[go: up one dir, main page]

JP4311157B2 - Manufacturing method of substrate for semiconductor device - Google Patents

Manufacturing method of substrate for semiconductor device Download PDF

Info

Publication number
JP4311157B2
JP4311157B2 JP2003351866A JP2003351866A JP4311157B2 JP 4311157 B2 JP4311157 B2 JP 4311157B2 JP 2003351866 A JP2003351866 A JP 2003351866A JP 2003351866 A JP2003351866 A JP 2003351866A JP 4311157 B2 JP4311157 B2 JP 4311157B2
Authority
JP
Japan
Prior art keywords
resist
pattern
thin film
conductor layer
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003351866A
Other languages
Japanese (ja)
Other versions
JP2005116927A (en
Inventor
俊雄 大房
吉川  裕
昌史 野村
泰孝 明楽
俊明 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Inc filed Critical Toppan Inc
Priority to JP2003351866A priority Critical patent/JP4311157B2/en
Publication of JP2005116927A publication Critical patent/JP2005116927A/en
Application granted granted Critical
Publication of JP4311157B2 publication Critical patent/JP4311157B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Parts Printed On Printed Circuit Boards (AREA)

Description

微細かつ高密度な電気回路の配線と基板内蔵の受動素子を有する半導体装置用基板及びその製造方法に関する。   The present invention relates to a substrate for a semiconductor device having fine and high-density wiring of an electric circuit and a passive element built in the substrate, and a method for manufacturing the same.

従来の受動部品内蔵基板は、いくつかの種類が知られている。抵抗素子内蔵基板を一例として挙げると、出来上がりのチップ部品を基板内に配置して埋め込むタイプと、抵抗ペーストを印刷して基板上に厚膜抵抗を形成するタイプと、無電解めっきによって薄い抵抗素子パターンを形成するタイプと、銅箔の下に薄い抵抗層を有する特殊な基材を使用し、パターン形成時に抵抗素子を作りこむタイプなどが知られている(非特許文献1参照)。   Several types of conventional passive component-embedded substrates are known. As an example of a resistive element built-in substrate, a type in which a finished chip component is arranged and embedded in the substrate, a type in which a resistive paste is printed to form a thick film resistor on the substrate, and a thin resistive element by electroless plating A type in which a pattern is formed and a type in which a special base material having a thin resistance layer under a copper foil is used to form a resistance element at the time of pattern formation are known (see Non-Patent Document 1).

図5は、従来の半導体装置用基板の部分図で、(a)は、平面図であり、(b)は、配線部の側断面図で、(c)は、薄膜抵抗素子部の側断面図である。図5(a)では、基板1上に左右に配線が配置され、該配線間に薄膜抵抗素子を形成する。前記配線は、導体層40により形成する。前記薄膜抵抗素子は、薄膜抵抗層2により形成されている。図面の左側の配線と、右側の配線とを薄膜抵抗素子の受動部品を介して電気回路を形成する。図上、y−y線の断面図を図5(b)に、x−x線の断面図を図5(c)に示す。図5(b)は、配線部の断面を示し、基板1上に、薄膜抵抗層2、導体層40と順番に積み重なった構造となっている。前記配線では、通常のプリント配線板と同様導体層40の導体層厚が十分に厚いため直流抵抗は小さい。図5(c)は、薄膜抵抗素子の受動部品の近傍を示し、左右の導体層40の間隙の距離で薄膜抵抗素子の長さ方向の素子寸法を規制する。前記薄膜抵抗層2の素子では、図面左側と右側に導体層40の端部、中央に薄膜抵抗層2の露出部があり、該薄膜抵抗層を中心に左右対称の谷間を形成する。なお、薄膜抵抗素子の精度を確保するため、該薄膜抵抗素子は配線より幅広且つ大きな面積で形成する場合が多い。   5A and 5B are partial views of a conventional substrate for a semiconductor device, in which FIG. 5A is a plan view, FIG. 5B is a side sectional view of a wiring portion, and FIG. 5C is a side sectional view of a thin film resistor element portion. FIG. In FIG. 5A, wirings are arranged on the left and right on the substrate 1, and a thin film resistance element is formed between the wirings. The wiring is formed by the conductor layer 40. The thin film resistance element is formed by a thin film resistance layer 2. An electric circuit is formed by connecting the wiring on the left side of the drawing and the wiring on the right side through passive components of a thin film resistance element. In the drawing, a cross-sectional view taken along the line yy is shown in FIG. 5B, and a cross-sectional view taken along the line xx is shown in FIG. 5C. FIG. 5B shows a cross section of the wiring portion, and has a structure in which the thin film resistor layer 2 and the conductor layer 40 are stacked in order on the substrate 1. In the wiring, since the conductor layer thickness of the conductor layer 40 is sufficiently thick like a normal printed wiring board, the direct current resistance is small. FIG. 5C shows the vicinity of the passive component of the thin film resistance element, and the element dimension in the length direction of the thin film resistance element is regulated by the distance between the left and right conductor layers 40. In the element of the thin film resistance layer 2, there are end portions of the conductor layer 40 on the left and right sides of the drawing and an exposed portion of the thin film resistance layer 2 in the center, and a symmetrical valley is formed around the thin film resistance layer. In order to ensure the accuracy of the thin film resistance element, the thin film resistance element is often formed in a wider and larger area than the wiring.

図6は、従来の半導体装置用基板の製造方法を説明する側断面図の工程図である。なお、図6の右側の点線枠内は平面図である。基板1上に薄膜抵抗層2、導体層40を順番に積層する(図6(a)参照)。導体層40上にレジスト30をパターン形成する(図6(b)参照)。導体層40及び薄膜抵抗層2をエッチングにより同時に除去する。前記レジストを剥膜する(図6(c)参照)。この1回目のエッチング工程で、配線の幅方向の寸法精度が規制される。再度導体層40上にレジスト31をパターン形成する(図6(d)参照)。薄膜抵抗素子部の導体層40のみをエッチングにより除去する(図6(e)参照)。前記レジストを剥膜する(図6(f)参照)。この2回目のエッチング工程で、薄膜抵抗素子の素子寸法の精度が規制される。上述のように、1回目のエッチング工程では、導体層40及び薄膜抵抗層2を同時にエッチングし、2回目では導体層40のみをエッチングする。すなわち、薄膜抵抗層2の形状パターン(薄膜抵抗素子)では、その仕上がり精度が不安定となる。また、これ以外にも銅として残すパターン以外をエッチングにより除去する際、薄膜抵抗層を全面に残しておき、薄膜抵抗素子として形成する部分のみを別のレジストで覆い、露出した薄膜抵抗層のみを除去して所望の回路パターンを得る方法も行われている。   FIG. 6 is a process diagram of a side sectional view for explaining a conventional method of manufacturing a substrate for a semiconductor device. Note that the inside of the dotted line frame on the right side of FIG. 6 is a plan view. The thin film resistance layer 2 and the conductor layer 40 are sequentially laminated on the substrate 1 (see FIG. 6A). A resist 30 is patterned on the conductor layer 40 (see FIG. 6B). The conductor layer 40 and the thin film resistance layer 2 are simultaneously removed by etching. The resist is stripped (see FIG. 6C). In the first etching process, the dimensional accuracy in the width direction of the wiring is regulated. A resist 31 is patterned again on the conductor layer 40 (see FIG. 6D). Only the conductor layer 40 of the thin film resistance element portion is removed by etching (see FIG. 6E). The resist is stripped (see FIG. 6F). In the second etching process, the accuracy of the element dimensions of the thin film resistance element is regulated. As described above, in the first etching step, the conductor layer 40 and the thin-film resistance layer 2 are simultaneously etched, and only the conductor layer 40 is etched in the second time. That is, in the shape pattern (thin film resistance element) of the thin film resistance layer 2, the finishing accuracy becomes unstable. In addition to this, when removing other than copper as a pattern by etching, the thin film resistance layer is left on the entire surface, only the portion to be formed as a thin film resistance element is covered with another resist, and only the exposed thin film resistance layer is covered. There is also a method of removing and obtaining a desired circuit pattern.

一方では、チップ部品を埋め込むタイプでは、チップ部品を搭載する装置が必要だったり、チップ部品自体のサイズが大きく、例えば、最近使用されるようになった0402と呼ばれる微小チップ部品でも400μm×200μmというサイズであり、半導体装置用の基板の配線と比較するとまだまだ大きなものとなっているほか、その厚みも他のタイプと比較すると大変大きくなるため、半導体装置用基板に多数のチップ部品を搭載すること
は困難だった。また、抵抗ペーストを印刷し厚膜抵抗を形成するタイプでは、印刷するペーストの膜厚と寸法の制御が難しく、特許文献1では予め周囲に絶縁体のダムを設け、印刷でその中に抵抗体を形成することでにじみなどによる寸法変化を防ぐ工夫がなされている。しかし、ペーストを印刷するタイプでは、それ以外に膜厚の制御も難しく、素子の精度に大きく影響するため、これ以上の素子の小型化は困難だった。一方、無電解めっきにてニッケルを主成分とする薄膜パターンを形成する方法は、最近注目されてきているが、めっき条件によって膜の組成が変化しやすく、得られる膜のシート抵抗値を高精度に制御することは難しかった。そのため、高精度の抵抗素子を要求する半導体装置用基板には、非特許文献2のような銅箔の下に薄い抵抗層を有する特殊な基材を使用して抵抗素子を作りこむタイプを使用するか、抵抗値を測定しながら1素子毎にレーザートリミングして抵抗素子パターンを修正し、使用するしかなかった。
On the other hand, the type in which the chip component is embedded requires an apparatus for mounting the chip component, or the size of the chip component itself is large. For example, a microchip component called 0402 that has recently been used is 400 μm × 200 μm. The size is still large compared to the wiring of the substrate for the semiconductor device, and the thickness is also very large compared to other types, so many chip parts must be mounted on the substrate for the semiconductor device. Was difficult. Also, in the type in which a resistance paste is printed to form a thick film resistance, it is difficult to control the film thickness and dimensions of the paste to be printed. In order to prevent dimensional changes due to blurring or the like, it has been devised. However, with the type that prints paste, it is difficult to control the film thickness, and the accuracy of the element is greatly affected, and it is difficult to further reduce the size of the element. On the other hand, a method of forming a thin film pattern mainly composed of nickel by electroless plating has recently been attracting attention, but the composition of the film is likely to change depending on the plating conditions, and the sheet resistance value of the obtained film is highly accurate. It was difficult to control. Therefore, for semiconductor device substrates that require high-precision resistance elements, use a type in which a resistance element is made using a special base material having a thin resistance layer under a copper foil as in Non-Patent Document 2. In other words, the resistance element pattern was corrected by laser trimming for each element while measuring the resistance value.

以下に公知文献を記す。
特開平11−168282号公報 エレクトロニクス実装技術 2003.1(Vol.19 No.1) P.20〜25 PRODUCT LINE Copper Foil Integrated Thin Film Resistor(Gould Electronics Inc.)
The known literature is described below.
JP-A-11-168282 Electronics Packaging Technology 2003.3.1 (Vol.19 No.1) 20-25 PRODUCT LINE Copper Foil Integrated Thin Film Resistor (Gould Electronics Inc.)

上述の如く、高精度の抵抗素子を要求する基板には、銅箔の下に薄い抵抗層を有する特殊な基材を使用して抵抗素子を作りこむ方式が利用されてきたが、この基材の製造では、例えば、厚みが18μmの銅箔のマット面に1μm以下の厚みのニッケル−リン層を無電解めっきで形成したり、ニッケル−クロム層をスパッタで形成して抵抗層としていた。しかし、元の銅箔厚が18μm等に決まっており自由に銅箔厚を選べないため、近年、半導体装置用基板に要求される例えば30μmピッチ以下の導体パターンを形成することは難しく、隣接する配線との絶縁不良が発生しやすいことや、銅箔粗化面の凹凸が影響して配線ボトム部の形状が凹凸となることから、わずかなエッチング量の違いで抵抗値精度を決める導体のボトム寸法が変化してしまうため、その制御が困難になっている。   As described above, for a substrate that requires a high-precision resistance element, a method of creating a resistance element using a special base material having a thin resistance layer under a copper foil has been used. In the manufacturing of, for example, a nickel-phosphorous layer having a thickness of 1 μm or less is formed on a mat surface of a copper foil having a thickness of 18 μm by electroless plating, or a nickel-chrome layer is formed by sputtering to form a resistance layer. However, since the original copper foil thickness is determined to be 18 μm or the like and the copper foil thickness cannot be freely selected, it is difficult to form a conductor pattern having a pitch of, for example, 30 μm or less, which is required for a substrate for a semiconductor device in recent years. The bottom of the conductor that determines the resistance value accuracy with a slight difference in etching amount because the insulation of the wiring is likely to occur and the shape of the bottom of the wiring becomes uneven due to the rough surface of the copper foil. Since the dimensions change, it is difficult to control.

一方、フレキシブル基板系の材料として、ポリイミドのベースフィルム上にニッケル−クロムの薄膜抵抗層を形成し、その上にスパッタと電解めっきで銅層を形成するタイプの材料が出てきた。この材料を使用する場合にはめっきによって自由な銅厚が得られることから、銅箔を使用した材料よりファインパターン形成に有利である。しかし、フォトプロセス法を用いてパターンを形成する場合では、めっきで銅層を厚く形成後パターンを形成するサブトラクティブ法で場合には、前記の銅箔を使用する場合と同様に、抵抗パターン形成部の精度はほとんど差がない。これに対し、セミアディティブ法で導体パターンと抵抗パターンとを形成するプロセスは、大きく2種類に分けられる。一つ目の方法は、抵抗パターン形成部と導体パターン形成部との両方に電解銅めっきを行って必要な厚みの銅パターンを形成し、後から抵抗パターン形成部の銅をエッチングして抵抗素子を形成する方法である。この方法では、サブトラクティブ法より幅方向の寸法精度は高くなるが、エッチングして形成するため長さ方向の抵抗パターン精度が向上しないので、得られる抵抗素子の精度はそれほど向上できない。二つ目の方法は、導体パターン部のみ電解めっきした後、抵抗素子形成部をレジストでマスクして薄膜銅層と薄膜抵抗層を同時にエッチングし、レジストを剥離後に抵抗層上の銅薄膜を除去する方法か、又は電解めっき後に薄膜銅層
を除去してから抵抗素子形成部をレジストでマスクして周囲の薄膜抵抗層を除去する方法がとられている。しかし、この方法では銅パターンと薄膜銅層もしくは薄膜抵抗層との段差を埋める必要があり、使用するレジストを十分に厚くしなければならないため、形成するレジストパターンの寸法精度を向上させるのが難しく、この方法でも微細配線に対応するところまでの精度は得られなかった。したがって、従来の技術による最も高い抵抗値精度が得られる方法として知られている、銅箔の下に薄い抵抗層を有する特殊な基材を使用して抵抗素子を作りこむ方式でも、精度の高い抵抗素子を得るためには、チップ部品に近い寸法まで大きな抵抗素子としなければならない問題がある。
On the other hand, as a flexible substrate material, a type of material in which a nickel-chromium thin film resistance layer is formed on a polyimide base film and a copper layer is formed thereon by sputtering and electrolytic plating has emerged. When this material is used, since a free copper thickness can be obtained by plating, it is more advantageous for forming a fine pattern than a material using a copper foil. However, in the case of forming a pattern using a photo process method, in the case of a subtractive method in which a pattern is formed after forming a copper layer thickly by plating, in the same manner as in the case of using the copper foil, a resistance pattern is formed. There is almost no difference in the accuracy of the parts. On the other hand, the process of forming the conductor pattern and the resistance pattern by the semi-additive method is roughly divided into two types. The first method is to perform electrolytic copper plating on both the resistance pattern forming portion and the conductor pattern forming portion to form a copper pattern having a required thickness, and then etching the copper in the resistance pattern forming portion to form a resistance element. It is a method of forming. In this method, the dimensional accuracy in the width direction is higher than that in the subtractive method, but since the resistance pattern accuracy in the length direction is not improved because it is formed by etching, the accuracy of the obtained resistance element cannot be improved so much. The second method is to electroplat only the conductor pattern part, then mask the resistance element formation part with a resist and simultaneously etch the thin film copper layer and the thin film resistive layer, and after removing the resist, remove the copper thin film on the resistive layer Or a method of removing the thin film copper layer after electrolytic plating and then removing the surrounding thin film resistance layer by masking the resistance element forming portion with a resist. However, in this method, it is necessary to fill the step between the copper pattern and the thin film copper layer or the thin film resistance layer, and the resist to be used must be made sufficiently thick. Therefore, it is difficult to improve the dimensional accuracy of the resist pattern to be formed. Even with this method, the accuracy to the point corresponding to fine wiring could not be obtained. Therefore, the method of creating a resistance element using a special base material having a thin resistance layer under the copper foil, which is known as a method for obtaining the highest resistance value accuracy according to the prior art, is highly accurate. In order to obtain a resistance element, there is a problem that a large resistance element has to be obtained to a size close to that of a chip component.

すなわち、微細配線に対応するためには、抵抗パターンの寸法も微細化する必要があるが、単純に寸法を微細化していっても、パターン形成精度自体はほとんど向上しないため、出来あがる抵抗素子の精度は悪くなるだけだった。   That is, in order to cope with fine wiring, it is necessary to reduce the size of the resistance pattern, but even if the size is simply reduced, the pattern formation accuracy itself is hardly improved. The accuracy only worsened.

このようにして抵抗素子を形成した場合、例えば幅100μm、長さ200μmの抵抗素子では、素子寸法の幅及び長さ精度がともに±10μm程度が実用的な限界で、その場合の抵抗値精度は±10〜15%程度だが、抵抗素子の寸法を幅15μm、長さ30μmで形成しようとすると素子寸法精度が±5μmに向上しても素子の大きさに対する寸法精度は相対的に低下してしまうため、±40〜50%程度の精度がやっとである。   When a resistance element is formed in this way, for example, in the case of a resistance element having a width of 100 μm and a length of 200 μm, both the width and length accuracy of the element dimensions are about ± 10 μm, and the resistance value accuracy in that case is Although it is about ± 10 to 15%, if the dimension of the resistance element is to be formed with a width of 15 μm and a length of 30 μm, the dimensional accuracy with respect to the element size is relatively lowered even if the element dimensional accuracy is improved to ± 5 μm. Therefore, the accuracy of about ± 40 to 50% is finally reached.

抵抗素子精度を向上させようとすると素子寸法自体を大きくせざるを得ないが、逆に素子寸法を大きくしてしまうと、高密度配線を阻害するばかりでなく、抵抗素子の高周波特性が低下するため、特に高速化が進展している半導体装置用基板に使用できない場合が増えている。   In order to improve the resistance element accuracy, the element size itself must be increased, but conversely, if the element size is increased, not only the high-density wiring is disturbed, but also the high frequency characteristics of the resistance element are deteriorated. For this reason, there is an increasing number of cases where it cannot be used for a substrate for a semiconductor device in which speeding up has progressed.

これに対応するため、抵抗値を測定しながら1素子毎にレーザートリミングする方法もあるが、素子数が多いとトリミング時間とコストが膨大になり、トリミングなしで使用したいという要望が強かった。また、標準的と思われる抵抗素子の最小寸法は幅200μm前後かそれより大きいが、配線密度の向上により幅50μm以下の抵抗素子が求められている。しかし、100μm以下の寸法になるとビーム径数十μmのレーザーで高精度にトリミングすることも難しくなってくる。   In order to cope with this, there is a method of performing laser trimming for each element while measuring the resistance value. However, if the number of elements is large, trimming time and cost become enormous, and there is a strong demand for using without trimming. In addition, the minimum size of a resistance element that seems to be a standard is about 200 μm in width or larger, but a resistance element having a width of 50 μm or less is required due to an improvement in wiring density. However, when the size is 100 μm or less, it becomes difficult to perform trimming with high accuracy using a laser having a beam diameter of several tens of μm.

本発明の課題は、抵抗素子に限らず微細配線とそれに対応する微細で高精度の受動素子が共存する受動部品を内蔵する半導体装置用基板とその製造方法を提供しようとするものである。   SUMMARY OF THE INVENTION An object of the present invention is to provide a substrate for a semiconductor device including a passive component in which not only a resistive element but also a fine wiring and a corresponding fine and highly accurate passive element coexist, and a manufacturing method thereof.

本発明は、上記課題を解決するために、受動部品形成部近傍の導体を、厚みの薄い第1の導体層と、第1の導体層上に形成された第2の導体層の2層構造からなり、第1の導体層の寸法によって該受動部品の素子寸法が決まるように工夫した。すなわち、厚みの薄い第1の導体層と、厚みのある第2の導体層の2層構造とし、厚みが薄く高精度に形成しやすい第1の導体層で素子寸法が決まり、厚みのある第2の導体層によって直流抵抗が小さくなり、素子の電気特性が低下しにくい構造とした半導体装置用基板の製造方法である。 In order to solve the above-mentioned problems, the present invention has a two-layer structure in which a conductor near a passive component forming portion is composed of a thin first conductor layer and a second conductor layer formed on the first conductor layer. The device dimensions of the passive component are determined by the dimensions of the first conductor layer. That is, a two-layer structure of a thin first conductor layer and a thick second conductor layer is used, and the element dimensions are determined by the first conductor layer that is thin and easy to form with high precision. This is a method of manufacturing a substrate for a semiconductor device having a structure in which the DC resistance is reduced by the conductor layer of 2 and the electrical characteristics of the element are not easily lowered.

具体的には、抵抗素子を形成する場合は薄膜抵抗層と接する厚みの薄い第1の導体層を設けることによって第1の導体層を高精度に形成でき、その上に必要な厚みの第2の導体が積み重なる構造とした。なお、この構造によって、コンデンサやコイルなどの抵抗素子以外も高精度化することも可能である。例えば受動部品としてコンデンサに適用した場合には、対向電極の寸法精度が向上することによってキャパシタンス精度を高めることが可能となり、コイルに適用した場合はコイル形成部の配線を微小かつ高精度に形成可能になり、高い値のインダクタンスのコイルを高精度で作り込むことが可能となる。   Specifically, when forming the resistance element, the first conductor layer can be formed with high precision by providing the thin first conductor layer in contact with the thin film resistance layer, and the second conductor having the necessary thickness is formed thereon. The conductors were stacked. In addition, with this structure, it is possible to improve the accuracy other than the resistance elements such as capacitors and coils. For example, when applied to a capacitor as a passive component, it is possible to increase the capacitance accuracy by improving the dimensional accuracy of the counter electrode, and when applied to a coil, the wiring of the coil forming part can be formed minutely and with high accuracy. Thus, a coil having a high value of inductance can be built with high accuracy.

すなわち、本発明は、1μm以下の厚さのニッケルとリンの合金の薄膜抵抗層を形成した銅箔を、前記薄膜抵抗層を内側にしてポリイミドフィルムの基板に接着剤で接着し、前記銅箔を3μmの厚さになるまでエッチングして第1の導体層を形成する第1の工程と、前記第1の導体層上に第1のレジストのパターンを形成する第2の工程と、前記第1のレジストのパターンから露出した前記第1の導体層をエッチング液でエッチング除去することで第1の導体層のパターンを形成する第3の工程と、前記第1のレジストのパターンを剥離液で剥離し、薄膜抵抗素子を形成しようとする部分の前記第1の導体層のパターンに両端がかかる矩形の第2のレジストのレジストパターンを形成する第4の工程と、前記第1の導体層のパターンと前記第2のレジストのパターンとから露出した薄膜抵抗層を薄膜抵抗層用エッチング液に浸漬して除去することで、矩形の薄膜抵抗素子を形成する第5の工程と、前記第2のレジストのパターンを剥離液で剥離し、前記基板上に、前記薄膜抵抗素子を覆い前記薄膜抵抗素子の両端の前記第1の導体層のパターンにかかる第3のレジストのパターンを形成する第6の工程と、前記第3のレジストのパターンから露出した前記第1の導体層のパターン上に第2の導体層のパターンを形成する第7の工程と、次に、前記第3のレジストのパターンを剥離液で剥離する第8の工程を有することを特徴とする半導体装置用基板の製造方法である。 That is, the present invention provides a copper foil in which a thin film resistance layer of nickel and phosphorus alloy having a thickness of 1 μm or less is formed and is adhered to a polyimide film substrate with the thin film resistance layer inside, and the copper foil. Is etched to a thickness of 3 μm to form a first conductor layer, a second step is to form a first resist pattern on the first conductor layer, and A third step of forming a pattern of the first conductor layer by etching away the first conductor layer exposed from the pattern of the first resist with an etchant; and a stripping solution of the pattern of the first resist. A fourth step of peeling and forming a resist pattern of a rectangular second resist having both ends applied to the pattern of the first conductor layer in a portion where the thin film resistance element is to be formed; Pattern and the second The thin film resistor layer exposed from the resist pattern is removed by immersing it in an etching solution for thin film resistor layer, thereby removing the second resist pattern from the fifth step of forming a rectangular thin film resistor element. A sixth step of stripping with a liquid and covering the thin film resistor element on the substrate to form a third resist pattern covering the pattern of the first conductor layer on both ends of the thin film resistor element; A seventh step of forming a pattern of the second conductor layer on the pattern of the first conductor layer exposed from the pattern of the third resist, and then stripping the pattern of the third resist with a stripping solution It is a manufacturing method of the board | substrate for semiconductor devices characterized by having an 8th process.

また、本発明は、上記第2の工程が、第1のポジ型液状レジストを2μmの厚みで塗布し乾燥させて第1のレジストを形成し、前記第1のレジストを露光用マスクで投影露光し現像することで上記第1のレジストのパターンを形成し、上記第4の工程が、第2のポジ型液状レジストを5μmの厚みで塗布し乾燥させて第2のレジストを形成し、前記第2のレジストを露光用マスクで露光し現像することで、上記第2のレジストのパターンを形成し、上記第6の工程が、上記基板上に第3のレジストを形成し、上記薄膜抵抗素子を覆い上記薄膜抵抗素子の両端の上記第1の導体層のパターンにかかる遮光部を設けた露光用マスクで投影露光・現像することで上記第3のレジストのパターンを形成することを特徴とする上記の半導体装置用基板の製造方法である。 According to the present invention, in the second step, the first positive liquid resist is applied to a thickness of 2 μm and dried to form the first resist, and the first resist is projected and exposed with an exposure mask. And developing to form the first resist pattern. In the fourth step, the second positive liquid resist is applied to a thickness of 5 μm and dried to form the second resist. The second resist is exposed and developed with an exposure mask to form a pattern of the second resist, the sixth step forms a third resist on the substrate, and the thin film resistor element The third resist pattern is formed by projecting exposure and development with an exposure mask provided with a light-shielding portion covering the pattern of the first conductor layer at both ends of the thin film resistor element. Of semiconductor device substrates It is a manufacturing method.

本発明により、半導体装置用基板で要求される微細な配線を従来の一般的な受動素子内蔵基板より微細で高精度な受動素子を内蔵した半導体装置用基板を得ることが可能になり、特に基板面積の小さい半導体装置用基板に多数の受動素子を内蔵することが可能となった。なかでも、抵抗素子を形成した場合はその素子寸法が小さくなることによる配線密度向上や部品収容点数増加等の1次的な効果だけでなく、2次的効果として特に高周波領域での電気特性が大幅に改善し、搭載する半導体素子の今後の高速化に対応可能な特性を得ることができた。   The present invention makes it possible to obtain a substrate for a semiconductor device in which the fine wiring required for the substrate for a semiconductor device is finer and more accurate than the conventional general passive element built-in substrate. A large number of passive elements can be incorporated in a semiconductor device substrate having a small area. In particular, when the resistance element is formed, not only the primary effect such as the improvement of the wiring density and the increase in the number of parts accommodated due to the reduction of the element size but also the secondary effect, particularly the electrical characteristics in the high frequency region. It was greatly improved, and we were able to obtain the characteristics that can cope with the future speedup of the mounted semiconductor elements.

図1は、本発明の一実施例の半導体装置用基板の部分図で、(a)は、平面図であり、(b)は、配線部の側断面図で、(c)は、薄膜抵抗素子部の側断面図である。基板1上に左右に配線が配置され、該配線間に薄膜抵抗素子を形成する。前記配線は、第1導体層3上に第2導体層4の2層構造により形成する。前記薄膜抵抗素子は、薄膜抵抗層2からなるパターンにより形成されている。前記薄膜抵抗層2の形状は、前記第1導体層のパターン形状により決定される。図面の左側の配線と、右側の配線とを薄膜抵抗層2からなる薄膜抵抗素子の受動部品を介して電気回路を形成する。図上、y−y線の断面図を図1(b)に、x−x線の断面図を図1(c)に示す。図1(b)は、配線部の断面を示し、基板1上に、薄膜抵抗層2、第1導体層3、第2導体層4と順番に積層形成する。前記薄膜抵抗層2は、上部の第1導体層3の配線幅に規制され、前記配線では、第2導体層4の導体層厚を十分に厚くして直流抵抗を小さくする。図1(c)は、薄膜抵抗素子の受動部品の近傍を示し、左右の第1導体層3の間隙の距離で薄膜抵抗素子の素子寸法が規制する。前記薄膜抵抗層2の素子では、図面左側から第2導体層4の端部、更に内側に第1導体層3の端部、中央に薄膜抵抗層2が露出し、該薄膜抵抗層を中心に左右対称の谷間を形成する。左右の前記第1導体層3の端部間が素子寸法となる。すなわち、導体の厚さが薄い第1の導体層のパターン形成工程が重要となる。   1A and 1B are partial views of a substrate for a semiconductor device according to an embodiment of the present invention. FIG. 1A is a plan view, FIG. 1B is a side sectional view of a wiring portion, and FIG. It is a sectional side view of an element part. Wirings are disposed on the substrate 1 on the left and right sides, and a thin film resistance element is formed between the wirings. The wiring is formed on the first conductor layer 3 by a two-layer structure of the second conductor layer 4. The thin film resistance element is formed by a pattern composed of the thin film resistance layer 2. The shape of the thin-film resistance layer 2 is determined by the pattern shape of the first conductor layer. An electric circuit is formed on the left wiring and the right wiring in the drawing through a passive component of a thin film resistance element formed of the thin film resistance layer 2. In the drawing, a cross-sectional view taken along the line yy is shown in FIG. 1B, and a cross-sectional view taken along the line xx is shown in FIG. FIG. 1B shows a cross section of the wiring portion, and the thin film resistor layer 2, the first conductor layer 3, and the second conductor layer 4 are sequentially stacked on the substrate 1. The thin-film resistance layer 2 is restricted by the wiring width of the upper first conductor layer 3. In the wiring, the conductor layer thickness of the second conductor layer 4 is sufficiently increased to reduce the DC resistance. FIG. 1C shows the vicinity of the passive component of the thin film resistance element, and the element size of the thin film resistance element is regulated by the distance between the left and right first conductor layers 3. In the element of the thin film resistance layer 2, the end of the second conductor layer 4 is exposed from the left side of the drawing, the end of the first conductor layer 3 is further exposed inside, and the thin film resistance layer 2 is exposed in the center. A symmetrical valley is formed. Between the end portions of the left and right first conductor layers 3 is an element size. That is, the pattern forming process of the first conductor layer with a thin conductor is important.

本発明の半導体装置用基板の製造方法の一例では、導体の厚さが薄い第1導体層のパターン形成を絶縁基材上にサブトラクティブ法で形成する。その方法は、ポリイミドフィルム等の基板1上に順番に薄膜抵抗層2、導体の厚さが薄い第1導体層とを形成した基板を準備する。該基板上にレジスト30を形成後、フォトプロセス法により、露光処理、現像処理によりレジストパターンを形成する。次に、前記レジストから露出した部分にエッチング処理する。なお、前記エッチング処理では、導体の厚さが薄い第1導体層3のみを除去する。特殊な場合では、薄膜抵抗層2及び第1導体層3の2層を除去することも可能である。その差は、エッチング処理液の差であり、前者は、塩化アンモニウム液系、後者では、塩化第2鉄液系である。以上の製造方法ではエッチング層が薄いほど高精度の第1導体層パターンが完成する。   In an example of the method for manufacturing a substrate for a semiconductor device of the present invention, the pattern formation of the first conductor layer having a thin conductor is formed on the insulating base material by a subtractive method. The method prepares the board | substrate which formed the thin film resistance layer 2 and the 1st conductor layer with thin conductor thickness in order on board | substrates 1, such as a polyimide film. After forming the resist 30 on the substrate, a resist pattern is formed by an exposure process and a development process by a photo process method. Next, an etching process is performed on a portion exposed from the resist. In the etching process, only the first conductor layer 3 having a thin conductor is removed. In a special case, it is possible to remove the two layers of the thin-film resistance layer 2 and the first conductor layer 3. The difference is that of the etching treatment liquid, the former being an ammonium chloride liquid system and the latter being a ferric chloride liquid system. In the above manufacturing method, the thinner the etching layer, the higher the accuracy of the first conductor layer pattern.

本発明の半導体装置用基板の製造方法の一例では、導体の厚さが薄い第1の導体層のパターン形成をセミアディティブ法で形成する。その方法は、ポリイミドフィルム等の基板1上に薄膜抵抗層2、第1導体層の底部となる薄膜銅層(図示せず)を形成した基板を準備する。該基板上にレジスト30を形成後、フォトプロセス法により、露光処理、現像処理によりレジストパターンを形成する。前記薄膜銅層の露出部分に電解銅めっきにより第1の導体層パターンを形成する。レジスト除去後、周囲の薄膜銅層と薄膜抵抗層を除去する。以上の製造方法では、レジストパターンの精度が高いほど高精度の第1の導体層パターンが完成する。
〈実施例1〉
図2は、本発明の実施例1を説明する側断面図の工程図である。なお、図2の右側の点線枠内は平面図である。薄膜抵抗層2としてニッケルとリンの合金層をめっきで形成した厚み9μmの銅箔を、薄膜抵抗層2を内側にして厚み12μmの接着剤を介して厚み75μmのポリイミドフィルムの基板1に貼り合せた。接着剤を硬化させた後、硫酸−過酸化水素系の液に浸漬して表面の銅箔厚が約3μmになるまでエッチングし、これを第1の導体層3とした(図2a参照)。前記第1の導体層3上にポジ型液状レジスト(PMER−P(商品名)、東京応化(株)製)を約2μmの厚みで塗布し、乾燥させてレジスト30を形成した。40μmピッチとなるよう、幅22μmの遮光部と幅18μmの透過部を設けた露光用マスクで投影露光し、現像することで、幅約22μmのレジスト開口部と幅約18μmのレジストパターンを含む所望のレジストパターンを形成した。塩化アンモニウム系のエッチング液を吹き付け、レジスト開口部から露出した第1導体層3をエッチング除去した(図2(b)参照)。水酸化ナトリウム溶液でレジスト30を剥離して、幅約20μmの銅パターンと幅約20μmの間隙を含む第1の導体層3のパターンを形成した(図2(c)参照)。このとき、銅箔をエッチングした部分は下地のニッケルとリンの合金層の薄膜抵抗層2が露出し、薄膜抵抗素子を形成しようとする部分は長さ約45μmに亘り第1の導体層3がない状態である。
In one example of the method for manufacturing a substrate for a semiconductor device of the present invention, pattern formation of the first conductor layer with a thin conductor is formed by a semi-additive method. The method prepares the board | substrate which formed the thin film resistance layer 2 and the thin film copper layer (not shown) used as the bottom part of a 1st conductor layer on board | substrates 1, such as a polyimide film. After the resist 30 is formed on the substrate, a resist pattern is formed by an exposure process and a development process by a photo process method. A first conductor layer pattern is formed on the exposed portion of the thin film copper layer by electrolytic copper plating. After removing the resist, the surrounding thin film copper layer and thin film resistance layer are removed. In the above manufacturing method, the higher the accuracy of the resist pattern, the higher the accuracy of the first conductor layer pattern is completed.
<Example 1>
FIG. 2 is a process diagram of a side sectional view for explaining the first embodiment of the present invention. 2 is a plan view inside the dotted frame on the right side of FIG. A 9 μm thick copper foil formed by plating an alloy layer of nickel and phosphorus as the thin film resistive layer 2 is bonded to a 75 μm thick polyimide film substrate 1 with a 12 μm thick adhesive with the thin film resistive layer 2 inside. It was. After the adhesive was cured, it was immersed in a sulfuric acid-hydrogen peroxide solution and etched until the surface copper foil thickness was about 3 μm, and this was used as the first conductor layer 3 (see FIG. 2 a). A positive liquid resist (PMER-P (trade name), manufactured by Tokyo Ohka Kogyo Co., Ltd.) was applied on the first conductor layer 3 to a thickness of about 2 μm and dried to form a resist 30. Projection exposure is performed with an exposure mask provided with a light-shielding portion having a width of 22 μm and a transmission portion having a width of 18 μm so as to obtain a pitch of 40 μm, and development is performed to include a resist opening having a width of about 22 μm and a resist pattern having a width of about 18 μm. The resist pattern was formed. An ammonium chloride etching solution was sprayed to remove the first conductor layer 3 exposed from the resist opening (see FIG. 2B). The resist 30 was peeled off with a sodium hydroxide solution to form a pattern of the first conductor layer 3 including a copper pattern having a width of about 20 μm and a gap having a width of about 20 μm (see FIG. 2C). At this time, the etched portion of the copper foil exposes the thin-film resistance layer 2 of the underlying nickel-phosphorus alloy layer, and the portion where the thin-film resistance element is to be formed has a length of about 45 μm and the first conductor layer 3 is formed. There is no state.

再びポジ型液状レジスト(PMER−P(商品名)、東京応化(株)製)を約5μmの厚みで塗布し、乾燥させレジスト31を形成した。薄膜抵抗素子を形成しようとする部分に、幅15μmで長さ60μmの遮光部を設けた露光用マスクで投影露光し、現像することで、幅約20μmの配線の薄膜抵抗素子を形成しようとする部分の両側の銅パターンにかかるように、幅約15μmで長さ約60μmのレジストパターンを形成した。塩化ナトリウムと硫酸銅を溶解させた液に浸漬し、露出した薄膜抵抗層を除去した(図2(d)参照)。この時点で、形成した薄膜抵抗素子の寸法を測定すると、幅長さとも±1μm以内の精度で形成できた。   A positive liquid resist (PMER-P (trade name), manufactured by Tokyo Ohka Kogyo Co., Ltd.) was applied again to a thickness of about 5 μm and dried to form a resist 31. A thin film resistive element having a width of about 20 μm is formed by projecting and developing an exposure mask provided with a light-shielding portion having a width of 15 μm and a length of 60 μm on a portion where the thin film resistive element is to be formed. A resist pattern having a width of about 15 μm and a length of about 60 μm was formed so as to cover the copper patterns on both sides of the part. The film was immersed in a solution in which sodium chloride and copper sulfate were dissolved, and the exposed thin film resistance layer was removed (see FIG. 2D). At this time, when the dimension of the formed thin film resistance element was measured, it was able to be formed with an accuracy within ± 1 μm in both width and length.

水酸化ナトリウム溶液でレジスト31を剥離した後(図2(e)参照)、もう一度ポジ型液状レジスト(PMER−P(商品名)、東京応化(株)製)を約5μmの厚みで塗布し、乾燥させレジスト32を形成した(図2(f)参照)。幅40μmで長さ60μmの遮光部が抵抗素子と隣接する銅パターンの一部に掛かるように設計した露光用マスクで投影露光し、現像した。周囲に引き出したリードから導通させ、露出した第1の導体層上に厚み約10μmの第2の導体層4を形成した(図2(g)参照)。   After stripping the resist 31 with a sodium hydroxide solution (see FIG. 2 (e)), a positive liquid resist (PMER-P (trade name), manufactured by Tokyo Ohka Kogyo Co., Ltd.) is applied again with a thickness of about 5 μm, A resist 32 was formed by drying (see FIG. 2F). Projection exposure was performed with an exposure mask designed so that a light-shielding portion having a width of 40 μm and a length of 60 μm was placed on a part of the copper pattern adjacent to the resistance element, and developed. The second conductor layer 4 having a thickness of about 10 μm was formed on the exposed first conductor layer by conducting from the lead drawn around (see FIG. 2G).

水酸化ナトリウム溶液でレジスト32を剥離した後、形成した素子の抵抗値を測定すると目標の300Ωに対し、すべて±10%以内の抵抗値を示した。これは従来の技術で抵抗素子を形成した場合の寸法精度が±4〜5μm、抵抗値精度に換算すると±20〜30%の精度だったのに比べると、大幅に高精度化することができた(図2(h)参照)。   After the resist 32 was peeled off with a sodium hydroxide solution, the resistance values of the formed elements were measured, and all showed resistance values within ± 10% with respect to the target 300Ω. Compared to the accuracy of ± 4 to 5 μm when resistance elements are formed using conventional technology, the accuracy of accuracy is ± 20 to 30% when converted to resistance value accuracy. (See FIG. 2 (h)).

最後に熱硬化型のソルダーレジストをスクリーン印刷し、キュアした後、露出した銅表面に金めっきを行った。   Finally, a thermosetting solder resist was screen printed and cured, and then the exposed copper surface was plated with gold.

以上のプロセスにより、幅15μmで長さ45μmの薄膜抵抗素子を含み、40μmピッチの配線パターンを有する半導体装置用基板が完成した。
〈実施例2〉
図3は、本発明の実施例2を説明する側断面図の工程図である。なお、図3の右側の点線枠内は平面図である。厚み50μmのポリイミドフィルムの基板1の片面にニッケルとクロムの合金層を薄膜抵抗層2としてスパッタで形成し、その上にスパッタとめっきで厚み3μmの銅層を第1の導体層3として形成した(図3(a)参照)。前記の材料を使用し、洗浄後、第1導体層3上にポジ型液状レジスト(PMER−P(商品名)、東京応化
(株)製)を約2μmの厚みで塗布し、乾燥させレジスト30を形成した。200μmピッチとなるよう、幅102μmの透過部と幅108μmの遮光部を設けた露光用マスクで投影露光し、現像することで、幅約102μmのレジスト開口部と幅約108μmのレジストパターンを含む所望のレジストパターンを形成した。塩化アンモニウム系のエッチング液を吹き付け、レジスト開口部から露出した第1導体層3を除去し(図3(b)参照)、水酸化ナトリウム溶液でレジスト30を剥離して、幅約100μmの銅パターンと幅約100μmの間隙を含む第1の導体層3のパターンを形成した(図3(c)参照)。このとき、銅箔をエッチングした部分は下地の薄膜抵抗層2が露出し、薄膜抵抗素子を形成しようとする部分は長さ約300μmに亘り第1の導体層3がない状態である。
Through the above process, a semiconductor device substrate including a thin film resistor element having a width of 15 μm and a length of 45 μm and having a wiring pattern with a pitch of 40 μm was completed.
<Example 2>
FIG. 3 is a process diagram of a side sectional view for explaining the second embodiment of the present invention. In addition, the inside of the dotted line frame on the right side of FIG. 3 is a plan view. An alloy layer of nickel and chromium was formed on one side of a polyimide film substrate 1 having a thickness of 50 μm as a thin film resistance layer 2 by sputtering, and a copper layer having a thickness of 3 μm was formed as a first conductor layer 3 thereon by sputtering and plating. (See FIG. 3 (a)). Using the materials described above, after washing, a positive liquid resist (PMER-P (trade name), manufactured by Tokyo Ohka Kogyo Co., Ltd.) is applied on the first conductor layer 3 to a thickness of about 2 μm, and dried to form a resist 30 Formed. Projection exposure is performed with an exposure mask provided with a transmissive portion having a width of 102 μm and a light-shielding portion having a width of 108 μm so as to have a pitch of 200 μm, and development is performed to include a resist opening having a width of about 102 μm and a resist pattern having a width of about 108 μm. The resist pattern was formed. Ammonium chloride-based etchant is sprayed to remove the first conductor layer 3 exposed from the resist opening (see FIG. 3B), the resist 30 is peeled off with a sodium hydroxide solution, and a copper pattern having a width of about 100 μm. A pattern of the first conductor layer 3 including a gap with a width of about 100 μm was formed (see FIG. 3C). At this time, the underlying thin film resistive layer 2 is exposed at the etched portion of the copper foil, and the portion where the thin film resistive element is to be formed is about 300 μm long and the first conductor layer 3 is not present.

ネガ型のカバーレジスト(PSR−4000(商品名)、太陽インキ(株)製)を約15μmの厚みで塗布し、乾燥させレジスト31を形成した。薄膜抵抗素子を形成しようとする部分に、幅150μmで長さ350μmの遮光部を設けた露光用マスクで投影露光し、現像することで、幅約100μmの配線の薄膜抵抗素子を形成しようとする部分の両側の銅パターンにかかるように、幅約150μmで長さ約350μmのレジストパターンを形成した。130℃で2時間加熱してカバーレジストを硬化させた後、過マンガン酸溶液に浸漬し、露出した薄膜抵抗層2を除去した(図3(d)参照)。この時点で、形成した薄膜抵抗素子の寸法を測定すると、長さは±1μm以内の精度で形成できていた。幅方向はそれより精度は低く±20μm程度だったが、この構造にした場合は長さ方向より幅方向の寸法精度は要求されない。   A negative type cover resist (PSR-4000 (trade name), manufactured by Taiyo Ink Co., Ltd.) was applied to a thickness of about 15 μm and dried to form a resist 31. A thin film resistive element having a width of about 100 μm is formed by projecting and developing an exposure mask provided with a light shielding portion having a width of 150 μm and a length of 350 μm on a portion where the thin film resistive element is to be formed. A resist pattern having a width of about 150 μm and a length of about 350 μm was formed so as to cover the copper patterns on both sides of the part. The cover resist was cured by heating at 130 ° C. for 2 hours and then immersed in a permanganic acid solution to remove the exposed thin film resistance layer 2 (see FIG. 3D). At this time, when the dimension of the formed thin film resistor was measured, the length could be formed with an accuracy within ± 1 μm. Although the accuracy in the width direction is lower than that and about ± 20 μm, in this structure, the dimensional accuracy in the width direction is not required as compared with the length direction.

さらに、電解銅めっきで厚み10μmの第2導体層4を形成した。この時点で形成した素子の抵抗値を測定すると目標の150Ωに対し、すべて±10%以内の抵抗値を示した。   Further, a second conductor layer 4 having a thickness of 10 μm was formed by electrolytic copper plating. When the resistance value of the element formed at this time was measured, the resistance value was within ± 10% for the target of 150Ω.

最後に熱硬化型のソルダーレジストをスクリーン印刷し、キュアした後、露出した銅表面に金めっきを行った。   Finally, a thermosetting solder resist was screen printed and cured, and then the exposed copper surface was plated with gold.

以上のプロセスにより、幅100μmで長さ300μmの薄膜抵抗素子を含み、200μmピッチの配線パターンを有する半導体装置用基板が完成した。
〈実施例3〉
図4は、本発明の実施例3を説明する側断面図の工程図である。なお、図4の右側の点線枠内は平面図である。厚み50μmのポリイミドフィルムの基板1の片面にニッケルとクロムの合金層を薄膜抵抗層2としてスパッタで形成し、その上にスパッタとめっきで厚み2μmの銅層を第1の導体層3として形成した(図4(a)参照)。前記材料を使用し、洗浄後、第1導体層3上にポジ型液状レジスト(PMER−P(商品名)、東京応化(株)製)を約2μmの厚みで塗布し、乾燥させレジスト30を形成した。20μmピッチとなるよう、幅10μmの遮光部と幅10μmの透過部を設けた露光用マスクで投影露光し、現像することで、幅約10μmのレジスト開口部と幅約10μmのレジストパターンを含む所望のレジストパターンを形成した。塩化第2鉄溶液を吹き付け、レジスト開口部から露出した第1導体層3及び薄膜抵抗層2を除去し、水酸化ナトリウム溶液でレジスト30を剥離して、幅約8μmの銅パターンと幅約12μmの間隙を含む第1の導体層3のパターンを形成した(図4(c)参照)。このとき、銅箔をエッチングした部分は下地のポリイミドの基板1が露出し、薄膜抵抗素子を形成しようとする部分は第1導体層3が残った状態である。
Through the above process, a semiconductor device substrate including a thin film resistance element having a width of 100 μm and a length of 300 μm and having a wiring pattern of 200 μm pitch was completed.
<Example 3>
FIG. 4 is a process diagram of a side sectional view for explaining a third embodiment of the present invention. In addition, the inside of the dotted line frame on the right side of FIG. 4 is a plan view. An alloy layer of nickel and chromium was formed as a thin film resistive layer 2 on one surface of a polyimide film substrate 1 having a thickness of 50 μm by sputtering, and a copper layer having a thickness of 2 μm was formed as a first conductor layer 3 thereon by sputtering and plating. (See FIG. 4 (a)). After using the above materials and cleaning, a positive liquid resist (PMER-P (trade name), manufactured by Tokyo Ohka Kogyo Co., Ltd.) is applied on the first conductor layer 3 to a thickness of about 2 μm and dried to form a resist 30. Formed. Projection exposure is performed with an exposure mask provided with a light-shielding portion having a width of 10 μm and a transmission portion having a width of 10 μm so as to obtain a pitch of 20 μm, and development is performed to include a resist opening having a width of about 10 μm and a resist pattern having a width of about 10 μm. The resist pattern was formed. By spraying a ferric chloride solution, the first conductor layer 3 and the thin-film resistance layer 2 exposed from the resist opening are removed, and the resist 30 is peeled off with a sodium hydroxide solution to obtain a copper pattern having a width of about 8 μm and a width of about 12 μm. A pattern of the first conductor layer 3 including the gap was formed (see FIG. 4C). At this time, the underlying polyimide substrate 1 is exposed in the etched portion of the copper foil, and the first conductor layer 3 remains in the portion where the thin film resistance element is to be formed.

再びポジ型液状レジスト(PMER−P(商品名)、東京応化(株)製)を約5μmの厚みで塗布し、乾燥させレジスト31を形成した。薄膜抵抗素子を形成しようとする部分に、幅15μmで長さ60μmの遮光部を設けた露光用マスクで投影露光し、現像するこ
とで、配線にまたがる幅約15μmで長さ約60μmのレジストパターンを形成した(図4(d)参照)。
A positive liquid resist (PMER-P (trade name), manufactured by Tokyo Ohka Kogyo Co., Ltd.) was applied again to a thickness of about 5 μm and dried to form a resist 31. A resist pattern having a width of about 15 μm and a length of about 60 μm across the wiring is projected and developed on an exposure mask provided with a light-shielding portion having a width of 15 μm and a length of 60 μm on the portion where the thin film resistance element is to be formed. (See FIG. 4D).

周囲に引き出したリードから導通させ、露出した第1の導体層上に厚み約7μmの第2の導体層4を形成し、続けて厚み約1μmのニッケルめっきを行った(図4(e)参照)。水酸化ナトリウム溶液でレジスト31を剥離した後(図4(f)参照)、過硫酸アンモニウム溶液で抵抗素子上の第1導体層3を除去した(図4(g)参照)。   Conducting from the lead drawn out to the periphery, the second conductor layer 4 having a thickness of about 7 μm was formed on the exposed first conductor layer, and then nickel plating having a thickness of about 1 μm was performed (see FIG. 4E). ). After stripping the resist 31 with a sodium hydroxide solution (see FIG. 4 (f)), the first conductor layer 3 on the resistance element was removed with an ammonium persulfate solution (see FIG. 4 (g)).

形成した素子の抵抗値は目標の125Ωに対し、すべて±8%以内の抵抗値を示した。   The resistance values of the formed elements all showed resistance values within ± 8% with respect to the target of 125Ω.

最後に熱硬化型のソルダーレジストをスクリーン印刷し、キュアした後、露出した銅表面に金めっきを行った。   Finally, a thermosetting solder resist was screen printed and cured, and then the exposed copper surface was plated with gold.

以上のプロセスにより、幅10μmで長さ50μmの薄膜抵抗素子を含み、20μmピッチの配線パターンを有する半導体装置用基板が完成した。
〈実施例4〉
図4を用いて本発明の実施例4を説明する。厚み50μmのポリイミドフィルムの基板1の片面にニッケルとクロムの合金層を薄膜抵抗層2としてスパッタで形成し、その上にスパッタとめっきで厚み2μmの銅層を第1の導体層3として形成した(図4(a)参照)。前記材料を使用し、洗浄後、第1導体層3上にポジ型液状レジスト(PMER−P(商品名)、東京応化(株)製)を約2μmの厚みで塗布し、乾燥させレジスト30を形成した。20μmピッチとなるよう、幅10μmの遮光部と幅10μmの透過部を設けた露光用マスクで投影露光し、現像することで、幅約10μmのレジスト開口部と幅約10μmのレジストパターンを含む所望のレジストパターンを形成した。塩化第2鉄溶液を吹き付け、レジスト開口部から露出した第1導体層3及び薄膜抵抗層2を除去した。続いて、薄膜抵抗素子を形成しようとする部分に、幅15μmで長さ60μmの遮光部を設けた露光用マスクで投影露光し、現像した。これによって、第1導体層3をエッチングした部分は下地のポリイミドの基板1が露出し、配線を形成しようとする部分は第1の導体層が露出し、薄膜抵抗素子を形成しようとする部分は第1の導体層3とレジスト31が残った状態である(図4(d)参照)。
Through the above process, a semiconductor device substrate including a thin film resistor element having a width of 10 μm and a length of 50 μm and having a wiring pattern with a pitch of 20 μm was completed.
<Example 4>
A fourth embodiment of the present invention will be described with reference to FIG. An alloy layer of nickel and chromium was formed as a thin film resistive layer 2 on one surface of a polyimide film substrate 1 having a thickness of 50 μm by sputtering, and a copper layer having a thickness of 2 μm was formed as a first conductor layer 3 thereon by sputtering and plating. (See FIG. 4 (a)). After using the above materials and cleaning, a positive liquid resist (PMER-P (trade name), manufactured by Tokyo Ohka Kogyo Co., Ltd.) is applied on the first conductor layer 3 to a thickness of about 2 μm and dried to form a resist 30. Formed. Projection exposure is performed with an exposure mask provided with a light-shielding portion having a width of 10 μm and a transmission portion having a width of 10 μm so as to obtain a pitch of 20 μm, and development is performed to include a resist opening having a width of about 10 μm and a resist pattern having a width of about 10 μm. The resist pattern was formed. The ferric chloride solution was sprayed to remove the first conductor layer 3 and the thin-film resistance layer 2 exposed from the resist opening. Subsequently, the portion where the thin film resistor was to be formed was projected and developed with an exposure mask provided with a light shielding portion having a width of 15 μm and a length of 60 μm. As a result, the underlying polyimide substrate 1 is exposed at the portion where the first conductor layer 3 is etched, the first conductor layer is exposed at the portion where the wiring is to be formed, and the portion where the thin film resistance element is to be formed is In this state, the first conductor layer 3 and the resist 31 remain (see FIG. 4D).

周囲に引き出したリードから導通させ、露出した第1の導体層上に厚み約7μmの第2の導体層4を形成した(図4(e)参照)。水酸化ナトリウム溶液でレジスト31を剥離した後(図4(f)参照)、硫酸−過酸化水素系溶液で抵抗素子上の第1導体層3を除去した(図4(g)参照)。   The second conductor layer 4 having a thickness of about 7 μm was formed on the exposed first conductor layer by conducting from the lead drawn around (see FIG. 4E). After stripping the resist 31 with a sodium hydroxide solution (see FIG. 4F), the first conductor layer 3 on the resistance element was removed with a sulfuric acid-hydrogen peroxide solution (see FIG. 4G).

形成した素子の抵抗値は目標の125Ωに対し、すべて±10%以内の抵抗値を示した。最後に熱硬化型のソルダーレジストをスクリーン印刷し、キュアした後、露出した銅表面に金めっきを行った。   The resistance values of the formed elements all showed resistance values within ± 10% with respect to the target of 125Ω. Finally, a thermosetting solder resist was screen printed and cured, and then the exposed copper surface was plated with gold.

以上のプロセスにより、幅10μmで長さ50μmの薄膜抵抗素子を含み、20μmピッチの配線パターンを有する半導体装置用基板が完成した。   Through the above process, a semiconductor device substrate including a thin film resistor element having a width of 10 μm and a length of 50 μm and having a wiring pattern with a pitch of 20 μm was completed.

本発明の半導体装置用基板の部分図で、(a)は、平面図であり、(b)は、配線部の側断面で、(c)は、薄膜抵抗素子部の側断面図である。2A and 2B are partial views of a substrate for a semiconductor device according to the present invention, in which FIG. 1A is a plan view, FIG. 2B is a side cross-sectional view of a wiring portion, and FIG. 本発明の実施例1を説明する側断面図の工程図である。It is process drawing of the side sectional view explaining Example 1 of the present invention. 本発明の実施例2を説明する側断面図の工程図である。It is process drawing of the side sectional view explaining Example 2 of the present invention. 本発明の実施例3及び4を説明する側断面図の工程図である。It is process drawing of the side sectional view explaining Example 3 and 4 of the present invention. 従来の半導体装置用基板の部分図で、(a)は、平面図であり、(b)は、配線部の側断面で、(c)は、薄膜抵抗素子部の側断面図である。FIG. 2 is a partial view of a conventional substrate for a semiconductor device, in which (a) is a plan view, (b) is a side section of a wiring section, and (c) is a side section view of a thin film resistance element section. 従来の半導体装置用基板の製造方法を説明する側断面図の工程図である。It is process drawing of the side sectional view explaining the manufacturing method of the conventional board | substrate for semiconductor devices.

符号の説明Explanation of symbols

1…基板
2…薄膜抵抗層
3…第1導体層
4…第2導体層
10…配線パターン
20…受動部品
30…レジスト
31…レジスト
32…レジスト
40…導体層
DESCRIPTION OF SYMBOLS 1 ... Board | substrate 2 ... Thin film resistive layer 3 ... 1st conductor layer 4 ... 2nd conductor layer 10 ... Wiring pattern 20 ... Passive component 30 ... Resist 31 ... Resist 32 ... Resist 40 ... Conductor layer

Claims (2)

1μm以下の厚さのニッケルとリンの合金の薄膜抵抗層を形成した銅箔を、前記薄膜抵抗層を内側にしてポリイミドフィルムの基板に接着剤で接着し、前記銅箔を3μmの厚さになるまでエッチングして第1の導体層を形成する第1の工程と、前記第1の導体層上に第1のレジストのパターンを形成する第2の工程と、前記第1のレジストのパターンから露出した前記第1の導体層をエッチング液でエッチング除去することで第1の導体層のパターンを形成する第3の工程と、前記第1のレジストのパターンを剥離液で剥離し、薄膜抵抗素子を形成しようとする部分の前記第1の導体層のパターンに両端がかかる矩形の第2のレジストのレジストパターンを形成する第4の工程と、前記第1の導体層のパターンと前記第2のレジストのパターンとから露出した薄膜抵抗層を薄膜抵抗層用エッチング液に浸漬して除去することで、矩形の薄膜抵抗素子を形成する第5の工程と、前記第2のレジストのパターンを剥離液で剥離し、前記基板上に、前記薄膜抵抗素子を覆い前記薄膜抵抗素子の両端の前記第1の導体層のパターンにかかる第3のレジストのパターンを形成する第6の工程と、前記第3のレジストのパターンから露出した前記第1の導体層のパターン上に第2の導体層のパターンを形成する第7の工程と、次に、前記第3のレジストのパターンを剥離液で剥離する第8の工程を有することを特徴とする半導体装置用基板の製造方法。 A copper foil on which a thin film resistance layer of nickel and phosphorus alloy having a thickness of 1 μm or less is formed is adhered to a polyimide film substrate with the thin film resistance layer inside, and the copper foil is formed to a thickness of 3 μm. A first step of forming a first conductor layer by etching until a second step of forming a pattern of a first resist on the first conductor layer, and a pattern of the first resist. A third step of forming the pattern of the first conductor layer by etching away the exposed first conductor layer with an etchant; and stripping the pattern of the first resist with a stripper; A fourth step of forming a resist pattern of a second resist having a rectangular shape with both ends applied to the pattern of the first conductor layer of the portion to be formed, and the pattern of the first conductor layer and the second pattern Resist pattern The fifth thin film resistor element is removed by immersing and removing the thin film resistor layer exposed from the thin film resistor layer etching solution, and the pattern of the second resist is stripped with a stripper. A sixth step of forming a third resist pattern on the substrate covering the thin film resistance element and covering the pattern of the first conductor layer at both ends of the thin film resistance element; and A seventh step of forming a pattern of the second conductor layer on the pattern of the first conductor layer exposed from the pattern; and an eighth step of stripping the pattern of the third resist with a stripper. A method for manufacturing a substrate for a semiconductor device, comprising: 前記第2の工程が、第1のポジ型液状レジストを2μmの厚みで塗布し乾燥させて第1のレジストを形成し、前記第1のレジストを露光用マスクで投影露光し現像することで前記第1のレジストのパターンを形成し、前記第4の工程が、第2のポジ型液状レジストを5μmの厚みで塗布し乾燥させて第2のレジストを形成し、前記第2のレジストを露光用マスクで露光し現像することで、前記第2のレジストのパターンを形成し、前記第6の工程が、前記基板上に第3のレジストを形成し、前記薄膜抵抗素子を覆い前記薄膜抵抗素子の両端の前記第1の導体層のパターンにかかる遮光部を設けた露光用マスクで投影露光・現像することで前記第3のレジストのパターンを形成することを特徴とする請求項1記載の半導体装置用基板の製造方法。 In the second step, the first positive liquid resist is applied to a thickness of 2 μm and dried to form the first resist, and the first resist is projected and developed with an exposure mask to develop the first resist. A first resist pattern is formed, and in the fourth step, a second positive liquid resist is applied to a thickness of 5 μm and dried to form a second resist, and the second resist is exposed. The second resist pattern is formed by exposing and developing with a mask, and the sixth step forms a third resist on the substrate, covers the thin film resistance element, and forms the thin film resistance element. 2. The semiconductor device according to claim 1, wherein the third resist pattern is formed by projection exposure and development with an exposure mask provided with a light-shielding portion for the pattern of the first conductor layer at both ends. Manufacturing method for industrial use.
JP2003351866A 2003-10-10 2003-10-10 Manufacturing method of substrate for semiconductor device Expired - Fee Related JP4311157B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003351866A JP4311157B2 (en) 2003-10-10 2003-10-10 Manufacturing method of substrate for semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003351866A JP4311157B2 (en) 2003-10-10 2003-10-10 Manufacturing method of substrate for semiconductor device

Publications (2)

Publication Number Publication Date
JP2005116927A JP2005116927A (en) 2005-04-28
JP4311157B2 true JP4311157B2 (en) 2009-08-12

Family

ID=34542980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003351866A Expired - Fee Related JP4311157B2 (en) 2003-10-10 2003-10-10 Manufacturing method of substrate for semiconductor device

Country Status (1)

Country Link
JP (1) JP4311157B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4487875B2 (en) 2005-07-20 2010-06-23 セイコーエプソン株式会社 Method for manufacturing electronic substrate, method for manufacturing electro-optical device, and method for manufacturing electronic device
JP4862390B2 (en) * 2005-12-20 2012-01-25 セイコーエプソン株式会社 Manufacturing method of electronic substrate
JP5012191B2 (en) * 2007-05-14 2012-08-29 株式会社日本マイクロニクス MULTILAYER WIRING BOARD, MANUFACTURING METHOD THEREOF, AND PROBE DEVICE

Also Published As

Publication number Publication date
JP2005116927A (en) 2005-04-28

Similar Documents

Publication Publication Date Title
JP3666955B2 (en) Method for manufacturing flexible circuit board
US7516545B2 (en) Method of manufacturing printed circuit board having landless via hole
KR100941570B1 (en) Manufacturing Method of Printed Circuit Board
JP2004363281A (en) Wiring circuit board
TWI640234B (en) Circuit board with coppercircuit and method for manufacturing same
CN101578011A (en) Producing method of wired circuit board
US20050124091A1 (en) Process for making circuit board or lead frame
US6562250B1 (en) Method for manufacturing wiring circuit boards with bumps and method for forming bumps
JP4799902B2 (en) Wiring circuit board and method for manufacturing wiring circuit board
JP4984855B2 (en) Thin film chip resistor, thin film chip capacitor, and thin film chip inductor manufacturing method
JP4311157B2 (en) Manufacturing method of substrate for semiconductor device
KR101862243B1 (en) Method for manuracturing printed circuit board with via and fine pitch circuit and printed circuit board by the same method
JP4599132B2 (en) Printed circuit board manufacturing method and printed circuit board
JPH09312471A (en) Multilayer wiring board and its manufacturing method
CN113873771A (en) Manufacturing process suitable for ultra-fine FPC (flexible printed circuit) circuit
US7100270B2 (en) Method of fabricating a thin film integrated circuit with thick film resistors
JPH06268355A (en) Printed wiring board and manufacture thereof
US6360434B1 (en) Circuit fabrication
JP2002344120A (en) Flexible circuit board and its manufacturing method
JPH06252529A (en) Manufacture of printed wiring board
JP7555206B2 (en) Manufacturing method for printed wiring board
JP4391223B2 (en) Method for manufacturing printed wiring board
JP2782576B2 (en) Method of forming conductive circuit
JP2003059725A (en) Lr composite component
KR100850221B1 (en) Manufacturing method of immersion driven component

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060919

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090330

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090421

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090504

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120522

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees