[go: up one dir, main page]

JP4312904B2 - Field environment purification system - Google Patents

Field environment purification system Download PDF

Info

Publication number
JP4312904B2
JP4312904B2 JP31745299A JP31745299A JP4312904B2 JP 4312904 B2 JP4312904 B2 JP 4312904B2 JP 31745299 A JP31745299 A JP 31745299A JP 31745299 A JP31745299 A JP 31745299A JP 4312904 B2 JP4312904 B2 JP 4312904B2
Authority
JP
Japan
Prior art keywords
groundwater
water
field
fertilizer
purification system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31745299A
Other languages
Japanese (ja)
Other versions
JP2001128523A (en
Inventor
政美 木村
文雄 富田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Kiko Co Ltd
Original Assignee
Kawasaki Kiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Kiko Co Ltd filed Critical Kawasaki Kiko Co Ltd
Priority to JP31745299A priority Critical patent/JP4312904B2/en
Publication of JP2001128523A publication Critical patent/JP2001128523A/en
Application granted granted Critical
Publication of JP4312904B2 publication Critical patent/JP4312904B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Fertilizing (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、茶を栽培する茶園等の圃場の施肥による地下水の汚染防止に用いられる圃場環境浄化システムに関する。
【0002】
【従来の技術】
茶園に投与される肥料は、地中の微生物等によってアンモニア態窒素に分解され、このアンモニア態窒素はさらに硝酸態窒素(硝酸性窒素)に分解され、その一部は茶樹に吸収される一方、茶樹に吸収されない肥料は地中に残留又は地下水に徐々に流亡するが、その流亡は降雨時に顕著となる。
【0003】
【発明が解決しようとする課題】
ところで、茶樹に吸収されない肥料の多くは地下水を通じて河川、池等に流れてしまい、投与された肥料の多くが無駄になる。肥料には遅効性肥料が使用されてきているが、地下水への流亡を阻止することはできない。
【0004】
そこで、本発明は、地下水を通して施肥量を管理することにより地下水の汚染防止を図った圃場環境浄化システムを提供することを第1の目的とする。
【0005】
また、本発明は、地下水に流亡した肥料の再利用化を実現して地下水の汚染防止を図った圃場環境浄化システムを提供することを第2の目的とする。
【0006】
【課題を解決するための手段】
本発明は、圃場(2)の地下水の肥料濃度を検出する検出手段(肥料検出器26)及び演算手段(制御装置28)を備え、肥料濃度の検出値や施肥量を演算情報に用いて圃場に投与すべき施肥量を予測演算し、又は、集水手段(暗渠6、吸水管8、集水管10)により地下水を集水して貯水手段(地下水タンク12)に溜め、肥料濃度の検出値が基準値以上の場合、給水手段(給水管40)により圃場に給水することにより、再利用を図る。この結果、地下水を通して施肥量の管理をすることで地下水の汚染防止、地下水に流れ出た肥料、即ち、硝酸性窒素の再利用化を実現することができる。
【0007】
請求項に係る本発明の圃場環境浄化システムは、第1の目的を達成するため、請求項1の構成において、前記検出手段の検出値、前記圃場に投与された施肥量を演算情報として前記圃場に投与すべき施肥量を予測演算する演算手段(制御装置28)を備えたことを特徴とする。
【0008】
即ち、地下水中の肥料濃度は、肥料の流亡量であり、施肥量、圃場の植物の吸収量に依存している。そこで、この流亡量に比例するであろう地下水中の肥料濃度と施肥量との関係から、最適な施肥量を予測演算する。即ち、施肥量と流亡量との関係を観測することにより、一定の関数関係を見い出し、この関係から最適な施肥量を算出することができる。この場合、降雨量や植物の生育状態による変数をも加味する。従って、最適な施肥量を実現することにより、肥料の無駄を無くするとともに、肥料による地下水汚染を軽減することができる。
【0009】
請求項1に係る本発明の圃場環境浄化システムは、第2の目的を達成するため、圃場に地下水を供給する圃場環境浄化システムであって、地中に埋設されて地下水(25)を集水する単一又は複数の集水手段(暗渠6、吸水管8、集水管10)と、この集水手段により集水される前記地下水を溜める貯水手段(地下水タンク12)と、前記地下水の肥料濃度を検出する検出手段(肥料検出器26)と、この検出手段の検出値が基準値以上の場合には前記貯水手段から前記地下水を圃場(2)に給水する給水手段(給水管40)と、前記検出手段の検出値が基準値以上の場合には前記地下水を前記貯水手段に貯め、前記検出手段の検出値が基準値未満の場合には前記地下水を放水させる切換手段(バルブ34)とを備え、前記給水手段により、前記貯水手段から前記地下水を圃場に給水することを特徴とする。
【0010】
地中に集水手段を埋設して地下水を集水し、その地下水を貯水手段に溜める。その地下水の肥料濃度を検出し、その肥料濃度が基準値以上の場合には、貯水手段から圃場にその地下水を導いて給水することにより、地下水中の肥料の再利用を図る。即ち、流亡した硝酸性窒素を地下水を通して回収し、それを肥料として再利用することができる。したがって、過剰な肥料投与を防止でき、地下水の汚染防止を図ることができる。
【0012】
この圃場環境浄化システムでは、集水される地下水の肥料濃度に応じて貯水するか放水するかを選択している。即ち、地下水の肥料濃度が基準値未満の場合には、地下水を汚染することがないので、そのまま放水し、肥料濃度が基準値以上の場合には、貯水手段に溜め、その再利用化を図る。即ち、貯水手段の地下水は給水手段によって圃場に給水する。したがって、地下水の利用により過剰な肥料投与を防止でき、地下水の汚染防止を図ることができるとともに、肥料濃度が低い場合には放水しても地下水を汚染させることはない。
請求項3に係る本発明の圃場環境浄化システムは、前記切換手段は、吸水管に吸水された前記地下水を集水して溜める前記貯水手段の直前の集水管に設置されるバルブであって、前記検出手段の検出値が基準値以上の場合には前記バルブを通して前記地下水を前記貯水手段に貯め、前記検出手段の検出値が基準値未満の場合には前記バルブより前記地下水を放水させる構成としてもよい。
【0013】
請求項4に係る本発明の圃場環境浄化システムは、請求項1に係る構成において、前記貯水手段に溜められた前記地下水を濃縮して肥料濃度の高い濃縮水に変換する濃縮手段を備え、前記給水手段により、前記貯水手段の前記濃縮水を圃場に給水することを特徴とする。
【0014】
集水した地下水を貯水手段に溜め、その地下水を濃縮して肥料濃度の高い濃縮水に変換し、この濃縮水を圃場に給水すれば、肥料の再利用化を図ることができ、過剰な肥料投与の防止、地下水の汚染防止を図ることができる。
【0015】
請求項5に係る本発明の圃場環境浄化システムは、前記貯水手段の前記地下水を濾過する濾過手段(分離膜46)と、この濾過手段で濾過された前記地下水を放水する放水手段(バルブ50)とを備えたことを特徴とする。即ち、集水して貯水手段に溜められた地下水を濾過手段で濾過することにより、流亡している肥料を回収するとともに、濾過された地下水を放水することにより地下水の汚染防止を図ることができる。
【0016】
請求項6に係る本発明の圃場環境浄化システムは、前記貯水手段の前記地下水を浄化する浄化手段(分離膜46)と、この浄化手段で浄化された浄化水を放水する放水手段(バルブ50)とを備えたことを特徴とする。即ち、集水して貯水手段に溜められた地下水を浄化手段によって浄化し、放水することにより地下水の汚染防止を図ることができる。
【0017】
請求項7に係る本発明の圃場環境浄化システムは、前記集水手段に前記地下水を選択的に集水する多孔管(24)を用いたことを特徴とする。即ち、地中に多孔管を埋設することにより地下水とともに肥料を回収することができる。
【0018】
請求項8に係る本発明の圃場環境浄化システムは、前記検出手段が検出した肥料濃度を伝送する伝送手段(送信機32)を備えたことを特徴とする。即ち、圃場と圃場管理者とが離れている場合に、圃場に設置した伝送手段により、電気通信回線や無線等の通信媒体を利用して肥料濃度等の情報を伝送すれば、圃場管理の容易化、迅速化を図ることができる。
【0019】
そして、請求項9に係る本発明の圃場環境浄化システムは、前記給水手段が前記地下水を前記圃場に圧送する圧送手段(ポンプ36)を備えることを特徴とする。即ち、圧送手段を備えることにより、高低差の大きい圃場に対して所望の水圧を以て給水することができる。
【0020】
【発明の実施の形態】
以下、本発明を図面に示した実施の形態を参照して詳細に説明する。
【0021】
図1は、本発明の圃場環境浄化システムの第1の実施の形態である施肥管理システムを示している。圃場2に茶樹4を栽培する茶園を例に取ると、この圃場2は、狭小な平面部2A、2B、2C・・・が階段状を成す、いわゆる段々畑である。各平面部2A〜2Cに植付けられた栽培植物である茶樹4には、必要に応じて施肥が行われる。そして、各平面部2A〜2Cには、地下水を集水する手段として暗渠6が個別に形成されており、各暗渠6に埋設された各吸水管8は集水管10に連結されている。集水管10は、圃場2内の地中に敷設されている。したがって、圃場2の地下水は、矢印Aに示すように、暗渠6の吸水管8を通じて集水管10に集められ、貯水手段である地下水タンク12に導かれる。
【0022】
各暗渠6は、図2に示すように、圃場2の平面部2A〜2Cに60cm幅で地表面16から1〜2m掘り下げた溝であり、その内部に敷設した吸水管8を瓦礫等の通水材18で覆い、その上に土壌20を盛ったものである。吸水管8は合成樹脂等の耐蝕性材料で形成されており、例えば、図3に示すように、複数の吸水透孔22が形成された多孔管24が用いられている。通水材18は、吸水透孔22の目詰まりを防止する機能を持つ。したがって、図2に示すように、吸水管8には、選択的に地下水25のみが吸水される。
【0023】
この暗渠6を通じて給水された地下水は、図4に示すように、単一又は複数の集水管10に集合させ、集水管10を通じて地下水タンク12に導かれる。この場合、図4では、暗渠6及び吸水管8を水平に書いているが、圃場2の傾斜を利用して重力による集水効果を利用する。矢印は吸水された地下水の集水状態を示す。
【0024】
地下水タンク12に至る集水管10には、肥料検出手段である肥料検出器26及び流量検出手段である流量検出器27が設けられている。肥料検出器26は、肥料成分や地下水の状況、即ち、地下水のPH、EC値、NO3 −N、NH4 −N、PO4 、K、Ca、Mg等を測定する各種測定器の総称である。また、流量検出器27は集水管10に集水される地下水の流量を検出する。また、降雨量の検出手段として雨量計29が設置されている。
【0025】
そして、この肥料検出器26、流量検出器27及び雨量計29の各検出出力は、図1に示すように、演算手段及び制御手段としての制御装置28に加えられる。この制御装置28は、パーソナルコンピュータ等で構成され、その出力は表示器30、送信機32に加えられている。この場合、肥料検出器26の検出出力は、管理者が各検出値をキーボード等の入力手段を通じて制御装置28に加えるようにしてもよい。この制御装置28では、肥料検出器26の検出値から肥料の流亡量、土中肥料残存量(施肥量−流亡量)を演算することができる。即ち、地下水中の肥料濃度は、肥料の流亡量であり、施肥量、圃場の植物の吸収量に依存している。そこで、この流亡量に比例するであろう地下水中の肥料濃度と施肥量との関係から、最適な施肥量を予測演算することができる。施肥量と流亡量との関係を求め、その推移を観測することにより、その圃場2及び茶樹4等の栽培植物に対して最適な施肥量を算出することができる。この場合、施肥量には肥料の他、秋整枝時に刈られた茶樹自体も肥料に含まれるが、降雨量や植物の生育状態による変数をも加味してもよい。最適な施肥量を実現すれば、肥料の無駄を無くするとともに、肥料による地下水汚染を抑制できる。
【0026】
ここで、肥料流亡量をA、肥料検出器26で検出される肥料濃度をp、流量検出器27で検出される地下水流量をq、雨量計29で検出される降雨量をrとすると、肥料流亡量Aは、
A=p×q=p×r ・・・(1)
となる。なお、qには、全ての地下水を補足できないので、係数が掛かる。また、rは蒸発等による減少分がある。また、茶生育に応じた土中残留窒素量をB、茶生育に応じた茶樹窒素吸収量をC、投入肥料毎の窒素分解スピードとこれを基に計算した窒素発生量をDとし、Eは肥料投入を示し、投入される肥料には種類と量がある。これらをグラフに示すと、図5のようになる。図5では、肥料流亡量Aは実測値、土中残留窒素量B及び茶樹窒素吸収量Cは推定量、窒素発生量Dはシミュレーションによる予測値を示している。肥料流亡量Aは土中の肥料濃度が高さに比例し、土中残留窒素量Bは茶樹の肥料吸収が多いほど余裕、即ち、残留が必要である。
【0027】
そこで、肥料流亡量A、土中残留窒素量B、茶樹窒素吸収量C及び窒素発生量Dの関係において、
D−B−A−C=0 ・・・(2)
となるように、肥料投入Eを制御すれば、最適な施肥を実現できる。この場合、窒素ガスによる空中放出量は省略した。
【0028】
ところで、土中残留窒素量BはECセンサ、PFセンサ等で実測でき、その実測値から、D−A−Bにより、茶樹4の吸収量が設定でき、その数値から茶樹4の栄養診断をすることができる。
【0029】
また、AはDに加算されて再利用されるので、D−B−C=0となるように、肥料投入Eを制御することもできる。
【0030】
そして、表示器30には、検出値、演算結果等を表示する。その場合、肥料検出器26で検出された肥料濃度が予め設定した基準値以上の場合には、地下水タンク12からの放水を禁止し、管理者に対して警報を表示し、注意を促す。また、地下水タンク12に溜められた地下水は、灌水としての利用や肥料として再利用が可能である。
【0031】
次に、図6は、本発明の圃場環境浄化システムの第2の実施の形態である肥料回収・再利用システムを示している。この実施の形態においても、圃場2に茶樹4を栽培する茶園を例に取る。この圃場2は、狭小な平面部2A、2B、2C・・・が階段状を成す、いわゆる段々畑であり、各平面部2A〜2Cに植付けられた栽培植物である茶樹4には、必要に応じて施肥が行われる。各平面部2A〜2Cには、地下水を集水するために暗渠6が個別に形成されており、各暗渠6に埋設された各吸水管8は集水管10に連結されており、集水管10は、圃場2内の地中に敷設されている。したがって、圃場2の地下水は、暗渠6の吸水管8を通じて集水管10に集められて地下水タンク12に導かれる。暗渠6の構造は図2、吸水管8の形態は図3、暗渠6、吸水管8及び地下水タンク12の形態は図4に示す通りである。
【0032】
そして、地下水タンク12の近傍の集水管10には、肥料検出器26が設けられている。肥料検出器26は、肥料成分や地下水の状況、即ち、地下水のPH、EC値、NO3 −N、NH4 −N、PO4 、K、Ca、Mg等を測定する各種測定器の総称である。この肥料検出器26の検出出力は、制御装置28に加えられており、制御装置28では、その検出出力に関連する演算として肥料濃度と基準値との比較等が行われる。
【0033】
地下水タンク12の直前の集水管10には、切換手段及び放水手段としてのバルブ34が設置されている。即ち、このバルブ34の切換制御は制御手段である制御装置28によって行われ、地下水の肥料濃度が基準値以上の場合には貯水側Xに切り換えて地下水を地下水タンク12に導き、基準値未満の場合には放水側Yに切り換えて外部に放水する。
【0034】
この地下水タンク12に貯水した地下水を圧送する手段としてポンプ36が設けられ、このポンプ36は制御装置28によって駆動制御が行われる。ポンプ36によって圧送される地下水は再利用に供され、地下水タンク12から圃場2内に敷設された給水管40を通じて各茶樹4側に導かれ、灌水等に供される。矢印Bは、地下水の圧送を示している。
【0035】
このように構成すれば、施肥の後、降水等で圃場2から流亡した肥料は、地下水とともに暗渠6の吸水管8を通じて集水管10に集められる。集水管10における地下水は、肥料検出器26を通過し、その肥料濃度が検出される。この場合、地下水のPH、EC値、NO3 −N、NH4 −N、PO4 、K、Ca、Mg等、肥料濃度が測定される。場合によっては、その数値が環境汚染を引き起こすおそれを否定できない。そこで、予め設定された基準値と検出された肥料濃度とを比較する。その比較結果は、表示器30に表示し、送信機32を通じて無線や電話回線により遠隔地における管理者に通知する。その場合、基準値を大きく越えている場合には、その表示ないし警告を発する。表示器30は、視覚的表示、聴覚的表示等で行い、プリンタ等で測定結果や演算結果を記録紙に取るようにしてもよい。
【0036】
肥料濃度測定の結果、その肥料濃度が基準値未満の場合には、環境汚染のおそれがないので、バルブ34を放水側Yに切り換え、排水溝を通じて河川等に放流する。この場合、地下水の肥料濃度に無関係に地下水タンク12に地下水を導き、貯水するようにしてもよい。
【0037】
また、肥料濃度測定の結果、その肥料濃度が基準値以上の場合には、肥料としての再利用が可能であるから、バルブ34を貯水側Xに切り換えて地下水タンク12に貯水する。この地下水は、再利用可能な硝酸性窒素を含有しているので、これを地下水とともにポンプ36を以て圧送し、給水管40を通じて圃場2に灌水する。この灌水の結果、肥料成分である硝酸性窒素が圃場2に供給され、降水によって流亡した不足分を補完することができる。この結果、肥料の再利用、灌水とともに、過剰施肥による環境汚染を未然に防止することができる。
【0038】
次に、図7は、地下水からの肥料回収及び濃縮システムを示すブロック図である。このシステムは、地下水に流亡した肥料を回収し、溜めた地下水の肥料濃度を濃縮するとともに、地下水を浄化して灌水又は自然放流するものである。
【0039】
地下水タンク12には、集水管10を通して流入する地下水が溜められる。この場合、地下水は肥料濃度に関係なく溜められる。この地下水タンク12には、図6に示したシステムにおけるポンプ36を介して給水管40が連結されている。そして、この地下水タンク12には、地下水中の夾雑物を除くフィルタ42を介して加圧手段としてのポンプ44が連結され、このポンプ44を通して地下水が分離膜46に加圧、圧送される。
【0040】
この分離膜46は、肥料の濃縮手段、地下水の濾過手段又は浄化手段であって、水は透過するが、硝酸性窒素イオンを透過しない膜等の逆浸透膜を利用して肥料濃度の高い地下水即ち凝縮水と浄化水とに分離する手段である。凝縮水は分離膜46から地下水タンク12に戻され、浄化水は分離膜46から浄水タンク48に供給されて貯水される。浄水タンク48に溜められた浄化水は、放水手段であるバルブ50を通して自然放流される。即ち、ポンプ44及びバルブ50は、制御手段である制御装置28によって駆動が制御され、ポンプ44の駆動によって地下水タンク12の地下水が分離膜46を循環し、肥料濃度を上昇させることができる。即ち、降雨時、地下水に希釈、流亡した硝酸性窒素等の肥料が地下水から回収され、給水管40を通して圃場2に投与することができる。
【0041】
浄水タンク48には地下水タンク12より小容量のタンクが用いられ、浄化水の生成に応じてバルブ50を開くことにより自然放流が可能である。浄化水は図示しないが、給水管40側に供給して圃場2の灌水に利用することもでき、自然放流を行っても、地下水汚染を発生させることがなく、環境浄化に寄与する。
【0042】
ところで、茶園の肥料投与について説明すると、緑茶の製品品質と、荒茶に含有される全窒素や遊離アミノ酸の濃度とが密接に関係しており、茶樹の栽培分野では、新芽や荒茶の全窒素や遊離アミノ酸濃度を増加させる努力が払われてきた。その結果、茶の栽培では窒素肥料の多量投与が常態となり、土壌の強酸性化、根系の枯死による樹体の衰弱、硝酸性窒素による地下水汚染、亜酸化窒素ガスの発生等の問題が提起されるに至り、公共水域と地下水に係る環境基準に硝酸性窒素が追加され、環境汚染を防止する観点から、基準値が設定された。即ち、10aの茶園から年間1000トンの水が系外に流出するとして、放出可能な窒素はわずか10kg程度である。
【0043】
このような観点に立って、本発明の肥料回収及び再利用を図ることにより、茶の窒素利用効率を格段に向上させることができるとともに、流出する窒素成分を除去して環境基準をクリアできることが確認された。特に、緩効性肥料の利用等、根域における肥料成分の滞留時間の大幅延長等と相俟って硝酸性窒素による環境汚染の防止、水質浄化、下層土壌における脱窒の促進等に寄与することができる。
【0044】
なお、地下水タンク12に貯水した地下水から硝酸性窒素を除去するには、分離膜46による方法に代えて、イオン交換法や逆浸透法等の物理化学的方法、微生物の還元能力を利用した生物的脱窒法等を利用することができる。イオン交換法では、除去対象とする水中のイオンを、イオン交換体のイオンと交換することにより除去する方法であり、硝酸性窒素の除去には、通常、強塩基性陰イオン交換樹脂を使用すればよい。また、逆浸透法では、通常、半透膜の両側の溶液のうち、濃度の低い方から濃度の高い方へ水分子は移動することが知られているが、濃度の高い方の溶液に浸透圧差以上の圧力を加えると、逆に濃度の高い方から濃度の低い方へ水分子の移動が起こるという現象を利用し、地下水から硝酸性窒素を除去することができる。
【0045】
また、生物的脱窒法は、脱窒細菌の脱窒作用により水中の硝酸性窒素を除去する方法であって、脱窒細菌は水中に拡散しないよう担体に固定させる。地下水中に脱窒細菌を固定した担体を投入し、又は、脱窒細菌を固定した担体層に地下水を通過させて硝酸性窒素を除去する。脱窒能を持つ微生物は自然界に分布しており、嫌気性菌の約20%がこれに該当すると言われている。
【0046】
また、圃場2には、浸透バリアを設置してもよい。この浸透バリアは、微生物(脱窒菌)を固定した担体の層で、窒素成分の供給源となっている畑作地帯又は畜産地域下の、帯水層より上の部分に設置するものである。即ち、硝酸性窒素を含む浸透水が浸透バリアを通過すると、脱窒菌の脱窒作用により硝酸性窒素は窒素ガスに還元され、浸透バリア以深への硝酸性窒素の浸透が遮断されるという効果が期待できる。この浸透バリアの設置には、在来工法と、水平井戸工法とがあり、前者は一旦表層土壌を撤去し、微生物担体を敷き詰めた後で、再び土壌を埋めなおす方法である。後者は複数の水平井戸を設け、井戸内に微生物担体を充填する方法である。水平井戸工法では、ドリルで斜め掘りを開始し、所定の深度に達した時点で水平掘りに移行し、水平掘削が予定地点に達したとき、ドリルの先端を斜め上向きに変えて掘進し、ドリルが地上まで達したら、先端を逆進ドリルに切り替え、担体を充填した井戸管材を引き込みながら井戸を仕上げる等の各種の方法がある。
【0047】
【発明の効果】
以上説明したように、本発明によれば、次のような効果が得られる。
a 圃場の地下水の肥料濃度を検出し、その検出値に応じて栽培植物や土地に応じた施肥量とすることができるので、肥料の無駄を抑制し、地下水汚染を防止できる。
b 肥料濃度が基準値以下の地下水を放水するので、地下水汚染を防止、環境浄化に寄与することができる。
c 地下水に流亡した肥料を地下水を通して回収でき、地下水を灌水して利用できるとともに、回収した肥料の再利用によって施肥量を軽減できる。
d 地下水の肥料濃度の検出値は圃場管理者に通信回線等を通じて伝送でき、地下水の汚染状態を即座に知ることができ、地下水の汚染防止に必要な対応の迅速化に寄与することができる。
e 暗渠の埋設は土中の水はけを促進させるので、過剰水分の表面への浮き出し防止により、茶樹等の栽培植物の根に対する酸素供給が良好になり、茶葉等の収穫量及びその品質を向上させることができる。
【図面の簡単な説明】
【図1】本発明の圃場環境浄化システムの第1の実施の形態である施肥管理システムを示すブロック図である。
【図2】暗渠の形態を示す断面図である。
【図3】集水管の実施の形態としての多孔管を示す斜視図である。
【図4】暗渠、集水管及び地下水タンクの実施の形態を示す図である。
【図5】肥料流亡量A、土中残留窒素量B、茶樹窒素吸収量C及び窒素発生量Dの関係を示す図である。
【図6】本発明の圃場環境浄化システムの第2の実施の形態である肥料回収・再利用システムを示すブロック図である。
【図7】地下水からの肥料回収及び濃縮システムを示すブロック図である。
【符号の説明】
2 圃場
4 茶樹
6 暗渠(集水手段)
8 吸水管(集水手段)
10 集水管(集水手段)
12 地下水タンク(貯水手段)
24 多孔管
25 地下水
26 肥料検出器(検出手段)
28 制御装置(制御手段、演算手段)
32 送信機(伝送手段)
34 バルブ(切換手段)
40 給水管(給水手段)
46 分離膜(濃縮手段、濾過手段、浄化手段)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a field environment purification system used for prevention of contamination of groundwater by fertilization in a field such as a tea garden where tea is cultivated.
[0002]
[Prior art]
Fertilizers administered to tea gardens are decomposed into ammonia nitrogen by microorganisms in the ground, and this ammonia nitrogen is further decomposed into nitrate nitrogen (nitrate nitrogen), part of which is absorbed by tea trees, Fertilizers that are not absorbed by tea trees remain in the ground or gradually run away into groundwater, but the runoff becomes noticeable during rainfall.
[0003]
[Problems to be solved by the invention]
By the way, most of the fertilizer that is not absorbed by the tea tree flows into rivers, ponds, etc. through the groundwater, and much of the administered fertilizer is wasted. Slow-acting fertilizers have been used as fertilizers, but they cannot prevent runoff into groundwater.
[0004]
Then, this invention sets it as the 1st objective to provide the field environment purification system which aimed at prevention of contamination of groundwater by managing the amount of fertilization through groundwater.
[0005]
A second object of the present invention is to provide a field environment purification system that realizes reuse of fertilizers that have been washed away into groundwater to prevent contamination of groundwater.
[0006]
[Means for Solving the Problems]
The present invention includes detection means (fertilizer detector 26) and calculation means (control device 28) for detecting the fertilizer concentration of groundwater in the field (2), and uses the detected value of fertilizer concentration and the fertilizer application amount as calculation information. The amount of fertilizer to be administered to the water is predicted or calculated, or groundwater is collected by the water collecting means (underdrain 6, water absorption pipe 8, water collecting pipe 10) and stored in the water storage means (groundwater tank 12), and the detected value of fertilizer concentration Is more than the reference value, it is reused by supplying water to the field using water supply means (water supply pipe 40). As a result, by controlling the amount of fertilization through groundwater, it is possible to prevent contamination of groundwater and to reuse fertilizer that has flowed into groundwater, that is, nitrate nitrogen.
[0007]
In order to achieve the first object, the field environment purification system of the present invention according to claim 2 is the configuration of claim 1, wherein the detection value of the detection means and the amount of fertilizer applied to the field are calculated information. An arithmetic means (control device 28 ) for predicting and calculating the fertilizing amount to be administered to the field is provided.
[0008]
That is, the fertilizer concentration in the groundwater is the amount of fertilizer runoff and depends on the amount of fertilizer applied and the amount of plant absorption in the field. Therefore, the optimum fertilizer application amount is predicted and calculated from the relationship between the fertilizer concentration in the groundwater and the fertilizer application amount that will be proportional to the runoff amount. That is, by observing the relationship between the amount of fertilization and the amount of runoff, a certain functional relationship can be found, and the optimum amount of fertilization can be calculated from this relationship. In this case, variables based on rainfall and plant growth are also taken into account. Therefore, by realizing the optimum fertilizer application amount, waste of fertilizer can be eliminated and groundwater contamination by the fertilizer can be reduced.
[0009]
In order to achieve the second object, the field environment purification system of the present invention according to claim 1 is a field environment purification system that supplies groundwater to the field, and is buried in the ground to collect groundwater (25). Single or plural water collecting means (underdrain 6, water absorption pipe 8, water collecting pipe 10), water storage means (ground water tank 12) for storing the ground water collected by the water collecting means, and fertilizer concentration of the ground water Detection means (fertilizer detector 26) for detecting water, and water supply means (water supply pipe 40) for supplying the groundwater from the water storage means to the field (2) when the detection value of the detection means is greater than or equal to a reference value; Switching means (valve 34) for storing the groundwater in the water storage means when the detection value of the detection means is greater than or equal to a reference value, and for discharging the groundwater when the detection value of the detection means is less than the reference value. Provided with the water supply means, Characterized in that the serial reservoir means for the water supply of the ground water in the field.
[0010]
A water collecting means is buried in the ground to collect ground water, and the ground water is stored in the water storing means. The fertilizer concentration in the groundwater is detected, and when the fertilizer concentration is equal to or higher than the reference value, the groundwater is guided from the water storage means to the field and supplied to recycle the fertilizer in the groundwater. That is, the nitrate nitrogen that has flowed out can be recovered through groundwater and reused as fertilizer. Therefore, excessive fertilizer administration can be prevented and contamination of groundwater can be prevented.
[0012]
In this field environment purification system, whether to store or discharge water is selected according to the fertilizer concentration of the collected groundwater. That is, if the fertilizer concentration in the groundwater is less than the reference value, the groundwater will not be polluted, so it will be discharged as it is, and if the fertilizer concentration is above the reference value, it will be stored in the water storage means and reused. . That is, the groundwater of the water storage means is supplied to the farm field by the water supply means. Therefore, excessive fertilizer administration can be prevented by using groundwater, and contamination of groundwater can be prevented. When fertilizer concentration is low, groundwater is not polluted even if it is discharged.
The field environment purification system of the present invention according to claim 3, wherein the switching means is a valve installed in the water collecting pipe immediately before the water storage means for collecting and storing the groundwater absorbed by the water absorbing pipe, When the detection value of the detection means is greater than or equal to a reference value, the groundwater is stored in the water storage means through the valve, and when the detection value of the detection means is less than the reference value, the groundwater is discharged from the valve. Also good.
[0013]
The field environment purification system of the present invention according to claim 4 comprises the concentration means for concentrating the groundwater stored in the water storage means and converting it into concentrated water having a high fertilizer concentration in the configuration according to claim 1, the water supply means and water supply to Turkey the concentrated water of the water storage unit in the field.
[0014]
If the collected groundwater is stored in a storage means, the groundwater is concentrated and converted to concentrated water with high fertilizer concentration, and if this concentrated water is supplied to the field, fertilizer can be reused, and excess fertilizer It can prevent administration and prevent contamination of groundwater.
[0015]
The field environment purification system of the present invention according to claim 5 is a filtration means (separation membrane 46) for filtering the groundwater of the water storage means, and a water discharge means (valve 50) for discharging the groundwater filtered by the filtration means. It is characterized by comprising. That is, the groundwater collected and collected in the water storage means is filtered by the filtering means, thereby recovering the lost fertilizer and discharging the filtered groundwater to prevent contamination of the groundwater. .
[0016]
The field environment purification system of the present invention according to claim 6 is a purification means (separation membrane 46) for purifying the groundwater of the water storage means, and a water discharge means (valve 50) for discharging the purified water purified by the purification means. It is characterized by comprising. That is, the groundwater collected and stored in the water storage means is purified by the purification means, and discharged to prevent contamination of the groundwater.
[0017]
The field environment purification system of the present invention according to claim 7 is characterized in that a porous pipe (24) for selectively collecting the groundwater is used as the water collecting means. That is, the fertilizer can be recovered together with the groundwater by burying the porous tube in the ground.
[0018]
The field environment purification system of the present invention according to claim 8 is characterized by comprising transmission means (transmitter 32) for transmitting the fertilizer concentration detected by the detection means. That is, when the field and the field manager are separated from each other, it is easy to manage the field by transmitting information such as the fertilizer concentration using a communication medium such as an electric communication line or wireless by a transmission means installed in the field. And speeding up.
[0019]
And the field environment purification system of this invention which concerns on Claim 9 is provided with the pumping means (pump 36) by which the said water supply means pumps the said groundwater to the said field. That is, by providing the pressure feeding means, it is possible to supply water with a desired water pressure to a farm field having a large height difference.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail with reference to embodiments shown in the drawings.
[0021]
FIG. 1 shows a fertilization management system which is a first embodiment of a field environment purification system of the present invention. Taking a tea plantation where the tea tree 4 is cultivated in the field 2 as an example, the field 2 is a so-called terraced field in which narrow flat portions 2A, 2B, 2C,. Fertilization is performed as necessary on the tea tree 4 which is a cultivated plant planted in each of the flat portions 2A to 2C. In each of the flat portions 2 </ b> A to 2 </ b> C, a culvert 6 is individually formed as a means for collecting groundwater, and each water intake pipe 8 embedded in each culvert 6 is connected to a water collection pipe 10. The water collecting pipe 10 is laid in the ground in the agricultural field 2. Therefore, as shown by the arrow A, the groundwater in the field 2 is collected in the water collecting pipe 10 through the water absorption pipe 8 of the underdrain 6 and guided to the groundwater tank 12 which is a water storage means.
[0022]
As shown in FIG. 2, each culvert 6 is a groove that is dug by 1 to 2 m from the ground surface 16 in a flat area 2 </ b> A to 2 </ b> C of the farm field 2. It is covered with water material 18 and soil 20 is piled on it. The water absorption pipe 8 is formed of a corrosion-resistant material such as a synthetic resin. For example, as shown in FIG. 3, a porous pipe 24 having a plurality of water absorption through holes 22 is used. The water flow material 18 has a function of preventing the water absorption through hole 22 from being clogged. Therefore, as shown in FIG. 2, only the groundwater 25 is selectively absorbed into the water absorption pipe 8.
[0023]
As shown in FIG. 4, the groundwater supplied through the culvert 6 is collected in a single or a plurality of water collecting pipes 10 and guided to the groundwater tank 12 through the water collecting pipes 10. In this case, in FIG. 4, the underdrain 6 and the water absorption pipe 8 are written horizontally, but the water collection effect by gravity is used by utilizing the inclination of the field 2. Arrows indicate the collected groundwater collection status.
[0024]
The water collecting pipe 10 leading to the groundwater tank 12 is provided with a fertilizer detector 26 that is a fertilizer detection means and a flow rate detector 27 that is a flow rate detection means. The fertilizer detector 26 is a general term for various measuring devices that measure fertilizer components and groundwater conditions, that is, groundwater PH, EC value, NO 3 —N, NH 4 —N, PO 4 , K, Ca, Mg, and the like. is there. The flow rate detector 27 detects the flow rate of groundwater collected in the water collection pipe 10. Further, a rain gauge 29 is installed as a rainfall detection means.
[0025]
And each detection output of this fertilizer detector 26, the flow volume detector 27, and the rain gauge 29 is added to the control apparatus 28 as a calculating means and a control means, as shown in FIG. The control device 28 is constituted by a personal computer or the like, and its output is applied to a display 30 and a transmitter 32. In this case, as for the detection output of the fertilizer detector 26, the administrator may add each detection value to the control device 28 through input means such as a keyboard. In this control device 28, the amount of fertilizer spilled and the amount of soil fertilizer remaining (fertilization amount−flow spilled amount) can be calculated from the detected value of the fertilizer detector 26. That is, the fertilizer concentration in the groundwater is the amount of fertilizer runoff and depends on the amount of fertilizer applied and the amount of plant absorption in the field. Therefore, it is possible to predict and calculate the optimum fertilizer amount from the relationship between the fertilizer concentration in the groundwater and the fertilizer amount that would be proportional to the amount of runoff. By obtaining the relationship between the fertilization amount and the runoff amount and observing the transition, the optimum fertilization amount can be calculated for the cultivated plants such as the field 2 and the tea tree 4. In this case, the fertilizer includes not only the fertilizer but also the tea tree itself that has been cut at the time of autumn branching, but it may take into account variables such as the amount of rainfall and the growth state of the plant. If the optimum fertilizer application amount is realized, waste of fertilizer can be eliminated and groundwater contamination by fertilizer can be suppressed.
[0026]
Here, if the fertilizer runoff amount is A, the fertilizer concentration detected by the fertilizer detector 26 is p, the groundwater flow rate detected by the flow rate detector 27 is q, and the rainfall amount detected by the rain gauge 29 is r, the fertilizer The runaway amount A is
A = p × q = p × r (1)
It becomes. In addition, since all groundwater cannot be supplemented to q, a coefficient is applied. Further, r has a decrease due to evaporation or the like. Also, the residual nitrogen amount in soil according to tea growth is B, the tea tree nitrogen absorption amount according to tea growth is C, the nitrogen decomposition speed for each input fertilizer and the nitrogen generation amount calculated based on this is D, E is Indicates fertilizer input, and there are types and amounts of input fertilizer. These are shown in the graph as shown in FIG. In FIG. 5, the fertilizer run-off amount A is an actual measurement value, the soil residual nitrogen amount B and the tea tree nitrogen absorption amount C are estimated amounts, and the nitrogen generation amount D is a predicted value by simulation. The fertilizer runoff amount A is proportional to the height of the fertilizer concentration in the soil, and the residual nitrogen amount B in the soil is more marginal, that is, the residue is required as the amount of fertilizer absorption by the tea tree increases.
[0027]
Therefore, in relation to fertilizer runoff amount A, soil residual nitrogen amount B, tea tree nitrogen absorption amount C and nitrogen generation amount D,
D-B-A-C = 0 (2)
Thus, if fertilizer input E is controlled, optimum fertilization can be realized. In this case, the amount of air released by nitrogen gas was omitted.
[0028]
By the way, the residual nitrogen amount B in the soil can be measured by an EC sensor, a PF sensor, etc., and the absorption amount of the tea tree 4 can be set from the actual measurement value by D-A-B. be able to.
[0029]
Further, since A is added to D and reused, the fertilizer input E can be controlled so that D−B−C = 0.
[0030]
The display 30 displays the detected value, the calculation result, and the like. In this case, if the fertilizer concentration detected by the fertilizer detector 26 is equal to or higher than a preset reference value, water discharge from the groundwater tank 12 is prohibited, an alarm is displayed to the administrator, and attention is urged. The groundwater stored in the groundwater tank 12 can be used as irrigation or reused as fertilizer.
[0031]
Next, FIG. 6 shows a fertilizer collection / reuse system which is a second embodiment of the field environment purification system of the present invention. Also in this embodiment, a tea garden in which the tea tree 4 is cultivated in the field 2 is taken as an example. The field 2 is a so-called terraced field in which the narrow plane portions 2A, 2B, 2C,... Form a step shape, and the tea plant 4 that is a cultivated plant planted in each of the plane portions 2A to 2C is provided as necessary. Fertilization is performed. In each of the flat portions 2A to 2C, a culvert 6 is individually formed for collecting groundwater, and each water absorption pipe 8 embedded in each culvert 6 is connected to the water collection pipe 10, and the water collection pipe 10 Is laid in the ground in the field 2. Accordingly, the groundwater in the field 2 is collected in the water collecting pipe 10 through the water suction pipe 8 of the underdrain 6 and guided to the groundwater tank 12. The structure of the underdrain 6 is as shown in FIG. 2, the form of the water absorption pipe 8 is as shown in FIG. 3, and the form of the underdrain 6, the water absorption pipe 8 and the underground water tank 12 is as shown in FIG.
[0032]
A fertilizer detector 26 is provided in the water collecting pipe 10 in the vicinity of the groundwater tank 12. The fertilizer detector 26 is a general term for various measuring devices that measure fertilizer components and groundwater conditions, that is, groundwater PH, EC value, NO 3 —N, NH 4 —N, PO 4 , K, Ca, Mg, and the like. is there. The detection output of the fertilizer detector 26 is added to the control device 28, and the control device 28 compares the fertilizer concentration with a reference value as an operation related to the detection output.
[0033]
A valve 34 as a switching means and a water discharge means is installed in the water collecting pipe 10 immediately before the ground water tank 12. That is, the switching control of the valve 34 is performed by the control device 28 which is a control means. When the fertilizer concentration of the groundwater is equal to or higher than the reference value, the control is switched to the water storage side X and the groundwater is guided to the groundwater tank 12. In this case, the water is switched to the water discharge side Y and discharged to the outside.
[0034]
A pump 36 is provided as means for pumping the groundwater stored in the groundwater tank 12, and the pump 36 is driven and controlled by the control device 28. The groundwater pumped by the pump 36 is reused, led from the groundwater tank 12 to each tea tree 4 side through the water supply pipe 40 laid in the field 2 and used for irrigation and the like. Arrow B indicates pumping of groundwater.
[0035]
If comprised in this way, after fertilization, the fertilizer which ran away from the field 2 by precipitation etc. will be collected by the water collection pipe | tube 10 through the water absorption pipe | tube 8 of the culvert 6 with groundwater. The groundwater in the water collecting pipe 10 passes through the fertilizer detector 26, and the fertilizer concentration is detected. In this case, fertilizer concentrations such as groundwater PH, EC value, NO 3 —N, NH 4 —N, PO 4 , K, Ca, and Mg are measured. In some cases, it cannot be denied that the numerical value may cause environmental pollution. Therefore, the reference value set in advance is compared with the detected fertilizer concentration. The comparison result is displayed on the display 30 and notified to a manager in a remote place through a transmitter 32 by radio or telephone line. In that case, if the reference value is greatly exceeded, a display or warning is issued. The display device 30 may perform visual display, audio display, or the like, and may take a measurement result or calculation result on a recording sheet with a printer or the like.
[0036]
As a result of measuring the fertilizer concentration, if the fertilizer concentration is less than the reference value, there is no risk of environmental pollution, so the valve 34 is switched to the discharge side Y and discharged into a river or the like through the drainage ditch. In this case, the groundwater may be guided and stored in the groundwater tank 12 regardless of the fertilizer concentration of the groundwater.
[0037]
Further, when the fertilizer concentration is equal to or higher than the reference value as a result of the measurement of the fertilizer concentration, it can be reused as a fertilizer. Therefore, the valve 34 is switched to the water storage side X and stored in the groundwater tank 12. Since this groundwater contains reusable nitrate nitrogen, it is pumped together with the groundwater by the pump 36 and irrigated to the field 2 through the water supply pipe 40. As a result of this irrigation, nitrate nitrogen, which is a fertilizer component, is supplied to the field 2, and the deficiency lost due to precipitation can be compensated. As a result, it is possible to prevent environmental pollution due to excessive fertilization as well as reuse of fertilizer and irrigation.
[0038]
Next, FIG. 7 is a block diagram showing a fertilizer recovery and concentration system from groundwater. This system collects the fertilizer that has been washed away into the groundwater, concentrates the fertilizer concentration in the accumulated groundwater, and purifies the groundwater for irrigation or natural discharge.
[0039]
In the groundwater tank 12, groundwater flowing through the water collecting pipe 10 is stored. In this case, groundwater is collected regardless of fertilizer concentration. A water supply pipe 40 is connected to the groundwater tank 12 through a pump 36 in the system shown in FIG. A pump 44 as a pressurizing means is connected to the groundwater tank 12 through a filter 42 that removes impurities in the groundwater, and the groundwater is pressurized and pumped to the separation membrane 46 through the pump 44.
[0040]
This separation membrane 46 is a fertilizer concentration means, a groundwater filtration means or a purification means, and uses a reverse osmosis membrane such as a membrane that permeates water but does not permeate nitrate nitrogen ions. That is, it is a means for separating condensed water and purified water. The condensed water is returned to the groundwater tank 12 from the separation membrane 46, and the purified water is supplied from the separation membrane 46 to the purified water tank 48 and stored therein. The purified water stored in the purified water tank 48 is naturally discharged through a valve 50 which is a water discharge means. That is, the drive of the pump 44 and the valve 50 is controlled by the control device 28 which is a control means, and the groundwater in the groundwater tank 12 circulates through the separation membrane 46 by the drive of the pump 44, and the fertilizer concentration can be increased. That is, fertilizers such as nitrate nitrogen diluted and washed away in the ground water during the rain can be collected from the ground water and administered to the field 2 through the water supply pipe 40.
[0041]
A tank having a smaller capacity than the groundwater tank 12 is used as the purified water tank 48, and natural discharge is possible by opening the valve 50 in accordance with the generation of purified water. Although purified water is not shown, it can be supplied to the water supply pipe 40 side and used for irrigation of the field 2, and even if it is discharged naturally, it does not cause groundwater contamination and contributes to environmental purification.
[0042]
By the way, the explanation of fertilizer administration in tea gardens is closely related to the product quality of green tea and the concentration of total nitrogen and free amino acids contained in crude tea. Efforts have been made to increase nitrogen and free amino acid concentrations. As a result, large amounts of nitrogen fertilizer became normal in tea cultivation, and problems such as strong acidity of the soil, weakening of the tree due to root death, groundwater contamination by nitrate nitrogen, and generation of nitrous oxide gas were raised. As a result, nitrate nitrogen was added to the environmental standards for public water areas and groundwater, and standard values were set from the viewpoint of preventing environmental pollution. In other words, assuming that 1000 tons of water flows out of the system from the tea garden of 10a per year, only about 10 kg of nitrogen can be released.
[0043]
From such a standpoint, by using the fertilizer recovery and reuse of the present invention, the nitrogen use efficiency of tea can be significantly improved, and the environmental standards can be cleared by removing the nitrogen component that flows out. confirmed. In particular, it contributes to the prevention of environmental pollution by nitrate nitrogen, purification of water, promotion of denitrification in the lower soil, etc. in combination with the use of slow-acting fertilizers and the substantial extension of the residence time of fertilizer components in the root zone. be able to.
[0044]
In order to remove nitrate nitrogen from the groundwater stored in the groundwater tank 12, instead of the method using the separation membrane 46, a physicochemical method such as an ion exchange method or a reverse osmosis method, or a living organism utilizing the ability of reducing microorganisms. Denitrification method can be used. In the ion exchange method, ions in water to be removed are removed by exchanging them with ions of an ion exchanger. Usually, a strongly basic anion exchange resin is used to remove nitrate nitrogen. That's fine. In the reverse osmosis method, water molecules are generally known to move from the lower concentration side to the higher concentration side of the solution on both sides of the semipermeable membrane, but it penetrates into the higher concentration solution. Conversely, when a pressure higher than the pressure difference is applied, nitrate nitrogen can be removed from the groundwater by utilizing the phenomenon that water molecules move from the higher concentration to the lower concentration.
[0045]
The biological denitrification method is a method of removing nitrate nitrogen in water by the denitrification action of denitrifying bacteria, and the denitrifying bacteria are fixed to a carrier so as not to diffuse into water. A carrier in which denitrifying bacteria are fixed is introduced into groundwater, or nitrate water is removed by passing groundwater through a carrier layer in which denitrifying bacteria are fixed. Microorganisms having denitrification ability are distributed in nature, and about 20% of anaerobic bacteria are said to fall under this category.
[0046]
Further, a penetration barrier may be installed in the farm field 2. This permeation barrier is a layer of a carrier on which microorganisms (denitrifying bacteria) are fixed, and is installed in a portion above the aquifer under the upland farming area or livestock production area where the nitrogen component is supplied. That is, when permeated water containing nitrate nitrogen passes through the permeation barrier, nitrate nitrogen is reduced to nitrogen gas by the denitrifying action of the denitrifying bacteria, and the permeation of nitrate nitrogen deeper than the permeation barrier is blocked. I can expect. There are a conventional method and a horizontal well method for installing the permeation barrier. The former is a method in which the surface soil is once removed, the microbial carrier is spread, and then the soil is refilled. The latter is a method of providing a plurality of horizontal wells and filling the wells with microbial carriers. In the horizontal well method, oblique digging is started with a drill, and when a predetermined depth is reached, the digging proceeds to horizontal digging. When the horizontal digging reaches a planned point, the tip of the drill is turned diagonally upward and drilled. After reaching the ground, there are various methods such as switching the tip to a reverse drill and finishing the well while drawing the well pipe filled with the carrier.
[0047]
【The invention's effect】
As described above, according to the present invention, the following effects can be obtained.
a Since the fertilizer concentration in the groundwater in the field can be detected and the fertilizer application amount can be set according to the cultivated plant and land according to the detected value, waste of the fertilizer can be suppressed and groundwater contamination can be prevented.
b Groundwater whose fertilizer concentration is below the standard value is discharged, which can prevent groundwater contamination and contribute to environmental purification.
c. Fertilizer that has been washed away into groundwater can be collected through groundwater, and groundwater can be irrigated and used, and the amount of fertilizer applied can be reduced by reusing the collected fertilizer.
d The detected value of the fertilizer concentration in the groundwater can be transmitted to the field manager through a communication line, etc., so that the state of groundwater contamination can be immediately known, and it can contribute to speeding up the measures necessary for preventing groundwater contamination.
e Underground burial promotes drainage of soil, preventing excess water from rising to the surface, improving oxygen supply to the roots of cultivated plants such as tea trees and improving the yield and quality of tea leaves be able to.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a fertilization management system which is a first embodiment of a field environment purification system of the present invention.
FIG. 2 is a cross-sectional view showing a form of underdrain.
FIG. 3 is a perspective view showing a perforated pipe as an embodiment of a water collecting pipe.
FIG. 4 is a diagram showing an embodiment of a culvert, a water collection pipe, and a groundwater tank.
FIG. 5 is a diagram showing a relationship among fertilizer runoff amount A, soil residual nitrogen amount B, tea tree nitrogen absorption amount C, and nitrogen generation amount D;
FIG. 6 is a block diagram showing a fertilizer recovery / reuse system according to a second embodiment of the field environment purification system of the present invention.
FIG. 7 is a block diagram showing a fertilizer recovery and concentration system from groundwater.
[Explanation of symbols]
2 Farm 4 Tea plant 6 Underdrain (water collecting means)
8 Water absorption pipe (water collecting means)
10 Water collecting pipe (water collecting means)
12 Groundwater tank (water storage means)
24 Porous pipe 25 Groundwater 26 Fertilizer detector (detection means)
28 Control device (control means, calculation means)
32 Transmitter (Transmission means)
34 Valve (switching means)
40 Water supply pipe (water supply means)
46 Separation membrane (concentration means, filtration means, purification means)

Claims (9)

圃場に地下水を供給する圃場環境浄化システムであって、
地中に埋設されて地下水を集水する単一又は複数の集水手段と、
この集水手段により集水される前記地下水を溜める貯水手段と、
前記地下水の肥料濃度を検出する検出手段と、
この検出手段の検出値が基準値以上の場合には前記貯水手段から前記地下水を圃場に給水する給水手段と、
前記検出手段の検出値が基準値以上の場合には前記地下水を前記貯水手段に貯め、前記検出手段の検出値が基準値未満の場合には前記地下水を放水させる切換手段と、
を備え、前記給水手段により、前記貯水手段から前記地下水を圃場に給水することを特徴とする圃場環境浄化システム。
A field environmental purification system for supplying groundwater to a field,
Single or multiple water collecting means buried in the ground and collecting groundwater;
Water storage means for storing the groundwater collected by the water collection means;
Detecting means for detecting the fertilizer concentration of the groundwater;
When the detection value of the detection means is greater than or equal to a reference value, the water supply means for supplying the groundwater from the water storage means to the field,
When the detection value of the detection means is greater than or equal to a reference value, the ground water is stored in the water storage means, and when the detection value of the detection means is less than the reference value, switching means for discharging the ground water;
And the groundwater is supplied from the water storage means to the field by the water supply means .
前記検出手段の検出値、前記圃場に投与された施肥量を演算情報として前記圃場に投与すべき施肥量を予測演算する演算手段を備えたことを特徴とする請求項1記載の圃場環境浄化システム。  The field environment purification system according to claim 1, further comprising a calculation means for predicting and calculating a fertilization amount to be administered to the field using the detection value of the detection means and the fertilization amount administered to the field as calculation information. . 前記切換手段は、吸水管に吸水された前記地下水を集水して溜める前記貯水手段の直前の集水管に設置されるバルブであって、前記検出手段の検出値が基準値以上の場合には前記バルブを切り換えて前記地下水を前記貯水手段に貯め、前記検出手段の検出値が基準値未満の場合には前記バルブを切り換えて前記地下水を放水させることを特徴とする請求項1記載の圃場環境浄化システム。 The switching means is a valve installed in the water collection pipe immediately before the water storage means for collecting and storing the groundwater absorbed in the water absorption pipe, and when the detection value of the detection means is a reference value or more switching the valve accumulate the groundwater to the water storage means, according to claim 1, wherein the field environment detection value of the detection means in the case of less than the reference value, characterized in that to discharge water to the ground water by switching the valve Purification system. 前記貯水手段に溜められた前記地下水を濃縮して肥料濃度の高い濃縮水に変換する濃縮手段を備え、前記給水手段により、前記貯水手段の前記濃縮水を圃場に給水することを特徴とする請求項1記載の圃場環境浄化システム。  Concentration means for concentrating the groundwater stored in the water storage means to convert it into concentrated water having a high fertilizer concentration, and supplying the concentrated water of the water storage means to a field by the water supply means. Item 1. A farm environment purification system according to Item 1. 前記貯水手段の前記地下水を濾過する濾過手段と、
この濾過手段で濾過された前記地下水を放水する放水手段と、
を備えたことを特徴とする請求項1又は4記載の圃場環境浄化システム。
Filtering means for filtering the groundwater of the water storage means;
Water discharge means for discharging the groundwater filtered by the filtration means;
Field environmental purification system of claim 1 or 4, wherein further comprising a.
前記貯水手段の前記地下水を浄化する浄化手段と、
この浄化手段で浄化された浄化水を放水する放水手段と、
を備えたことを特徴とする請求項1又は4記載の圃場環境浄化システム。
Purification means for purifying the groundwater of the water storage means;
Water discharge means for discharging purified water purified by the purification means;
Field environmental purification system of claim 1 or 4, wherein further comprising a.
前記集水手段に前記地下水を選択的に集水する多孔管を用いたことを特徴とする請求項1又は4記載の圃場環境浄化システム。Field environmental purification system of claim 1 or 4, wherein the using the porous pipe for selectively collecting the ground water in the water collecting means. 前記検出手段が検出した肥料濃度を伝送する伝送手段を備えたことを特徴とする請求項1記載の圃場環境浄化システム。Field environmental purification system of claim 1 Symbol mounting characterized by comprising a transmitting means for transmitting a fertilizer concentration detected by the detection unit. 前記給水手段に前記地下水を前記圃場に圧送する圧送手段を備えることを特徴とする請求項1又は4記載の圃場環境浄化システム。  The field environment purification system according to claim 1 or 4, wherein the water supply means is provided with a pumping means for pumping the groundwater to the field.
JP31745299A 1999-11-08 1999-11-08 Field environment purification system Expired - Fee Related JP4312904B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31745299A JP4312904B2 (en) 1999-11-08 1999-11-08 Field environment purification system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31745299A JP4312904B2 (en) 1999-11-08 1999-11-08 Field environment purification system

Publications (2)

Publication Number Publication Date
JP2001128523A JP2001128523A (en) 2001-05-15
JP4312904B2 true JP4312904B2 (en) 2009-08-12

Family

ID=18088392

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31745299A Expired - Fee Related JP4312904B2 (en) 1999-11-08 1999-11-08 Field environment purification system

Country Status (1)

Country Link
JP (1) JP4312904B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107347348A (en) * 2017-08-28 2017-11-17 中国农业科学院农业环境与可持续发展研究所 The pollution of area source control system efficiently managed based on liquid manure

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2961241T3 (en) * 2016-07-04 2024-03-11 Rockwool As Plant growth control system and method
CN109716911B (en) * 2019-01-08 2023-08-25 石河子大学 A special water and fertilizer integrated oxygenation and heating irrigation equipment for farmland
JP2020054395A (en) * 2020-01-15 2020-04-09 国立研究開発法人農業・食品産業技術総合研究機構 Fertilization amount determination device and fertilization amount determination method
CN113268918B (en) * 2021-05-10 2023-04-07 云南省农业科学院农业环境资源研究所 Method for predicting nitrogen concentration in shallow groundwater

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107347348A (en) * 2017-08-28 2017-11-17 中国农业科学院农业环境与可持续发展研究所 The pollution of area source control system efficiently managed based on liquid manure
CN107347348B (en) * 2017-08-28 2020-01-07 中国农业科学院农业环境与可持续发展研究所 Non-point source pollution control system based on efficient management of water and fertilizer

Also Published As

Publication number Publication date
JP2001128523A (en) 2001-05-15

Similar Documents

Publication Publication Date Title
CN111587716B (en) Automatic soil underground irrigation system and application thereof
Hillel Salinity management for sustainable irrigation: integrating science, environment, and economics
Bilderback Water management is key in reducing nutrient runoff from container nurseries
CN103803762A (en) Organic composite soil high-efficiency ecological water purification system
CN101969757A (en) Reverse osmosis irrigation
CN204530839U (en) A kind of Initial Runoff collection and purification reutilizing device
JP4312904B2 (en) Field environment purification system
Wood Constructed wetlands for wastewater treatment—engineering and design considerations
US20030141259A1 (en) Methods of phosphorous reduction in stormwater runoff systems using iron humate
CN109734194A (en) The subsurface flow constructed wetland system of anti-clogging and ventilation
CN108640424A (en) A kind of complex control system for paddy agriculture pollution of area source
JP5502138B2 (en) Ground drainage method
CN210597565U (en) Urban rainwater bank collecting, purifying, regulating and storing ecological utilization system
CN212463964U (en) A system for efficiently improving coastal saline-alkali soil with water recycling
Schraufnagel Ridge-and-furrow irrigation for industrial waste disposal
KR100444659B1 (en) Method of controlling the lake or stream water quality with using filteration Bed
CN217336569U (en) Saline and alkaline land planting technique system
Grischek et al. Sustainability of river bank filtration: Examples from Germany
JPH07115010B2 (en) Pesticide purification equipment, purification method, and ground structure for golf course greens, etc.
JP3045778U (en) Underground watering device
CN221203211U (en) Salt discharging structure is prevented to cultivation soil
CN103880153B (en) A kind of high water-base fluid landscape ground filtration system for rural sewage treatment and treatment process
CN221930643U (en) A composite governance structure for coastal saline-alkali land
JP2000024678A (en) Purifying method for lake, marsh or river
CN214952897U (en) Soil moisture monitoring feedback device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080408

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080826

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081021

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090512

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090514

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120522

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees