JP4300049B2 - Manufacturing method of high-strength steel pipe for building structure with low yield ratio - Google Patents
Manufacturing method of high-strength steel pipe for building structure with low yield ratio Download PDFInfo
- Publication number
- JP4300049B2 JP4300049B2 JP2003091745A JP2003091745A JP4300049B2 JP 4300049 B2 JP4300049 B2 JP 4300049B2 JP 2003091745 A JP2003091745 A JP 2003091745A JP 2003091745 A JP2003091745 A JP 2003091745A JP 4300049 B2 JP4300049 B2 JP 4300049B2
- Authority
- JP
- Japan
- Prior art keywords
- steel pipe
- less
- yield ratio
- steel
- low yield
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Heat Treatment Of Steel (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、低降伏比の建築構造用高張力鋼管を製造する方法に関するものであり、例えば耐震性や耐火性において優れた特性を発揮するCFT(Concrete−Filled−Tube)構造の建造物等に好適に用いることのできる高張力鋼管に関するものである。
【0002】
【従来の技術】
建築構造物には優れた耐震性や耐火性が要求されることから、該建築構造物に使用される鋼材には、高強度かつ低降伏比を示すものが求められる。従来より、高張力鋼板の降伏比を下げる方法としては、図1に示すように、
・Ac3点以上の温度域で加熱したのち室温まで急冷し、
・次にAc1〜Ac3点の2相温度域で加熱したのち室温まで急冷し、
・Ac1点以下の温度域で焼戻す方法により、低降伏比と所定の降伏耐力の両立を図る技術がある(例えば特許文献1)。
【0003】
しかし、この様な方法で低降伏比の鋼板を得たとしても、図2に示す様に該鋼板を管状に成形する際の加工硬化によって降伏比が上昇するため、降伏比の低い鋼管は得られ難く、該鋼管を建造物に採用しても意図する様な優れた耐震性等を得ることはできない。
【0004】
こうした問題の解決法として、特許文献2には、鋼板に曲げ加工やプレス加工等を施した後も低降伏比を維持させるべく、
(a-1)Ac1〜Ac3各変態点間の2相域温度に加熱したのち急冷する熱処理を施し、
(a-2)次いで300℃以下の温度域で加工を施し、
(a-3)その後、部分再結晶を起こすべく600〜700℃の温度範囲内で再加熱する方法
が提案されている。しかし該方法では、急冷後に鋼管加工を行うので、鋼管成形時の加工性が確保されているとは言い難い。
【0005】
また特許文献3には、熱間圧延条件を制御して鋼板を得た後、
(b-1)Ac1点以上でかつAc3点以下の2相域温度域に再加熱し、
(b-2)そのままAr1点以上の温度域から円筒状に曲げ加工を開始し、Ar1点未満の温度域で加工を終了し、
(b-3)空冷以上の冷却速度で冷却する方法
が提案されている。しかし該方法では、鋼管成形を熱間(Ac1〜Ac3点の2相温度域)で行う必要があり、新たな設備や高いエネルギーコストを要するので、経済面から実用にそぐわない。
【0006】
特許文献4には、冷間成形により低YRの鋼管を製造する方法が示されており、具体的には、
(c-1)仕上温度が(Ar3+120℃)以下(Ar3−20℃)以上となるよう圧延を行ったのち、
(c-2)鋼板を(Ar3−20℃)〜(Ar3−100℃)まで空冷し、続いてこの温度から直ちに常温まで焼入れし、
(c-3)Ac1変態点以下の温度範囲で焼戻処理し、
(c-4)板厚をt、鋼管外径をDとしたとき、t/D≦10%の範囲で管状に冷間成形し、
(c-5)その後500℃から650℃の温度範囲で焼鈍する方法
が示されている。しかしこの様に、熱間圧延直後に圧延ライン上でほぼAc1〜Ac3点の2相温度域まで空冷を行う方法は、圧延の生産性低下を招くため経済的な観点から好ましくない。
【0007】
特許文献5には、冷間成形による低YR鋼管の製造方法として、
(d-1)Ac3以上の温度に再加熱して焼入れあるいは焼入れ・焼戻しを行い、(d-2)t/D(t:板厚、D:鋼管外径)≦10%の範囲で冷間成形を施して鋼管を製作し、
(d-3)650〜750℃の温度範囲に再加熱して焼ならしする方法
が提案されている。しかしこの方法は、鋼素材としてCu、Niを必須成分とするものを用いる必要があり素材コストが高くつき、低コスト化の要望に沿うものでない。また、Cu添加による析出強化で強度向上を図っているが、鋼管加工後の熱処理工程で外面側と内面側の温度が不均一になりCuの添加効果が均一に表れにくいので、材質のバラツキが懸念される。
【0008】
【特許文献1】
特開昭55−97425号公報
【特許文献2】
特許第3297090号公報 (第1頁)
【特許文献3】
特開平7−150245号公報 (第2頁)
【特許文献4】
特許第2529042号公報 (第1頁)
【特許文献5】
特開平7−233416号公報 (第2頁)
【0009】
【発明が解決しようとする課題】
本発明は、この様な事情に鑑みてなされたものであって、その目的は、中層・低層建造物のみならず高層・超高層建造物にも用いられ得る、低降伏比(特にYP/TSで表される降伏比:YRが85%以下)を示す建築構造用高張力鋼管を製造するための有用な方法を提供することにある。
【0010】
【課題を解決するための手段】
本発明に係る低降伏比の建築構造用高張力鋼管を製造する方法とは、質量%で(以下同じ)、C:0.10〜0.18%、Si:0.1〜0.5%、Mn:1〜2%を満たし、引張強度が590N/mm2以上である建築構造用鋼管を製造するにあたり、
▲1▼鋼板をAc3点以上に加熱したのち室温まで急冷する工程、
▲2▼Ac1〜Ac3点の2相温度域に加熱したのち室温まで空冷する工程、
▲3▼冷間で管状に成形する工程、
▲4▼500〜600℃に再加熱する工程
を順次実施するところに特徴を有するものである。
【0011】
【発明の実施の形態】
本発明者らは前述した様な状況の下で、鋼管成形時の加工性等を低下させることなく経済的に、引張強度:590N/mm2以上で低降伏比を示す建築構造用鋼管を製造するための方法について、様々な角度から検討を行った。その結果、図3に模式的に示す様に
▲1▼鋼板をAc3点以上に加熱したのち室温まで急冷する工程、
▲2▼Ac1〜Ac3点の2相温度域に加熱したのち室温まで空冷する工程、
▲3▼冷間で管状に成形する工程、
▲4▼500〜600℃に再加熱する工程
を順次実施すればよいことを見出した。以下、各工程を規定した理由を示す。
【0012】
▲1▼鋼板をAc 3 点以上に加熱したのち室温まで急冷する工程
まず本発明法では、熱間圧延等により得られた鋼板をAc3点以上の温度まで加熱し、該温度域から室温まで急冷することを前提とする。この様に急冷を行うことで鋼管の高強度化を達成できる。
【0013】
Ac3点以上での加熱は、鋼板内部まで確実に昇温させる観点から、板厚にもよるが約5分〜1時間の範囲内で行えばよい。加熱温度の上限も特に規定しないが、エネルギーコスト抑制等の観点からは950℃以下で行うのがよい。またAc3点以上の温度域からの急冷は水冷で行えばよい。尚、該鋼板は、板厚が約20〜100mmであり巻取りは行わない。
【0014】
▲2▼Ac 1 〜Ac 3 点の2相温度域に加熱したのち室温まで空冷する工程
本発明法では、前記工程▲1▼を経た鋼板を、Ac1〜Ac3点の2相温度域に再加熱したのち室温まで空冷する工程を設ける必要がある。
【0015】
低降伏比の鋼板を得る方法として従来から行われている、前記図1または図2に示した「Ac1点〜Ac3点の温度で加熱・急冷したのち焼戻しを行う」工程に代えて、上記工程を設けることで、管状に成形する際にも降伏比の上昇が起こり難い鋼板とすることができるのである。尚、Ac1〜Ac3点の2相温度域での加熱保持は、板厚にもよるが5分〜1時間の範囲内とすればよく、これより長時間だとフェライトやオーステナイトが粗大化して前記工程▲1▼の効果が薄れるので好ましくない。
【0016】
特に本発明法では、Ac1〜Ac3点の2相温度域からの空冷を行うことによって、フェライトが軟化するとともに、オーステナイトに炭素が濃化したのち変態するため著しく硬化し、低YR化が増進されると考えられる。
【0017】
▲3▼冷間で管状に成形する工程および▲4▼500〜600℃に再加熱する工程
鋼管成形は、上記▲1▼▲2▼の工程を経た鋼板を用い、冷間で管状に曲げ加工してからシーム溶接を行えばよい。本発明は、管状成形条件や溶接条件まで規定するものではなく、曲げ加工やシーム溶接などには周知の方法を適宜選択して採用すればよい。尚、本発明法は、D/t(D:鋼管の外径、t:板厚)が10以上のものに好ましく適用される。ちなみにD/tが10未満のものでは、加工歪が増えすぎてYRが高くなるからである。
【0018】
鋼管に成形した後は、再度加熱して加工歪みを除去する必要がある。加工歪みを十分除去するには、500℃以上に加熱するのがよいが、加熱温度が高すぎると所定の強度を下回るため、600℃以下の温度域で行うのがよい。
【0019】
また、加熱温度が適正範囲内であっても、保持時間が短すぎると歪みを十分に除去できないので、5分〜1時間の範囲内で加熱保持するのがよい。また、上記加熱後には、室温まで空冷または炉冷等の方法で冷却すればよい。
【0020】
本発明の方法は、上記要件を満たす製造条件を定めたところに特徴を有するものであり、鋼材の溶製、鋳造や熱間圧延等といった基本的な鋼板の製造条件等についてまで規定するものではなく、これらについては一般的な条件や方法を採用することができる。
【0021】
尚、本発明において鋼管の引張強度を590N/mm2以上と定めたのは、590N/mm2未満の鋼板であれば降伏比は比較的低く、低降伏比とするのに格別の工夫を要しないからである。
【0022】
また、本発明で低降伏比の高強度鋼管を得るにあたっては、素材として下記の基本成分組成を満たす鋼材を用いることができる。
【0023】
C:0.10〜0.18%
C(炭素)は鋼の強度向上に有効な元素であり、0.10%以上含有させるのがよい。しかしC含有量が増加すると、溶接性の劣化を招くので、0.18%以下(より好ましくは0.16%以下)に抑えるのがよい。
【0024】
Si:0.1〜0.5%
Siは脱酸作用を有する元素であり、この様な作用を有効に発揮させるには、0.1%以上含有させるのがよい。しかしSi量が過剰になると、溶接熱影響部の靭性劣化を招くので0.5%以下にするのがよい。
【0025】
Mn:1〜2%
Mnは、強度を確保するのに有用な元素であり、また焼入れ性を高める元素でもある。この様な効果を発揮させるには、1%以上含有させるのがよい。但しMn量が過剰になると、溶接性の劣化を招くので2%以下に抑えるのがよい。
【0026】
基本的成分組成は以上の通りであり、残部成分は実質的にFeであるが、該鋼中に微量の不可避不純物の含有が許容されるのは勿論のこと、前記本発明の作用に悪影響を与えない範囲で、更に下記の元素を含有させることも可能である。
【0027】
Al:0.005〜0.1%
Alは脱酸作用を有する元素であり、該効果を発揮させるには、Alを0.005%以上含有させるのがよい。しかしながら過剰な含有は、アルミナ等の介在物の増加を招き、靭性劣化を招くので0.1%以下に抑えるのが好ましく、より好ましくは0.060%以下である。
【0028】
P:0.02%以下(0%含む)、S:0.015%以下(0%含む)
P(リン)は、靭性を劣化させる有害元素である。従って本発明では、Pの含有量を0.02%以下に抑えることが好ましい。S(硫黄)は、MnS等の硫化物系介在物を形成し、靭性の低下を招き、また割れの起点となって加工性を劣化させる元素である。よってS量は0.015%以下に抑えるのがよく、より好ましくは0.010%以下に抑える。
【0029】
また、その他の元素として、例えばCuを1.0%以下の熱間加工性等を劣化させない範囲内で添加してもよく、耐食性や靭性を高めるべくNiを1.0%以下の範囲内で添加してもよい。焼入れ性を高めて高強度を確保したり靭性等を調整するため、Cr:1.0%以下、Mo:0.5%以下の範囲内で添加してもよい。
【0030】
析出硬化作用等を示すVを0.1%以下の範囲内で、また結晶粒制御等に有用なNbを0.05%以下、Tiを0.03%以下の範囲内で添加してもよく、焼入れ性の向上に有用なBを0.002%以下の範囲内で添加したものにも本発明法を適用することができる。
【0031】
【実施例】
以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に含まれる。
【0032】
表1に示す成分組成の鋼材を溶製して得た後、熱間圧延を行って表2に示す板厚の鋼板を得た。得られた鋼板を930℃で約15分間保持した後、室温まで水冷した。そして、表2に示す温度(T1)で約15分間加熱保持した後、室温まで表2に示す方法で冷却し、その後に冷間でプレスベンドにより円筒状に成形した。管状成形後は加工歪みを除去するため、表2に示す温度(T2)で約15分間加熱保持し、その後に室温まで空冷して鋼管を得た。
【0033】
得られた鋼管を用いて引張試験を行い、降伏点(YP)と引張強度(TS)を測定して降伏比(YR)を求めた。上記引張試験は、試験片として、外部から管厚の1/4部位において管軸方向に採取し、丸棒に加工したものを用いた。尚、本発明では、前記YPが440N/mm2以上、TSが590N/mm2以上、かつYRが85%以下の場合に、本発明で意図するレベルの低降伏比で高張力の鋼管が得られていると判断した。これらの結果を表2に併記する。
【0034】
【表1】
【0035】
【表2】
【0036】
表1および表2から次のように考察することができる。尚、以下のNo.は表2における実験No.を示す。
【0037】
No.1〜5は、本発明の規定要件を満たす実施例であり、得られた鋼管は、引張強度が590N/mm2以上でかつ降伏比が85%以下と低降伏比を示しており、建築構造用鋼管として好適であることがわかる。
【0038】
これに対しNo.6〜12は、得られた鋼管の降伏比が高いか、強度不足となっている。即ちNo.6は、適正温度域(Ac1〜Ac3点)で加熱した後の冷却が水冷であるため降伏比が高い。No.7は、前記▲2▼の工程でAc3点を超える高温に加熱したため降伏比が高くなった。またNo.8は、前記▲2▼の工程でAc1点を下回る低温で熱処理を行ったため強度不足となった。
【0039】
No.9は、前記▲4▼で定める規定温度範囲を下回る低温で管状成形後の再加熱を行ったため、加工歪みを十分除去することができず降伏比が高くなった。No.10は、管状成形後の再加熱温度が高すぎるため、鋼管が軟質化され強度不足となっている。
【0040】
No.11は、前記▲2▼で定める適正温度域(Ac1〜Ac3点)で加熱後の冷却を水冷とし、かつ管状成形後の再加熱温度が高すぎるため、降伏比が高くなる結果となった。更にNo.12からは、好ましい範囲を上回る量のNbを添加すると、降伏比が高まるので好ましくないことがわかる。
【0041】
【発明の効果】
本発明の方法によれば、鋼板から鋼管への曲げ加工性等を低下させることなく経済的に低降伏比の高張力鋼管を製造することができる。そして、本発明で得られた鋼管に例えばコンクリートを充填し、コンクリートを拘束する円柱状鋼管としてCFT(Concrete−Filled−Tube)構造の中・低層建造物用や高層・超高層建造物に用いれば、卓越した耐震性や耐火性等を発揮する。
【図面の簡単な説明】
【図1】低降伏比の鋼板を得るための公知の方法を説明するヒートパタンである。
【図2】前記図1の工程に引き続いて鋼管を製造する方法を説明するヒートパタンである。
【図3】本発明で鋼管を得るための一方法を説明するヒートパタンである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method of manufacturing a high-strength steel pipe for a building structure having a low yield ratio. For example, a CFT (Concrete-Filled-Tube) structure that exhibits excellent characteristics in terms of earthquake resistance and fire resistance. The present invention relates to a high-tensile steel pipe that can be suitably used.
[0002]
[Prior art]
Since a building structure is required to have excellent earthquake resistance and fire resistance, steel materials used for the building structure are required to have high strength and a low yield ratio. Conventionally, as a method of lowering the yield ratio of a high-tensile steel plate, as shown in FIG.
・ Ac After heating in the temperature range of 3 points or more, rapidly cool to room temperature,
・ Next, after heating in the two-phase temperature range of Ac 1 to Ac 3 , quench to room temperature,
There is a technique for achieving both a low yield ratio and a predetermined yield strength by tempering in a temperature range of Ac 1 point or less (for example, Patent Document 1).
[0003]
However, even if a steel sheet with a low yield ratio is obtained by such a method, a steel pipe with a low yield ratio can be obtained because the yield ratio increases due to work hardening when the steel sheet is formed into a tubular shape as shown in FIG. Therefore, even if the steel pipe is adopted in a building, it is not possible to obtain an excellent earthquake resistance as intended.
[0004]
As a solution to such a problem, Patent Document 2 discloses that a low yield ratio is maintained after bending or pressing a steel sheet.
(A-1) Heat treatment is performed after heating to a two-phase region temperature between each of the Ac 1 to Ac 3 transformation points, followed by rapid cooling,
(A-2) Next, processing is performed in a temperature range of 300 ° C. or lower,
(A-3) Thereafter, a method of reheating within a temperature range of 600 to 700 ° C. to cause partial recrystallization has been proposed. However, in this method, since the steel pipe is processed after the rapid cooling, it is difficult to say that the workability at the time of forming the steel pipe is ensured.
[0005]
Moreover, in patent document 3, after controlling a hot rolling condition and obtaining a steel plate,
(B-1) Reheating to a two-phase temperature range of Ac 1 point or more and Ac 3 point or less,
(B-2) Start bending in a cylindrical shape from the temperature range of Ar 1 point or higher, and finish the processing in a temperature range lower than Ar 1 point.
(B-3) A method of cooling at a cooling rate higher than air cooling has been proposed. However, in this method, it is necessary to perform steel pipe forming hot (two-phase temperature range of Ac 1 to Ac 3 points), and new equipment and high energy costs are required.
[0006]
Patent Document 4 shows a method of manufacturing a low YR steel pipe by cold forming. Specifically,
(C-1) After rolling so that the finishing temperature is (Ar 3 + 120 ° C) or lower (Ar 3 -20 ° C) or higher,
(C-2) The steel sheet is air-cooled from (Ar 3 -20 ° C.) to (Ar 3 -100 ° C.), and then immediately quenched from this temperature to room temperature.
(C-3) tempering in the temperature range below the Ac 1 transformation point,
(C-4) When the plate thickness is t and the steel pipe outer diameter is D, it is cold-formed into a tube in the range of t / D ≦ 10%,
(C-5) A method of subsequently annealing in a temperature range of 500 ° C. to 650 ° C. is shown. However, the method of performing air cooling to the two-phase temperature range of approximately Ac 1 to Ac 3 on the rolling line immediately after hot rolling as described above is not preferable from an economical viewpoint because it causes a reduction in rolling productivity.
[0007]
In patent document 5, as a manufacturing method of the low YR steel pipe by cold forming,
(D-1) Reheating to a temperature of Ac 3 or higher and quenching or quenching / tempering, (d-2) cooling in the range of t / D (t: plate thickness, D: outer diameter of steel pipe) ≤ 10% Steel tube is made by forming
(D-3) A method of normalizing by reheating to a temperature range of 650 to 750 ° C. has been proposed. However, this method needs to use a steel material containing Cu and Ni as essential components, which increases the material cost and does not meet the demand for cost reduction. In addition, the strength is improved by precipitation strengthening due to the addition of Cu, but the temperature of the outer surface side and the inner surface side becomes non-uniform in the heat treatment process after steel pipe processing, and the effect of adding Cu is difficult to appear uniformly, so there is a variation in material. Concerned.
[0008]
[Patent Document 1]
Japanese Patent Laid-Open No. 55-97425 [Patent Document 2]
Japanese Patent No. 3297090 (first page)
[Patent Document 3]
Japanese Patent Laid-Open No. 7-15245 (page 2)
[Patent Document 4]
Japanese Patent No. 2529042 (first page)
[Patent Document 5]
JP 7-233416 A (second page)
[0009]
[Problems to be solved by the invention]
The present invention has been made in view of such circumstances, and its object is to provide a low yield ratio (especially YP / TS) that can be used not only for middle- and low-rise buildings but also for high-rise and super-high-rise buildings. It is to provide a useful method for producing a high-strength steel pipe for building structure having a yield ratio represented by: YR of 85% or less.
[0010]
[Means for Solving the Problems]
The method for producing a high-strength steel pipe for building structures having a low yield ratio according to the present invention is in mass% (the same applies hereinafter), C: 0.10 to 0.18%, Si: 0.1 to 0.5% In manufacturing a steel pipe for building structure that satisfies Mn: 1 to 2% and has a tensile strength of 590 N / mm 2 or more,
(1) A step of rapidly cooling the steel sheet to room temperature after heating it to Ac 3 points or higher,
(2) A process of heating to a two-phase temperature range of Ac 1 to Ac 3 and then cooling to room temperature,
(3) Cold forming into a tube,
(4) It is characterized in that the step of reheating to 500 to 600 ° C. is sequentially performed.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Under the circumstances as described above, the present inventors manufacture steel pipes for building structures that exhibit a low yield ratio at a tensile strength of 590 N / mm 2 or more economically without reducing the workability at the time of forming the steel pipe. The method for doing this was examined from various angles. As a result, as schematically shown in FIG. 3, (1) the step of heating the steel sheet to Ac 3 point or higher and then rapidly cooling it to room temperature;
(2) A process of heating to a two-phase temperature range of Ac 1 to Ac 3 and then cooling to room temperature,
(3) Cold forming into a tube,
(4) It has been found that the steps of reheating to 500 to 600 ° C. may be carried out sequentially. The reason why each process is specified will be shown below.
[0012]
(1) Step of heating the steel plate to Ac 3 point or higher and then rapidly cooling to room temperature First, in the method of the present invention, the steel plate obtained by hot rolling or the like is heated to a temperature of Ac 3 point or higher, Assumes rapid cooling from room temperature to room temperature. By performing rapid cooling in this way, high strength of the steel pipe can be achieved.
[0013]
From the viewpoint of reliably raising the temperature to the inside of the steel plate, the heating at Ac 3 points or more may be performed within a range of about 5 minutes to 1 hour, although it depends on the plate thickness. Although the upper limit of the heating temperature is not particularly specified, it is preferably performed at 950 ° C. or less from the viewpoint of energy cost reduction. Moreover, the rapid cooling from the temperature range of Ac 3 points or more may be performed by water cooling. The steel sheet has a thickness of about 20 to 100 mm and is not wound.
[0014]
▲ 2 ▼ Ac 1 In to Ac step <br/> present invention method for air-cooled to room temperature then heated to the two-phase temperature region of 3 points, a steel sheet which has undergone the step ▲ 1 ▼, Ac 1 ~Ac three points 2 It is necessary to provide a step of air cooling to room temperature after reheating to the phase temperature range.
[0015]
As a method for obtaining a steel plate having a low yield ratio, it has been conventionally performed in place of the step of “heating and quenching at a temperature of Ac 1 point to Ac 3 point and then tempering” shown in FIG. 1 or FIG. By providing the above steps, it is possible to obtain a steel sheet in which the yield ratio hardly increases even when it is formed into a tubular shape. It should be noted that the heating and holding in the two-phase temperature range of Ac 1 to Ac 3 may be within the range of 5 minutes to 1 hour, depending on the plate thickness, but if it is longer than this, ferrite and austenite become coarse. This is not preferable because the effect of the step (1) is reduced.
[0016]
In particular, in the method of the present invention, by performing air cooling from the two-phase temperature range of Ac 1 to Ac 3 points, ferrite softens, and austenite is transformed after carbon is concentrated, so that it is remarkably hardened and low YR is reduced. It is thought that it will be improved.
[0017]
(3) Cold forming into a tube and (4) Reheating to 500 to 600 ° C. Steel pipe forming is performed using the steel plate that has undergone the above steps (1) and (2). Seam welding may be performed after bending into a tubular shape. The present invention does not define tube forming conditions or welding conditions, and a known method may be appropriately selected and employed for bending, seam welding, and the like. The method of the present invention is preferably applied to those having D / t (D: outer diameter of steel pipe, t: plate thickness) of 10 or more. Incidentally, when the D / t is less than 10, the processing strain increases too much and the YR becomes high.
[0018]
After forming into a steel pipe, it is necessary to remove the processing strain by heating again. In order to sufficiently remove the processing strain, it is preferable to heat to 500 ° C. or higher. However, if the heating temperature is too high, the strength falls below a predetermined strength, so it is preferable to perform in a temperature range of 600 ° C. or lower.
[0019]
Even if the heating temperature is within the appropriate range, if the holding time is too short, the strain cannot be sufficiently removed, so it is preferable to heat and hold within the range of 5 minutes to 1 hour. Further, after the heating, cooling to room temperature may be performed by a method such as air cooling or furnace cooling.
[0020]
The method of the present invention is characterized in that manufacturing conditions satisfying the above requirements are defined, and it does not prescribe basic steel sheet manufacturing conditions such as melting, casting and hot rolling of steel materials. For these, general conditions and methods can be adopted.
[0021]
In the present invention, the tensile strength of the steel pipe is determined to be 590 N / mm 2 or more. If the steel sheet is less than 590 N / mm 2, the yield ratio is relatively low, and special measures are required to obtain a low yield ratio. Because it does not.
[0022]
Moreover, in obtaining the high strength steel pipe of the low yield ratio by this invention, the steel materials which satisfy | fill the following basic component composition can be used as a raw material.
[0023]
C: 0.10 to 0.18%
C (carbon) is an element effective for improving the strength of steel, and it is preferable to contain 0.10% or more. However, if the C content is increased, weldability is deteriorated, so it is preferable to keep it to 0.18% or less (more preferably 0.16% or less).
[0024]
Si: 0.1 to 0.5%
Si is an element having a deoxidizing action, and in order to exert such an action effectively, it is preferable to contain 0.1% or more. However, if the amount of Si is excessive, the toughness of the weld heat affected zone is deteriorated.
[0025]
Mn: 1-2%
Mn is an element useful for securing strength and is also an element that enhances hardenability. In order to exert such an effect, it is preferable to contain 1% or more. However, if the amount of Mn is excessive, weldability is deteriorated, so it is preferable to keep it to 2% or less.
[0026]
The basic component composition is as described above, and the remaining component is substantially Fe, but it is of course acceptable to contain a small amount of inevitable impurities in the steel, and adversely affects the operation of the present invention. It is also possible to further contain the following elements within the range not given.
[0027]
Al: 0.005 to 0.1%
Al is an element having a deoxidizing action, and in order to exert this effect, it is preferable to contain Al in an amount of 0.005% or more. However, an excessive content causes an increase in inclusions such as alumina and causes toughness deterioration, so it is preferably suppressed to 0.1% or less, more preferably 0.060% or less.
[0028]
P: 0.02% or less (including 0%), S: 0.015% or less (including 0%)
P (phosphorus) is a harmful element that degrades toughness. Therefore, in the present invention, the P content is preferably suppressed to 0.02% or less. S (sulfur) is an element that forms sulfide-based inclusions such as MnS, causes a decrease in toughness, and causes cracking to be a starting point for deterioration of workability. Therefore, the S content is preferably suppressed to 0.015% or less, more preferably 0.010% or less.
[0029]
Further, as other elements, for example, Cu may be added within a range not deteriorating hot workability of 1.0% or less, and Ni is within 1.0% or less in order to improve corrosion resistance and toughness. It may be added . To adjust the toughness or the like or to ensure high strength by increasing hardenability, Cr: 1.0% or less, Mo: may be added in a range less than 0.5%.
[0030]
V indicating precipitation hardening and the like may be added within a range of 0.1% or less, and Nb useful for controlling crystal grains may be added within a range of 0.05% or less and Ti within a range of 0.03% or less. The method of the present invention can also be applied to those in which B useful for improving hardenability is added within a range of 0.002% or less.
[0031]
【Example】
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, but may be appropriately modified within a range that can meet the purpose described above and below. It is also possible to implement, and they are all included in the technical scope of the present invention.
[0032]
After melting and obtaining a steel material having the component composition shown in Table 1, hot rolling was performed to obtain a steel plate having a thickness shown in Table 2. The obtained steel sheet was kept at 930 ° C. for about 15 minutes, and then cooled to room temperature. Then, after being heated and held at the temperature (T 1 ) shown in Table 2 for about 15 minutes, it was cooled to room temperature by the method shown in Table 2 and then formed into a cylindrical shape by a cold press bend. After the tubular forming, in order to remove processing strain, the steel tube was obtained by heating and holding at the temperature (T 2 ) shown in Table 2 for about 15 minutes and then cooling to room temperature.
[0033]
A tensile test was performed using the obtained steel pipe, and a yield point (YP) and a tensile strength (TS) were measured to obtain a yield ratio (YR). In the tensile test, a test piece was sampled from the outside in the tube axis direction at a ¼ portion of the tube thickness and processed into a round bar. In the present invention, the YP is 440 N / mm 2 or more, TS is 590N / mm 2 or more, and if YR is less than 85%, high-tensile steel pipe obtained at a low yield ratio of the level intended in the present invention It was judged that. These results are also shown in Table 2.
[0034]
[Table 1]
[0035]
[Table 2]
[0036]
From Table 1 and Table 2, it can be considered as follows. The following No. Is the experiment No. in Table 2. Indicates.
[0037]
No. 1 to 5 are examples that satisfy the prescribed requirements of the present invention, and the obtained steel pipe has a tensile strength of 590 N / mm 2 or more and a yield ratio of 85% or less, indicating a low yield ratio. It turns out that it is suitable as a steel pipe for construction.
[0038]
In contrast, no. In 6 to 12, the obtained steel pipe has a high yield ratio or insufficient strength. That is, no. No. 6 has a high yield ratio because the cooling after heating in the appropriate temperature range (Ac 1 to Ac 3 points) is water cooling. No. No. 7 was heated to a high temperature exceeding the Ac 3 point in the step (2), so the yield ratio was high. No. No. 8 was insufficient in strength because the heat treatment was performed at a low temperature below the Ac 1 point in the step (2).
[0039]
No. No. 9 was subjected to reheating after tubular molding at a low temperature below the specified temperature range defined in (4) above, so that the processing strain could not be sufficiently removed and the yield ratio was high. No. No. 10, since the reheating temperature after tubular molding is too high, the steel pipe is softened and the strength is insufficient.
[0040]
No. No. 11 is a result of increasing the yield ratio because the cooling after heating is water-cooled in the appropriate temperature range (Ac 1 to Ac 3 points) defined in (2) above and the reheating temperature after tubular molding is too high. It was. Furthermore, no. From Fig. 12, it can be seen that adding Nb in an amount exceeding the preferred range is not preferable because the yield ratio increases.
[0041]
【The invention's effect】
According to the method of the present invention, a high-tensile steel pipe having a low yield ratio can be produced economically without reducing the bending workability from a steel plate to a steel pipe. And, for example, concrete is filled into the steel pipe obtained in the present invention, and it is used as a cylindrical steel pipe for constraining the concrete for middle / low-rise buildings or high-rise / high-rise buildings with CFT (Concrete-Filled-Tube) structure. Exhibits outstanding earthquake resistance and fire resistance.
[Brief description of the drawings]
FIG. 1 is a heat pattern illustrating a known method for obtaining a steel plate having a low yield ratio.
FIG. 2 is a heat pattern for explaining a method of manufacturing a steel pipe following the step of FIG.
FIG. 3 is a heat pattern illustrating one method for obtaining a steel pipe according to the present invention.
Claims (3)
C :0.10〜0.18%、
Si:0.1〜0.5%、
Mn:1〜2%、
P:0.02%以下(0%含む)、
S:0.015%以下(0%含む)、
Al:0.005〜0.1%
を満たし、残部がFeおよび不可避不純物であり、引張強度が590N/mm2以上630N/mm2以下である建築構造用鋼管を製造するにあたり、
(1)鋼板をAc3点以上に加熱したのち室温まで急冷する工程、
(2)Ac1〜Ac3点の2相温度域に加熱したのち室温まで空冷する工程、
(3)冷間で管状に成形する工程、
(4)500〜600℃に再加熱する工程
を順次実施することを特徴とする低降伏比の建築構造用高張力鋼管の製造方法。% By mass (the same applies below)
C: 0.10 to 0.18%,
Si: 0.1 to 0.5%,
Mn: 1-2%
P: 0.02% or less (including 0%),
S: 0.015% or less (including 0%),
Al: 0.005 to 0.1%
And the balance is Fe and unavoidable impurities, and a steel pipe for building structure having a tensile strength of 590 N / mm 2 or more and 630 N / mm 2 or less,
(1) A step of rapidly cooling the steel sheet to room temperature after heating it to Ac 3 points or higher,
(2) A step of heating to a two-phase temperature range of Ac 1 to Ac 3 and then cooling to room temperature,
(3) a step of cold forming into a tube;
(4) A method for producing a high-strength steel pipe for a building structure having a low yield ratio, wherein the steps of reheating to 500 to 600 ° C. are sequentially performed.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003091745A JP4300049B2 (en) | 2003-03-28 | 2003-03-28 | Manufacturing method of high-strength steel pipe for building structure with low yield ratio |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003091745A JP4300049B2 (en) | 2003-03-28 | 2003-03-28 | Manufacturing method of high-strength steel pipe for building structure with low yield ratio |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004300461A JP2004300461A (en) | 2004-10-28 |
JP4300049B2 true JP4300049B2 (en) | 2009-07-22 |
Family
ID=33405045
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003091745A Expired - Fee Related JP4300049B2 (en) | 2003-03-28 | 2003-03-28 | Manufacturing method of high-strength steel pipe for building structure with low yield ratio |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4300049B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6081100B2 (en) * | 2012-08-08 | 2017-02-15 | 株式会社マルシン | Existing pile pulling device |
CN110184525B (en) * | 2018-04-20 | 2021-06-22 | 江阴兴澄特种钢铁有限公司 | High-strength Q500GJE quenched and tempered steel plate for building structure and manufacturing method thereof |
JP6690787B1 (en) * | 2019-03-29 | 2020-04-28 | Jfeスチール株式会社 | ERW steel pipe, its manufacturing method, and steel pipe pile |
JP6690788B1 (en) | 2019-03-29 | 2020-04-28 | Jfeスチール株式会社 | ERW steel pipe, its manufacturing method, and steel pipe pile |
-
2003
- 2003-03-28 JP JP2003091745A patent/JP4300049B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2004300461A (en) | 2004-10-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3857939B2 (en) | High strength and high ductility steel and steel plate excellent in local ductility and method for producing the steel plate | |
JP5303856B2 (en) | Manufacturing method of high-tensile steel with excellent low-temperature toughness and small strength anisotropy | |
JP4848966B2 (en) | Thick-wall high-tensile steel plate and manufacturing method thereof | |
WO2012036307A1 (en) | High-strength hot rolled steel sheet having excellent toughness and method for producing same | |
WO2019181130A1 (en) | Wear-resistant steel and method for producing same | |
JP6690788B1 (en) | ERW steel pipe, its manufacturing method, and steel pipe pile | |
WO2016185741A1 (en) | High-strength electric-resistance-welded steel pipe, method for producing steel sheet for high-strength electric-resistance-welded steel pipe, and method for producing high-strength electric-resistance-welded steel pipe | |
WO2021054344A1 (en) | Thick steel sheet, and method for producing thick steel sheet | |
JP2007254797A (en) | Thick electric resistance welded pipe having excellent toughness in base metal part and electric resistance weld zone and its production method | |
JP4379085B2 (en) | Manufacturing method of high strength and high toughness thick steel plate | |
JP6690787B1 (en) | ERW steel pipe, its manufacturing method, and steel pipe pile | |
JP4096839B2 (en) | Manufacturing method of high yield thick steel plate with low yield ratio and excellent toughness of heat affected zone | |
JPH05105957A (en) | Production of heat resistant high strength bolt | |
JP4300049B2 (en) | Manufacturing method of high-strength steel pipe for building structure with low yield ratio | |
JP3218442B2 (en) | Manufacturing method of mechanical structural steel with excellent delayed fracture resistance | |
JP4132178B2 (en) | PC steel wire or bar with good delayed fracture resistance and manufacturing method thereof | |
JP3863413B2 (en) | High toughness high tension non-tempered thick steel plate and manufacturing method thereof | |
JP6825751B1 (en) | Hot-rolled steel strip for cold roll-formed square steel pipe and its manufacturing method, and cold roll-formed square steel pipe manufacturing method | |
JP3602396B2 (en) | Low yield ratio high strength steel sheet with excellent weldability | |
JP2004124228A (en) | Method for producing electric resistance welded tube having low yield ratio for building and square column | |
JP4026443B2 (en) | High strength and high toughness steel pipe material excellent in weldability and manufacturing method thereof | |
JP2618563B2 (en) | High strength electric resistance welded steel pipe which is hardly softened in welding heat affected zone and method of manufacturing the same | |
JPH0717947B2 (en) | Low yield ratio high strength steel sheet manufacturing method | |
JPH05255738A (en) | Production of steel for machine structural use excellent in delayed fracture resistance | |
JP3956634B2 (en) | Steel sheet with excellent toughness and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040810 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20051221 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070912 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070918 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20071119 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080115 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080317 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090414 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090420 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4300049 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120424 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130424 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130424 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140424 Year of fee payment: 5 |
|
LAPS | Cancellation because of no payment of annual fees |