[go: up one dir, main page]

JP4300726B2 - Rotary gas compressor - Google Patents

Rotary gas compressor Download PDF

Info

Publication number
JP4300726B2
JP4300726B2 JP2001288675A JP2001288675A JP4300726B2 JP 4300726 B2 JP4300726 B2 JP 4300726B2 JP 2001288675 A JP2001288675 A JP 2001288675A JP 2001288675 A JP2001288675 A JP 2001288675A JP 4300726 B2 JP4300726 B2 JP 4300726B2
Authority
JP
Japan
Prior art keywords
stage
low
compression
chamber
compression element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001288675A
Other languages
Japanese (ja)
Other versions
JP2003097471A (en
Inventor
勝晴 藤尾
澤井  清
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2001288675A priority Critical patent/JP4300726B2/en
Publication of JP2003097471A publication Critical patent/JP2003097471A/en
Application granted granted Critical
Publication of JP4300726B2 publication Critical patent/JP4300726B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Rotary Pumps (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は回転式気体圧縮機の圧縮機構部の密封手段に関するものである。
【0002】
【従来の技術】
昨今の地球環境保護問題に端を発して、従来から継続使用されているフロン冷媒に替わり自然冷媒、特に、二酸化炭素(CO2)冷媒を用いたヒートポンプシステムの研究開発が各分野で盛んに行われている。
【0003】
しかしながら、従来のフロン冷媒を用いた冷凍サイクルでは、高圧側が3MPa以下であるのに対して、二酸化炭素(CO2)冷媒を用いた冷凍サイクルでは、低圧側が2.5〜5MPa,高圧側が12〜15MPaにも達して高低圧力差が極めて大きく、圧縮機構部での高圧側から低圧側への気体漏れ損失の過大が懸念されている。
【0004】
このような理由から、二酸化炭素(CO2)冷媒を用いた圧縮機として、隣接する圧縮室間の差圧を小さくできるスクロール圧縮機や多段圧縮機の改良検討が進められている。
【0005】
特に、家庭用ヒートポンプシステムに搭載される圧縮機としては、生産性と耐久性および高性能・小型化の観点から多段圧縮機としては、密閉容器内が高圧型のローリングピストン型ロータリ式2段圧縮機が注目を浴びている。また、スクロール圧縮機としては圧縮機構部を収納する高圧密閉容器内が油分離機能を兼ね、別途に油分離器を要しない高圧型スクロール圧縮機が注目を浴びている。
【0006】
図7は発明者が特開平4−187887号公報(特許第2768004号公報)で提案したローリングピストン型ロータリ式2段圧縮機と冷凍サイクル配管系の接続図、図8は同圧縮機の縦断面図、図9は同圧縮機の部分縦断面図を示す。
【0007】
図7〜図9において、従来のフロン系冷媒の吐出冷媒ガスが充満する密閉容器1001内には電動機5、低段圧縮要素1007と高段圧縮要素1004と中板36から成る2段圧縮機構が収納され、高段圧縮要素1004のローリングピストン圧縮機構の高段ベーン1039の反シリンダ側には吐出圧力が作用する潤滑油35が作用して高段ベーン1039の先端を高段ピストン1009bに押圧している。一方、低段圧縮要素1007のローリングピストン圧縮機構の低段ベーン1038の反シリンダ側には、油溜1035の潤滑油を中板1036に設けた絞り通路1061aを有する給油通路1061を経由して中間圧力に減圧の後、低段ベーン背面室1044に導入された潤滑油が作用している。この付勢力によって、低段ベーン1038の先端が低段ピストン1007bに押圧されてシリンダ内を吸入室と圧縮室とに区画する構成になっている。
【0008】
なお、低段ベーン背面室1044に供給された潤滑油は、低段ベーン1038の摺動面を潤滑する一方、低段吐出室1045に流入した後、吐出冷媒ガスと共に連通路1055を経由して高段圧縮要素1009の吸入側に吸い込まれ、圧縮の後、電動機室1008に排出される。電動機室1008で冷媒ガスから分離した潤滑油は油溜1035に収集される。
【0009】
このように、高段ベーン1039の先端と高段ピストン1009bとの接触力は、高段圧縮要素1009の吐出圧力と高段圧縮要素1009の吸入圧力(低段吐出圧力)との差圧力が作用する。また同様に、低段ベーン1038の先端と低段ピストン1007bとの接触力は、低段圧縮要素1007の吐出圧力と吸入圧力との差圧が作用する。したがって、低段ベーン1038の先端の摩擦損失動力や摩耗量が、高段吐出圧力と低段吸入圧力との差圧が作用する場合よりも半減する構成である。
【0010】
このような構成のロータリ式2段圧縮機でCO2冷媒ガスを使用する場合(吐出圧力と吸入圧力との差圧が極めて大きい状態)でも、高段ベーン1039や低段ベーン1038の先端に作用する荷重が半減するので摺動部の耐久性確保が可能となる。
【0011】
【発明が解決しょうとする課題】
しかしながら、2段圧縮機構1003の外周部の雰囲気圧力が吐出圧力相当のために潤滑油や冷媒ガスが、2段圧縮機構1003の各圧縮室(シリンダ内)を形成するための構成部品間の接触固定面や摺動部隙間を介してシリンダ内に流入する漏洩量が多く、圧縮効率が著しく低下する課題があった。
【0012】
なお、2段圧縮機構1003の各圧縮室(シリンダ内)を形成するための構成部品間の接触固定面の間にシール部材を配置してシリンダ内への流体漏洩を防止する方策があるが、組立部品隙間の極めて小さい2段圧縮機構1003の組立が困難である理由から上記の方策は実現不可能でもある。
【0013】
図10は、圧縮機構部の全体が高圧冷媒ガスや高圧潤滑油の雰囲気中にない場合のスクロール気体圧縮機の縦断面図を示す。
【0014】
すなわち、モータ2007に連結する駆動軸2008を支持するフレーム2003によって、密閉ケース2001,2002内が上部の吐出空間2013(高圧側)と下部のモータ室2015(低圧側)とに区画されている。吐出空間2013内に配置された鏡板2012はフレーム2003に固定される一方、固定スクロール2011を固定している。固定スクロール2011に噛み合う旋回スクロール2010はフレーム2003に支持されながら駆動軸2008の偏心穴2009に係合する。吐出空間2013の底部の吐出室油溜2036はフレーム2003に設けられた極細通路2019を介してモータ室2015の底部の油溜2017に通じている構成である。
【0015】
このような構成のスクロール気体圧縮機において、吐出室油溜2036の潤滑油は、鏡板2012および固定スクロール2011とフレーム2003との接触固定面を通じて旋回スクロール(可動スクロール)2010の外側の吸入室2037に微小漏洩する。特に、冷凍サイクルにおける高圧側と低圧側との差圧が従来冷媒よりも極めて大きいCO2冷媒ガスを使用する場合には、吐出室油溜2036と吸入室2037との差圧が大きいために吐出室油溜2036の潤滑油が吸入室2037に漏洩する量が多く、圧縮効率の著しい低下を招く課題があった。上述のロータリ式2段圧縮機で説明した場合と同様に、鏡板2012とフレーム2003との接触固定面にシール部材を配置して吐出室油溜2036の潤滑油が吸入室2037に漏洩するのを防止する方策もあるが、鏡板2012とフレーム2003との接触固定面にシール部材を配置することによって、圧縮室の微小隙間確保を要する旋回スクロール2010と固定スクロール2011の適正配置組立が困難であると言う理由から実現不可能である。
【0016】
上記のような構成のスクロール気体圧縮機に限らず、例えば発明者が特公平7−78391号公報で提案しているような、スクロール圧縮機構が高圧冷媒ガスや高圧潤滑油の雰囲気内に配置された構成のスクロール気体圧縮機の場合も同様の課題を有する。
【0017】
本発明はこのような従来の課題を解決するものであり、圧縮機構部を囲む高圧流体(冷媒や潤滑油)が圧縮室内に流入漏洩するのを防止することを目的とするものである。
【0018】
【課題を解決するための手段】
上記課題を解決するために本発明は、圧縮機構部を囲む高圧雰囲気から組立済みの圧縮機構部を圧力的に遮断する手段を設けたものである。
【0019】
上記遮断手段によって圧縮機構部を囲む高圧流体(冷媒や潤滑油)が圧縮室内に漏洩流入するのを阻止し、圧縮効率の低下防止を図ることができる。
【0020】
【発明の実施の形態】
請求項1に記載の発明は、密閉容器内に電動機とその電動機に連結する圧縮機構部を収納し、圧縮機構部の圧縮気体を密閉容器内に排出する構成において、前記圧縮機構部は前記圧縮要素を低段圧縮要素と高段圧縮要素を順次直列接続した2段圧縮機構とし、それぞれの圧縮要素を連結すべく各圧縮要素に隣接して配置され且つ圧縮室の壁面構成の一部材
である中板の外周部を前記隔離手段で前記密閉容器内から圧力的に遮断するとともに、圧縮機構部の圧縮室を形成する構成部材間の結合面の外周部を密閉容器内から圧力的に遮断する隔離手段を設け、前記隔離手段は、低段圧縮要素の低段シリンダブロック、駆動軸を支持し且つ前記低段シリンダブロックと共に圧縮室を形成すべく前記低段シリンダブロックに固定された軸受部材、前記低段シリンダブロックと共に前記圧縮室を形成すべく前記低段シリンダブロックに隣接配置された中板の外周部を囲むべく環状部を備えた部材により構成したものである。
【0021】
そしてこの構成によれば、密閉容器内の高圧(吐出圧力相当)流体(気体や潤滑油)が圧縮室を形成する構成部材間の結合面を介して圧縮室内に漏洩流入するのを阻止し、また、密閉容器内に吐出された流体(気体や潤滑油)が軸受部材と低段シリンダブロック、中板と低段シリンダブロックとの2箇所の接触固定面を介して低段圧縮要素の圧縮室の吸入側に漏洩流入するのを阻止し、著しい圧縮効率の低下防止を図れる。
【0022】
請求項に記載の発明は、隔離手段が、中板と高段圧縮要素の高段シリンダブロックとの接触固定面を密閉容器内から圧力的に遮断する手段を設けたものである。そしてこの構成によれば、密閉容器内の吐出流体(気体や潤滑油)が低段圧縮要素および高段圧縮要素の両圧縮室を形成すべく配置された構成部材の接触固定面を介して両圧縮室に漏洩流入するのを阻止し圧縮効率低下を防止できる。
【0023】
請求項に記載の発明は、隔離手段が、低段圧縮要素の低段吐出室を形成すべく低段圧縮要素の低段シリンダブロックの外周部を囲むように形成された吐出カバーを兼ねたものである。そしてこの構成によれば、低段圧縮要素を組立後に取り付けられた吐出カバーがその内部に圧縮室を配置する低段シリダブロックの外周部を密閉容器内の吐出流体雰囲気から遮断し、圧縮室への不要な漏洩流体流入を回避して圧縮効率の向上を図る。
【0024】
【実施例】
以下本発明の実施例について図面を参照して説明する。
【0025】
(実施例1)
図1は二酸化炭素(CO2)冷媒を使用したローリングピストン型ロータリ式2段圧縮機の縦断面を表し、図2は同圧縮機の部分縦断面を表し、図3は同圧縮機の低段シリンダブロックの外観図を表す。
【0026】
密閉容器1の内部に、電動機2とその下部に2段圧縮機構3が配置されている。2段圧縮機構3は、高段圧縮要素4と、その下部に配置された低段圧縮要素5と、高段圧縮要素4および低段圧縮要素5の間に配置された中板6と、高段圧縮要素4および低段圧縮要素5を駆動すべく電動機2の回転子2aに連結された駆動軸7と、駆動軸7を支持すべく高段圧縮要素4の高段シリンダブロック8に固定された主軸受9および低段圧縮要素5の低段シリンダブロック10に固定された副軸受11とから成る。
【0027】
高段シリンダブロック8は密閉容器1に溶接固定され、その高段シリンダブロック8に中板6と低段シリンダブロック10が固定されている。
【0028】
主軸受9に取付られた高段吐出カバー12は、主軸受9と共に高段吐出室13を形成している。
【0029】
中板6,低段シリンダブロック10,副軸受11の外周部を囲み且つシール部材98を介して高段シリンダブロック8に取付られた低段吐出カバー26の内部は低段吐出室27を形成している。低段吐出カバー26と副軸受11との間にO―リング97が介装され、密閉容器1内の油溜32と低段吐出室27との間が圧力的に隔離されている。
【0030】
低段吐出室27と高段吐出室13との間は、副軸受11,低段シリンダブロック10,中板6,高段シリンダブロック8,主軸受9を貫通して設けられたバイパス通路96で連通されている。バイパス通路96の端部は、バイパス通路96を開閉する弁体95と、弁体95を付勢するバネ手段94が配置されており、低段吐出室27から高段吐出室13への冷媒ガスの流入のみ許容する逆止弁機構を形成している。
【0031】
駆動軸7を貫通する油穴7aの下端部には、遠心ポンプ手段93が装着されており、遠心ポンプ手段93によって、副軸受11、低段圧縮要素5の低段ピストン70の内側、高段圧縮要素4の高段ピストン65の内側、主軸受9の各摺動面に油溜32の潤滑油が給油される経路が形成されている。
【0032】
高段圧縮要素4のシリンダ内で高段ピストン65の外周面に接してシリンダ内を吸入室と圧縮室とに区画すべく配置された高段ベーン15の反シリンダ側の高段ベーン背面室16は、油溜32に連通している。
【0033】
上記と同様に、低段圧縮要素5の低段ベーン92の反シリンダ側に配置された低段ベーン背面室33にはバネ手段(コイルバネ)91が配置され、低段ベーン92の先端を低段ピストン70に押圧付勢している。バネ手段(コイルバネ)91を装着すべく低段ベーン背面室33に設けられたバネ装着穴34は、以下に述べる経路を経て密閉容器1内の油溜32に連通している。
【0034】
すなわち、バネ装着穴34は、低段シリンダブロック10と中板6の外周部と低段吐出カバー26との間の間隙通路90、中板6に設けられて絞り部を有する油穴68、駆動軸7の油穴7aに直交して設けられた半径方向油穴7bを順次経由して連通している。
【0035】
また、低段ベーン背面室33は、バネ装着穴34よりも上部に流出口89を有する給油路88を介して低段吐出室27に連通している。
【0036】
低段吐出室27は、副軸受11,高段シリンダブロック10,中板6を貫通して設けられた中間連通路87を介して高段圧縮要素4の吸入室に通じている。
【0037】
密閉容器1の上壁中央部の平坦部には電動機2に接続する電気接続端子86が配置され、その外部接続端子86aには、絶縁樹脂材で結束した外部接続クラスター85が挿入されている。その外部接続クラスター85を囲むターミナルカバー84の内形状は、例えば、電気接続端子86を構成する端子が密閉容器1内の高圧CO2ガス圧力によって部分的に抜けようとする場合でも、外部接続クラスター85が外部接続端子86aから外れることがないように設定されている。
【0038】
密閉容器1の上壁に配置された吐出管83の電動機室29側開口端の近傍には、密閉容器1の内壁側に開口した遮蔽板82が配置されており、電気接続端子86の側から吐出管83への直接的なガス流出を防でいる。
【0039】
以上のように構成された二酸化炭素(CO2)冷媒ガスを使用したローリングピストン型ロータリ式2段圧縮機について、図1、図2、図3を参照しながらその動作を説明する。
【0040】
低段圧縮要素5のシリンダ内に取り込まれた吸入冷媒ガスは、圧縮された後、低段吐出室27に吐出される。低段吐出室27の吐出冷媒ガスは、中間連通路87を経由して高段圧縮要素4の吸入室に取り込まれ、圧縮の後、高段吐出室13に吐出され、電動機室9に排出される。電動機室9に排出された冷媒ガスに混入する潤滑油の一部は分離され、油溜32に収集される。潤滑油の一部が分離された高圧の吐出冷媒ガスは、吐出管83を経て圧縮機外部配管系に送出される。
【0041】
高段圧縮要素4の吐出冷媒ガス圧力が作用する油溜32の潤滑油は、駆動軸7の下端部に配置された遠心ポンプ手段93によって駆動軸7内の油穴7a,半径方向油穴7b,低段ピストン70の内径側空間,高段ピストン65の内径側空間,主軸受9の軸受摺動面を順次経由して電動機室29に排出され、再び、油溜32に帰還する。
【0042】
なお、遠心ポンプ手段93から駆動軸7内の油穴7aに排出された潤滑油に混入する冷媒ガスが油穴7aの上部開口端から電動機室29へ放出される。それによって、油穴7aの潤滑油がガス抜きされるので、低段ピストン70の内径摺動面,高段ピストン65の内径摺動面,主軸受9の軸受摺動面にはガス噛み込みのない良好な油膜が形成される。
【0043】
このような駆動軸7の摺動部給油過程途中の潤滑油は、中板6の絞り部を有する油穴68を介して中間圧力に減圧の後、間隙通路90,バネ装着穴34,低段ベーン背面室33,バネ装着穴34よりも上部の流出口89,中間連通路87を順次経由して低段吐出室27に供給される。中間連通路87は絞り作用が生じることのない通路であるために、低段ベーン背圧室33は低段吐出室27と相当圧力となる。
【0044】
低段ベーン背圧室33と低段吐出室27を連通する中間連通路88の流出口89がバネ装着穴34よりも上部配置であるために、圧縮機停止中でも低段ベーン背圧室33の潤滑油がその自重により低段吐出室27に流出することなく、圧縮機再起動初期における低段ベーン92の摺動部隙間の潤滑に提供される。
【0045】
当然のことながら、圧縮機運転中も低段ベーン背圧室33の潤滑油が十分に確保されて、低段ベーン92の摺動部隙間の油膜密封作用と、低段ベーン92を低段ピストンに押圧させる。
【0046】
この押圧力は、低段ベーン背面室33に油溜32の潤滑油が減圧されることなく導入される場合に比較して半減しており、低段ピストン70の外周面と低段ベーン92の先端との摺動摩擦損失が小さく、摺動部摩耗も少ない特徴を有している。
【0047】
また、高段シリンダブロック8と低段吐出カバー26の間に介在するシール部材によって、低段ベーン背面室33が密閉容器1内と圧力的に隔離されており、例え、油溜32の油面が低下する場合でも、密閉容器1内の吐出冷媒ガスが低段ベーン背面室33に漏洩することはない。また、密閉容器1内の吐出冷媒ガスや吐出圧力が作用する潤滑油が中板6と高段シリンダブロック8との接触結合面、中板6と低段シリンダブロック10との接触結合面を介して高段圧縮要素4の圧縮室および低段圧縮要素5の圧縮室に直接的に漏洩流入することはない。
【0048】
低段ベーン背面室33から低段吐出室27を経由して高段圧縮要素4の吸入室に導入された適量の潤滑油は、高段圧縮要素4の圧縮室隙間の油膜密封作用に供され、圧縮効率を向上させる。
【0049】
以上のように上記実施例によれば、密閉容器1内に電動機2と電動機2に連結する圧縮機構部を収納し、その圧縮機構部3aの圧縮気体を密閉容器1内に排出する構成において、圧縮機構部3aの圧縮室を形成する構成部材(高段シリンダブロック8と中板6、低段シリンダブロック10と中板6)間の結合面の外周部を密閉容器1内から圧力的に遮断する隔離手段(高段シリンダブロック8と中板6と低段シリンダブロック10と副軸受11を囲む低段吐出カバー26がシール部材98を介して高段シリンダブロック8に取付られた状態)を設けたことにより、密閉容器1内の高圧(吐出圧力相当)流体(吐出冷媒ガスや潤滑油)が圧縮室を形成する構成部材間の接触結合面を介して圧縮室内に漏洩流入するのを阻止し、圧縮効率の低下防止を図ることができる。
【0050】
また上記実施例によれば、圧縮機構部3aは複数の圧縮要素(低段圧縮要素5、高段圧縮要素4)から成り、それぞれの圧縮要素を連結すべく各圧縮要素に隣接して配置され且つ圧縮室の壁面構成一部材である中板6の外周部を囲む形態で低段吐出カバー26を配置して密閉容器1内から圧力的に遮断したことにより、中板6と各圧縮要素(4、5)の隣接面を介して密閉容器1内の高圧流体(吐出冷媒ガスや潤滑油)が圧縮室内に漏洩流入するのを回避し、圧縮効率の低下防止を図ることができる。
【0051】
また上記実施例によれば、圧縮要素を低段圧縮要素5と高段圧縮要素4を順次直列接続した2段圧縮機構3としたことにより、密閉容器1内の吐出冷媒ガスや潤滑油が中板6を介して低段圧縮要素5および高段圧縮要素4の圧縮室の吸入側に漏洩流入するのを防止し、高段圧縮要素4における圧縮損失の発生を防止すると共に、低段圧縮要素5から高段圧縮要素4への圧縮損失の巡送りを回避して、圧縮効率の大幅な低下を防止することができる。
【0052】
また上記実施例によれば、低段圧縮要素5の構成部品の外周部を密閉容器1内から圧力的に遮断する隔離手段を設けたことにより、密閉容器1内の吐出冷媒ガスや潤滑油が中板6を介して低段圧縮要素5の圧縮室の吸入側(低圧側)に漏洩流入し、高段圧縮要素4でも再び漏洩流体が再圧縮されることによる過剰な圧縮損失発生の防止を図ることができる。
【0053】
また上記実施例によれば、隔離手段は、低段圧縮要素5の低段シリンダブロック10、駆動軸7を支持し且つ低段シリンダブロック10と共に圧縮室を形成すべく低段シリンダブロック10に固定された副軸受11、低段シリンダブロック10と共に圧縮室を形成すべく低段シリンダブロック10に隣接配置された中板6の外周部を囲むべく環状部を備えた低段吐出カバー26としたことにより、密閉容器1内に吐出された流体(吐出冷媒ガスや潤滑油)が副軸受11と低段シリンダブロック10、中板6と低段シリンダブロック10との2箇所の接触固定面を介して低段圧縮要素5の圧縮室の吸入側に漏洩流入するのを阻止し、著しい圧縮効率の低下を防止することがきる。
【0054】
また上記実施例によれば、隔離手段は、中板6と高段圧縮要素4の高段シリンダブロック8との接合面を密閉容器1内から圧力的に遮断する手段を設けたことにより、密閉容器1内の吐出流体(吐出冷媒ガスや潤滑油)が低段圧縮要素5および高段圧縮要素4の両圧縮室を形成すべく配置された構成部材の接触固定面を介して両圧縮室に漏洩流入するのを阻止し圧縮効率低下を防止することができる。
【0055】
また上記実施例によれば、隔離手段は、低段圧縮要素5の低段吐出室27を形成すべく低段圧縮要素5の低段10シリンダブロックの外周部を囲むように形成された低段吐出カバー26を兼ねたことにより、低段圧縮要素5を組立後に取り付けられた低段吐出カバー26がその内部に圧縮室を配置する低段シリダブロック10の外周部を密閉容器1内の吐出冷媒ガスや潤滑油から遮断し、圧縮室への不要な漏洩流体流入を回避して圧縮効率の向上を図ることができる。
【0056】
なお、上記実施例では、中板6の中間連通路87と低段ベーン背面室33との間を間隙通路90を介して連通したが、間隙通路90を介することなく直接的に連通しても良い。
そして、低段シリンダブロック10との接触結合面の外周部にシール部材を配置して、密閉容器1内の吐出冷媒ガスや潤滑油と圧縮室との間を完全に隔離密封し、圧縮室への流体漏洩を回避することによる圧縮効率の向上を図ることができる。
【0057】
(実施例2)
図4は密閉容器1内が二酸化炭素(CO2)の吐出冷媒ガスで充満するスクロール圧縮機の縦断面を示す。
【0058】
電動機(モータ)3010に連結する駆動軸3005を支持する本体フレーム3002に固定スクロール3034が締結されている。固定スクロール3034に噛み合う旋回スクロール3014は本体フレーム3002に支持されながら背圧室3020に配置され、駆動軸3005の先端の偏心軸部3008と、本体フレーム3002に係止された自転阻止機構とに係合して旋回運動する。固定スクロール3034と旋回スクロール3014とが噛み合って形成する圧縮空間は、その外側部が吸入管3028に通じる吸入室3022を構成し、その中央部の圧縮室が吐出ポート3025に通じる。背圧室3020は絞り機能を有するバランス通路3026を介して吸入室3022に通じている。
【0059】
固定スクロール3034の鏡板3021には吐出カバー3099が取付られて吐出室3024を形成する。吐出カバー3099は鏡板3021と本体フレーム3002の外周部を囲む形態で配置されている。
【0060】
固定スクロール3034の鏡板3021と本体フレーム3002との締結外周部と、吐出カバー3099との間にO―リング3098が押圧介装され、密閉容器1内の吐出冷媒ガスが本体フレーム3002の内部側(背圧室3020)に流入するのを防止している。
【0061】
このような構成において、吸入室3022が3MPa,吐出室3024が10MPa,背圧室が5MPaの圧力状態を維持してスクロール圧縮機が運転される。密閉容器1内の冷媒ガスは、Oーリング3098のシール機能によって背圧室3020を経由する吸入室3022への漏洩流入を阻止される。これによって、圧縮効率の低下が防止され、高効率なスクロール圧縮機を提供する。
【0062】
(実施例3)
図6は、固定スクロールの鏡板3021aと本体フレーム3002aの締結面外周部に突起状部3021bと突起状部3002bを設け、その隣接外周部をレーザ溶接等の集中溶接接合することにより、図5におけるOーリング3098のシール機能に置き換えたスクロール圧縮機の部分断面図を示す。レーザ溶接等の集中溶接接合は、鏡板3021aと本体フレーム3002aを溶接時の熱変形を伴うことなく溶接接合できる。また、鏡板3021aと本体フレーム3002aの材質がアルミニューム合金等の場合の集中溶接接合には、電子ビーム溶接が適している。
【0063】
なお、上記実施例では二酸化炭素冷媒を使用したローリングピストン型ロータリ式2段圧縮機およびスクロール圧縮機について説明したが、他の気体(例えば、酸素,窒素,ヘリウム,空気など)を圧縮する2段ローリングピストン型ロータリ式圧縮機およびスクロール圧縮機の場合も同様な作用・効果を生じるものである。
【0064】
【発明の効果】
上記実施例から明かなように、請求項1に記載の発明は、密閉容器内に電動機とその電動機に連結する圧縮機構部を収納し、圧縮機構部の圧縮気体を密閉容器内に排出する構成において、前記圧縮機構部は前記圧縮要素を低段圧縮要素と高段圧縮要素を順次直列接続した2段圧縮機構とし、それぞれの圧縮要素を連結すべく各圧縮要素に隣接して配置され且つ圧縮室の壁面構成の一部材である中板の外周部を前記隔離手段で前記密閉容器内から圧力的に遮断するとともに、圧縮機構部の圧縮室を形成する構成部材間の結合面の外周部を密閉容器内から圧力的に遮断する隔離手段を設け、前記隔離手段は、低段圧縮要素の低段シリンダブロック、駆動軸を支持し且つ前記低段シリンダブロックと共に圧縮室を形成すべく前記低段シリンダブロックに固定された軸受部材、前記低段シリンダブロックと共に前記圧縮室を形成すべく前記低段シリンダブロックに隣接配置された中板の外周部を囲むべく環状部を備えた部材により構成したものである。
【0065】
そしてこの構成によれば、密閉容器内の高圧(吐出圧力相当)流体(気体や潤滑油)が圧縮室を形成する構成部材間の結合面を介して圧縮室内に漏洩流入するのを阻止でき、また、密閉容器内に吐出された流体(気体や潤滑油)が軸受部材と低段シリンダブロック、中板と低段シリンダブロックとの2箇所の接触固定面を介して低段圧縮要素の圧縮室の吸入側に漏洩流入するのを阻止し、著しい圧縮効率が低下するのを防止できる。
【0066】
請求項に記載の発明は、密閉容器内に電動機とその電動機に連結する圧縮機構部を収納し、圧縮機構部の圧縮気体を密閉容器内に排出する構成において、圧縮機構部の圧縮室を形成する構成部材間の結合面の外周部を密閉容器内から圧力的に遮断する隔離手段を設けると共に、圧縮機構部が複数の圧縮要素から成り、それぞれの圧縮要素を連結すべく各圧縮要素に隣接して配置され且つ圧縮室の壁面構成一部材である中板の外周部を隔離手段で密閉容器内から圧力的に遮断し、圧縮要素を低段圧縮要素と高段圧縮要素を順次直列接続した2段圧縮機構とし、その低段圧縮要素の構成部品の外周部を密閉容器内から圧力的に遮断する隔離手段を設け、その隔離手段は、低段圧縮要素の低段シリンダブロック、駆動軸を支持し且つ低段シリンダブロックと共に圧縮室を形成すべく低段シリンダブロックに固定された軸受部材、低段シリンダブロックと共に圧縮室を形成すべく低段シリンダブロックに隣接配置された中板の外周部を囲むべく環状部を備えた部材とし、隔離手段が、中板と高段圧縮要素の高段シリンダブロックとの接合面を密閉容器内から圧力的に遮断する手段を設けたものである。そしてこの構成によれば、密閉容器内の吐出流体(気体や潤滑油)が低段圧縮要素および高段圧縮要素の両圧縮室を形成すべく配置された構成部材の接触固定面を介して両圧縮室に漏洩流入するのを阻止し圧縮効率低下を防止できる。
【0067】
請求項に記載の発明は、密閉容器内に電動機とその電動機に連結する圧縮機構部を収納し、圧縮機構部の圧縮気体を密閉容器内に排出する構成において、圧縮機構部の圧縮室を形成する構成部材間の結合面の外周部を密閉容器内から圧力的に遮断する隔離手段を設けると共に、圧縮機構部が複数の圧縮要素から成り、それぞれの圧縮要素を連結すべく各圧縮要素に隣接して配置され且つ圧縮室の壁面構成一部材である中板の外周部を隔離手段で密閉容器内から圧力的に遮断し、圧縮要素を低段圧縮要素と高段圧縮要素を順次直列接続した2段圧縮機構とし、その低段圧縮要素の構成部品の外周部を密閉容器内から圧力的に遮断する隔離手段を設け、その隔離手段は、低段圧縮要素の低段吐出室を形成すべく低段圧縮要素の低段シリンダブロックの外周部を囲むように形成された吐出カバーを兼ねたものである。そしてこの構成によれば、低段圧縮要素を組立後に吐出カバーを取り付け、その内部に圧縮室を配置する低段シリダブロックの外周部を密閉容器内の吐出流体雰囲気から遮断するので、圧縮機構部の組立が容易で、且つ、圧縮室への不要な漏洩流体流入を回避でき、圧縮効率の向上を図ることができる。
【図面の簡単な説明】
【図1】 本発明の第1の実施例を示すローリングピストン型ロータリ式2段圧縮機の縦断面図
【図2】 同圧縮機における圧縮機構部の部分断面図
【図3】 同圧縮機における高段シリンダブロックの外観図
【図4】 本発明の第2の実施例を示すスクロール圧縮機の縦断面図
【図5】 同圧縮機におけるシール部を示す部分断面図
【図6】 本発明の第3の実施例を示すスクロール圧縮機のシール部を表す部分断面図
【図7】 従来のローリングピストン型ロータリ式2段圧縮機と冷凍サイクル配管系の接続図
【図8】 同圧縮機の縦断面図
【図9】 同圧縮機の部分縦断面図
【図10】 従来のスクロール圧縮機の縦断面図
【符号の説明】
1 密閉容器
2 電動機
3 2段圧縮機構
3a 圧縮機構部
4 高段側圧縮要素
5 低段側圧縮要素
6 中板
7 駆動軸
8 高段シリンダブロック
10 低段シリンダブロック
26 低段吐出カバー
27 低段吐出室
3001 密閉容器
3002 本体フレーム
3002a 突起状部
3003 主軸受
3013 旋回軸受部
3014 旋回スクロール
3014a 旋回スクロールラップ
3014b ラップ支持円盤
3021 鏡板
3021b 突起状部
3022 吸入室
3024 吐出室
3025 吐出ポート
3034 固定スクロール
3034a 固定スクロールラップ
3097 スクロール式圧縮機構
3098 シール部材(O―リング)
3099 吐出カバー
[0001]
BACKGROUND OF THE INVENTION
  The present invention relates to a sealing means for a compression mechanism portion of a rotary gas compressor.
[0002]
[Prior art]
  Rising from recent global environmental protection problems, research and development of heat pump systems using natural refrigerants, especially carbon dioxide (CO2) refrigerants, in place of CFC refrigerants that have been used continuously has been actively conducted in various fields. ing.
[0003]
  However, in the refrigeration cycle using the conventional chlorofluorocarbon refrigerant, the high pressure side is 3 MPa or less, whereas in the refrigeration cycle using the carbon dioxide (CO2) refrigerant, the low pressure side is 2.5 to 5 MPa and the high pressure side is 12 to 15 MPa. The pressure difference between the high pressure and the low pressure is extremely large, and there is a concern about excessive gas leakage loss from the high pressure side to the low pressure side in the compression mechanism.
[0004]
  For these reasons, as a compressor using carbon dioxide (CO 2) refrigerant, improvement studies of a scroll compressor and a multistage compressor that can reduce the differential pressure between adjacent compression chambers are being promoted.
[0005]
  In particular, as a compressor installed in a heat pump system for home use, from the viewpoint of productivity, durability, high performance and downsizing, a multistage compressor is a high-pressure rolling piston type rotary two-stage compression inside a sealed container. The machine is attracting attention. Further, as a scroll compressor, a high-pressure scroll compressor that has an oil separation function inside the high-pressure sealed container that houses the compression mechanism and does not require a separate oil separator has attracted attention.
[0006]
  FIG. 7 is a connection diagram of a rolling piston type rotary two-stage compressor proposed by the inventor in Japanese Patent Application Laid-Open No. 4-187878 (Patent No. 2768004) and a refrigeration cycle piping system, and FIG. 8 is a longitudinal section of the compressor. 9 and 9 are partial longitudinal sectional views of the compressor.
[0007]
  7 to 9, a two-stage compression mechanism including an electric motor 5, a low-stage compression element 1007, a high-stage compression element 1004, and an intermediate plate 36 is contained in a sealed container 1001 filled with a refrigerant gas discharged from a conventional fluorocarbon refrigerant. The lubricating oil 35 on which the discharge pressure acts acts on the opposite cylinder side of the high-stage vane 1039 of the rolling piston compression mechanism of the high-stage compression element 1004 to press the tip of the high-stage vane 1039 against the high-stage piston 1009b. ing. On the other hand, on the opposite cylinder side of the low-stage vane 1038 of the rolling piston compression mechanism of the low-stage compression element 1007, an intermediate is provided via an oil supply passage 1061 having a throttle passage 1061 a provided with lubricating oil in an oil reservoir 1035 in the intermediate plate 1036. After the pressure is reduced, the lubricating oil introduced into the low-stage vane back chamber 1044 acts. With this urging force, the tip of the low stage vane 1038 is pressed by the low stage piston 1007b, and the inside of the cylinder is partitioned into a suction chamber and a compression chamber.
[0008]
  The lubricating oil supplied to the low-stage vane back chamber 1044 lubricates the sliding surface of the low-stage vane 1038 and flows into the low-stage discharge chamber 1045 and then passes through the communication passage 1055 together with the discharged refrigerant gas. It is sucked into the suction side of the high-stage compression element 1009 and is discharged into the electric motor room 1008 after compression. Lubricating oil separated from the refrigerant gas in the electric motor chamber 1008 is collected in an oil reservoir 1035.
[0009]
  As described above, the contact force between the tip of the high stage vane 1039 and the high stage piston 1009b is a pressure difference between the discharge pressure of the high stage compression element 1009 and the suction pressure (low stage discharge pressure) of the high stage compression element 1009. To do. Similarly, the contact force between the tip of the low stage vane 1038 and the low stage piston 1007b is the differential pressure between the discharge pressure and the suction pressure of the low stage compression element 1007. Therefore, the friction loss power and the amount of wear at the tip of the low stage vane 1038 are halved as compared with the case where the differential pressure between the high stage discharge pressure and the low stage suction pressure acts.
[0010]
  Even when the CO2 refrigerant gas is used in the rotary type two-stage compressor having such a configuration (when the differential pressure between the discharge pressure and the suction pressure is extremely large), it acts on the tips of the high-stage vane 1039 and the low-stage vane 1038. Since the load is halved, the durability of the sliding portion can be ensured.
[0011]
[Problems to be solved by the invention]
  However, since the atmospheric pressure at the outer peripheral portion of the two-stage compression mechanism 1003 is equivalent to the discharge pressure, the lubricating oil and the refrigerant gas contact between the components for forming each compression chamber (inside the cylinder) of the two-stage compression mechanism 1003. There was a large amount of leakage flowing into the cylinder through the fixed surface and the sliding portion gap, and there was a problem that the compression efficiency was remarkably lowered.
[0012]
  There is a measure to prevent fluid leakage into the cylinder by disposing a seal member between the contact fixing surfaces between the components for forming each compression chamber (inside the cylinder) of the two-stage compression mechanism 1003. The above-mentioned measures are not feasible because it is difficult to assemble the two-stage compression mechanism 1003 having a very small assembly part gap.
[0013]
  FIG. 10 is a longitudinal sectional view of the scroll gas compressor when the entire compression mechanism is not in an atmosphere of high-pressure refrigerant gas or high-pressure lubricating oil.
[0014]
  That is, the frame 2003 that supports the drive shaft 2008 connected to the motor 2007 divides the sealed case 2001, 2002 into an upper discharge space 2013 (high pressure side) and a lower motor chamber 2015 (low pressure side). The end plate 2012 disposed in the discharge space 2013 is fixed to the frame 2003, and the fixed scroll 2011 is fixed. The orbiting scroll 2010 that meshes with the fixed scroll 2011 is engaged with the eccentric hole 2009 of the drive shaft 2008 while being supported by the frame 2003. A discharge chamber oil reservoir 2036 at the bottom of the discharge space 2013 is configured to communicate with an oil reservoir 2017 at the bottom of the motor chamber 2015 via an extra-fine passage 2019 provided in the frame 2003.
[0015]
  In the scroll gas compressor having such a configuration, the lubricating oil in the discharge chamber oil reservoir 2036 is transferred to the suction chamber 2037 outside the orbiting scroll (movable scroll) 2010 through the contact fixed surface between the end plate 2012 and the fixed scroll 2011 and the frame 2003. Small leak. In particular, when using CO2 refrigerant gas in which the differential pressure between the high pressure side and the low pressure side in the refrigeration cycle is much larger than that of the conventional refrigerant, the discharge chamber has a large differential pressure between the discharge chamber oil reservoir 2036 and the suction chamber 2037. There is a large amount of the lubricating oil in the oil reservoir 2036 leaking into the suction chamber 2037, and there is a problem in that the compression efficiency is significantly reduced. As in the case of the rotary type two-stage compressor described above, a seal member is disposed on the contact fixing surface between the end plate 2012 and the frame 2003 so that the lubricant in the discharge chamber oil reservoir 2036 leaks into the suction chamber 2037. Although there is a measure to prevent this, it is difficult to properly arrange and assemble the orbiting scroll 2010 and the fixed scroll 2011 that require a minute clearance in the compression chamber by arranging the seal member on the contact fixing surface between the end plate 2012 and the frame 2003. It is impossible to realize for the reason.
[0016]
  Not only the scroll gas compressor configured as described above, but also a scroll compression mechanism as proposed by the inventors in Japanese Patent Publication No. 7-78391 is arranged in an atmosphere of high-pressure refrigerant gas or high-pressure lubricating oil. The scroll gas compressor having the above configuration has the same problem.
[0017]
  The present invention solves such a conventional problem, and an object of the present invention is to prevent a high-pressure fluid (refrigerant or lubricating oil) surrounding a compression mechanism from flowing into and leaking into a compression chamber.
[0018]
[Means for Solving the Problems]
  In order to solve the above problems, the present invention is provided with means for pressure-blocking the assembled compression mechanism from the high-pressure atmosphere surrounding the compression mechanism.
[0019]
  The blocking means prevents the high-pressure fluid (refrigerant or lubricating oil) surrounding the compression mechanism from leaking into the compression chamber, thereby preventing the compression efficiency from being lowered.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
  The invention according to claim 1 is a configuration in which an electric motor and a compression mechanism connected to the electric motor are housed in a sealed container, and the compressed gas of the compression mechanism is discharged into the sealed container.The compression mechanism section is a two-stage compression mechanism in which the compression element is connected in series with a low-stage compression element and a high-stage compression element, and is arranged adjacent to each compression element so as to connect the compression elements. One member of wall structure
And the outer peripheral portion of the intermediate plate is pressure-blocked from the inside of the sealed container by the isolation means,Isolation means for pressure-blocking the outer peripheral portion of the joint surface between the constituent members forming the compression chamber of the compression mechanism portion from the inside of the sealed containerThe separating means includes a low-stage cylinder block of a low-stage compression element, a bearing member that supports the drive shaft and is fixed to the low-stage cylinder block so as to form a compression chamber together with the low-stage cylinder block, and the low-stage cylinder In order to form the compression chamber together with the block, it is constituted by a member provided with an annular portion so as to surround the outer peripheral portion of the intermediate plate arranged adjacent to the low-stage cylinder block.It is a thing.
[0021]
  And according to this configuration, the high-pressure (equivalent to discharge pressure) fluid (gas or lubricating oil) in the sealed container is prevented from leaking into the compression chamber via the coupling surface between the constituent members forming the compression chamber,Further, the fluid (gas or lubricating oil) discharged into the sealed container is a compression chamber of the low-stage compression element through two contact fixing surfaces of the bearing member and the low-stage cylinder block, and the middle plate and the low-stage cylinder block. Prevents leakage into the suction side of theThe reduction in compression efficiency can be prevented.
[0022]
  Claim2In the invention described in (1), the isolation means is provided with means for pressure-blocking the contact fixing surface between the middle plate and the high-stage cylinder block of the high-stage compression element from the inside of the sealed container. According to this configuration, the discharged fluid (gas or lubricating oil) in the hermetic container is both connected via the contact fixing surfaces of the constituent members arranged to form both the compression chambers of the low-stage compression element and the high-stage compression element. It is possible to prevent leakage from flowing into the compression chamber and prevent a reduction in compression efficiency.
[0023]
  Claim3In the invention described in (2), the separating means also serves as a discharge cover formed so as to surround the outer periphery of the low-stage cylinder block of the low-stage compression element so as to form a low-stage discharge chamber of the low-stage compression element. . According to this configuration, the discharge cover attached after the assembly of the low-stage compression element blocks the outer periphery of the low-stage cylinder block in which the compression chamber is disposed from the discharge fluid atmosphere in the sealed container, and enters the compression chamber. To improve the compression efficiency by avoiding unnecessary leakage fluid inflow.
[0024]
【Example】
  Embodiments of the present invention will be described below with reference to the drawings.
[0025]
  Example 1
  1 shows a longitudinal section of a rolling piston type rotary two-stage compressor using carbon dioxide (CO2) refrigerant, FIG. 2 shows a partial longitudinal section of the compressor, and FIG. 3 shows a low-stage cylinder of the compressor. An external view of the block is shown.
[0026]
  Inside the hermetic container 1, an electric motor 2 and a two-stage compression mechanism 3 are disposed below the electric motor 2. The two-stage compression mechanism 3 includes a high-stage compression element 4, a low-stage compression element 5 disposed below the high-stage compression element 4, a middle plate 6 disposed between the high-stage compression element 4 and the low-stage compression element 5, A drive shaft 7 connected to the rotor 2a of the electric motor 2 to drive the stage compression element 4 and the low stage compression element 5, and a high stage cylinder block 8 of the high stage compression element 4 to support the drive shaft 7 are fixed. And a secondary bearing 11 fixed to the low-stage cylinder block 10 of the low-stage compression element 5.
[0027]
  The high stage cylinder block 8 is fixed to the hermetic container 1 by welding, and the middle plate 6 and the low stage cylinder block 10 are fixed to the high stage cylinder block 8.
[0028]
  The high-stage discharge cover 12 attached to the main bearing 9 forms a high-stage discharge chamber 13 together with the main bearing 9.
[0029]
  A low-stage discharge chamber 27 is formed inside the low-stage discharge cover 26 that surrounds the outer periphery of the middle plate 6, the low-stage cylinder block 10, and the auxiliary bearing 11 and is attached to the high-stage cylinder block 8 via a seal member 98. ing. An O-ring 97 is interposed between the low stage discharge cover 26 and the auxiliary bearing 11, and the oil reservoir 32 in the hermetic container 1 and the low stage discharge chamber 27 are isolated from each other by pressure.
[0030]
  Between the low-stage discharge chamber 27 and the high-stage discharge chamber 13 is a bypass passage 96 provided through the auxiliary bearing 11, the low-stage cylinder block 10, the middle plate 6, the high-stage cylinder block 8, and the main bearing 9. It is communicated. At the end of the bypass passage 96, a valve body 95 that opens and closes the bypass passage 96 and a spring means 94 that biases the valve body 95 are disposed, and the refrigerant gas from the low stage discharge chamber 27 to the high stage discharge chamber 13 is disposed. The check valve mechanism that allows only the inflow of is formed.
[0031]
  Centrifugal pump means 93 is attached to the lower end of the oil hole 7 a that penetrates the drive shaft 7. By the centrifugal pump means 93, the auxiliary bearing 11, the inside of the low stage piston 70 of the low stage compression element 5, the high stage. A path through which the lubricating oil in the oil reservoir 32 is supplied is formed inside the high-stage piston 65 of the compression element 4 and on each sliding surface of the main bearing 9.
[0032]
  The high-stage vane back chamber 16 on the side opposite to the cylinder of the high-stage vane 15 disposed to contact the outer peripheral surface of the high-stage piston 65 in the cylinder of the high-stage compression element 4 and partition the inside of the cylinder into a suction chamber and a compression chamber. Communicates with the oil reservoir 32.
[0033]
  Similarly to the above, a spring means (coil spring) 91 is arranged in the low-stage vane back chamber 33 arranged on the side opposite to the cylinder of the low-stage vane 92 of the low-stage compression element 5, and the tip of the low-stage vane 92 is arranged at the low stage. The piston 70 is pressed and urged. A spring mounting hole 34 provided in the low-stage vane back chamber 33 for mounting a spring means (coil spring) 91 communicates with the oil reservoir 32 in the hermetic container 1 through a path described below.
[0034]
  That is, the spring mounting hole 34 is a gap passage 90 between the lower stage cylinder block 10 and the outer peripheral part of the middle plate 6 and the lower stage discharge cover 26, an oil hole 68 provided in the middle plate 6 and having a throttle part, driving A radial oil hole 7b provided perpendicular to the oil hole 7a of the shaft 7 is communicated sequentially.
[0035]
  Further, the low stage vane back chamber 33 communicates with the low stage discharge chamber 27 via an oil supply passage 88 having an outlet 89 above the spring mounting hole 34.
[0036]
  The low-stage discharge chamber 27 communicates with the suction chamber of the high-stage compression element 4 through an intermediate communication passage 87 provided through the auxiliary bearing 11, the high-stage cylinder block 10, and the middle plate 6.
[0037]
  An electrical connection terminal 86 connected to the electric motor 2 is disposed on the flat portion at the center of the upper wall of the sealed container 1, and an external connection cluster 85 bound with an insulating resin material is inserted into the external connection terminal 86a. The inner shape of the terminal cover 84 surrounding the external connection cluster 85 is, for example, the case where the terminals constituting the electrical connection terminal 86 are partially removed by the high-pressure CO 2 gas pressure in the sealed container 1. Is set so as not to be disconnected from the external connection terminal 86a.
[0038]
  In the vicinity of the opening end on the motor chamber 29 side of the discharge pipe 83 disposed on the upper wall of the sealed container 1, a shielding plate 82 opened on the inner wall side of the sealed container 1 is disposed, and from the electric connection terminal 86 side. The direct gas outflow to the discharge pipe 83 is prevented.
[0039]
  The operation of the rolling piston type rotary two-stage compressor using the carbon dioxide (CO2) refrigerant gas configured as described above will be described with reference to FIGS. 1, 2, and 3.
[0040]
  The suction refrigerant gas taken into the cylinder of the low stage compression element 5 is compressed and then discharged into the low stage discharge chamber 27. The refrigerant gas discharged from the low-stage discharge chamber 27 is taken into the suction chamber of the high-stage compression element 4 via the intermediate communication passage 87, and is discharged to the high-stage discharge chamber 13 after being compressed and discharged to the motor chamber 9. The A part of the lubricating oil mixed in the refrigerant gas discharged into the electric motor chamber 9 is separated and collected in the oil reservoir 32. The high-pressure discharged refrigerant gas from which a part of the lubricating oil has been separated is sent to the compressor external piping system via the discharge pipe 83.
[0041]
  Lubricating oil in the oil reservoir 32 on which the refrigerant gas pressure discharged from the high-stage compression element 4 acts is supplied to the oil hole 7a and the radial oil hole 7b in the drive shaft 7 by centrifugal pump means 93 disposed at the lower end of the drive shaft 7. , The inner diameter side space of the low stage piston 70, the inner diameter side space of the high stage piston 65, and the bearing sliding surface of the main bearing 9 are sequentially discharged to the motor chamber 29 and returned to the oil reservoir 32 again.
[0042]
  The refrigerant gas mixed in the lubricating oil discharged from the centrifugal pump means 93 into the oil hole 7a in the drive shaft 7 is discharged from the upper opening end of the oil hole 7a to the electric motor chamber 29. As a result, the lubricating oil in the oil hole 7 a is degassed, so that the inner sliding surface of the low stage piston 70, the inner sliding surface of the high stage piston 65, and the bearing sliding surface of the main bearing 9 are filled with gas. No good oil film is formed.
[0043]
  Lubricating oil in the course of lubrication of the sliding portion of the drive shaft 7 is reduced to an intermediate pressure through an oil hole 68 having a throttle portion of the intermediate plate 6, and then the gap passage 90, the spring mounting hole 34, and the low step. The vane rear chamber 33, the outlet 89 above the spring mounting hole 34, and the intermediate communication passage 87 are sequentially supplied to the low-stage discharge chamber 27. Since the intermediate communication passage 87 is a passage that does not cause a throttling action, the low-stage vane back pressure chamber 33 has an equivalent pressure to the low-stage discharge chamber 27.
[0044]
  Since the outlet 89 of the intermediate communication path 88 that communicates the low-stage vane back pressure chamber 33 and the low-stage discharge chamber 27 is located above the spring mounting hole 34, the low-stage vane back pressure chamber 33 does not stop even when the compressor is stopped. Lubricating oil is provided to lubricate the sliding part gap of the low stage vane 92 at the initial stage of restart of the compressor without flowing out into the low stage discharge chamber 27 by its own weight.
[0045]
  As a matter of course, the lubricating oil in the low-stage vane back pressure chamber 33 is sufficiently ensured even during the operation of the compressor, and the oil film sealing action of the sliding portion gap of the low-stage vane 92 and the low-stage vane 92 are combined with the low-stage piston. To press.
[0046]
  This pressing force is halved compared to the case where the lubricating oil in the oil reservoir 32 is introduced into the low-stage vane back chamber 33 without being depressurized, and the outer circumferential surface of the low-stage piston 70 and the low-stage vane 92 The sliding friction loss with the tip is small, and the sliding part wear is small.
[0047]
  Further, the low-stage vane back chamber 33 is pressure-separated from the inside of the hermetic container 1 by a sealing member interposed between the high-stage cylinder block 8 and the low-stage discharge cover 26, for example, the oil level of the oil reservoir 32. Even when the pressure drops, the discharged refrigerant gas in the sealed container 1 does not leak into the low-stage vane back chamber 33. Further, the refrigerant gas discharged from the sealed container 1 and the lubricating oil on which the discharge pressure acts act via the contact coupling surface between the middle plate 6 and the high stage cylinder block 8 and the contact coupling surface between the middle plate 6 and the low stage cylinder block 10. Therefore, the leakage does not flow directly into the compression chamber of the high-stage compression element 4 and the compression chamber of the low-stage compression element 5.
[0048]
  An appropriate amount of lubricating oil introduced from the low-stage vane back chamber 33 into the suction chamber of the high-stage compression element 4 via the low-stage discharge chamber 27 is used to seal the oil film in the compression chamber gap of the high-stage compression element 4. , Improve the compression efficiency.
[0049]
  As described above, according to the above-described embodiment, the motor 2 and the compression mechanism connected to the motor 2 are housed in the sealed container 1, and the compressed gas of the compression mechanism 3a is discharged into the sealed container 1. The outer peripheral portion of the joint surface between the constituent members (the high-stage cylinder block 8 and the middle plate 6, the low-stage cylinder block 10 and the middle plate 6) forming the compression chamber of the compression mechanism 3a is pressure-blocked from the inside of the sealed container 1. Separating means (a state in which the low-stage discharge cover 26 surrounding the high-stage cylinder block 8, the middle plate 6, the low-stage cylinder block 10, and the auxiliary bearing 11 is attached to the high-stage cylinder block 8 via the seal member 98). This prevents high-pressure (equivalent to discharge pressure) fluid (discharge refrigerant gas or lubricating oil) in the sealed container 1 from leaking into the compression chamber via the contact coupling surfaces between the components forming the compression chamber. , Prevent compression efficiency It can be achieved.
[0050]
  Further, according to the above embodiment, the compression mechanism section 3a is composed of a plurality of compression elements (the low-stage compression element 5 and the high-stage compression element 4), and is arranged adjacent to each compression element to connect the respective compression elements. In addition, the low-stage discharge cover 26 is disposed in a form surrounding the outer peripheral portion of the middle plate 6 which is a member constituting the wall surface of the compression chamber and is blocked from the inside of the sealed container 1 by pressure, whereby the middle plate 6 and each compression element ( It is possible to prevent the high-pressure fluid (discharged refrigerant gas or lubricating oil) in the sealed container 1 from leaking and flowing into the compression chamber via the adjacent surfaces 4 and 5), thereby preventing the compression efficiency from being lowered.
[0051]
  Further, according to the above embodiment, since the compression element is the two-stage compression mechanism 3 in which the low-stage compression element 5 and the high-stage compression element 4 are sequentially connected in series, the discharged refrigerant gas and the lubricating oil in the sealed container 1 are contained in the middle. The leakage of the low-stage compression element 5 and the high-stage compression element 4 to the suction side of the compression chamber through the plate 6 is prevented, the occurrence of compression loss in the high-stage compression element 4 is prevented, and the low-stage compression element It is possible to prevent compression loss from being transferred from 5 to the high-stage compression element 4 and to prevent a significant reduction in compression efficiency.
[0052]
  Further, according to the above embodiment, by providing the isolating means for pressure-blocking the outer peripheral portion of the components of the low-stage compression element 5 from the inside of the sealed container 1, the discharged refrigerant gas and the lubricating oil in the sealed container 1 Prevention of excessive compression loss caused by leaking into the suction side (low pressure side) of the compression chamber of the low-stage compression element 5 via the intermediate plate 6 and re-compression of the leaked fluid in the high-stage compression element 4 again. Can be planned.
[0053]
  Further, according to the above embodiment, the separating means is fixed to the low-stage cylinder block 10 so as to support the low-stage cylinder block 10 and the drive shaft 7 of the low-stage compression element 5 and to form a compression chamber together with the low-stage cylinder block 10. The low-stage discharge cover 26 is provided with an annular portion so as to surround the outer peripheral portion of the intermediate plate 6 disposed adjacent to the low-stage cylinder block 10 so as to form a compression chamber together with the auxiliary bearing 11 and the low-stage cylinder block 10. Thus, the fluid (discharged refrigerant gas or lubricating oil) discharged into the hermetic container 1 passes through two contact fixing surfaces of the auxiliary bearing 11 and the low-stage cylinder block 10 and the middle plate 6 and the low-stage cylinder block 10. It is possible to prevent leakage and flow into the suction side of the compression chamber of the low-stage compression element 5 and prevent a significant reduction in compression efficiency.
[0054]
  Further, according to the above embodiment, the separating means is provided with means for pressure-blocking the joint surface between the middle plate 6 and the high-stage cylinder block 8 of the high-stage compression element 4 from the inside of the sealed container 1. The discharge fluid (discharge refrigerant gas and lubricating oil) in the container 1 is supplied to both compression chambers via contact fixing surfaces of components arranged to form both compression chambers of the low-stage compression element 5 and the high-stage compression element 4. It is possible to prevent leakage and inflow and prevent a reduction in compression efficiency.
[0055]
  Further, according to the above embodiment, the isolating means is a low stage formed so as to surround the outer periphery of the low stage 10 cylinder block of the low stage compression element 5 so as to form the low stage discharge chamber 27 of the low stage compression element 5. By serving also as the discharge cover 26, the low-stage discharge cover 26 attached after the low-stage compression element 5 is assembled has the outer peripheral portion of the low-stage cylinder block 10 in which the compression chamber is disposed inside the discharge refrigerant in the sealed container 1. By blocking from gas and lubricating oil, unnecessary leakage fluid inflow into the compression chamber can be avoided and compression efficiency can be improved.
[0056]
  In the above embodiment, the intermediate communication passage 87 of the intermediate plate 6 and the low-stage vane back chamber 33 communicate with each other via the gap passage 90, but they may communicate directly without the gap passage 90. good.
Then, a seal member is arranged on the outer peripheral portion of the contact coupling surface with the low-stage cylinder block 10 to completely isolate and seal the discharged refrigerant gas or lubricating oil in the hermetic container 1 and the compression chamber, and to the compression chamber. The compression efficiency can be improved by avoiding fluid leakage.
[0057]
  (Example 2)
  FIG. 4 shows a longitudinal section of a scroll compressor in which the sealed container 1 is filled with carbon dioxide (CO2) discharge refrigerant gas.
[0058]
  A fixed scroll 3034 is fastened to a main body frame 3002 that supports a drive shaft 3005 connected to an electric motor (motor) 3010. The orbiting scroll 3014 meshing with the fixed scroll 3034 is disposed in the back pressure chamber 3020 while being supported by the main body frame 3002, and is related to the eccentric shaft portion 3008 at the tip of the drive shaft 3005 and the rotation prevention mechanism locked to the main body frame 3002. Together, it turns. A compression space formed by meshing the fixed scroll 3034 and the orbiting scroll 3014 constitutes a suction chamber 3022 whose outer portion communicates with the suction pipe 3028, and its compression chamber communicates with the discharge port 3025. The back pressure chamber 3020 communicates with the suction chamber 3022 through a balance passage 3026 having a throttle function.
[0059]
  A discharge cover 3099 is attached to the end plate 3021 of the fixed scroll 3034 to form a discharge chamber 3024. The discharge cover 3099 is disposed so as to surround the outer periphery of the end plate 3021 and the main body frame 3002.
[0060]
  An O-ring 3098 is pressed between the fastening outer peripheral portion of the end plate 3021 of the fixed scroll 3034 and the main body frame 3002 and the discharge cover 3099, and the discharged refrigerant gas in the sealed container 1 is moved to the inner side of the main body frame 3002 ( Inflow into the back pressure chamber 3020) is prevented.
[0061]
  In such a configuration, the scroll compressor is operated with the suction chamber 3022 maintained at 3 MPa, the discharge chamber 3024 maintained at 10 MPa, and the back pressure chamber maintained at 5 MPa. The refrigerant gas in the sealed container 1 is prevented from leaking into the suction chamber 3022 via the back pressure chamber 3020 by the sealing function of the O-ring 3098. This prevents a reduction in compression efficiency and provides a highly efficient scroll compressor.
[0062]
  (Example 3)
  FIG. 6 is a plan view of the fixed scroll end plate 3021a and the main body frame 3002a provided with a protruding portion 3021b and a protruding portion 3002b on the outer periphery of the fastening surface. The fragmentary sectional view of the scroll compressor replaced with the sealing function of the O-ring 3098 is shown. Concentrated welding joining such as laser welding can weld and join the end plate 3021a and the main body frame 3002a without thermal deformation during welding. Further, electron beam welding is suitable for concentrated welding joining when the material of the end plate 3021a and the main body frame 3002a is aluminum alloy or the like.
[0063]
  In the above embodiment, the rolling piston type rotary two-stage compressor and scroll compressor using carbon dioxide refrigerant have been described. However, the second stage compresses other gas (for example, oxygen, nitrogen, helium, air, etc.). In the case of a rolling piston type rotary compressor and a scroll compressor, similar actions and effects are produced.
[0064]
【The invention's effect】
  As is apparent from the above embodiments, the invention according to claim 1 is configured such that an electric motor and a compression mechanism connected to the electric motor are housed in a sealed container, and compressed gas from the compression mechanism is discharged into the sealed container. InThe compression mechanism section is a two-stage compression mechanism in which the compression element is connected in series with a low-stage compression element and a high-stage compression element, and is arranged adjacent to each compression element so as to connect the compression elements. While isolating the outer peripheral portion of the intermediate plate, which is one member of the wall structure, from the inside of the sealed container by the isolation means,Isolation means for pressure-blocking the outer peripheral portion of the joint surface between the constituent members forming the compression chamber of the compression mechanism portion from the inside of the sealed containerThe separating means includes a low-stage cylinder block of a low-stage compression element, a bearing member that supports the drive shaft and is fixed to the low-stage cylinder block so as to form a compression chamber together with the low-stage cylinder block, and the low-stage cylinder In order to form the compression chamber together with the block, it is constituted by a member provided with an annular portion so as to surround the outer peripheral portion of the intermediate plate arranged adjacent to the low-stage cylinder block.It is a thing.
[0065]
  And according to this configuration, it is possible to prevent high-pressure (equivalent to discharge pressure) fluid (gas or lubricating oil) in the sealed container from leaking into the compression chamber via the coupling surface between the constituent members forming the compression chamber,Further, the fluid (gas or lubricating oil) discharged into the sealed container is a compression chamber of the low-stage compression element through two contact fixing surfaces of the bearing member and the low-stage cylinder block, and the middle plate and the low-stage cylinder block. Prevents leakage into the suction side of theA reduction in compression efficiency can be prevented.
[0066]
  Claim2The invention described in 1 is configured such that the motor and the compression mechanism connected to the motor are housed in the sealed container, and the compression chamber of the compression mechanism is formed in the structure in which the compressed gas of the compression mechanism is discharged into the sealed container. Isolating means for pressure-blocking the outer peripheral portion of the connecting surface between the members from the inside of the sealed container is provided, and the compression mechanism portion is composed of a plurality of compression elements, and is adjacent to each compression element to connect the respective compression elements. Two stages in which the outer peripheral part of the middle plate, which is a member constituting the wall surface of the compression chamber, is pressure-blocked from the inside of the sealed container by the isolation means, and the compression element is sequentially connected in series with the low-stage compression element and the high-stage compression element As a compression mechanism, there is provided isolation means for pressure-blocking the outer periphery of the components of the low-stage compression element from the inside of the sealed container, and the isolation means supports the low-stage cylinder block and the drive shaft of the low-stage compression element. And low stage cylinder block A bearing member fixed to the low-stage cylinder block to form a compression chamber together, and an annular portion to surround the outer periphery of the intermediate plate disposed adjacent to the low-stage cylinder block to form a compression chamber together with the low-stage cylinder block The isolation means is provided with means for pressure-blocking the joint surface between the middle plate and the high-stage cylinder block of the high-stage compression element from the inside of the sealed container. According to this configuration, the discharged fluid (gas or lubricating oil) in the hermetic container is both connected via the contact fixing surfaces of the constituent members arranged to form both the compression chambers of the low-stage compression element and the high-stage compression element. It is possible to prevent leakage from flowing into the compression chamber and prevent a reduction in compression efficiency.
[0067]
  Claim3The invention described in 1 is configured such that the motor and the compression mechanism connected to the motor are housed in the sealed container, and the compression chamber of the compression mechanism is formed in the structure in which the compressed gas of the compression mechanism is discharged into the sealed container. Isolating means for pressure-blocking the outer peripheral portion of the coupling surface between the members from the inside of the sealed container is provided, and the compression mechanism portion is composed of a plurality of compression elements, and is adjacent to each compression element to connect the respective compression elements. Two stages in which the outer peripheral part of the middle plate, which is a member constituting the wall surface of the compression chamber, is pressure-blocked from the inside of the sealed container by the isolation means, and the compression element is sequentially connected in series with the low-stage compression element and the high-stage compression element An isolating means is provided as a compression mechanism for pressure-blocking the outer peripheral portion of the component of the low-stage compression element from the inside of the sealed container, and the isolation means is a low-stage to form a low-stage discharge chamber of the low-stage compression element. Outside the lower cylinder block of the compression element Parts in which also serves as the formed discharge cover to surround the. According to this configuration, the discharge cover is attached after the low-stage compression element is assembled, and the outer periphery of the low-stage cylinder block in which the compression chamber is disposed is shielded from the discharge fluid atmosphere in the sealed container. Can be easily assembled and unnecessary leakage fluid inflow into the compression chamber can be avoided, and compression efficiency can be improved.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of a rolling piston type rotary two-stage compressor showing a first embodiment of the present invention.
FIG. 2 is a partial sectional view of a compression mechanism section in the compressor.
Fig. 3 External view of high-stage cylinder block in the same compressor
FIG. 4 is a longitudinal sectional view of a scroll compressor showing a second embodiment of the present invention.
FIG. 5 is a partial sectional view showing a seal portion in the compressor.
FIG. 6 is a partial sectional view showing a seal portion of a scroll compressor according to a third embodiment of the present invention.
FIG. 7 is a connection diagram of a conventional rolling piston type rotary two-stage compressor and a refrigeration cycle piping system.
FIG. 8 is a longitudinal sectional view of the compressor.
FIG. 9 is a partial longitudinal sectional view of the compressor.
FIG. 10 is a longitudinal sectional view of a conventional scroll compressor
[Explanation of symbols]
  1 Airtight container
  2 Electric motor
  3 Two-stage compression mechanism
  3a Compression mechanism
  4 High-stage compression element
  5 Low stage compression element
  6 Middle plate
  7 Drive shaft
  8 High cylinder block
  10 Low stage cylinder block
  26 Low-stage discharge cover
  27 Low discharge chamber
  3001 Airtight container
  3002 Body frame
  3002a Protruding part
  3003 Main bearing
  3013 Slewing bearing
  3014 Orbiting scroll
  3014a Orbiting scroll wrap
  3014b Wrap support disk
  3021 End plate
  3021b Protruding part
  3022 Suction chamber
  3024 Discharge chamber
  3025 Discharge port
  3034 fixed scroll
  3034a Fixed scroll wrap
  3097 scroll compression mechanism
  3098 Sealing member (O-ring)
  3099 Discharge cover

Claims (3)

密閉容器内に電動機と前記電動機に連結する圧縮機構部を収納し、前記圧縮機構部の圧縮気体を前記密閉容器内に排出する構成において、前記圧縮機構部の圧縮室を形成する構成部材間の結合面の外周部を前記密閉容器内から圧力的に遮断する隔離手段を設けた回転式気体圧縮機であって、前記圧縮機構部は前記圧縮要素を低段圧縮要素と高段圧縮要素を順次直列接続した2段圧縮機構とし、それぞれの圧縮要素を連結すべく各圧縮要素に隣接して配置され且つ圧縮室の壁面構成の一部材である中板の外周部を前記隔離手段で前記密閉容器内から圧力的に遮断するとともに、前記低段圧縮要素の構成部品の外周部を密閉容器内から圧力的に遮断する隔離手段を設け、前記隔離手段は、低段圧縮要素の低段シリンダブロック、駆動軸を支持し且つ前記低段シリンダブロックと共に圧縮室を形成すべく前記低段シリンダブロックに固定された軸受部材、前記低段シリンダブロックと共に前記圧縮室を形成すべく前記低段シリンダブロックに隣接配置された中板の外周部を囲むべく環状部を備えた部材により構成したことを特徴とする回転式気体圧縮機。In a configuration in which an electric motor and a compression mechanism connected to the electric motor are housed in a sealed container, and the compressed gas of the compression mechanism is discharged into the sealed container, between the constituent members forming the compression chamber of the compression mechanism A rotary gas compressor provided with an isolating means for pressure-blocking the outer peripheral portion of the coupling surface from the inside of the sealed container , wherein the compression mechanism section sequentially converts the compression element into a low-stage compression element and a high-stage compression element. A two-stage compression mechanism connected in series is provided, and the outer peripheral portion of the intermediate plate, which is disposed adjacent to each compression element and is a member of the wall surface configuration of the compression chamber, is connected by the isolation means to connect the compression elements. Isolating means for pressure-blocking from the inside and pressure-blocking the outer peripheral portion of the components of the low-stage compression element from the inside of the sealed container is provided, and the isolation means includes a low-stage cylinder block of the low-stage compression element, Supports the drive shaft and A bearing member fixed to the low-stage cylinder block to form a compression chamber together with the low-stage cylinder block, and a middle plate disposed adjacent to the low-stage cylinder block to form the compression chamber together with the low-stage cylinder block. A rotary gas compressor comprising a member having an annular portion so as to surround an outer peripheral portion . 隔離手段を、中板と高段圧縮要素の高段シリンダブロックとの接合面を密閉容器内から圧力的に遮断する構成とした請求項1に記載の回転式気体圧縮機。 2. The rotary gas compressor according to claim 1, wherein the isolating means is configured to pressure-block a joint surface between the intermediate plate and the high-stage cylinder block of the high-stage compression element from the inside of the sealed container . 隔離手段を、低段圧縮要素の低段吐出室を形成すべく前記低段圧縮要素の低段シリンダブロックの外周部を囲むように形成された吐出カバーを兼ねた構成とした請求項1または2に記載の回転式気体圧縮機。 The isolation means is configured to serve also as a discharge cover formed so as to surround an outer peripheral portion of a low-stage cylinder block of the low-stage compression element so as to form a low-stage discharge chamber of the low-stage compression element. rotary gas compressor according to.
JP2001288675A 2001-09-21 2001-09-21 Rotary gas compressor Expired - Fee Related JP4300726B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001288675A JP4300726B2 (en) 2001-09-21 2001-09-21 Rotary gas compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001288675A JP4300726B2 (en) 2001-09-21 2001-09-21 Rotary gas compressor

Publications (2)

Publication Number Publication Date
JP2003097471A JP2003097471A (en) 2003-04-03
JP4300726B2 true JP4300726B2 (en) 2009-07-22

Family

ID=19111287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001288675A Expired - Fee Related JP4300726B2 (en) 2001-09-21 2001-09-21 Rotary gas compressor

Country Status (1)

Country Link
JP (1) JP4300726B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007113542A (en) * 2005-10-24 2007-05-10 Hitachi Appliances Inc Hermetic two-stage rotary compressor
CN102049615B (en) 2006-03-03 2014-03-19 大金工业株式会社 Compressor manufacturing method
JP2007263106A (en) * 2006-03-03 2007-10-11 Daikin Ind Ltd Compressor
JP4894486B2 (en) * 2006-03-03 2012-03-14 ダイキン工業株式会社 Compressor
KR101282226B1 (en) 2006-12-28 2013-07-09 엘지전자 주식회사 Hermetic compressor
WO2011055444A1 (en) * 2009-11-06 2011-05-12 三菱電機株式会社 Heat pump device, two-stage compressor, and method of operating heat pump device
KR101189916B1 (en) 2010-07-14 2012-10-10 엘지전자 주식회사 Compressor
JP5586537B2 (en) * 2011-07-28 2014-09-10 三菱電機株式会社 Rotary two-stage compressor

Also Published As

Publication number Publication date
JP2003097471A (en) 2003-04-03

Similar Documents

Publication Publication Date Title
JP2922343B2 (en) Scroll machine
US8303278B2 (en) Scroll compressor utilizing liquid or vapor injection
US7614859B2 (en) Scroll compressor with certain pressure ratio between discharge pressure and suction pressure and with certain ratio of diameter of orbiting mirror plate and outer diameter of the annular seal
EP1496258A2 (en) Hermetic compressors
CN102400915B (en) Vortex Compressor
KR20120006398A (en) Scroll compressor
JPH04314986A (en) Scroll member assembly floating in axial direction
CN101324232A (en) Vortex fluid machinery
JP4300726B2 (en) Rotary gas compressor
JP2010031785A (en) Refrigerant compressor
CA2113043C (en) Scroll compressor unloader valve
US6015277A (en) Fabrication method for semiconductor substrate
JP2003148366A (en) Multiple stage gas compressor
JP5033351B2 (en) Hermetic compressor for refrigerant
JP4258132B2 (en) Rotary multistage compressor
JP4638762B2 (en) Scroll compressor
JP2002317784A (en) Rotary two-stage compressor
JPH08326671A (en) Scroll type compressor
KR20140012858A (en) Scroll compressor
JP2011190779A (en) Scroll fluid machine
JPH11303776A (en) Scroll compressor and refrigeration cycle using the same
JPH01106989A (en) Scroll compressor
JP3786105B2 (en) Scroll compressor
JP2000097171A (en) Scroll compressor and refrigeration system using the same
JPS62139991A (en) Scroll type compressor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060412

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090304

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090331

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120501

Year of fee payment: 3

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090413

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120501

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees