[go: up one dir, main page]

JP4303886B2 - 排出用フィルタを備えたクライオポンプ - Google Patents

排出用フィルタを備えたクライオポンプ Download PDF

Info

Publication number
JP4303886B2
JP4303886B2 JP2000528798A JP2000528798A JP4303886B2 JP 4303886 B2 JP4303886 B2 JP 4303886B2 JP 2000528798 A JP2000528798 A JP 2000528798A JP 2000528798 A JP2000528798 A JP 2000528798A JP 4303886 B2 JP4303886 B2 JP 4303886B2
Authority
JP
Japan
Prior art keywords
pipe
cryopump
relief
filter
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000528798A
Other languages
English (en)
Other versions
JP2002501146A (ja
Inventor
ウースター・ギャリイ
スカンシク・フランク
リチャードソン・ミッチェル
マゾーラ・リチャード
ファンシュ・ダグラス
レッドガード・ハリー
Original Assignee
ブルックス オートメーション インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ブルックス オートメーション インコーポレイテッド filed Critical ブルックス オートメーション インコーポレイテッド
Publication of JP2002501146A publication Critical patent/JP2002501146A/ja
Application granted granted Critical
Publication of JP4303886B2 publication Critical patent/JP4303886B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B37/00Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00
    • F04B37/06Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for evacuating by thermal means
    • F04B37/08Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for evacuating by thermal means by condensing or freezing, e.g. cryogenic pumps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S417/00Pumps
    • Y10S417/901Cryogenic pumps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/794With means for separating solid material from the fluid
    • Y10T137/8085Hollow strainer, fluid inlet and outlet perpendicular to each other

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、極低温真空ポンプ(クライオポンプ)において、真空チャンバ内で発生した昇華ガスを真空チャンバ外に排出する排出経路にフィルタを備えたものの改良に関する。
【0002】
【従来の技術】
極低温真空ポンプ(クライオポンプ)は、低温クライオパネル上にガス分子を凍結して、周囲の空気からガスを排除する。最新のクライオポンプの多くは、共通の設計概念に従っている。このようなクライオポンプの1 つが、米国特許第4,655,046号(1987年、Eacobacci 氏およびPlanchard 氏に交付)で開示されている。このクライオポンプの一例を図1に示す。クライオポンプは2段極低温冷凍機18と少なくとも2つのクライオパネルを内蔵するハウジング12を備えており、そのクライオパネルは主ポンプパネル34および放射シールド44を含んでいる。ハウジング12は、ハウジングの開口端に取付けたフランジ14を有する。
【0003】
工業用に使用する場合は、フランジ14を、ワークチャンバを形成する容器の出入り口に取り付ける。クライオポンプの前面開口16を通って、ガスはワークチャンバからハウジング12で形成された真空チャンバ内に移動できる。真空チャンバ内では、ガスはクライオパネル34と44の各々の上に凝縮する。一般に、放射シールド44は囲い(ハウジング)を構成しており、その囲いは、主ポンプパネル34と排気されるチャンバ間に配置した前面アレイ48の位置を除いて閉じている。放射シールド44は、冷凍機18の第1段29で60〜130Kの範囲の温度に冷却される。ワークチャンバから入った水蒸気などの高沸点ガスは、前面アレイ48上に凝縮し、一方、放射シールド44の残りの部分は主として放射熱から主ポンプパネル34を遮蔽するのに役立つ。
【0004】
一般に、主ポンプパネル34は冷凍機の第2段32によって4〜25Kに維持され、前面アレイ48を通過する低沸点ガスを凝縮するのに使用される。主ポンプパネル34の下面は吸着性チャコール(吸着炭)36でコーティングされており、水素などの特に低い沸点のガスを除去できる。その他のパネルは、たとえば、プレートの底面にチャコール(炭)を有する積層プレートを含んでいる。この実施形態の極低温冷凍機18は、ギフォード−マクマホン(Gifford-McMahon )冷凍サイクルにより冷却する2段冷凍機であり、冷凍機18は、圧縮ヘリウムガスが膨張するときに、クライオパネル34と44から熱を抽出する。冷凍機18はモーター22で駆動され、供給ライン24を通してヘリウムを供給される。処理後のヘリウムは、回収ライン26を通して冷凍機から排除され、圧縮機に戻り、再度圧縮されて工程を繰返す。
【0005】
クライオパネルは、基本的に空気からガス分子を冷凍して排除して、真空チャンバ内の真空を確立する。浮遊ガス分子がクライオパネルに衝突するときに、クライオパネルはガス分子から熱エネルギーを抽出する。十分に熱エネルギーが抽出された場合は、ガス分子の相は、クライオパネル上で蒸気から固体凝縮物に変化する。クライオパネル上で凝縮および/または吸着されたこのようなガスでは、高真空が真空チャンバとワークチャンバの両方で得られる。
【0006】
一度高真空を確立すると、部分的に排気されたロードロック(load lock)を通してワークピースをワークチャンバに出し入れできる。ロードロックに対してワークチャンバを開く毎に、余分なガスがワークチャンバに入る。これらのガスはクライオパネル上に凝縮して、再度チャンバを排気し、処理に必要な低圧力を提供する。時間が経過すると、クライオパネル上に堆積する凝縮物の量の増加に伴ないクライオポンプの効率とポンプ能力は低下する。さらに、ワークチャンバ内でのワークピースの損傷の危険の他に、停電または他の原因のために、危険な化学物質を含む場合がある圧縮ガスの急速な温度上昇による昇華を引き起こして健康と安全面にリスクとなることがある。
【0007】
したがって、クライオパネル34と44を一定のスケジュールで加熱して、定期的に再生処置し、クライオパネルから凝縮ガスを放出する。放出されたガスは、排出管58を通して真空チャンバから排除される。排出管58の端部には、逃がし弁60があり、真空チャンバからの排出ガス流量を制御する。同様に、逃がし弁60はクライオポンプの予定外の停止の際に昇華ガスを排出できる。
【0008】
典型的な逃がし弁60は、キャップを備える圧力開放弁であり、弁が閉止のときに、そのキャップはスプリングによってO−リングシールに押し付けられている。圧力が弁を開くのに十分な場合は、キャップはO−リングから離れる方向に押され、排気ガスはシールを通って流れる。フィルタの無い場合は、排出ガス中に含まれるごみも、排出管を通って流れ、しばしばO−リングシールと密閉キャップ上に集積する。このごみは、クライオパネルからのチャコールまたはワークチャンバ内の処理により発生するその他のごみの粒子を含む。シールとキャップ上へのごみの堆積は弁のシールを劣化させる。結果的に、逃がし弁の位置でクライオポンプ内への漏れが大きくなりクライオポンプに不要な負荷を与える。
【0009】
図1の例では、フィルタパイプ搭62は排出管の口の位置に配置され、排出ガス流に含まれるごみを濾過する。フィルタパイプ搭62は、開口端を有するシリンダ内に形成されたステンレススチール製メッシュスクリーンを備えている。フィルタスクリーンが詰まらない限り、開口端はチャンバ内の危険圧力上昇を防止する。フィルタパイプ搭62は最低限でも長さ4インチあり、クライオパネル34,44を取付ける前、または真空チャンバ内から排出管58にアクセスためにクライオパネル34,44を取外した後のどちらかに、前面開口16を通してクライオパネル内に取付けられる。
【0010】
【発明が解決しようとする課題】
過去10年内にクライオポンプの設計は、冷凍機とクライオパネルの垂直・同軸配列から、水平またはフラット配列に移行し、冷凍機はクライオパネル軸に垂直な軸心方向に配置されている。このような発展はハウジングの設計に変化をもたらした。現在では、別々のシリンダを連結して、真空チャンバ内に冷凍機とクライオパネルの両方を密封している。通常この設計により、同軸設計に比べて小型化でき、結果的にハウジング内の空間を減少できる。さらに、チャンバ内部からは簡単にアクセスできず、僅かな開き空間しかない第1段シェルの方に排出管を移設した。その結果、フィルタパイプ搭を“フラット”クライオポンプに使用しなくなった。したがって、シールを定期的に清浄にしチャンバ内の真空の完全性を維持する面倒な作業が必要になった。
【0011】
【課題を解決するための手段】
本発明によればクライオポンプは排出管を備えており、それによりハウジングに接続された排出流路を形成する。逃がし管はこの排出管に接続されている。逃がし管は内部に組込んだフィルタパイプ搭を有し、そのフィルタパイプ搭は排出流路内に突出している。
【0012】
好ましい実施形態では、フィルタパイプ搭は円錐形であり、一端に開口ベースを、他端に開口リムをそれぞれ有する。開口リムは排出管内に配置され、排出管は大きい角度で(好ましくは逃がし管にほぼ直角)、軸心方向に向けられている。さらに、粗引きポンプを排出管に取付け、O−リングを備える着脱可能な逃がし弁を逃がし管に取付けている。さらに、フィルタパイプ搭はワイヤーメッシュを有しており、逃がし弁が逃がし管から取り外されたときに、大きく形状を変化させずに逃がし管内に挿入され、かつ適切な位置に設置できるように、メッシュを装着できる寸法・形状になっている。フィルタパイプ搭の特に好ましい実施形態では、固定寸法を有する現在使用中のT字管に連結して使用するとき、希望するフィルタ性能を提供する寸法を有する。特に、この実施形態では、約0.15〜約0.25インチの直径、約2.0〜約2.4インチの長さ、外径約0.69インチのベースリングの開口リムを有する。
【0013】
別の好ましい実施形態では、少なくとも1つのクライオパネルが真空チャンバ内の軸心方向に延び、クライオパネルの軸に垂直に延びている極低温冷凍機に熱的に結合している。さらに、排出管を逃がし管の端部に接続している。
【0014】
本発明の方法では、冷凍工程中にクライオポンプのポンプチャンバから放出されるガスに含まれる粒子を濾過する。第1に、ポンプチャンバ内のクライオパネルを加熱して、クライオパネルから凝縮ガスを昇華させる。昇華されたガスはポンプチャンバから排出管に排出される。昇華されたガスは、排出管から逃がし管に排出される。ガスが排出管から逃がし管に流れると同時に、昇華されたガス内に含まれる粒子は、逃がし管内に組込まれかつ排出管内に延びているフィルタパイプ搭によって濾過される。最後に、昇華されたガスは逃がし弁を通して逃がし管内から排出される。
【0015】
本発明の別の方法はクライオポンプ内にフィルタパイプ搭を取付ける方法である。真空容器は前述通りの構成である。フィルタパイプ搭は逃がし管の端部の取付部から逃がし弁を外して取付ける。その後フィルタパイプ搭を前記取付部を通して逃がし管内に挿入し、フィルタパイプ搭が排出管内に入り込むようにする。ついで、逃がし弁を前記取付部に再装着する。
【0016】
本発明により、排出管および逃がし管の接続位置の目的とする空間に導入可能な、高効率粒子フィルタを提供できる。さらに、本発明のフィルタパイプ搭は、以前のクライオポンプ設計に使用した機種に比べて、取付けが容易である。また、本発明のフィルタパイプ搭は、既存の機種のクライオポンプに容易に後付けできる。さらに、フィルタパイプ搭の寸法を、かなりの粒子堆積後でも、フィルタ両端の低い圧力差を維持するとともに、高効率の粒子除去性能を持つように選択している。最後に、本発明のフィルタパイプ搭により、逃がし弁のO−リングシールを定期的に清掃して再生後の真空を再度確立する必要を実質的に減少または無くすることができる。
【0017】
【発明の実施の形態】
本発明の前記目的および他の目的、構成および利点を、添付図面に示した本発明の好ましい実施形態の説明から明らかとなるであろう。異なる図面においても、同一参照番号は同一部分を示す。図面は必ずしも縮尺通りではなく、本発明の原理を明示することに重点を置いている。
【0018】
図2は本発明のクライオポンプを示す。クライオポンプはハウジングを備え、そこに真空チャンバの主要部品を収納している。ハウジング12は第1段シェル20と外側シリンダ21を備えている。外側シリンダ21は閉止端15を備え、クライオパネル34と44を収納している。一方、第1段シェル20は、少なくとも第1段ヒートシンク28に加えて極低温冷凍機の第1段29を収納している。フランジ14は外側シリンダ21に取付けられ、それによってクライオポンプをワークチャンバの出入り口に結合できる。クライオポンプを垂直軸心方向にワークチャンバに取付けることが多い、この場合、外側シリンダ21は第1段シェル20と共に上部にあり、モーター22は下部に配置される。この配置方向は、図2を時計方向に90度回転させたものとしてもよい。真空チャンバは前面開口16を通してワークチャンバに流体を通すように結合(流体結合)している。
【0019】
ガスを凝縮させる1対のクライオパネルが真空チャンバ内に配置されている。クライオパネルは放射シールド44と主ポンプパネル34を備える。放射シールド44の前面アレイ48は前面開口16内に配置され、ワークチャンバから入って来る高沸点ガスを凝縮する。放射シールド44の残りの部分は前面開口16から離れる方向に延びており、凝縮の容積部(volume)36を形成する。この容積部36内で、主ポンプパネル34はバッフルアレイの形態となっており、その上にガスを凝縮することができる。主ポンプパネル34は、2段ギフォード−マクマホン極低温冷凍機18の第2段32に取付けられている。第2段ヒートシンクは、第2段32と主ポンプパネル34間の密接な熱接触を提供する。一方、放射シールド44は、2段ギフォード−マクマホン極低温冷凍機18の第1段29に取付けられている。第1段ヒートシンク28は、第1段29と放射シールド44間の密接な熱接触を提供する。
【0020】
冷凍機18内では、ヘリウムなどの圧縮ガスを冷凍シリンダを通して循環させる工程により冷却を達成する。圧縮ガス源(つまり、圧縮機)は通常、入口弁を通してシリンダの第1端に連結されている。排出ラインの排出弁はシリンダの第1端から圧縮機の低圧側に通じている。最初、再生式熱交換マトリックス(再生器)を備えるディスプレーサはシリンダの第2端にある。排出弁が閉じ、入口弁が開くと、シリンダが圧縮ガスで満たされる。入口弁が開いた状態で、ディスプレーサは第1端方向に移動して、圧縮ガスを再生器を通して第2端に押しやり、ガスが再生器を通過するときに冷却される。入口弁が閉じ、排出弁が開くときに、ガスは膨張して低圧排出ライン中に入り、さらに冷却する。その結果発生する第2端のシリンダ壁を横切る温度勾配により、熱を負荷(つまり、クライオパネル)からシリンダ内のガスに流す。その後、排出弁が開き、入口弁が閉じた状態で、ディスプレーサは第2端に戻る。これにより、ガスは再生器を通って移動して戻り、熱を冷却ガスに戻す。これでサイクルは完了する。
【0021】
窒素、酸素、アルゴンなどの低沸点ガスを凝縮するのに十分な低温を達成するために、冷凍機18に第2段32を追加する。第2段32は、第1段29ですでに冷却されているヘリウムガスを吸入し、さらに通常4〜25Kの温度にまで冷却する。
【0022】
冷凍機18は、放射シールドがほぼ対称的になる軸心に垂直な軸心方向に延びている。冷凍機18の第1段29は、第1段シェル20を通って第2段32に連結される位置まで延出している。第2段32は第1段29から、外側シリンダ21で形成されているポンプ領域内に突出している。
【0023】
T字管50の排出管58は第1 段シェル20に連結されており、クライオパネル34と44からは離れている。図3にT字管50の詳細を示す。排出管58は真空チャンバの主要部でない残部と流体的に結合する流路59を形成し、それによってハウジング12内の高圧力を排出管58を通して排出できる。次に説明するように、クライオパネルを再生するときに高圧力が発生することが多い。ハウジングから離れた、排出管58の端部に、粗引きポンプ66があり、真空チャンバ内を予備的に低レベルの真空にする。
【0024】
逃がし管68の一端部は排出管58に取付けられている。逃がし管68は逃がし流路69を形成し、排出流路59の軸心に垂直な軸心方向に向けられている。逃がし管68は他端部にある、着脱式の逃がし弁60用の取付部70で終端している。フィルタパイプ搭62を取付部70内にはめ込み、着脱式逃がし弁60を取付部70にねじ込み、逃がし流路69および排出流路59内にフィルタパイプ搭62を収納する。逃がし弁60はキャップ72を備えており、弁が閉じているときには、キャップはスプリング76によってO−リングシール74に押し付けられている。スプリング76は、穴の開いた端板80を持つねじ部分78によって逃がし流路69方向にばね力を持つようになっている。流路内の圧力が1.5ポンド/平方インチを越えると、スプリング76の力を越えて、キャップはO−リングシール74から離れる方向に押され、排気ガスはシール74を通過して流れ出す。
【0025】
図4にフィルタパイプ搭62を示す。このフィルタパイプ搭は、80×80メッシュの平織形状で、0.0055インチの直径を有する金属線の円錐型スクリーン72から構成されている。ベース84の開口の直径は0.62インチで、細い方の端部の開口リム86の直径は0.15〜0.25インチが望ましい。T字管を通して液体寒剤を通過させるには、最低限0.15インチの直径が必要である。特に好ましい実施形態では、開口リム86の直径は0.18〜0.22インチである。
【0026】
図3に示すように、T字管50の長さ、つまり、逃がし管68の軸に沿って、取付部70の遠端71から排出管58の遠い方の内側面61までの長さは、2.30〜2.46インチである。この長さの範囲は製造公差によるものである。フィルタパイプ搭62のベース84の遠端は取付部70の端部71と面一である。したがって、パイプ搭62の開口リム86と排出管58の遠い方の内側面61間の空隙は、T字管50の長さとパイプ搭62の長さとの差になる。
【0027】
開口ベース84の端部から開口リム86までの対称軸心に沿って測定したフィルタパイプ搭62の長さは、約2.0〜約2.3インチが望ましく、前述のようにフィルタ62をT字管内に取付けたときに、排出流路59内に開口リム86を位置させる。さらに好ましくは、フィルタパイプ搭62の長さが、T字管長さよりも約0.21インチ短く、開口リム86と排出管58の対向壁面との間に0.21インチの対応する空隙を備える。特に好ましい実施形態では、フィルタパイプ搭62の長さは2.14〜2.20インチである。フィルタパイプ搭寸法の製造公差より、フィルタパイプ搭は0.03インチの許容差を有すると予測され、前の実施例における目標長さ2.17インチから0.03インチの変動になる。フィルタパイプ搭62の2.17インチ長さは、2.38インチ長さを有する平均的T字管において0.21インチの所望の空隙を提供する。
【0028】
排出間から逃がし管への流体および粒子の流れの軌道は、金属メッシュスクリーン62にほぼ垂直であり、約2.17インチの好ましい長さを有するフィルタパイプ搭62と、約0.18インチの好ましい直径を有する開口リム86により、前述の標準的T字管で捕獲されない粒子は(例えあるとしても)ほんの僅かである。さらに、0.22インチの開口リム直径と、開口リム86とT字管の内側面61間に0.32インチの空隙を備える長さを有するフィルタパイプ搭62であっても、入ってくる粒子の90%以上を捕獲する。
【0029】
一方、前記空隙または開口リム86の寸法が減少するのに伴って、フィルタパイプ搭62両端の圧力差は増加する。さらに、捕集した粒子でスクリーン72がほぼ詰まってしまうときにも、圧力差は増加する。開口リム86で形成される開口の存在自体が、その寸法および位置と共に重要である、なぜなら、金属スクリーン72の全表面が粒子で詰まっているときでも、その開口を通りガスが流れるからである。スクリーン72全体が、開口リム86で提供されるような十分な出口が無くて詰まっている場合は、圧力が真空チャンバ内で上昇し、装置が損傷を受けるレベルにまで達する可能性がある。チャンバ内の過大圧力の結果クライオポンプの前面開口にあるゲート弁が最初に故障すると思われる。前述の範囲内の寸法を有する実施形態では、スクリーン72が粒子でほぼ詰まっているときにも、許容限界を超える圧力差(つまり、25ポンド/平方インチより大きい圧力差)を発生しない。
【0030】
同様に重要なことは、開口リム86で形成される開口が、ポンプ領域から排出する液体寒剤の出口として役立つことである。前述のように、図2に示すクライオポンプは、垂直軸心の上部に外側シリンダ12を、底部にモーター22を備えて取付けられている。クライオパネルが温度上昇すると、凝縮ガスの一部は昇華せずに液化する可能性がある。通常このような液体は、外側シリンダ12で形成されているポンプ領域から第1段シェル20で形成されている容積部内に排出される。ハウジング12の寸法を厳しく制限して、真空チャンバ内の開き空間を最小にしているため、第1段シェル20は急速に液体寒剤で満たされる。したがって、図3に示すように、液体寒剤は第1段シェル20からT字管50を通して排出される。
【0031】
真空チャンバ内の圧力が十分大きくなり、逃がし弁60を作動させる場合は、液体寒剤は排出流路59から逃がし流路69内に向かう。しかし通常は、液体寒剤は金属スクリーンを通過できない。したがって、開口リム68で形成された開口は液体寒剤の非常に重要な流路を提供し、液体寒剤がT字管50を詰まらせ、その結果ハウジング12から外への液体とガスの両方の流れが阻止されるのを防止する。フィルタパイプ搭62の開口リム86を通過後、液体寒剤は逃がし弁60を通って流れて別の管内に入り、そこで収集および排除される。
【0032】
フィルタパイプ搭62は、排出管58から延びる逃がし管に取付けている着脱式逃がし弁60を含む既存のクライオポンプに容易に後付けできる。逃がし弁60を逃がし管68から取外す(通常、ねじってゆるめる)ことだけが必要である。その後、最初に開口リム86を入れて、フィルタパイプ搭62を逃がし流路69内に挿入する。全体を挿入すると、ベースリング84が逃がし管68の内側壁を押し、それによってフィルタパイプ搭62を所定の位置に固定する。逃がし弁60を再度取付けて装着を完了する、これにより真空チャンバ内にフィルタパイプ搭62が収納される。
【0033】
前述のように、真空チャンバ内の圧力上昇と粒子放出の主要な原因は、再生工程である。再生工程を実行するときは、クライオパネルは温められ、凝縮ガスがクライオパネルから昇華する。ガスが放出されると共に、真空チャンバ内の圧力が上昇し、逃がし弁を押し開けてチャンバからの放出ガスを排出する。再生が終了に近づくと、チャンバ内の圧力は1ポンド/平方インチ以下に低下し、逃がし弁が閉じる。その後、排出管に取付けられている粗引きポンプを起動して、チャンバ内の圧力をさらに減少させた後に、クライオパネルを再冷却する。
【0034】
【実験】
予備的テストにおいて、粒子を含んだガス流を排出管を通し、さらにフィルタ無しの逃がし管を通すことにより、比較の基準となる流れを確立した。平均426粒子が逃がし流路を通過した。この後、長さ2.394インチを有するT字管内で、直径0.2202インチの開口と長さ2.074インチを有するフィルタパイプ搭62を使用してテストを繰返した。前記基準流れの粒子の平均2.3%がフィルタ62を通過した。再度、長さ2.357インチを有するT字管内で、直径0.180インチの開口と長さ2.037インチを有するフィルタパイプ搭62を使用してテストを繰返した。このフィルタを使用すると、基準流れの粒子の平均1.0%がフィルタ62を通過した。このテストに使用したフィルタパイプ搭の長さは、0.32インチの空隙を持つように設定したが、この値は、本実施形態で許容できる空隙寸法範囲(0.10〜0.32インチ)内の最大値である。フィルタを長くすると、空隙は小さくなり、排出流路から入りこむ粒子をさらに多く(全部ではないが)捕獲すると予測される。
【0035】
本発明を、特に好ましい実施形態を引用して示し、説明してきたが、特許請求の範囲に規定する本発明の範囲から逸脱することなく、形態および細部の各種変更が可能なことは、当業者には理解できるところである。
【図面の簡単な説明】
【図1】 従来技術のクライオポンプの縦断面図である。
【図2】 本発明のクライオポンプの縦断面図である。
【図3】 フィルタパイプ搭を含むT字管を部分的に模式図で図示する縦断面図である。
【図4】 フィルタパイプ搭の側面図である。
【図5】 フィルタパイプ搭のワイヤーメッシュの側面図である。
【図6】 フィルタパイプ搭のベースリングの側面図である。
【符号の説明】
12…ハウジング、14…フランジ、20…第1段シェル、21…外側シリンダ、29,32…極低温冷凍機の第1段および第2段、34…主ポンプパネル(クライオパネル)、44…放射シールドパネル(クライオパネル)、58…排出管、59…排出流路、60…逃がし弁、62…フィルタパイプ搭、66…粗引きポンプ、68…逃がし管、69…逃がし流路、70…取付部、84…開口ベース、86…開口リム

Claims (24)

  1. ハウジングを有する真空容器であって、そのハウジングに排出管を接続し、さらにその排出管に逃がし管を分岐して接続し、前記真空容器が真空チャンバを形成し、前記ハウジングが前記真空チャンバ内にポンプ領域を形成し、前記排出管が前記真空チャンバ内に排出流路を形成し、さらに前記逃がし管が前記真空チャンバ内に逃がし流路を形成する真空容器と、
    前記逃がし管内に取付けて、前記排出流路内にまで延出しているフィルタスタンドパイプと、
    前記ポンプ領域内に配置した少なくとも1つのクライオパネルと、
    前記クライオパネルに熱接触している極低温冷凍機と、
    を備えているクライオポンプ。
  2. 請求項1において、前記フィルタスタンドパイプが前記排出流路内に配置された開口リムを有するクライオポンプ。
  3. 請求項2において、前記フィルタスタンドパイプが円錐形状であるクライオポンプ。
  4. 請求項3において、前記フィルタスタンドパイプが前記開口リムの反対側に開口ベースを有し、前記開口ベースが大きい円形の開口を形成し、前記開口リムが小さい円形の開口を形成しているクライオポンプ。
  5. 請求項4において、前記フィルタスタンドパイプをワイヤーメッシュで構成しているクライオポンプ。
  6. 請求項1において、前記逃がし管が前記排出管を接続している位置で終端しているクライオポンプ。
  7. 請求項6おいて、前記排出管がその軸心方向に延び、前記フィルタスタンドパイプが前記排出管の前記軸心にほぼ垂直な第2軸心方向に延びているクライオポンプ。
  8. 請求項7において、前記逃がし管に逃がし弁が取付けられているクライオポンプ。
  9. 請求項8において、前記逃がし弁を前記逃がし管から取外したときに、前記フィルタスタンドパイプの形状を著しく変えることなく前記逃がし管内の所定の位置に装着できるように、フィルタスタンドパイプの寸法と形状が設定されているクライオポンプ。
  10. 請求項9において、前記逃がし弁がO−リングを備えているクライオポンプ。
  11. 請求項10において、粗引きポンプを前記排出管に取付けているクライオポンプ。
  12. 請求項1において、前記クライオパネルが主軸心方向に延び、前記極低温冷凍機が前記主軸心に垂直な軸心方向に延びているクライオポンプ。
  13. 請求項12において、前記ハウジングが第1段シェルを備え、前記排出管が前記第1段シェルに連結されているクライオポンプ。
  14. ハウジングを有する真空容器であって、前記真空容器が真空チャンバを形成し、さらに前記ハウジングが外側シリンダと第1段シェルを備え、前記外側シリンダが主軸心方向に延びてポンプ領域を形成し、さらに前記第1段シェルが前記外側シリンダに接続されて、前記外側シリンダから前記主軸心に垂直な軸心方向に延びている真空容器と、
    前記ポンプ領域内に配置された放射シールドならびに主ポンプパネルと、
    第1段と第2段を有する極低温冷凍機であって、前記第1段が前記放射シールドに熱結合され、前記第2段が前記主ポンプパネルに熱結合され、さらに前記冷凍機が前記第1段シェルを通して前記ポンプ領域内に延出している、極低温冷凍機と、
    前記第1段シェルに接続された排出管であって、前記排出管が前記真空チャンバ内の1つの軸心方向に延びる排出流路を形成する排出管と、
    前記排出管に分岐して接続した逃がし管であって、前記逃がし管が逃がし流路を形成し、前記逃がし流路が真空チャンバ内で前記排出流路の軸に垂直な第2軸心方向に延びている逃がし管と、
    前記逃がし管内に取付けたフィルタスタンドパイプであって、前記フィルタスタンドパイプが前記排出流路内に延出しているフィルタスタンドパイプと、
    を備えているクライオポンプ。
  15. 請求項14において、前記逃がし管が前記排出管に接続された近端とその反対端とを有し、前記フィルタスタンドパイプの寸法と形状が、その形状を著しく変えることなく、前記逃がし管の反対端内の所定の位置に装着できるように設定されているクライオポンプ。
  16. 請求項14において、前記逃がし管が前記排出管に接続された近端とその反対端とを有し、さらに前記逃がし管の反対端に取付けた逃がし弁を備えているクライオポンプ。
  17. 請求項14において、前記フィルタスタンドパイプが、開口ベースとその開口ベースの反対側に開口リムとを有する円錐形であって、前記開口ベースが大きい円形開口を形成し、前記開口リムが小さい円形開口を形成し、さらに前記開口リムが前記排出流路内に配置されているクライオポンプ
  18. 請求項17において、前記フィルタスタンドパイプがワイヤーメッシュで構成されているクライオポンプ
  19. 請求項14において、前記フィルタスタンドパイプが、開口リム、開口ベースおよびその開口ベースに取付けたベースリングを備えている円錐形のフィルタスタンドパイプであって、前記開口リムが前記開口ベースの反対側にあって、約0.15インチ〜約0.25インチの直径を有し、前記フィルタスタンドパイプが、ほぼ対称の軸心方向に約2.0インチ〜約2.3インチ延びており、前記ベースリングが約0.69インチの外径を有するクライオポンプ
  20. 請求項19において、前記フィルタスタンドパイプがワイヤーメッシュから構成されているクライオポンプ
  21. クライオポンプのポンプチャンバ内のクライオパネルを加熱してそのクライオパネルから凝縮ガスを昇華させ、
    前記昇華ガスを前記ポンプチャンバから排出管内に排出し、
    前記昇華ガスを前記排出管から、その排出管に分岐して接続されている逃がし管内に排出し、
    前記昇華ガスに含まれている粒子を、前記逃がし管内に取付けられて前記排出内に延出しているフィルタスタンドパイプによって濾過し、さらに、
    前記昇華ガスを前記逃がし管から逃がし弁を通して排出する、
    ステップを有する、再生中にクライオポンプのポンプチャンバから放出されたガスからの粒子を濾過する方法。
  22. 請求項21において、前記昇華ガス内に含まれる粒子を、前記排出内に配置された開口リムを有するフィルタスタンドパイプによって濾過する方法。
  23. 逃がし弁を、クライオポンプハウジングに接続された排出管に分岐して接続されている逃がし管の端部の取付部から取外し、
    フィルタスタンドパイプを、前記取付部を通して、前記逃がし管内の前記フィルタスタンドパイプが前記排出管内に延出している位置まで挿入し、
    前記逃がし管の端部の取付部に前記逃がし弁を再度取付ける、
    ステップを有するフィルタスタンドパイプを取付ける方法。
  24. 請求項23において、前記フィルタスタンドパイプの開口リムを前記取付部を通して挿入して、先に前記開口リムを前記逃がし管を通して前記排出管内に挿入し、次に前記フィルタスタンドパイプの開口ベースを挿入するようにして、フィルタスタンドパイプを取付ける方法。
JP2000528798A 1998-01-21 1999-01-19 排出用フィルタを備えたクライオポンプ Expired - Lifetime JP4303886B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US09/010,403 1998-01-21
US09/010,403 US5974809A (en) 1998-01-21 1998-01-21 Cryopump with an exhaust filter
PCT/US1999/001111 WO1999037918A1 (en) 1998-01-21 1999-01-19 Cryopump with an exhaust filter

Publications (2)

Publication Number Publication Date
JP2002501146A JP2002501146A (ja) 2002-01-15
JP4303886B2 true JP4303886B2 (ja) 2009-07-29

Family

ID=21745609

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000528798A Expired - Lifetime JP4303886B2 (ja) 1998-01-21 1999-01-19 排出用フィルタを備えたクライオポンプ

Country Status (7)

Country Link
US (1) US5974809A (ja)
JP (1) JP4303886B2 (ja)
KR (1) KR100576958B1 (ja)
DE (1) DE19982615T1 (ja)
FR (1) FR2777951B1 (ja)
GB (1) GB2349428B (ja)
WO (1) WO1999037918A1 (ja)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6327863B1 (en) 2000-05-05 2001-12-11 Helix Technology Corporation Cryopump with gate valve control
US7194867B2 (en) * 2004-03-19 2007-03-27 Brooks Automation, Inc. Integrated rough/purge/vent (RPV) valve
US7313922B2 (en) * 2004-09-24 2008-01-01 Brooks Automation, Inc. High conductance cryopump for type III gas pumping
DE102004046908A1 (de) * 2004-09-28 2006-04-13 Leybold Vacuum Gmbh Vakuumvorrichtung
WO2006085868A2 (en) * 2005-02-08 2006-08-17 Sumitomo Heavy Industries, Ltd. Improved cryopump
WO2008088794A2 (en) * 2007-01-17 2008-07-24 Brooks Automation, Inc. Pressure burst free high capacity cryopump
KR100871822B1 (ko) * 2007-06-28 2008-12-03 스미도모쥬기가이고교 가부시키가이샤 개량 크라이오펌프
KR101012045B1 (ko) * 2007-07-23 2011-01-31 코바렌트 마테리얼 가부시키가이샤 감압 장치 및 이것에 이용하는 무기 재료질 다공체
WO2011040002A1 (ja) * 2009-09-29 2011-04-07 アルバック・クライオ株式会社 クライオポンプ
WO2011096227A1 (ja) * 2010-02-08 2011-08-11 株式会社日立ハイテクノロジーズ 荷電粒子顕微鏡及びイオン顕微鏡
JP5379101B2 (ja) * 2010-09-13 2013-12-25 住友重機械工業株式会社 クライオポンプ及びフィルタ装置
CN103348137B (zh) 2010-11-24 2016-01-20 布鲁克机械公司 具备控制氢气释出的低温泵
DE102011100311A1 (de) * 2011-05-03 2012-11-08 Pfeiffer Vacuum Gmbh Vorrichtung mit einer Leitstruktur
ES2527505T3 (es) 2011-11-29 2015-01-26 Cryostar Sas Bombas criogénicas
US10113793B2 (en) * 2012-02-08 2018-10-30 Quantum Design International, Inc. Cryocooler-based gas scrubber
US9174144B2 (en) 2012-04-20 2015-11-03 Sumitomo (Shi) Cryogenics Of America Inc Low profile cryopump
US9186601B2 (en) 2012-04-20 2015-11-17 Sumitomo (Shi) Cryogenics Of America Inc. Cryopump drain and vent
JP5570550B2 (ja) * 2012-05-21 2014-08-13 住友重機械工業株式会社 クライオポンプ
JP7455037B2 (ja) * 2020-09-30 2024-03-25 住友重機械工業株式会社 クライオポンプおよびクライオポンプの再生方法
CN115522177B (zh) * 2021-07-23 2023-05-09 上海汉钟精机股份有限公司 用于太阳能电池片的镀膜工艺的智能排粉控制方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR747452A (fr) * 1932-02-13 1933-06-17 Telefunken Gmbh Perfectionnements aux montages pour la régulation automatique de volume des récepteurs
US4697617A (en) * 1985-01-22 1987-10-06 Helix Technology Corporation Pressure relief filter and valve and cryopump utilizing the same
US4834136A (en) * 1985-01-22 1989-05-30 Helix Technology Corporation Pressure relief filter and valve and cryopump utilizing the same
US4719938A (en) * 1985-01-22 1988-01-19 Helix Technology Corporation Self-cleaning valve and cryopump utilizing the same
US4655046A (en) * 1985-07-19 1987-04-07 Helix Technology Corporation Cryopump with exhaust filter
WO1990012231A1 (en) * 1989-04-07 1990-10-18 Helix Technology Corporation Pressure relief valve and cryopump utilizing the same
CA2096419A1 (en) * 1990-11-19 1992-05-20 Gerd Flick Process for regenerating a cryopump and suitable cryopump for implementing this process
US5211022A (en) * 1991-05-17 1993-05-18 Helix Technology Corporation Cryopump with differential pumping capability
DE9111236U1 (de) * 1991-09-10 1992-07-09 Leybold AG, 6450 Hanau Kryopumpe
US5228299A (en) * 1992-04-16 1993-07-20 Helix Technology Corporation Cryopump water drain
US5906102A (en) * 1996-04-12 1999-05-25 Helix Technology Corporation Cryopump with gas heated exhaust valve and method of warming surfaces of an exhaust valve

Also Published As

Publication number Publication date
WO1999037918A1 (en) 1999-07-29
US5974809A (en) 1999-11-02
FR2777951B1 (fr) 2003-10-03
FR2777951A1 (fr) 1999-10-29
DE19982615T1 (de) 2001-02-22
KR20010040385A (ko) 2001-05-15
GB2349428A (en) 2000-11-01
JP2002501146A (ja) 2002-01-15
KR100576958B1 (ko) 2006-05-10
GB2349428B (en) 2002-05-22
GB0016349D0 (en) 2000-08-23

Similar Documents

Publication Publication Date Title
JP4303886B2 (ja) 排出用フィルタを備えたクライオポンプ
US6122921A (en) Shield to prevent cryopump charcoal array from shedding during cryo-regeneration
US6332925B1 (en) Evacuation system
US5228299A (en) Cryopump water drain
US5542257A (en) Cryogenic pump with an essentially cup-shaped housing
US6216467B1 (en) Cryogenic refrigerator with a gaseous contaminant removal system
US3364654A (en) Ultrahigh vacuum pumping process and apparatus
JP3983617B2 (ja) マルチ密閉式洗浄,真空乾燥の方法及びその装置
US4485631A (en) Method and apparatus for rapidly regenerating a self-contained cryopump
CA1252300A (en) Cryopump with exhaust filter
US4697617A (en) Pressure relief filter and valve and cryopump utilizing the same
KR102160586B1 (ko) 다중 냉각식 콜드트랩
KR100706818B1 (ko) 크라이오 펌프
US4834136A (en) Pressure relief filter and valve and cryopump utilizing the same
JPH02502559A (ja) 低温ソープションポンプ
US4009585A (en) Method of producing vacuum in recipient and vacuum pump for effecting same
JP5025492B2 (ja) 改善されたクライオポンプ
WO1989011896A1 (en) Regenerable cryosorption pump with movable physical barrier and physical barrier thereof
KR100501476B1 (ko) 크라이오 펌프
KR100485602B1 (ko) 크라이오 펌프
JP3019471B2 (ja) クライオポンプ
TWI655365B (zh) Cryopump
RU2031245C1 (ru) Способ защиты адсорбента в крионасосе и криогенный насос
JPH0699003A (ja) コールドトラップ
Borovik et al. A hydrogen condensation pump with a built-in liquefier

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051027

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080520

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20080819

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20080826

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090407

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090427

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120501

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130501

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140501

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term