[go: up one dir, main page]

JP4297354B2 - Boiler panel heating apparatus and method - Google Patents

Boiler panel heating apparatus and method Download PDF

Info

Publication number
JP4297354B2
JP4297354B2 JP2004159039A JP2004159039A JP4297354B2 JP 4297354 B2 JP4297354 B2 JP 4297354B2 JP 2004159039 A JP2004159039 A JP 2004159039A JP 2004159039 A JP2004159039 A JP 2004159039A JP 4297354 B2 JP4297354 B2 JP 4297354B2
Authority
JP
Japan
Prior art keywords
boiler
panel
boiler panel
alloy
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004159039A
Other languages
Japanese (ja)
Other versions
JP2005337623A (en
Inventor
洋一 松原
義信 曽地
憲志 矢田部
誠 熊川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Ichi High Frequency Co Ltd
Original Assignee
Dai Ichi High Frequency Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Ichi High Frequency Co Ltd filed Critical Dai Ichi High Frequency Co Ltd
Priority to JP2004159039A priority Critical patent/JP4297354B2/en
Priority to TW094116819A priority patent/TW200600718A/en
Priority to CN 200510073074 priority patent/CN1715449B/en
Publication of JP2005337623A publication Critical patent/JP2005337623A/en
Priority to HK06103489.6A priority patent/HK1083524A1/en
Application granted granted Critical
Publication of JP4297354B2 publication Critical patent/JP4297354B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • General Induction Heating (AREA)
  • Bending Of Plates, Rods, And Pipes (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Laminated Bodies (AREA)

Description

この発明は、ボイラパネルを、これに施された片面合金被覆の溶着などのために移動加熱方式で加熱するボイラパネル加熱装置および合金被覆ボイラパネルの製造方法に関する。   The present invention relates to a boiler panel heating apparatus for heating a boiler panel by a moving heating method for welding a single-sided alloy coating applied thereto, and a method for manufacturing an alloy-coated boiler panel.

ボイラパネルは、各種ボイラにおける冷却水路付の火炉ハウジングを作り上げるための板材−管材複合パネルであり、多数枚が縦横に溶接接続されて火炉ハウジングとなる。
ボイラパネルには、火炉ハウジング内面の耐久性を向上させるために、片面にニッケル自溶合金などの合金が被覆される。
ボイラパネルの合金被覆は、能率良く形成するために、先行の溶射工程と後行の溶着加熱工程(溶融処理工程)とで形成される。すなわち、先ず溶射工程で、ボイラパネルの片面全域に又は片面の大部分に被覆形成用合金材料が溶射され、次に溶着加熱工程(溶融処理工程)で、合金被覆を溶着温度まで加熱する移動加熱が行われる。
The boiler panel is a plate-pipe composite panel for making up a furnace housing with a cooling water passage in various boilers, and a large number of sheets are welded in a vertical and horizontal manner to form a furnace housing.
The boiler panel is coated with an alloy such as a nickel self-fluxing alloy on one side in order to improve the durability of the inner surface of the furnace housing.
The alloy coating of the boiler panel is formed by a preceding spraying step and a subsequent welding heating step (melting treatment step) in order to form efficiently. That is, first, in the thermal spraying process, the coating forming alloy material is sprayed over the entire area of one side of the boiler panel or over most of the one side, and then in the welding heating process (melting process), the moving heating is performed to heat the alloy coating to the welding temperature. Is done.

先ずボイラパネルよりも簡単な構造で使用実績の多いボイラチューブの例でいうと、ボイラの稼働温度が昨今よりも低く、また、炉内のエロージョン・コロージョン環境もさほど厳しくなかった時代には、機械特性に関する高温可使性を配慮したボイラ用鋼管(低合金鋼管)を裸のままで用いるというのが一般的な使用形態であった。耐食性が要求される用途にはステンレス管、更にはチタン管も用いられてきたが、高価につくため、多用されることはなかった。   First of all, in the case of boiler tubes that have a simpler structure than boiler panels and have been used for many years, in the era when the operating temperature of the boiler was lower than in recent years and the erosion and corrosion environment in the furnace was not so severe, It has been a common usage form to use a steel pipe for boilers (low alloy steel pipe) in consideration of the high temperature usability regarding characteristics. Stainless steel pipes and titanium pipes have also been used for applications that require corrosion resistance, but they are not used frequently because they are expensive.

近年は、ゴミ消却熱を回収利用する形式のボイラが増え、そのため、特に燃焼煤塵によるエロージョン(摩耗)の問題が生じており、この問題への対策として、耐摩耗性に優れた自溶合金の溶射被覆を施す仕様が多用され始めている。
但し、上記の自溶合金被覆は、たとえばHVOF(High Velocity Oxygen Fuel)溶射機により溶射形成したままの被覆(即ち、これは、多孔質であり、母材に達するピンホールが存在する。以下「未溶融被覆」と呼ぶ。)であり、他の用途(たとえば金属板処理ライン用ローラ類)で、多用されているような、溶射後に溶融処理の施された自溶合金被覆(これは、多孔質から緻密質に変成し、上記ピンホールが無くなって、十分な環境遮断機能を発揮する被覆であり、「溶着被覆」の典型例である。)の適用は稀である。
In recent years, there has been an increase in the number of boilers that recover and use waste heat, and as a result, there has been a problem of erosion (wear) due to combustion dust. As a countermeasure against this problem, self-fluxing alloys with excellent wear resistance have been developed. The specifications for applying thermal spray coating are beginning to be widely used.
However, the self-fluxing alloy coating described above is a coating as it is formed by thermal spraying using, for example, an HVOF (High Velocity Oxygen Fuel) sprayer (that is, it is porous and has pinholes reaching the base material. A self-fluxing alloy coating that has been subjected to a melt treatment after thermal spraying, which is often used in other applications (for example, rollers for metal plate processing lines). It is a coating that is transformed from quality to denseness, eliminates the pinholes and exhibits a sufficient environmental barrier function, and is a typical example of “welding coating”).

ボイラチューブへの自溶合金の溶着被覆の適用が稀である理由は、ボイラチューブが溶接接続して使用される際に溶接作業時の急速な局部昇温によって溶着被覆に熱衝撃割れが生じ易く、そのため、チューブ全体を炉内予熱した上で、高温のチューブを溶接でつなぎ合わせるという、法外な難作業が要請されるからである。
しかしながら昨今のボイラにおいては、エロージョンばかりではなくコロージョン(腐食)の問題が、排気無害化のための高温燃焼要請に伴って重大化してきており、ボイラへの溶着被覆適用が、しかもプレハブ被覆材の供給という形で、益々切望される状況に至っている。
The reason why the application of a self-fluxing alloy coating to a boiler tube is rare is that when the boiler tube is welded and used, thermal shock cracking is likely to occur in the welding coating due to rapid local temperature rise during welding operations. For this reason, an extraordinary difficult operation is required in which the entire tube is preheated in the furnace and then the high-temperature tubes are joined together by welding.
However, in recent boilers, not only erosion but also the problem of corrosion (corrosion) has become more serious with the demand for high-temperature combustion to make exhaust gases harmless. In the form of supply, the situation has become increasingly eager.

その一例として、特許文献1(特開平10−170194号公報)にボイラチューブに自溶合金の溶着被覆を適用する構成が開示されている。そして、ここではボイラチューブの端部に50mm程度の未溶射部を設け、この部分を接合代とする構成(上記公報の第3ページ第4欄第15〜16行)が採用されている。また、上記未溶射部には、溶接のあと、被覆の代りにプロテクタ材を嵌装する処置がとられている(同じく第4欄24〜26行)。上記処理は、優れた耐エロージョン性を具えるプロテクタ材(たとえばアルミナ製)の特注、あるいは、狭隘なボイラ内での嵌装作業を要することから、材工共の高コストならびに資材の前倒し調達を要する。   As an example, Japanese Patent Laid-Open No. 10-170194 discloses a configuration in which a self-fluxing alloy coating is applied to a boiler tube. And the structure (The 3rd page 4th column 15th-16th line of the said gazette of the said gazette) which the non-sprayed part about 50 mm is provided in the edge part of a boiler tube, and this part is used here is employ | adopted. In addition, after the welding, the above-mentioned non-sprayed portion is treated with a protector material instead of covering (same fourth column, lines 24 to 26). The above processing requires special order of protector material (for example, made of alumina) with excellent erosion resistance or fitting work in a narrow boiler. Cost.

この他、工場プレハブされた自溶合金未溶射被覆ボイラチューブを構築現場で溶接接続してから、その場で誘導加熱などによる溶融処理を施す手法も考えられなくはないが狭隘なスペースあるいは他部材との取合部の加熱難等により難題である。
因に、自溶合金の溶融処理は全体同時溶融か一方向溶融を行わないと再加熱割れが生じるため、その場での実施には、誘導加熱が不可欠である。
In addition, it is not unthinkable to use a factory prefabricated self-fluxing alloy unsprayed coated boiler tube by welding at the construction site and then subject it to melting treatment by induction heating etc. This is a difficult problem due to the difficulty of heating the joint part.
Incidentally, since the reheating cracking occurs when the melting process of the self-fluxing alloy is not performed by simultaneous simultaneous melting or unidirectional melting, induction heating is indispensable for in-situ implementation.

次に、本発明の主たる加熱処理対象である片面合金被覆ボイラパネル(ボイラ火炉パネル)を説明する。図5は、その構造を示し、(a)が非被覆面(合金材料未溶射面)の外観図、(b)が被覆面(合金材料溶射面)の外観図、(c)が被覆面の両端部分の拡大外観図、(d)がその端面図、(e)が被覆面の隅部分の拡大図、(f)がその端面図である。このボイラパネル10は、鋼製パネル11(金属製の母材)の片面に合金被覆14を形成し他面を母材のままにしたものであり、火炉ハウジングの組上げに際し現場で複数枚を連ねて隣り合う端部同士を溶接接続するようになっている。   Next, the single-sided alloy coated boiler panel (boiler furnace panel) which is the main heat treatment target of the present invention will be described. FIG. 5 shows the structure, (a) is an external view of an uncoated surface (alloy material non-sprayed surface), (b) is an external view of a coated surface (alloy material sprayed surface), and (c) is a coated surface. An enlarged external view of both end portions, (d) is an end view thereof, (e) is an enlarged view of a corner portion of the covering surface, and (f) is an end view thereof. This boiler panel 10 is formed by forming an alloy coating 14 on one side of a steel panel 11 (metal base material) and leaving the other side as a base material, and connecting a plurality of pieces at the site when assembling the furnace housing. Adjacent ends are welded together.

すなわち、鋼製パネル11(板材−管材複合パネル)は、冷却水路付の火炉ハウジングの基本単位をなすべく、冷却水路をなす管部12(管材)と連結部をなす板部13(板材)とを(図示の例では5本と6枚とを)交互に配して溶接接続等にて密に連結したものであり、さらに、耐エロージョンのため、火炉内壁となる片面(要保護部)には、ほぼ全域に合金材料による被覆14が形成される。合金被覆14は、比較的安価なニッケル自溶合金材料が多用され、能率の良い溶射法で施工される。一般的なボイラパネルの場合、鋼製パネル11のサイズは長さが4000〜6000mm程度で幅が400〜500mm程度、管部12の径は25〜75mm程度、その肉厚は3〜7mm程度、板部13の厚さは3〜7mm程度である。   That is, the steel panel 11 (plate material-pipe material composite panel) includes a plate portion 12 (plate material) that forms a connection with a pipe portion 12 (tube material) that forms a cooling water channel, and forms a basic unit of a furnace housing with a cooling water channel. (5 and 6 in the illustrated example) are alternately arranged and closely connected by welding connection or the like, and for erosion resistance, on one side (required protection part) that becomes the furnace inner wall In this case, a coating 14 made of an alloy material is formed almost all over. The alloy coating 14 is made of a relatively inexpensive nickel self-fluxing alloy material and is applied by an efficient thermal spraying method. In the case of a general boiler panel, the steel panel 11 has a length of about 4000 to 6000 mm, a width of about 400 to 500 mm, a diameter of the pipe portion 12 of about 25 to 75 mm, and a wall thickness of about 3 to 7 mm. The thickness of the plate part 13 is about 3 to 7 mm.

このようにボイラパネルの場合には、それが管材と板材とを交互に配した複合構成であることや、一般に大寸法(たとえば0.5m×6m)であることから、ボイラチューブの場合における上記プロテクタに相当する実用的な補助部材の援用は更に難題であり、また、溶射後の溶融処理に伴う複雑な形状歪の問題もあって(例えば特許文献2或いは特許文献3参照)、プレハブ溶着被覆製品の利用自体が考えにくいという事情にあった。   Thus, in the case of a boiler panel, since it is a composite configuration in which tubes and plates are alternately arranged, and generally has a large size (for example, 0.5 m × 6 m), the above in the case of a boiler tube. Incorporation of a practical auxiliary member corresponding to a protector is further difficult, and there is also a problem of complicated shape distortion associated with the melting treatment after spraying (see, for example, Patent Document 2 or Patent Document 3), and prefabricated welding coating. The situation was that it was difficult to think about the use of the product itself.

そのためもあって、局所加熱用の加熱作用子として誘導子を具備した高周波誘導加熱装置を用いて加熱処理対象のボイラパネルを縦長方向に移動させながら所望温度まで加熱する水冷パネルセグメントの加熱方法は開発されていたが(特許文献3参照)、それをボイラパネルの合金被覆の溶融処理に対し高度に適合させた装置や方法は存在していなかった。また、従来は、熱分布の不均一に起因する変形を除去することが中心であり、ボイラパネルの合金被覆が片面だけであることに起因する後述のバイメタル的な変形までは考慮されていなかったのである。   For this reason, a heating method for a water-cooled panel segment that heats a boiler panel to be heat-treated to a desired temperature using a high-frequency induction heating device having an inductor as a heating element for local heating while moving the boiler panel in a longitudinal direction is as follows. Although it has been developed (see Patent Document 3), there has been no apparatus or method that makes it highly compatible with the melting treatment of the alloy coating of boiler panels. Conventionally, the main focus has been to remove deformation caused by non-uniform heat distribution, and no consideration has been given to bimetallic deformation, which will be described later, due to the fact that the boiler panel has only one surface. It is.

特開平10−170194号公報JP-A-10-170194 特開2001−4101号公報Japanese Patent Laid-Open No. 2001-4101 特開2000−329304号公報JP 2000-329304 A 特開昭55−144332号公報JP-A-55-144332 特開昭56−45220号公報JP 56-45220 A

[未公開先行特許出願1]特願2004−88063号
しかしながら、つい最近(未公開先行特許出願1を参照)、要保護部の全域(通常は片面)に耐エロージョン・コロージョン性に優れた合金材料の溶着被覆が施されており而も溶接接続しても熱衝撃割れを生じることのない合金被覆ボイラ部品が開発された。また、全域に自溶合金の溶着被覆が施されたボイラ部品の接続などのための溶接施工を熱衝撃割れを生じないように行える自溶合金被覆ボイラ部品の溶接施工方法も実施可能となった。そして、それに伴い、ボイラパネルに溶融処理のための溶着加熱を移動加熱方式で行う合金被覆ボイラパネルの製造方法や、それに適したボイラパネル加熱装置についても、より高度な実用化が望まれることとなる。
[Unpublished prior patent application 1] Japanese Patent Application No. 2004-88063 However, recently (see unpublished prior patent application 1), an alloy material having excellent erosion / corrosion resistance over the entire area of protection (usually one side). An alloy-coated boiler part has been developed that has a heat-resistant crack and does not cause thermal shock cracking even when welded. In addition, a welding method for self-fluxing alloy-coated boiler parts that can be welded to connect boiler parts that have a self-fluxing alloy weld coating over the entire area without causing thermal shock cracking has become possible. . And along with that, more advanced practical application is desired for the manufacturing method of the alloy coated boiler panel that performs welding heating for melting treatment on the boiler panel by the moving heating method, and the boiler panel heating apparatus suitable for it. Become.

もっとも、片面合金被覆の施されたボイラパネルの溶融処理には、上述したように従来の加熱装置を用いて従来の加熱方法で処理したのでは、母材と被覆との熱膨張率差等に起因するバイメタル的な変形が頻発する、という不満が残っている。その具体例を挙げると、図6は、一般的な誘導加熱装置を用いてボイラパネル10の加熱を行ったものであり、(a)が被覆面側の外観図、(b)が端面図である。この場合、ボイラパネル10のため特に開発されたのは、加熱作用子としての誘導子25であり、そのコイル形状がボイラパネル10の断面形状に適合している。そして、ボイラパネル10を横置きして両端を支承し、そのボイラパネル10に沿って誘導子25を移動させながら、誘導子25に高周波通電を行って、合金被覆14を溶着温度まで誘導加熱した。   However, in the melting process of the boiler panel coated with the single-sided alloy coating, if the conventional heating method is used as described above, the difference in the thermal expansion coefficient between the base material and the coating is caused. There remains a complaint that the resulting bimetallic deformations occur frequently. To give a specific example, FIG. 6 shows the case where the boiler panel 10 is heated using a general induction heating device, (a) is an external view of the coated surface side, and (b) is an end view. is there. In this case, the inductor 25 as a heating element is particularly developed for the boiler panel 10, and its coil shape is adapted to the cross-sectional shape of the boiler panel 10. Then, the boiler panel 10 is placed horizontally and supported at both ends, and the inductor 25 is induction-heated to the welding temperature by applying high-frequency current to the inductor 25 while moving the inductor 25 along the boiler panel 10. .

こうして溶融処理の施されたボイラパネル10について、変形量を測定したところ(図7参照、各グラフで一点鎖線は合金溶射前の変位を示し二点鎖線は合金溶射後の変位を示し実線は溶融処理後の変位を示す)、厚さ方向Xの変位すなわち厚さ方向変位ΔXの縦長方向Zに沿った分布(図7(a)参照)では最大30mm程度、横幅方向Yの変位すなわち横幅方向変位ΔYの縦長方向Zに沿った分布(図7(b)参照)では最大10mm程度、厚さ方向変位ΔXの横幅方向変位Yに沿った分布(図7(c)参照)では最大5mm程度であった。このような大きな変形が残っていると、ボイラパネル10同士を溶接等で繋ぐときに、溶接部位であるパネル端縁の目合わせ作業を可成り強引に行わなければならず、火炉ハウジング構築作業に手間が掛かるばかりか、出来上がった火炉には後の変形要因ともなる大きな内部応力が残留する。   When the amount of deformation was measured for the boiler panel 10 thus melted (see FIG. 7, in each graph, the alternate long and short dash line indicates the displacement before the thermal spraying of the alloy, the alternate long and two short dashes line indicates the displacement after the thermal spraying of the alloy, and the solid line indicates the melting In the distribution along the longitudinal direction Z of the displacement in the thickness direction X, ie, the thickness direction displacement ΔX (see FIG. 7A), the displacement in the width direction Y, ie, the displacement in the width direction, is shown. The distribution of ΔY along the longitudinal direction Z (see FIG. 7B) is about 10 mm at the maximum, and the distribution along the width direction displacement Y of the thickness direction displacement ΔX (see FIG. 7C) is about 5 mm at the maximum. It was. If such a large deformation remains, when connecting the boiler panels 10 by welding or the like, it is necessary to forcefully perform the alignment work of the panel edges, which are the welded parts, for the furnace housing construction work. Not only is it time-consuming, but large internal stress remains as a cause of later deformation in the finished furnace.

そこで、真直度・平面度の良い片面合金被覆ボイラパネルを提供すべく、ボイラパネルの変形をバイメタル的な変形までも矯正しながら溶融処理を行えるよう、ボイラパネルの加熱装置および合金被覆ボイラパネルを製造する際の加熱方法等に工夫を凝らすことが、技術的な課題となる。   Therefore, in order to provide a single-sided alloy-coated boiler panel with good straightness and flatness, a boiler panel heating device and an alloy-coated boiler panel are installed so that the melting process can be performed while correcting the deformation of the boiler panel even to a bimetallic deformation. It is a technical problem to devise a heating method in manufacturing.

本発明のボイラパネル加熱装置(当初請求項1)は、このような課題を解決するために創案されたものであり、局所加熱用の加熱作用子とその移動手段と加熱処理対象のボイラパネルの定置手段とを具備して、前記加熱作用子を前記ボイラパネルの縦長方向に移動させながら前記ボイラパネルを順次加熱するボイラパネル加熱装置であって、前記定置手段として且つ前記ボイラパネルの形状精整手段として、前記ボイラパネルを前記縦長方向に引っ張る牽引用具と、前記縦長方向に列設され何れも前記縦長方向と交叉する2軸方向への前記ボイラパネルの変位を夫々規制する位置強制用具とを備えたことを特徴とする。   The boiler panel heating device of the present invention (initial claim 1) was devised in order to solve such a problem. A heating element for local heating, its moving means, and a boiler panel to be heat-treated. A boiler panel heating apparatus that sequentially heats the boiler panel while moving the heating element in a longitudinal direction of the boiler panel. As a means, a tow tool for pulling the boiler panel in the longitudinal direction, and a position forcing tool for restricting displacement of the boiler panel in two axial directions that are arranged in the longitudinal direction and intersect each other in the longitudinal direction. It is characterized by having.

また、本発明のボイラパネル加熱装置(当初請求項2)は、上記の当初請求項1記載のボイラパネル加熱装置であって更に、前記位置強制用具が、それぞれ、前記ボイラパネルに対して強制する位置として、前記ボイラパネルの初期変位に対応した初期変位許容位置と、前記加熱作用子との干渉を避ける退避位置と、前記初期変位を無くすための変位矯正位置とを採りうるようになっている、というものである。   Moreover, the boiler panel heating device (initial claim 2) of the present invention is the boiler panel heating device according to the above-mentioned initial claim 1, and further, the position forcing tools respectively force the boiler panel. As the position, an initial displacement allowable position corresponding to the initial displacement of the boiler panel, a retreat position for avoiding interference with the heating operator, and a displacement correction position for eliminating the initial displacement can be adopted. That's it.

さらに、本発明の合金被覆ボイラパネルの製造方法(当初請求項3)は、上述した課題を解決するために創案されたものであり、ボイラパネルの片面に合金を溶射等して合金堆積被覆を形成し、次いで、このボイラパネルを、その縦長方向に局所加熱用の加熱作用子を移動させる形態で加熱し、前記堆積被覆を加熱溶融させることで溶着被覆を形成する、合金被覆ボイラパネルの製造方法であって、その加熱中に前記ボイラパネルを牽引用具にて前記縦長方向に引っ張りながら位置強制用具にて前記縦長方向と交叉する2軸方向への変位を多数箇所で規制することにより変形を矯正することを特徴とする。   Furthermore, the method for manufacturing an alloy-coated boiler panel according to the present invention (initial claim 3) was devised in order to solve the above-described problem. An alloy deposition coating is applied by spraying an alloy on one side of the boiler panel. Then, the boiler panel is heated in a form in which a heating agent for local heating is moved in the longitudinal direction, and the deposited coating is heated and melted to form a welded coating. In this method, during the heating, the boiler panel is pulled by the pulling tool in the longitudinal direction, and the position forcing tool is used to restrict the displacement in the biaxial direction intersecting the longitudinal direction at many points. It is characterized by correcting.

また、本発明の合金被覆ボイラパネルの製造方法(当初請求項4)は、上記の当初請求項3記載の合金被覆ボイラパネルの製造方法であって、請求項3記載の合金被覆ボイラパネルの製造方法を実施して合金被覆ボイラパネルを製造し、次いで、その合金被覆ボイラパネルに対して、これに曲げモーメントを加えつつ前記縦長方向に押し出しながら該ボイラパネルの縦長方向の短区間を順次加熱して行く操作によってその加熱部分を前記合金被覆側に谷部が形成されるように曲げ込む加工を施して曲り部を設けることを特徴とする。   Moreover, the manufacturing method (initial claim 4) of the alloy-coated boiler panel of the present invention is the manufacturing method of the alloy-coated boiler panel according to the initial claim 3, and the manufacturing of the alloy-coated boiler panel according to claim 3. The method is used to manufacture an alloy-coated boiler panel, and then the alloy-coated boiler panel is sequentially heated in the longitudinal section of the boiler panel while extruding in the longitudinal direction while applying a bending moment thereto. The bent portion is provided by performing a process of bending the heated portion so that a trough is formed on the alloy coating side by an operation of going.

このような本発明のボイラパネル加熱装置(当初請求項1)および合金被覆ボイラパネルの製造方法(当初請求項3)にあっては、ボイラパネルの片面に溶射等で形成された合金被覆を移動加熱方式で溶着させる溶融処理工程等のための加熱に際して、ボイラパネルを定置するとともにそのパネルの変形を強力に矯正するために、加熱作用子の移動方向でもあるパネル縦長方向にボイラパネルを引っ張るとともに、そのボイラパネルに対し多数箇所で縦長方向と交叉する2軸方向への変位を規制するようにしたことにより、加熱と同時に、それに伴って軟化しているボイラパネルの形状精整も行われる。そして、その際、合金被覆を傷めることもない。
したがって、この発明によれば、真直度・平面度の良いボイラパネルを提供することができる。
In such a boiler panel heating device of the present invention (initial claim 1) and an alloy-coated boiler panel manufacturing method (initial claim 3), the alloy coating formed by spraying or the like is moved on one side of the boiler panel. During heating for the melting process to be welded by the heating method, in order to fix the boiler panel and to strongly correct the deformation of the panel, the boiler panel is pulled in the longitudinal direction of the panel, which is also the moving direction of the heating element. Since the displacement in the biaxial direction intersecting with the longitudinal direction is regulated at a large number of locations with respect to the boiler panel, the shape of the boiler panel softened along with the heating can be adjusted simultaneously. At that time, the alloy coating is not damaged.
Therefore, according to the present invention, a boiler panel with good straightness and flatness can be provided.

また、本発明のボイラパネル加熱装置(当初請求項2)にあっては、それぞれの位置強制用具が、ボイラパネルに対して強制する位置として、ボイラパネルの初期変位に対応した初期変位許容位置と、加熱作用子との干渉を避ける退避位置と、初期変位を無くす変位矯正位置との、少なくとも三位置を採りうるようにしたことにより、ボイラパネルを保持するに際して、加熱前には、硬いパネルを初期変位許容位置にて無理なく保持し、加熱中に加熱作用子が近づいたときには、退避位置にて不所望な干渉を避け、さらに加熱後には、軟化したパネルを変位矯正位置に強制することで冷却後に変位が現れることとなる変位を無くすとともにその形状を冷却硬化により固定することが可能となる。
このように三位置を採ることで、ボイラパネルの変位規制を、標準化された手法で、ひいては、必要に応じてプログラム化された手法を以て、的確に行うことができる。
なお、本発明のボイラパネル加熱装置は、ボイラパネルの合金被覆の溶着のための加熱に特に有用であるが、この用途に限定されるものではなく、ボイラパネルの形状矯正や各種熱処理(焼入れ,焼戻し,整粒熱処理など)のための加熱にも、合金被覆有り無しの両ケースに及んで有用である。
Moreover, in the boiler panel heating apparatus (initial claim 2) of the present invention, the initial displacement allowable position corresponding to the initial displacement of the boiler panel is set as a position where each position forcing tool is forced with respect to the boiler panel. By holding at least three positions, a retract position that avoids interference with the heating element and a displacement correction position that eliminates initial displacement, a hard panel must be By holding it at the initial displacement allowable position reasonably, when the heating element approaches during heating, avoid unwanted interference at the retracted position, and after heating, force the softened panel to the displacement correction position. It is possible to eliminate the displacement that causes the displacement after cooling and fix the shape by cooling and hardening.
By adopting the three positions in this way, it is possible to accurately control the displacement of the boiler panel by a standardized method and, by extension, a programmed method if necessary.
The boiler panel heating apparatus of the present invention is particularly useful for heating for welding the alloy coating of the boiler panel, but is not limited to this application. It is also useful for heating for tempering, granulating heat treatment, etc.) in both cases with and without alloy coating.

さらに、本発明の合金被覆ボイラパネルの製造方法(当初請求項4)にあっては、合金被覆溶着のための加熱工程の後に曲げ工程も行う場合、その曲げ工程に際して、ボイラパネルを縦長方向に押し出しながら加熱してその加熱部分を合金被覆側に谷部が形成されるように曲げ込むようにしたが、曲げ工程に先立つ合金被覆溶着加熱工程(溶融処理工程)でボイラパネルの真直度が向上しているので、押出を伴った曲げ加工であっても、安定して曲げることができる。また、加熱にて軟化している状態での曲げ変形であるため、合金被覆が割れるといった不所望な事態の発生もない。   Further, in the method for manufacturing an alloy-coated boiler panel according to the present invention (initial claim 4), when a bending step is also performed after the heating step for alloy coating welding, the boiler panel is placed in the longitudinal direction during the bending step. While heating while extruding and bending the heated part so that a trough is formed on the alloy coating side, the straightness of the boiler panel is improved by the alloy coating welding heating process (melting process) prior to the bending process Therefore, even if it is a bending process with extrusion, it can be bent stably. Moreover, since it is a bending deformation in a state where it is softened by heating, there is no occurrence of an undesirable situation in which the alloy coating breaks.

本発明のボイラパネル加熱装置の一実施形態について、その構成を、図面を引用して説明する。図1は、(a)がボイラパネル加熱装置20にボイラパネル10をセットしたところの被覆面側の外観模式図(平面図)、(b)が横側面側の外観模式図(側面図)、(c)〜(e)が形状精整用の位置強制シリンダ21の記号図、(f)がボイラパネル10の被覆面の隅部分の拡大図、(g)がパネル10端面の一部拡大図である。   The configuration of an embodiment of the boiler panel heating apparatus of the present invention will be described with reference to the drawings. 1 (a) is a schematic external view (plan view) of the coated surface side where the boiler panel 10 is set in the boiler panel heating device 20, and FIG. 1 (b) is a schematic external view (side view) of the lateral side surface. (C)-(e) is the symbol figure of the position forced cylinder 21 for shape adjustment, (f) is an enlarged view of the corner part of the coating surface of the boiler panel 10, (g) is a partial enlarged view of the panel 10 end surface. It is.

このボイラパネル加熱装置20は(図1(a),(b)参照)、移動加熱方式の高周波誘導加熱装置を拡張したものであり、公知の基本部分として、局所加熱用の加熱作用子としての誘導子25と、それに通電する高周波をケーブル経由で供給する図示しない電源ユニットと、誘導子25をボイラパネル10に沿わせて縦長方向Zに移動させる図示しない移動手段とを具えている。誘導子25は、銅管製の水冷式コイル等からなり、そのコイル形状がボイラパネル10の断面形状に適合させられて、ボイラパネル10に遊嵌して移動させるのが可能なようになっている。   This boiler panel heating device 20 (see FIGS. 1 (a) and 1 (b)) is an extension of a moving heating type high frequency induction heating device. As a known basic part, the boiler panel heating device 20 is used as a heating element for local heating. An inductor 25, a power supply unit (not shown) for supplying a high-frequency power to the inductor 25 via a cable, and a moving means (not shown) for moving the inductor 25 in the longitudinal direction Z along the boiler panel 10 are provided. The inductor 25 is made of a water-cooled coil made of copper tube or the like, and its coil shape is adapted to the cross-sectional shape of the boiler panel 10 so that it can be loosely fitted to the boiler panel 10 and moved. Yes.

加熱処理対象のボイラパネル10の定置手段は、ボイラパネル10の変形を矯正する形状精整手段も兼ねるよう拡張されており、何れも新規に導入された牽引用具22〜24と位置強制用具21,21,…とを具備している。
牽引用具22〜24は、10kN〜100kNといった大きな推力を出せる油圧シリンダ等の牽引用シリンダ22を主体としたものであり(図1(a),(b)参照)、その作動部材であるロッドをボイラパネル10の一端に牽引用係合具23で一時連結させるとともに、ボイラパネル10の他端を別の牽引用係合具23で固定部材24に一時連結させて、ボイラパネル10に対して縦長方向Zへ所望の引っ張り力を掛けることができるようになっている。
The fixing means of the boiler panel 10 to be heat-treated has been expanded so as to also serve as a shape adjusting means for correcting the deformation of the boiler panel 10, both of which are newly introduced traction tools 22 to 24 and position forcing tools 21, 21...
The traction tools 22 to 24 are mainly composed of a traction cylinder 22 such as a hydraulic cylinder capable of producing a large thrust of 10 kN to 100 kN (see FIGS. 1A and 1B), and a rod which is an operating member is provided. The boiler panel 10 is temporarily connected to one end by a pulling engagement tool 23 and the other end of the boiler panel 10 is temporarily connected to a fixing member 24 by another pulling engagement tool 23 to be vertically long with respect to the boiler panel 10. A desired tensile force can be applied in the direction Z.

位置強制用具21,21,…は、多数の位置強制用シリンダ21を列設したものである。図示の例では(図1(a),(b)参照)、五個の位置強制用シリンダ21がボイラパネル10の縦長方向Zに等ピッチで並んで一列が構成され、それが三列設けられて、合計十五個の位置強制用シリンダ21が組み込まれている。一列目の位置強制用シリンダ21は(図1(a)参照)、縦長方向Zとの直交方向のうち横幅方向Yにロッド等の作動部材を向けて設置され、その方向Yへのボイラパネル10の変位を規制するようになっている。二列目と三列目の位置強制用シリンダ21は(図1(b)参照)、縦長方向Zとの直交方向のうち厚さ方向Xにロッド等の作動部材を向けて設置され、その方向Xへのボイラパネル10の変位を規制するが、二列目と三列目はボイラパネル10を両側から逆向きに挟んで厚さ方向Xの変位を双方に規制するようになっている。   The position forcing tools 21, 21,... Are a plurality of position forcing cylinders 21 arranged in a line. In the illustrated example (see FIGS. 1A and 1B), five position forcing cylinders 21 are arranged at equal pitches in the longitudinal direction Z of the boiler panel 10 to form one row, and three rows are provided. Thus, a total of fifteen position forcing cylinders 21 are incorporated. The position forcing cylinder 21 in the first row (see FIG. 1A) is installed with a working member such as a rod in the lateral width direction Y in the direction orthogonal to the longitudinal direction Z, and the boiler panel 10 in the direction Y It is designed to regulate the displacement. The second- and third-row position forcing cylinders 21 (see FIG. 1B) are installed with a working member such as a rod facing the thickness direction X in a direction orthogonal to the longitudinal direction Z, and the direction Although the displacement of the boiler panel 10 to X is regulated, the displacement in the thickness direction X is regulated in both the second and third rows by sandwiching the boiler panel 10 in opposite directions from both sides.

位置強制用シリンダ21は、それぞれ、油圧シリンダ等からなり、そのロッド先端等の作動部材が少なくとも次の三位置を採りうるようになっている。すなわち、ボイラパネル10に対してその変位を強制する位置として、ボイラパネル10の初期変位に対応した初期変位許容位置X1,Y1(図1(c)参照)と、誘導子25(加熱作用子)とロッド等との干渉を避ける退避位置X2,Y2(図1(d)参照)と、ボイラパネル10の初期変位を無くす変位矯正位置X3,Y3(図1(e)参照)とを、夫々個別に設定された位置取りを以て採りうるようになっている。   Each of the position forcing cylinders 21 is composed of a hydraulic cylinder or the like, and an operating member such as a rod tip can take at least the following three positions. That is, as positions for forcing the boiler panel 10 to be displaced, initial displacement allowable positions X1 and Y1 (see FIG. 1C) corresponding to the initial displacement of the boiler panel 10 and an inductor 25 (heating operator) Retreat positions X2 and Y2 (see FIG. 1 (d)) that avoid interference with the rod and the like, and displacement correction positions X3 and Y3 (see FIG. 1 (e)) that eliminate the initial displacement of the boiler panel 10, respectively. It can be taken with the positioning set to.

退避位置X2,Y2は、ロッドが十分に後退した位置であるが、初期変位許容位置X1,Y1と変位矯正位置X3,Y3はロッドが前進した位置である。変位矯正位置X3,Y3は、歪の無い理想的なボイラパネル10に対応しているので、ボイラパネル10の設計外寸等から直ちに決まる。これに対し、初期変位許容位置X1,Y1は、種々の変形状態に適合させるので、実際に溶射を終えた個々のボイラパネル10毎に、現物合わせで決め直さなければならない。このように初期変位許容位置X1,Y1と変位矯正位置X3,Y3は共にロッド前進位置にありながら位置決めが異なるので、例えば、各位置強制用シリンダ21毎に独立にロッド停止位置を調整可能な二個のストッパーを付設して、変位強制位置の選択に応じてストッパーを切り替える、といった手段で具体化されている。   The retreat positions X2 and Y2 are positions where the rod has fully retracted, but the initial displacement allowable positions X1 and Y1 and the displacement correction positions X3 and Y3 are positions where the rod has advanced. Since the displacement correction positions X3 and Y3 correspond to the ideal boiler panel 10 without distortion, the displacement correction positions X3 and Y3 are immediately determined from the design outside dimensions of the boiler panel 10 and the like. On the other hand, since the initial displacement allowable positions X1 and Y1 are adapted to various deformation states, each boiler panel 10 that has actually finished thermal spraying must be determined again in accordance with the actual product. Thus, since the initial displacement allowable positions X1 and Y1 and the displacement correction positions X3 and Y3 are both in the rod advance position, the positioning is different. For example, the rod stop position can be independently adjusted for each position forcing cylinder 21. This is realized by means of attaching a single stopper and switching the stopper according to the selection of the displacement forcing position.

ボイラパネル10は(図1(f),(g)参照)、ボイラパネル加熱装置20の一部でなく加熱処理対象物であるが、牽引用具22〜24で張力を付与しながら定置するのを容易かつ確実にできるよう、具体的には牽引用係合具23の係合および離脱が簡単に行えるよう、牽引用係合具23の係合ピンを挿通するための貫通穴15が端部に例えば板部13の両端に穿孔形成される。後にボイラパネル10同士を溶接接続してボイラ火炉ハウジングを構築するときに貫通穴15を裏当板やボルト等で塞げる場合はボイラパネル10がそのまま用いられるが、ボイラ火炉ハウジングの構築時に貫通穴15が邪魔になる場合は、後の切り落としに備えて余裕分を持った長めのボイラパネル10が使用される。   The boiler panel 10 (see FIGS. 1 (f) and (g)) is not a part of the boiler panel heating device 20, but is a heat treatment target, but is placed with tension applied by the traction tools 22 to 24. A through hole 15 for inserting the engagement pin of the traction engagement tool 23 is formed at the end so that the engagement and disengagement of the traction engagement tool 23 can be performed easily and reliably. For example, perforations are formed at both ends of the plate portion 13. When the through hole 15 is closed with a backing plate or a bolt when the boiler panel 10 is welded and connected later to construct the boiler furnace housing, the boiler panel 10 is used as it is. If 15 is in the way, a longer boiler panel 10 having a margin is used in preparation for subsequent cutting off.

ボイラパネル10の合金被覆14は、従来と同様に自溶合金を溶射して形成したものでも良く、未公開先行特許出願1の発明のように片面の端部には超合金材料(JISG4901,4902)を溶射し片面の残部にはニッケル自溶合金材料(JISH8303)を溶射したものでも良く、片面の全域に隈無く溶射形成されていても良く、片面の大部分に溶射形成されていれば片面の一部は他面と同様に鋼製パネル11が露出していても良い。ボイラパネル10について、その他の点は、既述したのと同じで良い。   The alloy coating 14 of the boiler panel 10 may be formed by spraying a self-fluxing alloy in the same manner as in the prior art, and a superalloy material (JIS G4901, 4902) at one end of the surface as in the invention of the unpublished prior patent application 1. ) And the remaining part of one side may be sprayed with a nickel self-fluxing alloy material (JIS 8303). The steel panel 11 may be exposed in a part of the same as the other surface. Other aspects of the boiler panel 10 may be the same as described above.

この実施形態のボイラパネル加熱装置20を用いた合金被覆ボイラパネルの製造方法について、図面を引用して説明する。図1(a),(b)は、ボイラパネル加熱装置20に合金被覆ボイラパネル10をセットしたところの外観を示し、(a)が平面図、(b)が側面図である。また、図2は、ボイラパネル加熱装置20を用いてボイラパネル10を移動加熱している途中状態を示し、(a)が平面図(被覆面側の外観図)、(b)が側面図(横側面側の外観図)である。さらに、図3は、その合金被覆ボイラパネルの製造方法にて合金被覆14の溶融処理を行ったボイラパネル10の変形状態の模式図およびグラフであり、(a)が厚さ方向変位ΔXの縦長方向Z分布、(b)が横幅方向変位ΔYの縦長方向Z分布、(c)が厚さ方向変位ΔXの横幅方向Y分布である。   A method for manufacturing an alloy-coated boiler panel using the boiler panel heating apparatus 20 of this embodiment will be described with reference to the drawings. FIGS. 1A and 1B show the external appearance of an alloy-coated boiler panel 10 set on a boiler panel heating device 20, wherein FIG. 1A is a plan view and FIG. 1B is a side view. FIG. 2 shows a state in which the boiler panel 10 is moving and heated using the boiler panel heating device 20, wherein (a) is a plan view (appearance view on the coated surface side), and (b) is a side view ( FIG. Further, FIG. 3 is a schematic view and a graph of the deformation state of the boiler panel 10 in which the alloy coating 14 is melted by the method for manufacturing the alloy-coated boiler panel, and (a) is a vertically long thickness-direction displacement ΔX. The direction Z distribution, (b) is the longitudinal direction Z distribution of the lateral direction displacement ΔY, and (c) is the lateral direction Y distribution of the thickness direction displacement ΔX.

この場合、ボイラパネル10の合金被覆14の溶融処理として、誘導子25をボイラパネル10の縦長方向Zに移動させながら、ボイラパネル10の合金被覆14を溶着温度まで加熱するのは、一般的な移動加熱方式と同様であるが、従来と異なり、上述したボイラパネル加熱装置20を使用しているので、以下のようにしてボイラパネル加熱装置20の変形が矯正される。   In this case, as a melting process of the alloy coating 14 of the boiler panel 10, it is common to heat the alloy coating 14 of the boiler panel 10 to the welding temperature while moving the inductor 25 in the longitudinal direction Z of the boiler panel 10. Although it is the same as the moving heating method, unlike the prior art, since the boiler panel heating device 20 described above is used, the deformation of the boiler panel heating device 20 is corrected as follows.

すなわち(図1(a),(b)参照)、ボイラパネル10をボイラパネル加熱装置20にセットするときには、ボイラパネル10の両端が牽引用具22〜24に繋がれてボイラパネル10に張力が付与される。この張力は、平均応力に換算して、セット時には40N/mm前後であるが、その後、加熱中は30〜40N/mm程度、加熱終了後の降温時には40N/mm前後に可変調節される。 That is, when the boiler panel 10 is set in the boiler panel heating device 20 (see FIGS. 1A and 1B), both ends of the boiler panel 10 are connected to the traction tools 22 to 24 and tension is applied to the boiler panel 10. Is done. This tension, in terms of average stress, although the time of setting a 40N / mm 2 before and after, then during heating 30~40N / mm 2 approximately, is variably adjusted in the longitudinal 40N / mm 2 at the time of cooling after completion of heating The

また、ボイラパネル10のセット時には、各位置強制用シリンダ21が初期変位許容位置X1,Y1でボイラパネル10を支持する。初期変位許容位置X1,Y1はボイラパネル10の初期変位に対応していることから、ボイラパネル10はその変形が許容された状態で支持されるので、ボイラパネル10は初期変形があっても無理なく支持される。   Further, when the boiler panel 10 is set, each position forcing cylinder 21 supports the boiler panel 10 at the initial displacement allowable positions X1, Y1. Since the initial displacement allowable positions X1 and Y1 correspond to the initial displacement of the boiler panel 10, the boiler panel 10 is supported in a state in which the deformation is allowed. It is supported without.

さらに(図2参照)、誘導子25の移動中は、誘導子25が接近して来ると、そこの位置強制用シリンダ21は、ロッド等が退避位置X2,Y2に一時後退する。そして、誘導子25をやり過ごしたら、ロッド等が変位矯正位置X3,Y3まで前進する。これにより、ボイラパネル10の該当部位は、初期変位を無くした理想位置に置かれ、それに伴ってボイラパネル10には初期変位を相殺する逆向きの冷却後変形が生じるとともにそれに対応した一時的な応力が内部に生じるが、そこの直ぐ近くに誘導子25での高周波加熱にて軟化している部分が存在するので、上記応力は程なく緩和されて、ボイラパネル10は、有害な応力の残らない形で、初期変位を解消するよう変形する。   Further, (see FIG. 2), when the inductor 25 approaches while the inductor 25 is moving, the position-forcing cylinder 21 is temporarily retracted to the retracted positions X2 and Y2 by the rods and the like. And if the inductor 25 is passed over, a rod etc. will advance to the displacement correction position X3, Y3. As a result, the corresponding part of the boiler panel 10 is placed at an ideal position where the initial displacement has been eliminated, and accordingly, the boiler panel 10 undergoes reverse post-cooling deformation that cancels out the initial displacement, and a temporary corresponding to it. Although stress is generated inside, there is a portion softened by high-frequency heating in the inductor 25 in the immediate vicinity of the stress. Therefore, the stress is moderated and the boiler panel 10 does not leave harmful stress. The shape is deformed to eliminate the initial displacement.

こうして、誘導子25利用の移動加熱を終え、更に放冷も終えたとき、ボイラパネル10においては、合金被覆14が溶融処理によって鋼製パネル11にしっかり溶着するとともに緻密に改質され、且つ、そのような合金被覆14に割れ等の損傷を与えることなく適切に変位矯正処理が施されて、すなわちバイメタル的な変形までも矯正しながら溶融処理がなされて、真直度・平面度の良いボイラパネルになる。   Thus, when the moving heating using the inductor 25 is finished and the cooling is further finished, in the boiler panel 10, the alloy coating 14 is firmly welded to the steel panel 11 by the melting process, and is densely modified, and Such an alloy coating 14 is appropriately subjected to displacement correction processing without causing damage such as cracking, that is, melt processing is performed while correcting even bimetallic deformation, and a boiler panel having good straightness and flatness. become.

因みに、本発明の装置および方法にて溶融処理を施したボイラパネル10について、変形量を測定したところ(図3参照、各グラフで一点鎖線は合金溶射前の変位を示し二点鎖線は合金溶射後の変位を示し実線は溶融処理後の変位を示す)、厚さ方向変位ΔXの縦長方向Z分布(図3(a)参照)では最大5mm程度、横幅方向変位ΔYの縦長方向Z分布(図3(b)参照)では最大2mm程度、厚さ方向変位ΔXの横幅方向変位Y分布(図3(c)参照)では最大2mm程度であった。   Incidentally, when the amount of deformation of the boiler panel 10 subjected to the melting treatment by the apparatus and method of the present invention was measured (see FIG. 3, in each graph, the alternate long and short dash line indicates the displacement before the alloy spraying, and the two-dot chain line indicates the alloy spraying. In the longitudinal direction Z distribution of thickness direction displacement ΔX (see FIG. 3A), the maximum length is about 5 mm, and in the longitudinal direction Z distribution of lateral direction displacement ΔY (see FIG. 3). 3 (b)), the maximum was about 2 mm, and the horizontal direction displacement Y distribution of the thickness direction displacement ΔX (see FIG. 3C) was about 2 mm.

この程度に変形が小さくなると、ボイラパネル10同士を溶接等で繋ぐときに、溶接部位であるパネル端縁の合わせ作業が、撓め力の要らない位置合わせ・目合わせで済ませられるので、火炉構築作業が容易かつ迅速に行えるうえ、出来上がったボイラ火炉ハウジングにおける残留応力も僅かなものとなる。   When the deformation is reduced to this extent, when the boiler panels 10 are connected to each other by welding or the like, the alignment operation of the panel edges, which are welded parts, can be completed by alignment and alignment that does not require bending force. Work can be done easily and quickly, and the residual stress in the finished boiler furnace housing is also small.

本発明の合金被覆ボイラパネルの製造方法の他の実施形態について、図面を引用して説明する。図4は、上述のボイラパネル加熱工程を終えた後に必要に応じて追加実施されるボイラパネル曲げ工程の様子を示し、(a)が装置等の平面図、(b)が側面図、(c)が曲げ加工後のボイラパネル10の斜視図である。
この曲げ工程は、ボイラ火炉の側壁部分と天井部分との境目などに用いられるボイラパネル10を形成するために、上述のボイラパネル加熱装置20を用いた合金被覆ボイラパネルの製造方法にて合金被覆14の溶融処理を行った後のボイラパネル10に対して、適用されるものである。
Other embodiment of the manufacturing method of the alloy covering boiler panel of this invention is described referring drawings. FIG. 4 shows the state of a boiler panel bending process that is additionally performed as necessary after the above boiler panel heating process, (a) is a plan view of the apparatus, etc., (b) is a side view, (c) ) Is a perspective view of the boiler panel 10 after bending.
In this bending step, in order to form the boiler panel 10 used at the boundary between the side wall portion and the ceiling portion of the boiler furnace, the alloy coating is performed by the above-described method for manufacturing an alloy coated boiler panel using the boiler panel heating device 20. This is applied to the boiler panel 10 after the 14 melting process.

その曲げ工程に用いるボイラパネル曲げ装置30は(図4(a),(b)及び特許文献4,5参照)、ボイラパネル10を後方から前方へ押し出す押出スライダ31と、ボイラパネル10を両側から挟んでその押出方位を規定する一対の案内ローラ32と、案内ローラ32の近くに設置した高周波加熱用の誘導コイル33と、ボイラパネル10の前端や中間部位をクランプする手段ならびに回転アーム34を配した曲げモーメント付加機構とを具えたものである。   A boiler panel bending apparatus 30 used in the bending process (see FIGS. 4A and 4B and Patent Documents 4 and 5) includes an extrusion slider 31 that pushes the boiler panel 10 forward from the rear, and the boiler panel 10 from both sides. A pair of guide rollers 32 that sandwich and define the extrusion direction, an induction coil 33 for high-frequency heating installed near the guide rollers 32, a means for clamping the front end and the intermediate portion of the boiler panel 10, and a rotary arm 34 are arranged. And a bending moment adding mechanism.

そして、ボイラパネル10をボイラパネル曲げ装置30にセットするときには合金被覆14の形成面を回転アーム34の旋回中心側に向けてセットし、その状態で、誘導コイル33に高周波通電しながら、ボイラパネル10を押出スライダ31で縦長方向へ押し出すとともに、その推力により回転アーム34を回転させてボイラパネル10のうち押し出された部分を曲げると、ボイラパネル10のうち誘導コイル33のところで誘導加熱された部分が合金被覆14側に曲げ込まれて、ボイラパネル10が曲がるとともに合金被覆14が内周側に来る(図4(c)参照)。   When the boiler panel 10 is set in the boiler panel bending apparatus 30, the surface on which the alloy coating 14 is formed is set toward the turning center side of the rotary arm 34, and in this state, the induction coil 33 is energized with high frequency while the boiler panel 10 is set. 10 is pushed out in the longitudinal direction by the extrusion slider 31 and the portion of the boiler panel 10 that is induction-heated at the induction coil 33 is bent by rotating the rotary arm 34 by the thrust and bending the extruded portion of the boiler panel 10. Is bent to the alloy coating 14 side, the boiler panel 10 is bent, and the alloy coating 14 comes to the inner peripheral side (see FIG. 4C).

その曲げ工程での加熱は、先立つ溶融処理工程での加熱よりも穏やかに行われる。すなわち、上述した溶融処理工程では合金被覆14が溶着温度(例えば1050℃程度)まで加熱されるが、この曲げ工程では、合金被覆14の再加熱割れを避けるために、合金被覆14の昇温が溶着温度より低い軟化温度(パネルが塑性変形容易になる温度たとえば950℃程度)に抑えられる。このような温度設定により、ボイラパネル10を曲げても、ひび割れることなく、剥離することもない。また、先立つ溶融処理工程でボイラパネル10の真直度が向上しているので、曲げ工程で押出を伴った加工が行われても、ボイラパネル10が、安定して押し出され、曲げ状態も安定するので、綺麗な円弧状に曲がる。   The heating in the bending process is performed more gently than the heating in the previous melting process. That is, in the melting process described above, the alloy coating 14 is heated to the welding temperature (for example, about 1050 ° C.). In this bending process, the temperature of the alloy coating 14 is increased in order to avoid reheat cracking of the alloy coating 14. The softening temperature is lower than the welding temperature (the temperature at which the panel is easily plastically deformed, for example, about 950 ° C.). With such a temperature setting, even if the boiler panel 10 is bent, it does not crack and does not peel off. In addition, since the straightness of the boiler panel 10 is improved in the preceding melting process, the boiler panel 10 is stably extruded and the bending state is stabilized even if the process involving extrusion is performed in the bending process. So bend in a beautiful arc shape.

[その他]
なお、上記の実施形態では、位置強制用具として油圧式の位置強制用シリンダ30を挙げたが、位置強制用具は、それに限られる訳でなく、その他の電動式でも機械式でも良く、例えば機械式ジャッキを電動モータ駆動および回転直線運動変換機構で駆動するようなものであっても良く、最も簡素な例では例えばボルトを手回しで進退させるのでも良い。牽引用具についても、同様であり、牽引用シリンダ20に限定されない。
また、上記の実施形態では、加熱作用子として、高周波誘導加熱装置の誘導子25を挙げたが、加熱作用子は、それに限られる訳でなく、ボイラパネル10の縦長方向Zに移動加熱が行えるものであれば他のものであっても良く、例えばガス加熱炎によるラインバーナー等でも良い。
[Others]
In the above embodiment, the hydraulic position forcing cylinder 30 is used as the position forcing tool. However, the position forcing tool is not limited thereto, and may be other electric type or mechanical type, for example, a mechanical type. The jack may be driven by an electric motor drive and a rotary linear motion conversion mechanism, and in the simplest example, for example, a bolt may be moved forward and backward by hand. The same applies to the traction tool, and the traction tool is not limited to the traction cylinder 20.
Moreover, in said embodiment, although the inductor 25 of the high frequency induction heating apparatus was mentioned as a heating operator, a heating operator is not necessarily restricted to it and can move and heat in the vertical direction Z of the boiler panel 10. Any other material may be used, for example, a line burner using a gas heating flame.

さらに、上記の実施形態では、図1(a)を平面図とし同図(b)を側面図とした状態で、即ち被覆面を上にし非被覆面を下にした状態で、ボイラパネル10をボイラパネル加熱装置20にセットするようになっていたが、セット状態はそれに限られない。例えば、ボイラパネル加熱装置20が、ボイラパネル10の被覆面も非被覆面も横に向ける状態で、即ち図1(a)を側面図とし同図(b)を平面図とする状態で、ボイラパネル10を加熱のため定置するようにしても良い。   Furthermore, in the above-described embodiment, the boiler panel 10 is disposed in a state in which FIG. 1A is a plan view and FIG. 1B is a side view, that is, in a state where the covering surface is up and the non-covering surface is down. Although it set to the boiler panel heating apparatus 20, a set state is not restricted to it. For example, the boiler panel heating device 20 is in a state in which both the coated surface and the non-coated surface of the boiler panel 10 face sideways, that is, in a state where FIG. 1 (a) is a side view and FIG. The panel 10 may be placed for heating.

本発明の一実施形態について、ボイラパネル加熱装置の構造を示し、(a)がボイラパネル加熱装置にボイラパネルをセットしたところの被覆面側の外観模式図、(b)が横側面側の外観模式図、(c)〜(e)が形状精整用の位置強制シリンダの記号図、(f)がボイラパネルの被覆面の隅部分の拡大図、(g)がパネル端面の一部拡大図である。1 shows the structure of a boiler panel heating device according to an embodiment of the present invention, in which (a) is a schematic external view of a coated surface when a boiler panel is set in the boiler panel heating device, and (b) is an external view of a lateral side. Schematic diagrams, (c) to (e) are symbol diagrams of a position forcing cylinder for shape adjustment, (f) is an enlarged view of a corner portion of the covering surface of a boiler panel, and (g) is a partially enlarged view of a panel end surface. It is. そのボイラパネル加熱装置を用いたボイラパネル移動加熱方法について、(a)が被覆面側の外観模式図、(b)が横側面側の外観模式図である。About the boiler panel moving heating method using the boiler panel heating apparatus, (a) is an appearance schematic diagram on the coated surface side, and (b) is an external schematic diagram on the side surface side. そのボイラパネル加熱装置および方法にて合金被覆の溶融処理を行ったボイラパネルの変形状態を示し、(a)〜(c)何れも模式図とグラフからなり、(a)が厚さ方向変位の縦長方向分布、(b)が横幅方向変位の縦長方向分布、(c)が厚さ方向変位の横幅方向分布である。The deformation | transformation state of the boiler panel which performed the melting process of the alloy coating with the boiler panel heating apparatus and method is shown, (a)-(c) both consist of a schematic diagram and a graph, (a) is thickness direction displacement. The distribution in the longitudinal direction, (b) is the distribution in the longitudinal direction of the displacement in the width direction, and (c) is the distribution in the width direction of the displacement in the thickness direction. 本発明の他の実施形態について、ボイラパネル加熱工程後のボイラパネル曲げ工程を示し、(a)が装置等の平面図、(b)が側面図、(c)が加工後のボイラパネルの斜視図である。About other embodiment of this invention, the boiler panel bending process after a boiler panel heating process is shown, (a) is a top view of an apparatus etc., (b) is a side view, (c) is a perspective view of the boiler panel after a process. FIG. ボイラパネルの構造を示し、(a)が非被覆面の外観図、(b)が被覆面の外観図、(c)が被覆面の両端部分の外観図、(d)が端面図、(e)が被覆面の隅部分の拡大図、(f)が端面の一部拡大図である。The structure of a boiler panel is shown, (a) is an external view of an uncoated surface, (b) is an external view of a coated surface, (c) is an external view of both end portions of the coated surface, (d) is an end view, (e ) Is an enlarged view of the corner portion of the coated surface, and (f) is a partially enlarged view of the end surface. 一般的な誘導加熱装置の誘導子をボイラパネルに適合させたボイラパネル移動加熱方法について、(a)が被覆面側の外観図、(b)が端面図である。(A) is an external view on the coated surface side, and (b) is an end view of a boiler panel moving heating method in which an inductor of a general induction heating device is adapted to a boiler panel. そのような装置および方法にて合金被覆の溶融処理を行ったボイラパネルの変形状態を示し、(a)〜(c)何れも模式図とグラフからなり、(a)が厚さ方向変位の縦長方向分布、(b)が横幅方向変位の縦長方向分布、(c)が厚さ方向変位の横幅方向分布である。FIG. 2 shows a deformation state of a boiler panel in which an alloy coating is melted by such an apparatus and method, and (a) to (c) are both schematic diagrams and graphs, and (a) is a vertically long displacement in the thickness direction. The direction distribution, (b) is the longitudinal direction distribution of the lateral width direction displacement, and (c) is the lateral direction distribution of the thickness direction displacement.

符号の説明Explanation of symbols

10…ボイラパネル、
11…鋼製パネル、12…管部、13…板部、14…合金被覆、15…貫通穴、
20…ボイラパネル加熱装置、
21…位置強制用シリンダ(位置強制用具)、
22…牽引用シリンダ(牽引用具)、23…牽引用係合具(牽引用具)、
24…固定部材(牽引用具)、25…誘導子(加熱作用子)、
30…ボイラパネル曲げ装置、
31…押出スライダ、32…案内ローラ、33…誘導コイル、34…回転アーム
10 ... Boiler panel,
DESCRIPTION OF SYMBOLS 11 ... Steel panel, 12 ... Pipe part, 13 ... Plate part, 14 ... Alloy coating, 15 ... Through-hole,
20 ... Boiler panel heating device,
21 ... Cylinder for position forced (position forced tool),
22 ... Towing cylinder (traction tool), 23 ... Towing engagement tool (traction tool),
24 ... Fixing member (traction tool), 25 ... Inductor (heating element),
30 ... Boiler panel bending device,
31 ... Extrusion slider, 32 ... Guide roller, 33 ... Induction coil, 34 ... Rotating arm

Claims (2)

ボイラパネルの片面に合金を溶射等して合金堆積被覆を形成し、次いで、このボイラパネルを、その縦長方向に局所加熱用の加熱作用子を移動させる形態で加熱し、前記堆積被覆を加熱溶融させることで溶着被覆を形成する、合金被覆ボイラパネルの製造方法であって、その加熱に先立ち前記ボイラパネルの板部の両端に貫通穴を穿孔し更にその穴に牽引用具の係合ピンを挿通しておいて、前記加熱中に前記ボイラパネルを前記牽引用具にて前記縦長方向に引っ張りながら位置強制用具にて前記縦長方向と交叉する2軸方向への変位を多数箇所で規制することにより変形を矯正することを特徴とする合金被覆ボイラパネルの製造方法。 An alloy deposition coating is formed by spraying an alloy on one side of the boiler panel, and then the boiler panel is heated in such a manner that a heating agent for local heating is moved in the longitudinal direction, and the deposition coating is heated and melted. A method for manufacturing an alloy-coated boiler panel in which a welded coating is formed by drilling through holes at both ends of the boiler panel plate prior to heating, and inserting engagement pins of traction tools into the holes. sure, deformed by regulating a displacement said at longitudinal direction tensile while point forced equipment at the boiler panel said pulling tool during the heating of the two-axis direction crossing with the longitudinal direction in a number locations A method of manufacturing an alloy-coated boiler panel, characterized by correcting the above. 請求項1記載の合金被覆ボイラパネルの製造方法を実施して合金被覆ボイラパネルを製造し、次いで、その合金被覆ボイラパネルに対して、これに曲げモーメントを加えつつ前記縦長方向に押し出しながら該ボイラパネルの縦長方向の短区間を順次加熱して行く操作によってその加熱部分を前記合金被覆側に谷部が形成されるように曲げ込む加工を施して曲り部を設けることを特徴とする合金被覆ボイラパネルの製造方法。 An alloy-coated boiler panel is manufactured by performing the method for manufacturing an alloy-coated boiler panel according to claim 1 , and then the boiler is pushed out in the longitudinal direction while applying a bending moment to the alloy-coated boiler panel. An alloy-coated boiler, wherein a bent portion is provided by bending the heated portion so that a trough is formed on the alloy-coated side by an operation of sequentially heating a short section in the longitudinal direction of the panel. Panel manufacturing method.
JP2004159039A 2004-05-28 2004-05-28 Boiler panel heating apparatus and method Expired - Fee Related JP4297354B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2004159039A JP4297354B2 (en) 2004-05-28 2004-05-28 Boiler panel heating apparatus and method
TW094116819A TW200600718A (en) 2004-05-28 2005-05-24 Boiler panel heating device and production method of alloy-coated boiler panel
CN 200510073074 CN1715449B (en) 2004-05-28 2005-05-27 Boiler plate heating device and method
HK06103489.6A HK1083524A1 (en) 2004-05-28 2006-03-20 Boiler panel heating apparatus and method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004159039A JP4297354B2 (en) 2004-05-28 2004-05-28 Boiler panel heating apparatus and method

Publications (2)

Publication Number Publication Date
JP2005337623A JP2005337623A (en) 2005-12-08
JP4297354B2 true JP4297354B2 (en) 2009-07-15

Family

ID=35491385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004159039A Expired - Fee Related JP4297354B2 (en) 2004-05-28 2004-05-28 Boiler panel heating apparatus and method

Country Status (4)

Country Link
JP (1) JP4297354B2 (en)
CN (1) CN1715449B (en)
HK (1) HK1083524A1 (en)
TW (1) TW200600718A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5074707B2 (en) * 2006-05-26 2012-11-14 光洋サーモシステム株式会社 Heating device
JP2008116150A (en) 2006-11-06 2008-05-22 Dai Ichi High Frequency Co Ltd Panel for boiler waterwall
CN1970181B (en) * 2007-01-19 2011-05-18 宝钛集团有限公司 Metal sheet hot-rectification processing method
JP5875063B2 (en) * 2011-11-25 2016-03-02 第一高周波工業株式会社 Method for manufacturing protector for metal tube material
US10731849B2 (en) 2016-06-03 2020-08-04 General Electric Technology Gmbh Apparatus and method for welding a waterwall panel
CN116689556B (en) * 2023-08-08 2023-10-10 山东德鼓风机有限公司 Fan backplate processing equipment of bending

Also Published As

Publication number Publication date
HK1083524A1 (en) 2006-07-07
CN1715449B (en) 2010-12-15
TWI337650B (en) 2011-02-21
JP2005337623A (en) 2005-12-08
TW200600718A (en) 2006-01-01
CN1715449A (en) 2006-01-04

Similar Documents

Publication Publication Date Title
EP2080951A1 (en) Boiler water wall panel
EP3036054B1 (en) Process for producing a multilayer pipe by expansion
EP2131092A1 (en) Seamless bend tube, weld joint with seamless straight tube, and method of producing them
JP4411114B2 (en) Alloy-coated boiler parts and welding methods for self-fluxing alloy-coated boiler parts
JP4297354B2 (en) Boiler panel heating apparatus and method
JP4969221B2 (en) Deterioration part reproduction method, degradation part reproduction device
CN109072369A (en) The method of pipe and manufacture pipe
RU2458768C1 (en) Method of making thin-wall axially-symmetric welded structure with thick-wall mounted elements
CN112475767A (en) Water-cooled wall on-site repairing method based on automatic surfacing technology
CN101676065B (en) Method for producing and assembling superheater coil tubes of steam generators
EP2163326A2 (en) Method for manufacturing and fitting superheater coils of steam creation devices
Shabtay et al. New brazing processes using anneal-resistant copper and brass alloys
CN107738039B (en) Steel membrane type tube panel sealing welding method
JP2007155233A (en) Boiler furnace and manufacturing method of panel for boiler furnace
JP2019536971A (en) Extended leg folded elbow and method for use in steelmaking furnaces
JP2012030239A (en) Method of manufacturing bending article and combustor
CN105269256A (en) Method for Producing a Profile and a Manufacturing System for Producing a Profile
JP2852312B2 (en) Heat treatment method for large diameter square steel pipe
JP2001004101A (en) Unit member for water-cooled panel segment and manufacture of water-cooled panel segment with protective coating
JP5701311B2 (en) Alloy coated boiler parts
JPH0780048B2 (en) Welding distortion prevention method for thin metal plates
JP3950452B2 (en) Sheet metal repair method
KR102145366B1 (en) Branch pipe for system air conditioner and welding method
JP2009297728A (en) Hot-bending method of metal material and apparatus used therefor
JP3518983B2 (en) Metal tube with reinforcement and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070405

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081007

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090409

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090409

R150 Certificate of patent or registration of utility model

Ref document number: 4297354

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120424

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120424

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150424

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees