%)のことである〔合金においては原子%(at%)を%という〕。
【0047】
〔実施例1、比較例1〕
本実施例においては、下部Ag合金層としてAg-0.7%Nd-0.9%Cu合金よりなるAg合金膜を成膜し、上部Ag合金層として純Ag膜またはAg-1.0%Pd 合金あるいはAg-1.0%Au 合金よりなるAg合金膜を成膜したAg合金積層膜(2層膜)について、環境試験前後の表面粗さの変化を原子間力顕微鏡(AFM )を用いて観察した。また、波長650nm 、400nm における反射率の測定を行った。
【0048】
このとき、基板としてはガラス基板(コーニング#1737、基板サイズ:直径50mm、厚さ 0.5mm)を用いた。スパッタ装置としてDCマグネトロンスパッタ装置を用い、前記ガラス基板上に厚さ150nm の下部Ag合金層(Ag-0.7%Nd-0.9%Cu合金)を成膜し、これに引き続き、上部Ag合金層(純Ag、Ag-1.0%Pd 又はAg-1.0%Au 合金)を連続的に成膜して、Ag合金積層膜(2層膜)を作製した。そして、このAg合金積層膜を試料(試験材)として用いた。
【0049】
上記成膜の条件は、真空度: 1.0×10-6Torr以下、Arガス圧:2mTorr 、Arガス流量:30sccm、基板温度:23℃、スパッタリングパワー密度:3.31W/cm2 、ターゲット基板間距離:55mmとした。
【0050】
環境試験の条件は、温度:80℃、湿度:90%RH、時間:48hとした。
【0051】
一方、比較例として、純Ag膜(単層膜)や、Ag-1.0%Pd 合金またはAg-1.0%Au 合金よりなるAg合金膜(単層膜)を作製し、上記と同様の試験を行った。
【0052】
上記試験の結果を表1に示す。なお、この表1において、上部Ag層は上部Ag合金層を示すものである。下部ANC 層は、Nd含有Ag合金よりなる下部Ag合金層を示すものであり、この場合のNd含有Ag合金はAg-0.7%Nd-0.9%Cu合金である。
【0053】
この表1からわかるように、比較例に係る純Ag膜(単層膜)は、環境試験前での反射率は高いものの、環境試験前での表面粗度Raが大きく(4.2nm)、環境試験後での表面粗度Raが更に大きく(6.8nm)、環境試験により表面粗度Raが増大しており、また、環境試験後での反射率が低くて環境試験により反射率が低下している。従って、この純Ag膜(単層膜)は、加熱時の構造変化の程度が大きくて耐熱性に劣る。
【0054】
比較例に係るAg-1.0%Au 合金よりなるAg合金膜(単層膜)およびAg-1.0%Pd 合金よりなるAg合金膜(単層膜)は、環境試験前も環境試験後も反射率は高く、また、環境試験前での表面粗度Raは小さい(それぞれ0.8nm 、0.9nm)ものの、環境試験後での表面粗度Raが大きくなり(それぞれ1.5nm 、1.8nm)、環境試験により表面粗度Raが増大している。従って、このAg合金膜(単層膜)は、加熱時の構造変化の程度が大きくて耐熱性に劣る。
【0055】
これに対し、本発明の実施例に係るAg合金積層膜(2層膜)は、上部Ag合金層が純Ag膜の場合も、Ag-1.0%Pd 合金膜の場合も、Ag-1.0%Au 合金膜の場合も、環境試験後での表面粗度Raは環境試験前での表面粗度Raと同程度に小さく、環境試験による表面粗度Raの増大がほとんどないか、もしくは該Raの増大の程度が極めて小さい。従って、これらのAg合金積層膜(2層膜)は、加熱時の構造変化がないか、もしくは該構造変化の程度が小さくて耐熱性に優れている。
【0056】
本発明の実施例に係るAg合金積層膜(2層膜)において、上部Ag合金層の膜厚の影響をみると、上部Ag合金層が純Ag膜の場合も、Ag-1.0%Pd 合金膜の場合も、Ag-1.0%Au 合金膜の場合も、上部Ag合金層の膜厚が増大すると共に、反射率は向上し、30nm以上の膜厚で、比較例に係る純Ag膜(単層膜)の場合とほぼ同様の反射率となることが分かる。一方、表面粗度は、上部Ag合金層の膜厚の増大と共に大きくなっている。これらから、反射率、耐熱性のバランスで最も良好な膜厚は10〜50nm近傍となる。
【0057】
〔実施例2、比較例2〕
本実施例では、上部Ag合金層の組成を変化させたときの反射率、耐熱性、耐食性の評価を行った。
【0058】
このとき、下部Ag合金層としてAg-0.7%Nd-0.9%Cu合金よりなるAg合金膜を成膜した。上部Ag合金層として、Ag-Au 系Ag合金(Au含有量:変化)、Ag-Pd 系Ag合金(Pd含有量:変化)またはAg-Bi 系Ag合金(Bi含有量:変化)よりなるAg合金膜を成膜した。下部Ag合金層の膜厚は150nm とし、上部Ag合金層の膜厚は30nmとした。
【0059】
耐食性の評価については、環境試験後の膜表面および5%NaCl水溶液に5min 浸漬後の膜表面について目視による観察を行い、白点の発生状況で判定した。即ち、この判定に際し、目視で剥離や全面にわたる変色が認められるものは×(不良)、1mm以上の白点が基板上に20個以上見られるものは△(上記×の場合よりは良いが、耐食性不充分)、前記のような白点が5〜20個のものは○(良好)、5個以下のものは◎(上記○の場合よりも優れる)とした。
【0060】
上記評価試験の結果を表2に示す。なお、この表2において、上部Ag層は上部Ag合金層を示すものである。下部ANC 層は、Nd含有Ag合金よりなる下部Ag合金層を示すものであり、この場合のNd含有Ag合金はAg-0.7%Nd-0.9%Cu合金である。実施例は実施例2に該当することを示す。比較例は、前記実施例2に対しての比較例であって、この全てが本発明の範囲外のものに該当することを意味するものではない。この比較例の中で、上部Ag合金層:純Ag/ANC積層膜と記載のものは、上部Ag合金層として純Ag膜を成膜したAg合金積層膜のことであり、これは本発明の範囲内のものであるが、前記実施例2に対しての比較例として位置づけている。
【0061】
この表2からわかるように、下部Ag合金層としてAg-0.7%Nd-0.9%Cu合金よりなるAg合金膜を成膜し、上部Ag合金層として純Ag膜を成膜したAg合金積層膜(表2では、純Ag/ANC積層膜と表示)、Ag-0.7%Nd-0.9%Cu合金よりなるAg合金膜(単層膜)(表2では、ANC 単層膜と表示)では、5%NaCl水溶液浸漬後の膜表面に白点発生が多く認められた。
【0062】
これに対し、上部Ag合金層としてAg-Au 系Ag合金やAg-Pd 系Ag合金よりなるAg合金膜を成膜したAg合金積層膜(2層膜)において、Au含有量:0.3 %以上、Pd含有量:0.3 %以上のものは、ほとんど白点が認められない。ただし、Au含有量:5%以上の場合や、Pd含有量:3%以上の場合、特に波長400nm で反射率が大きく低下した。
【0063】
上部Ag合金層としてAg-Bi 系Ag合金よりなるAg合金膜を成膜したAg合金積層膜(2層膜)は、Bi含有量:0.01〜0.5 %において高い耐食性が得られた。
【0064】
〔実施例3、比較例3〕
本実施例では、下部Ag合金層のAg-Nd 系Ag合金膜のNd含有量を変化させた場合の耐熱性(加熱温度300 ℃まで)の変化について調べた。このために、AFM (原子間力顕微鏡)による表面粗度の観察を行った。
【0065】
このとき、下部Ag合金層の膜厚は150nm とし、上部Ag合金層の純Ag膜の膜厚は10,30,50nmとした。耐熱性を調べるため、耐熱性試験を行った。この耐熱性試験は、真空熱処理(真空度: 1.0×10-5Torr以下)にて行った。この熱処理での加熱温度は、100 ℃、200 ℃、300 ℃とし、熱処理時間は1時間とした。
【0066】
上記試験の結果を表3に示す。Nd含有量:0.3 %で約200 ℃の加熱、Nd含有量:0.5 %以上で300 ℃の加熱に対しても、表面粗度の変化が少なく、高い耐熱性を示すことが分かった。一方、Ndの添加量が3.0 %を超えると、反射率の低下が大きく、特に上部Ag合金層のAg膜が薄い場合には、下部Ag合金層の反射率の影響が大きく、膜全体の反射率が低下するため、好ましくない。
【0067】
【表1】
【0068】
【表2】
【0069】
【表3】
【0070】
【発明の効果】
本発明に係るAg合金積層膜は、反射率が高く、且つ、耐久性(化学的安定性、耐熱性)に優れている。このため、光反射体、光情報記録媒体、フラットパネルディスプレイ素子、リフレクター等の反射層、反射膜、反射電極等として好適に用いることができ、それらの機能の向上および耐久性の向上がはかれる。
【0071】
本発明に係る光反射体、光情報記録媒体、フラットパネルディスプレイ素子、リフレクターは、上記のような優れた特性を有する本発明に係るAg合金積層膜を反射層、反射膜、反射電極等として用いているので、優れた反射率が得られて機能の向上がはかれ、また、耐久性の向上がはかれる。[0001]
BACKGROUND OF THE INVENTION
The present invention belongs to a technical field related to an Ag alloy laminated film, a light reflector, an optical information recording medium, a flat panel display element, and a reflector, and in particular, an optical information recording medium such as a CD or a DVD or a reflective electrode for a flat panel display element. The present invention belongs to a technical field related to an Ag alloy laminated film having high durability and high reflectance used for various reflectors and a light reflector using the Ag alloy laminated film.
[0002]
[Prior art]
Ag-based reflective materials are being used for optical information recording media and reflective electrodes for flat panel display elements because of their high reflectivity.
[0003]
Optical information recording media include read-only discs, write-once discs, and rewritable discs. All of these discs have a structure in which a reflective film layer based on Ag, Al, Au, etc. is provided. At the time of data reading, the data is reproduced by detecting the phase difference and reflection difference of the laser light applied to the disk.
[0004]
Further, in the flat panel display element, a reflective film having Ag or Al as a base material is provided on an electrode or the like of a reflective liquid crystal display.
[0005]
Reflective films composed mainly of Ag are inferior to Au or Al alloy-based thin films in constant temperature and humidity tests and heat resistance tests, but they are practically used because they exhibit the highest reflectivity in the practical wavelength range of 400 to 800 nm. It is being advanced.
[0006]
As a method for enhancing the durability of the Ag alloy film, for example, US Pat. No. 6,0078,892 (Patent Document 1) and JP-A-6-208732 (Patent Document 2) describe that Ag, Au, Cu, Pd A method of adding chemical elements such as Rh and enhancing chemical stability is shown. However, in these Ag alloy films, although the corrosion resistance of the Ag-based alloy thin film is improved, it is insufficient to suppress the structural change during heating of the Ag alloy film, and a practical problem remains. . Japanese Patent No. 3336762 (Patent Document 3) proposes an Ag alloy film that greatly improves heat resistance by adding Nd to Ag. In addition, a method has been proposed in which Au and Pd are added to Ag—Nd to simultaneously improve chemical stability and heat resistance. In addition, for reflective electrodes for liquid crystal displays, a method has been proposed in which an oxide-based dielectric material such as ITO, SiO 2 or TiO 2 is laminated as a protective film to increase durability.
[0007]
However, in any of these methods, in order to increase durability, it is necessary to increase the amount of additive elements, and as a result, there is a problem in that the reflectance decreases particularly on the short wavelength side of around 400 nm. there were. Also, when an oxide-based dielectric material is laminated, the reflectance is greatly reduced due to absorption and scattering of the oxide film. For this reason, durability is improved while maintaining the high reflectivity of Ag, that is, high reflectivity and excellent durability [chemical stability (corrosion resistance), heat resistance (structural changes are difficult to occur during heating) It was a very difficult task to achieve both.
[0008]
[Patent Document 1]
US Pat. No. 6,0078,896 [Patent Document 2]
JP-A-6-208732 [Patent Document 3]
Japanese Patent No. 3365762 [0009]
[Problems to be solved by the invention]
As described above, a reflective film used for an optical information recording medium or a flat panel display element is required to have high durability and high durability (chemical stability and heat resistance). However, a metal thin film satisfying all of these required characteristics has not been obtained yet.
[0010]
The present invention has been made paying attention to such circumstances, and the object thereof is to provide a metal film having high reflectivity and excellent durability (chemical stability, heat resistance), and An object of the present invention is to provide a light reflector, an optical information recording medium, a flat panel display element and a reflector using a metal film having such excellent characteristics.
[0011]
[Means for Solving the Problems]
As a result of intensive studies to achieve the above object, the present inventors have completed the present invention. The present invention relates to an Ag alloy laminated film having high reflectivity and excellent durability (chemical stability, heat resistance), a light reflector, an optical information recording medium, and a flat using the Ag alloy laminated film A panel display element and a reflector, which can achieve the above object.
[0012]
The present invention, which has been completed in this way and has achieved the above object, is an Ag alloy laminated film, and a light reflector, an optical information recording medium, a flat panel display element, and a reflector using the Ag alloy laminated film. relates, (Ag alloy laminated film according to the first to ninth invention) claims Ag alloy laminated film of claim 1 to 9, wherein the light reflector according to claim 10, claim 11, wherein the optical information recording medium, according to claim 12, wherein A flat panel display device according to claim 13, wherein the reflector is configured as follows.
[0013]
That is, in the Ag alloy laminated film according to claim 1, at least one kind of Ag alloy film is formed on the substrate without any other layer, and a pure Ag film on the Ag alloy film further has another layer. In the laminated film formed without any problem, the Ag alloy laminated film is characterized in that the Ag alloy film on the substrate side has higher heat resistance than the pure Ag film on the upper layer [first invention].
[0014]
The Ag alloy laminated film according to claim 2, wherein at least two types of Ag alloy films are sequentially laminated on the substrate without any other layer, and the Ag alloy film on the substrate side is the Ag alloy film on the upper layer. It is an Ag alloy laminated film characterized by having higher heat resistance [second invention].
[0015]
The Ag alloy laminated film according to claim 3 is the Ag alloy laminated film according to claim 1 or 2, wherein the Ag alloy film on the substrate side contains a total of 0.1 to 3.0 atomic% of one or more rare earth elements. 3 invention].
[0016]
The Ag alloy laminated film according to claim 4 is the Ag alloy laminated film according to claim 3, wherein the rare earth element is Nd and / or Y [fourth invention].
[0017]
The Ag alloy laminated film according to claim 5, wherein the Ag alloy film as an upper layer of the Ag alloy film on the substrate side includes one or more of Cu, Au, Pd, Bi, and Sb. [5th invention].
[0018]
The Ag alloy laminated film according to claim 6, wherein the Ag alloy film on the upper side of the Ag alloy film on the substrate side has a total of one or more of Au and Cu of 0.3 to 5.0 atomic% and / or Pd of 0.3 to The Ag alloy laminated film according to claim 5, which contains 3.0 atomic% and / or Bi of 0.01 to 0.5 atomic% [Sixth Invention].
[0019]
7. The Ag alloy laminated film according to claim 7, wherein the Ag alloy film on the upper side of the Ag alloy film on the substrate side or the pure Ag film has a thickness of 5 to 70 nm. It is a laminated film [seventh invention].
[0020]
In the Ag alloy laminated film according to claim 8, the Ag alloy film on the substrate side and the Ag alloy film or the pure Ag film on the upper side thereof are continuously formed without any interphase interface layers having different crystal structures. It is an Ag alloy laminated film in any one of Claims 1-7 [8th invention]. The Ag alloy laminated film according to claim 9 is the Ag alloy laminated film according to any one of claims 1 to 8, wherein the substrate is a glass substrate [9th invention].
[0021]
A light reflector according to claim 10 is a light reflector in which the Ag alloy laminated film according to any one of claims 1 to 9 is formed on a substrate [10th invention].
[0022]
The optical information recording medium according to claim 11 wherein is an optical information recording medium using a reflective layer Ag alloy laminated film according to any one of claims 1 to 9 Eleventh Invention.
[0023]
Flat panel display device of claim 12, wherein is a flat panel display device using the Ag alloy laminated film according to any one of claims 1 to 9 as the reflecting electrode and / or reflector Twelfth Invention.
[0024]
The reflector according to claim 13 is a vehicle-mounted and / or illumination reflector using the Ag alloy laminated film according to any one of claims 1 to 9 as a reflective layer [ 13th invention].
[0025]
DETAILED DESCRIPTION OF THE INVENTION
The inventors of the present invention manufactured an Ag alloy sputtering target in which various elements were added to Ag, and various components were formed by sputtering using these targets or those in which chips of various elements were arranged on a pure Ag sputtering target. -An Ag alloy film (Ag alloy thin film) with a composition was formed, and the composition and characteristics as a reflective film were investigated. In particular, the cause of a decrease in reflectivity after an environmental test (generally left for several tens to several hundred hours in an environment of about 80 ° C. and humidity of about 90% RH) has been studied. In addition to chemical stability, a laminated film in which two Ag alloy films were laminated [Ag alloy laminated film (two-layer film)] was examined from the viewpoint of changing the microstructure of the thin film, and the following was found.
[0026]
(1) An Ag-Nd-based Ag alloy film (lower layer) is formed on a substrate (hereinafter also referred to as a substrate) , and a pure Ag film or Ag-other element (Pt , Au, Pd, Rh, Ru, Cu, Bi, Sb) Ag alloy laminated film (double layer film) laminated with an Ag alloy film (upper layer) can be used for grain growth under the test environment of the environmental test. Does not cause structural change (excellent heat resistance). In describing the upper layer made of a pure Ag film or an Ag-other element (Pt, Au, Pd, Rh, Ru, Cu, Bi, Sb) based Ag alloy film, the upper layer is a pure Ag film. In some cases, the Ag alloy film is representative.
[0027]
Here, the Ag alloy film of the lower layer (hereinafter also referred to as the lower Ag alloy layer) has higher heat resistance than the Ag alloy film of the upper layer (hereinafter also referred to as the upper Ag alloy layer). Therefore, the above can be said that the heat resistance of the entire film is improved by using a layer having high heat resistance for the lower layer [matter related to the first and second inventions].
[0028]
In the prior art, a method of protecting the surface with a layer having high heat resistance is generally used, and a method for improving the heat resistance of the entire film by using a layer having high heat resistance as the lower layer as described above is as follows. New.
[0029]
(2) By making the upper Ag alloy layer an Ag alloy film containing at least one of Au, Pd, Cu, Pt, Ru, Rh, Bi, and Sb, an Ag-Nd-based Ag alloy film (single layer) It is possible to improve the chemical stability (especially corrosion resistance against halogen elements), which has been difficult with [1].
[0030]
(3) The thickness of the upper Ag alloy layer is preferably 5 to 70 nm [matter related to the seventh invention]. When the thickness is less than 5 nm, there is no significant difference from the lower layer Ag—Nd-based Ag alloy film in terms of reflectivity. When it exceeds 70 nm, the structural change of the upper Ag alloy layer becomes relatively remarkable, and the heat resistance is lowered. When importance is attached to heat resistance, the film thickness of the upper Ag alloy layer is particularly preferably 5 to 30 nm. In the case where high reflectance is important, the thickness of the upper Ag alloy layer is particularly preferably 20 to 50 nm.
[0031]
(4) There is no heterogeneous interface layer (interface layer, oxide film, etc.) with a different crystal structure between the upper Ag alloy layer and the lower Ag alloy layer. large. That is, when the lower Ag alloy layer and the upper Ag alloy layer are continuously formed without interstitial phases, the effect of improving the heat resistance is particularly great [matter related to the eighth invention]. This is because the upper Ag alloy layer and the lower Ag alloy layer form continuous crystal grains, and these two layers become metal bonds, so these bonds are broken and the upper Ag alloy layer changes shape independently. It is difficult to wake up. Such a film is formed by continuously forming a lower Ag alloy layer and an upper Ag alloy layer (by forming the upper Ag alloy layer continuously with the lower Ag alloy layer). Can be formed.
[0032]
(5) The lower Ag alloy layer is preferably an Ag alloy film containing a rare earth element in an amount of 0.1 to 3.0 atomic% (hereinafter also referred to as at%), and in particular, one or more of Nd and Y are added in a total amount of 0.1 to 3.0. It is more desirable that the Ag alloy film contains at% [matter related to the third invention and the fourth invention].
[0033]
(6) As the upper Ag alloy layer, a pure Ag film is good in terms of reflectivity. However, Cu, Au, Pd, Bi, Sb, Pt, Ru, and Rh may be added to Ag in order to improve the chemical stability as compared with a pure Ag film [related matters of the fifth invention]. In particular, addition of Au or Pd is effective. Note that the Ag—Pd-based Ag alloy film (single layer) has low heat resistance as described above and easily undergoes structural changes.
[0034]
At this time, the addition amount of Au and Pd is preferably 0.3 to 3.0 at%. This is because if it is less than 0.3 at%, the effect of improving the corrosion resistance is small, and if it exceeds 3.0 at%, the reflectance decreases [matter related to the sixth invention].
[0035]
The addition amount of Bi and Sb is preferably 0.01 to 0.5 at%. This is because if it is less than 0.01 at%, the effect of improving the corrosion resistance is small, and if it exceeds 0.5 at%, the reflectance decreases [matter related to the sixth invention].
[0036]
The present invention has been completed based on the above findings. The Ag alloy laminated film according to the present invention thus completed is an Ag alloy laminated film according to claims 1 to 9 (Ag alloy laminated film according to the first to ninth inventions), has a high reflectance, and , Excellent in durability (chemical stability, heat resistance).
[0037]
Among these, the Ag alloy laminated film according to the first and second inventions is fundamental. The Ag alloy laminated film according to these inventions is an Ag alloy laminated film in which at least two types of Ag alloy films (including the case where the upper layer is a pure Ag film) are sequentially laminated on the substrate without interposing other layers , The Ag alloy film on the substrate side is an Ag alloy laminated film characterized by having higher heat resistance than the upper Ag alloy film. This Ag alloy laminated film can have high reflectivity and excellent durability (chemical stability and heat resistance) that cannot be obtained by a conventional reflective film in which a single layer film or a dielectric protective film is laminated.
[0038]
This mechanism will be described below.
Pure Ag films and Ag-other elements (Au, Pd, Cu, Pt, Ru, Rh, Bi, Sb) based Ag alloy films have high reflectivity and excellent corrosion resistance, but have extremely poor heat resistance. On the other hand, an Ag—Nd-based Ag alloy film has excellent heat resistance, but is relatively inferior in reflectance and corrosion resistance.
[0039]
A pure Ag film or Ag-other element (Au, Pd, Cu, Pt, Ru, Rh, Bi, Sb) -based Ag alloy film is continuously deposited on the Ag-Nd-based Ag alloy film. Then, the former lower Ag alloy layer and the latter upper Ag alloy layer are alloys of the same Ag main component, and since an oxide film cannot be formed on the surface like Al alloy, crystal grains grew continuously. A two-layer film having a structure (growing without a boundary) can be obtained.
[0040]
In such a film, the Ag—Nd-based Ag alloy film used for the lower layer has high heat resistance, so that the crystal grain size and surface roughness are not increased by heating. The Ag alloy film of the layer (originally (when this Ag alloy film is a single layer) causes structural change by heating) is also fixed to the base (lower Ag alloy film) and does not move. No change will occur. Accordingly, the heat resistance of the entire film is improved and the film has excellent heat resistance.
[0041]
On the other hand, since the reflection characteristics (reflectance) are determined by the optical characteristics of the surface layer portion of the film, high reflectivity can be obtained by forming an Ag alloy film having high reflectivity as the upper layer. When the thickness of the upper layer is thin (30 nm or less), incident light is transmitted through the upper layer and reaches the lower layer, so that the reflectance changes according to the thickness of the upper layer.
[0042]
The above mechanism uses an Ag-Nd-based Ag alloy film as the lower layer, and a pure Ag film or an Ag-other element (Au, Pd, Cu, Pt, Ru, Rh, Bi, Sb) -based Ag alloy as the upper layer. Although the case where the film is used has been described, the present invention is not limited thereto, and the same applies to the case where other Ag alloy films are used.
[0043]
As the lower Ag alloy layer (heat-resistant Ag alloy film), an Ag—Nd system is desirable, but even rare earth (including Y), Ti, etc. are effective.
[0044]
Japanese Patent Application Laid-Open No. 2002-245674 and the like describe a technique of laminating two kinds of thin films on a reflector, but this technique intentionally forms heterogeneous interfaces by laminating different materials. This is intended to reduce the size of crystal grains and is an invention different from the present invention.
[0045]
The light reflector, the optical information recording medium, the flat panel display element, and the reflector according to the present invention use the Ag alloy laminated film according to the present invention having the above excellent characteristics as a reflective layer, a reflective film, a reflective electrode, and the like. Therefore, an excellent reflectivity is obtained, the function is improved, and the durability is improved.
[0046]
【Example】
Examples of the present invention and comparative examples will be described below. The present invention is not limited to this embodiment, and can be implemented with appropriate modifications within a range that can be adapted to the gist of the present invention, all of which are within the technical scope of the present invention. include. Hereinafter,% in an alloy is atomic% (at%) (in an alloy, atomic% (at%) is referred to as%).
[0047]
[Example 1, Comparative Example 1]
In this embodiment, an Ag alloy film made of an Ag-0.7% Nd-0.9% Cu alloy is formed as the lower Ag alloy layer, and a pure Ag film, an Ag-1.0% Pd alloy, or Ag-1.0 is formed as the upper Ag alloy layer. Regarding the Ag alloy laminated film (two-layer film) on which an Ag alloy film made of% Au alloy was formed, the change in surface roughness before and after the environmental test was observed using an atomic force microscope (AFM). In addition, the reflectance at wavelengths of 650 nm and 400 nm was measured.
[0048]
In this case, the glass substrate as the substrate (Corning # 1737, substrate size: diameter 50 mm, thickness 0.5 mm) was used. A DC magnetron sputtering apparatus was used as a sputtering apparatus, and a lower Ag alloy layer (Ag-0.7% Nd-0.9% Cu alloy) having a thickness of 150 nm was formed on the glass substrate, followed by an upper Ag alloy layer (pure Ag, Ag-1.0% Pd or Ag-1.0% Au alloy) was continuously formed to produce an Ag alloy laminated film (two-layer film). And this Ag alloy laminated film was used as a sample (test material).
[0049]
The film formation conditions are as follows: degree of vacuum: 1.0 × 10 −6 Torr or less, Ar gas pressure: 2 mTorr, Ar gas flow rate: 30 sccm, substrate temperature: 23 ° C., sputtering power density: 3.31 W / cm 2 , distance between target substrates : 55 mm.
[0050]
The environmental test conditions were temperature: 80 ° C., humidity: 90% RH, and time: 48 h.
[0051]
On the other hand, as a comparative example, a pure Ag film (single layer film) or an Ag alloy film (single layer film) made of an Ag-1.0% Pd alloy or an Ag-1.0% Au alloy was prepared, and the same test as above was performed. It was.
[0052]
The results of the above test are shown in Table 1. In Table 1, the upper Ag layer indicates the upper Ag alloy layer. The lower ANC layer indicates a lower Ag alloy layer made of an Nd-containing Ag alloy. In this case, the Nd-containing Ag alloy is an Ag-0.7% Nd-0.9% Cu alloy.
[0053]
As can be seen from Table 1, the pure Ag film (single layer film) according to the comparative example has a high reflectivity before the environmental test, but has a large surface roughness Ra (4.2 nm) before the environmental test, and the environment. The surface roughness Ra after the test is even larger (6.8 nm), the surface roughness Ra is increased by the environmental test, and the reflectance after the environmental test is low and the reflectance is decreased by the environmental test. Yes. Therefore, this pure Ag film (single layer film) has a large degree of structural change upon heating and is inferior in heat resistance.
[0054]
The Ag alloy film (single layer film) made of Ag-1.0% Au alloy and the Ag alloy film (single layer film) made of Ag-1.0% Pd alloy according to the comparative example have the reflectance before and after the environmental test. Although the surface roughness Ra before the environmental test is small (0.8 nm and 0.9 nm, respectively), the surface roughness Ra after the environmental test is large (1.5 nm and 1.8 nm, respectively). The roughness Ra is increasing. Therefore, this Ag alloy film (single layer film) has a large degree of structural change upon heating and is inferior in heat resistance.
[0055]
On the other hand, the Ag alloy laminated film (two-layer film) according to the embodiment of the present invention has a Ag-1.0% Au layer regardless of whether the upper Ag alloy layer is a pure Ag film or an Ag-1.0% Pd alloy film. Also in the case of an alloy film, the surface roughness Ra after the environmental test is as small as the surface roughness Ra before the environmental test, and there is little or no increase in the surface roughness Ra due to the environmental test. Is extremely small. Therefore, these Ag alloy laminated films (two-layer films) are excellent in heat resistance because there is no structural change upon heating or the degree of structural change is small.
[0056]
In the Ag alloy laminated film (two-layer film) according to the embodiment of the present invention, when the film thickness of the upper Ag alloy layer is examined, the Ag-1.0% Pd alloy film is used even when the upper Ag alloy layer is a pure Ag film. In the case of the Ag-1.0% Au alloy film, the thickness of the upper Ag alloy layer is increased and the reflectivity is improved, and the pure Ag film (single layer) according to the comparative example has a thickness of 30 nm or more. It can be seen that the reflectance is almost the same as in the case of the film. On the other hand, the surface roughness increases as the film thickness of the upper Ag alloy layer increases. From these, the best film thickness in the balance between reflectance and heat resistance is around 10 to 50 nm.
[0057]
[Example 2, Comparative Example 2]
In this example, the reflectance, heat resistance, and corrosion resistance when the composition of the upper Ag alloy layer was changed were evaluated.
[0058]
At this time, an Ag alloy film made of an Ag-0.7% Nd-0.9% Cu alloy was formed as the lower Ag alloy layer. The upper Ag alloy layer is composed of Ag-Au based Ag alloy (Au content: change), Ag-Pd based Ag alloy (Pd content: change) or Ag-Bi based Ag alloy (Bi content: change) An alloy film was formed. The film thickness of the lower Ag alloy layer was 150 nm, and the film thickness of the upper Ag alloy layer was 30 nm.
[0059]
For the evaluation of corrosion resistance, the film surface after the environmental test and the film surface after being immersed in a 5% NaCl aqueous solution for 5 minutes were visually observed and judged by the occurrence of white spots. That is, in this determination, the case where peeling or discoloration over the entire surface is observed visually x (defect), the case where 20 or more white spots of 1 mm or more are seen on the substrate is △ (better than the case of x above, Corrosion resistance is insufficient), those having 5 to 20 white spots as described above were evaluated as ◯ (good), and those having 5 or less white points were evaluated as ◎ (excellent than the case of the above ○).
[0060]
The results of the evaluation test are shown in Table 2. In Table 2, the upper Ag layer indicates the upper Ag alloy layer. The lower ANC layer indicates a lower Ag alloy layer made of an Nd-containing Ag alloy. In this case, the Nd-containing Ag alloy is an Ag-0.7% Nd-0.9% Cu alloy. An Example shows that it corresponds to Example 2. The comparative example is a comparative example with respect to the second embodiment, and does not mean that all of them fall outside the scope of the present invention. Among the comparative examples, the upper Ag alloy layer: a pure Ag / ANC laminated film is an Ag alloy laminated film in which a pure Ag film is formed as the upper Ag alloy layer. Although it is within the range, it is positioned as a comparative example for the second embodiment.
[0061]
As can be seen from Table 2, an Ag alloy film made of an Ag-0.7% Nd-0.9% Cu alloy as a lower Ag alloy layer and a pure Ag film as an upper Ag alloy layer ( In Table 2, it is indicated as pure Ag / ANC laminated film), and in Ag alloy film (single layer film) made of Ag-0.7% Nd-0.9% Cu alloy (in Table 2, indicated as ANC single layer film), 5% Many white spots were observed on the membrane surface after immersion in NaCl solution.
[0062]
On the other hand, in the Ag alloy laminated film (double layer film) in which an Ag alloy film made of Ag—Au system Ag alloy or Ag—Pd system Ag alloy is formed as the upper Ag alloy layer, the Au content is 0.3% or more, When the Pd content is 0.3% or more, almost no white spot is observed. However, when the Au content was 5% or more, or when the Pd content was 3% or more, the reflectance was greatly reduced particularly at a wavelength of 400 nm.
[0063]
The Ag alloy laminated film (two-layer film) in which an Ag alloy film made of an Ag—Bi based Ag alloy was formed as the upper Ag alloy layer had high corrosion resistance at a Bi content of 0.01 to 0.5%.
[0064]
[Example 3, Comparative Example 3]
In this example, the change in heat resistance (up to a heating temperature of 300 ° C.) when the Nd content of the Ag—Nd-based Ag alloy film in the lower Ag alloy layer was changed was examined. For this purpose, the surface roughness was observed with an AFM (Atomic Force Microscope).
[0065]
At this time, the film thickness of the lower Ag alloy layer was 150 nm, and the film thickness of the pure Ag film of the upper Ag alloy layer was 10, 30, 50 nm. In order to investigate the heat resistance, a heat resistance test was conducted. This heat resistance test was performed by vacuum heat treatment (vacuum degree: 1.0 × 10 −5 Torr or less). The heating temperature in this heat treatment was 100 ° C., 200 ° C., 300 ° C., and the heat treatment time was 1 hour.
[0066]
The results of the above test are shown in Table 3. It was found that even when heating at about 200 ° C. with an Nd content of 0.3% and heating at 300 ° C. with an Nd content of 0.5% or more, there was little change in surface roughness and high heat resistance was exhibited. On the other hand, when the amount of Nd added exceeds 3.0%, the reflectivity decreases greatly. Especially when the Ag film of the upper Ag alloy layer is thin, the influence of the reflectivity of the lower Ag alloy layer is large, and the reflection of the entire film is reflected. Since the rate is lowered, it is not preferable.
[0067]
[Table 1]
[0068]
[Table 2]
[0069]
[Table 3]
[0070]
【The invention's effect】
The Ag alloy laminated film according to the present invention has high reflectivity and excellent durability (chemical stability and heat resistance). For this reason, it can be suitably used as a reflection layer such as a light reflector, an optical information recording medium, a flat panel display element, a reflector, a reflection film, a reflection electrode, etc., and the function and durability thereof can be improved.
[0071]
The light reflector, the optical information recording medium, the flat panel display element, and the reflector according to the present invention use the Ag alloy laminated film according to the present invention having the above excellent characteristics as a reflective layer, a reflective film, a reflective electrode, and the like. Therefore, an excellent reflectivity is obtained, the function is improved, and the durability is improved.
Claims (13)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003140599A JP4314065B2 (en) | 2003-05-19 | 2003-05-19 | Ag alloy laminated film, light reflector, optical information recording medium, flat panel display element and reflector |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003140599A JP4314065B2 (en) | 2003-05-19 | 2003-05-19 | Ag alloy laminated film, light reflector, optical information recording medium, flat panel display element and reflector |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004341433A JP2004341433A (en) | 2004-12-02 |
JP4314065B2 true JP4314065B2 (en) | 2009-08-12 |
Family
ID=33529287
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003140599A Expired - Fee Related JP4314065B2 (en) | 2003-05-19 | 2003-05-19 | Ag alloy laminated film, light reflector, optical information recording medium, flat panel display element and reflector |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4314065B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007100921A2 (en) * | 2006-03-03 | 2007-09-07 | Gentex Corporation | Improved thin-film coatings, electro-optic elements and assemblies incorporating these elements |
-
2003
- 2003-05-19 JP JP2003140599A patent/JP4314065B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2004341433A (en) | 2004-12-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7758942B2 (en) | Ag base alloy thin film and sputtering target for forming Ag base alloy thin film | |
JP3365762B2 (en) | Reflective layer or translucent reflective layer for optical information recording medium, optical information recording medium, and sputtering target for optical information recording medium | |
KR100789059B1 (en) | Semi-reflective film and reflective film for optical information recording medium, optical information recording medium, and sputtering target | |
KR20040108585A (en) | Alloy and its use | |
US20070042200A1 (en) | Reflective or semi-reflective metal alloy coatings | |
JP2002319185A (en) | Silver alloy for reflection film for optical recording disk | |
CN1901053A (en) | Silver alloy reflective films for optical information recording media, silver alloy sputtering targets therefor, and optical information recording media | |
JP2005332557A (en) | Translucent reflective film and reflective film for optical information recording medium, optical information recording medium and sputtering target | |
WO2005056851A1 (en) | Silver alloy excelling in performance of reflectance maintenance | |
JP4314065B2 (en) | Ag alloy laminated film, light reflector, optical information recording medium, flat panel display element and reflector | |
CN101008055A (en) | Silver alloys for reflective or semi-reflective layers | |
JP4328310B2 (en) | Reflective film for optical information recording medium and optical information recording medium | |
TW200941477A (en) | Reflective film and semi-transmissive reflective film of optical information recording medium, sputtering target for producing the films, and optical information recording medium | |
TW200907953A (en) | Read only optical information recording medium | |
TWI265976B (en) | Ag base alloy thin film and sputtering target for forming Ag base alloy thin film | |
US20070042155A1 (en) | Reflective or semi-reflective metal alloy coatings | |
WO2008026601A1 (en) | Ag ALLOY REFLECTION FILM FOR OPTICAL INFORMATION RECORDING MEDIUM, OPTICAL INFORMATION RECORDING MEDIUM, AND SPUTTERING TARGET FOR Ag ALLOY REFLECTION FILM FOR OPTICAL INFORMATION RECORDING MEDIUM FORMATION | |
TWI281510B (en) | Highly reflective and corrosion-resistant reflective layer film and its sputtering target | |
JP2003286567A (en) | Sputtering target material for reflecting film of optical recording medium, and reflecting film made by sputtering method using it | |
JP4099516B2 (en) | Sputtering target for forming Ag alloy reflective film for optical information recording medium, optical information recording medium, and Ag alloy reflective film for optical information recording medium | |
JP2008135149A (en) | Ag ALLOY REFLECTION FILM FOR OPTICAL INFORMATION RECORDING MEDIUM, OPTICAL INFORMATION RECORDING MEDIUM, AND SPUTTERING GATE FOR FORMING Ag ALLOY REFLECTION FILM FOR OPTICAL INFORMATION RECORDING MEDIUM | |
WO2008018298A1 (en) | Ag ALLOY REFLECTIVE FILM FOR REFLECTOR, REFLECTOR, AND Ag ALLOY SPUTTERING TARGET FOR FORMATION OF Ag ALLOY REFLECTIVE FILM FOR REFLECTOR |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20051121 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080710 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080729 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080929 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090113 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090310 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090512 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090518 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120522 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 4314065 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120522 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130522 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140522 Year of fee payment: 5 |
|
LAPS | Cancellation because of no payment of annual fees |