[go: up one dir, main page]

JP4292179B2 - Whetstone - Google Patents

Whetstone Download PDF

Info

Publication number
JP4292179B2
JP4292179B2 JP2005312334A JP2005312334A JP4292179B2 JP 4292179 B2 JP4292179 B2 JP 4292179B2 JP 2005312334 A JP2005312334 A JP 2005312334A JP 2005312334 A JP2005312334 A JP 2005312334A JP 4292179 B2 JP4292179 B2 JP 4292179B2
Authority
JP
Japan
Prior art keywords
grindstone
polishing
fluid
pores
workpiece
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005312334A
Other languages
Japanese (ja)
Other versions
JP2007118119A (en
Inventor
篤 高田
良衛 金子
雅一 高津
奈津子 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nano TEM Co Ltd
Original Assignee
Nano TEM Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nano TEM Co Ltd filed Critical Nano TEM Co Ltd
Priority to JP2005312334A priority Critical patent/JP4292179B2/en
Publication of JP2007118119A publication Critical patent/JP2007118119A/en
Application granted granted Critical
Publication of JP4292179B2 publication Critical patent/JP4292179B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Grinding-Machine Dressing And Accessory Apparatuses (AREA)
  • Polishing Bodies And Polishing Tools (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Description

本発明は、被加工物の表面を研磨加工するための砥石に関する。   The present invention relates to a grindstone for polishing a surface of a workpiece.

砥石は硬質の粒子つまり砥粒を結合材で固めて形成される工具である。砥石を用いた加工には、研削加工と研磨加工とがあり、習慣的には荒加工は研削加工と言われ、仕上げ加工は研磨加工と言われている。これらの加工は、砥石を被加工物つまりワークに押し付けた状態のもとで砥石と被加工物とを相対的に移動させることによって被加工物表面つまり被加工面を砥粒により多数の切りくずとして削り取る加工であって、両者は機能的には同義でありこの明細書では両者を含めて研磨加工と言う。   A grindstone is a tool formed by solidifying hard particles, that is, abrasive grains with a binder. There are two types of processing using a grindstone: grinding processing and polishing processing. Routine processing is customarily referred to as grinding processing, and finishing processing is referred to as polishing processing. In these processes, the surface of the workpiece, i.e., the surface to be processed, is moved by the abrasive grains by relatively moving the grindstone and the workpiece while the grindstone is pressed against the workpiece, i.e., the workpiece. The two are functionally synonymous, and in this specification, both are referred to as polishing.

砥石を用いた研磨加工には、被加工物の円筒形状の外周面を加工する円筒研磨加工、被加工物の円筒形状の内周面を加工する内面研磨加工、被加工物の平坦面を加工する平面研磨加工がある。外周面や内周面を加工するための砥石としては、円筒形状の加工面が設けられた砥石が使用される。また、平面を加工するための砥石としては、外周面に加工面が設けられた円筒形の砥石または平坦な端面に加工面が設けられたカップ形、リング形およびディスク形の砥石が使用される。   For polishing using a grindstone, cylindrical polishing for processing the cylindrical outer peripheral surface of the workpiece, internal polishing for processing the cylindrical inner peripheral surface of the workpiece, and processing the flat surface of the workpiece There is a surface polishing process. As a grindstone for processing the outer peripheral surface or the inner peripheral surface, a grindstone provided with a cylindrical processed surface is used. In addition, as a grindstone for machining a flat surface, a cylindrical grindstone having a machining surface provided on the outer peripheral surface or a cup-shaped, ring-shaped and disc-shaped grindstone having a machining surface provided on a flat end surface is used. .

シリコンウエハの表面を研磨加工するために、特許文献1に記載されるように、砥石を用いる試みがなされている。このような平面加工には平坦な加工面を有する砥石が用いられ、研磨剤を懸濁させたスラリーを研磨液として被加工面に塗布することによりCMP加工となり、被加工面に研磨液を塗布するために、砥石の気孔を介して研磨液を供給するようにしている。
特開2002−187062号公報
In order to polish the surface of the silicon wafer, an attempt to use a grindstone has been made as described in Patent Document 1. A grindstone having a flat working surface is used for such flat processing, and CMP processing is performed by applying a slurry in which an abrasive is suspended to the processing surface as a polishing liquid, and the polishing liquid is applied to the processing surface. Therefore, the polishing liquid is supplied through the pores of the grindstone.
JP 2002-187062 A

砥石は研磨ホルダーや研磨ヘッドに取り付けられて回転駆動されるようになっており、遊離砥粒を有する研磨液や化学研磨剤を有するスラリーを砥石の気孔を介して被加工面に塗布するには、砥石の基端面つまり研磨ヘッドに突き当てられる面と加工面との間の寸法が大きくなると、気孔相互が連なった領域が少なくなり、研磨液の通気抵抗が大きくなって研磨液を砥石の加工面まで気孔を介して透過させることができなくなるので、砥石の基端面と加工面との間の厚み寸法を薄くする必要がある。薄くすると研磨液やスラリーの通気抵抗が小さくなって気孔を透過させて研磨液等を加工面から吐出させることは可能であるが、研磨液の圧力により砥石が変形し、高精度の研磨加工を行うことができなくなる。   The grindstone is attached to a polishing holder or a polishing head and is driven to rotate. To apply a polishing liquid having loose abrasive grains or a slurry having a chemical abrasive to the work surface through the pores of the grindstone When the dimension between the base end surface of the grindstone, that is, the surface abutted against the polishing head, and the machining surface is increased, the area where the pores are connected to each other decreases, the air flow resistance of the polishing liquid increases, and the polishing liquid is processed into the grindstone. Since the surface cannot be transmitted through the pores, it is necessary to reduce the thickness dimension between the base end surface of the grindstone and the processed surface. If the thickness is reduced, the airflow resistance of the polishing liquid and slurry is reduced, and it is possible to permeate the pores and discharge the polishing liquid etc. from the processing surface. However, the grinding stone is deformed by the pressure of the polishing liquid, and high-precision polishing is performed. It becomes impossible to do.

本発明の目的は、高精度の研磨加工を行うことができる砥石を提供することにある。   The objective of this invention is providing the grindstone which can perform a highly accurate grinding | polishing process.

本発明の砥石は、被加工物の被加工面を研磨加工する砥石であって、砥粒、結合材および気孔を有する多孔質体により形成され前記被加工面を研磨加工する加工面が設けられた研磨層と、前記研磨層の気孔を介して前記加工面に連通し且つ前記加工面に沿って延びる管状の流体通路が形成され、砥粒、結合材および気孔を有する多孔質体により前記研磨層と一体に形成される砥石基部とを有し、前記砥石基部に形成され前記流体通路に連通する給排口からの加圧流体の供給ないし負圧流体の排出により前記被加工面と前記加工面との間に流体の流れを生成するようにしたことを特徴とする。 The grindstone of the present invention is a grindstone for polishing a work surface of a workpiece, and is provided with a work surface for polishing the work surface, which is formed of a porous body having abrasive grains, a binder, and pores. a polishing layer, the fluid passages of the tubular extending along the communication with and the processing surface on the working surface through the pores of the polishing layer is formed the polishing, abrasive grains, a porous material having a binder and a pore A grinding wheel base formed integrally with the layer, and the surface to be machined and the machining by supplying pressurized fluid or discharging negative pressure fluid from a supply / discharge port formed in the grinding wheel base and communicating with the fluid passage It is characterized in that a fluid flow is generated between the surfaces.

本発明の砥石は、前記研磨層を前記加工面が平坦となったディスク形状とし、前記研磨層と一体に形成される前記砥石基部をディスク形状とすることを特徴とする。   The grindstone of the present invention is characterized in that the polishing layer has a disk shape with a flat processed surface, and the grindstone base formed integrally with the polishing layer has a disk shape.

本発明の砥石は、遊離砥粒を有する研磨液、化学研磨剤を有するスラリー、またはこれらの混合物を前記流体通路および気孔を介して前記被加工物と前記加工面との間に供給することを特徴とする。   The grindstone of the present invention supplies a polishing liquid having loose abrasive grains, a slurry having a chemical abrasive, or a mixture thereof between the workpiece and the processing surface via the fluid passage and pores. Features.

本発明の砥石は、気孔が連通した開気孔構造の多孔質体により前記研磨層を形成し、気孔が閉じられた閉気孔構造の多孔質体により前記砥石基部を形成することを特徴とする。   The grindstone of the present invention is characterized in that the polishing layer is formed by a porous body having an open pore structure in which pores communicate with each other, and the grindstone base is formed by a porous body having a closed pore structure in which pores are closed.

本発明の砥石は、前記加工面以外の砥石外面に封孔処理層または気孔が閉じられた閉気孔構造の多孔質体からなる閉気孔体層を形成することを特徴とする。   The grindstone of the present invention is characterized in that a closed pore body layer made of a porous body having a closed pore structure in which pores are closed is formed on the grindstone outer surface other than the processed surface.

本発明の砥石は、前記砥粒をダイヤモンドとCBNのいずれかの単体またはこれらの混合体とすることを特徴とする。   The grindstone of the present invention is characterized in that the abrasive grains are any one of diamond and CBN or a mixture thereof.

本発明によれば、砥石の内部に流体流路を形成し、砥石の加工面と流体流路とを砥石を構成する多孔質体の気孔を介して連通させるようにしたので、流体流路に加圧流体を供給しても、砥石にはこれを砥石ホルダーから離す方向には大きな背圧が加わることを防止できる。これにより、化学研磨剤を有するスラリー等の流体を流体流路に加圧供給しても、砥石が砥石ホルダーから浮き上がるように変形することがない。しかも、流体流路は一体構造の砥石の内部に形成されているので、流体を流体流路に加圧供給しても砥石自体の変形発生がない。これにより、砥石の加工面の変形が防止されて高精度の研磨加工を行うことができる。   According to the present invention, the fluid flow path is formed inside the grindstone, and the processing surface of the grindstone and the fluid flow path are communicated via the pores of the porous body constituting the grindstone. Even when a pressurized fluid is supplied, it is possible to prevent a great back pressure from being applied to the grindstone in a direction away from the grindstone holder. Thus, even if a fluid such as a slurry having a chemical abrasive is supplied under pressure to the fluid flow path, the grindstone will not be deformed so as to float from the grindstone holder. Moreover, since the fluid flow path is formed inside the integrally structured grindstone, even if the fluid is pressurized and supplied to the fluid flow path, the grindstone itself does not deform. Thereby, the deformation | transformation of the process surface of a grindstone is prevented and a highly accurate grinding | polishing process can be performed.

加圧流体を供給しても砥石の変形が防止されるので、加工面から所定の厚み部分の研磨層の部分を薄くすることができ、加圧流体や負圧流体の圧力を大きくすることなく、確実に流体を研磨層に気孔を介して透過させることができる。   Even if pressurized fluid is supplied, the grinding wheel is prevented from being deformed, so that the portion of the polishing layer of a predetermined thickness portion can be made thinner from the machining surface without increasing the pressure of pressurized fluid or negative pressure fluid. The fluid can be reliably permeated into the polishing layer through the pores.

砥石の加工面から加圧流体を流出させ、加工面から負圧流体を流入させて、加工面以外の砥石の外面からの加圧流体の流出と負圧流体の流入とを防止するために、砥石基部を閉気孔構造の多孔質体としても良く、加工面以外の外面を封孔処理するようにしても良い。   In order to prevent the pressurized fluid from flowing out from the outer surface of the grindstone other than the processed surface and the inflow of negative pressure fluid by flowing the pressurized fluid out of the processed surface of the grindstone and flowing in the negative pressure fluid from the processed surface, The grindstone base may be a porous body having a closed pore structure, and the outer surface other than the processed surface may be sealed.

以下、本発明の実施の形態を図面に基づいて詳細に説明する。図1は本発明の一実施の形態である砥石を示す斜視図であり、図2は図1に示した砥石が砥石ホルダーに取り付けられた状態を示す断面図であり、図3は図2の一部拡大断面図であり、図4は図2における4−4線に沿う方向の砥石の断面図である。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a perspective view showing a grindstone according to an embodiment of the present invention, FIG. 2 is a cross-sectional view showing a state where the grindstone shown in FIG. 1 is attached to a grindstone holder, and FIG. 4 is a partially enlarged sectional view, and FIG. 4 is a sectional view of the grindstone in the direction along line 4-4 in FIG.

図1に示す砥石10は、全体的に円板形状つまりディスク形状となっており、一方の端面が加工面11になり、他方の端面が基端面12になっている。図2に示すように、砥石10は砥石ホルダー20に基端面12が突き当てられるようにして取り付けられて砥石ホルダー20により回転駆動される。砥石10はこれの外周部に形成された取付孔13を貫通して砥石ホルダー20にねじ結合されるボルト14により砥石ホルダー20に取り付けられるようになっている。   The grindstone 10 shown in FIG. 1 has a disc shape, that is, a disk shape as a whole, and has one end surface as a processing surface 11 and the other end surface as a base end surface 12. As shown in FIG. 2, the grindstone 10 is attached to the grindstone holder 20 so that the base end surface 12 is abutted against the grindstone holder 20, and is rotated by the grindstone holder 20. The grindstone 10 is attached to the grindstone holder 20 by a bolt 14 that passes through an attachment hole 13 formed on the outer periphery of the grindstone 10 and is screwed to the grindstone holder 20.

砥石10は砥粒と砥粒相互を連結する結合材とにより形成され、内部には微細な気孔が形成された多孔質体となっている。   The grindstone 10 is formed of abrasive grains and a binder that connects the abrasive grains, and is a porous body having fine pores formed therein.

砥石10は、図3に示すように、加工面11から所定の厚みtの部分が研磨層15であり、これよりも図において下側の部分が砥石基部16であり、砥石基部16の厚み寸法はTとなっている。砥石基部16には図4に示すように同心円状に複数の流体流路17が形成され、それぞれの流体流路17を相互に連通させるためにそれぞれの流体流路17に対して厚み方向に基端面12側にずらして放射状に複数の流体流路18が形成されている。さらにそれぞれの流体流路18に連通する給排口19が砥石基部16の径方向中央部に外部に開口して形成されており、砥石10を砥石ホルダー20に取り付けると、砥石ホルダー20に形成された流体流路21に給排口19が対向して連通するようになっている。したがって、それぞれの流体流路17は流体流路18および給排口19を介して流体流路21に連通する。   As shown in FIG. 3, the grindstone 10 has a polishing layer 15 at a portion having a predetermined thickness t from the processed surface 11, and a lower portion of the grindstone base 16 in the drawing is a grindstone base 16. Is T. As shown in FIG. 4, a plurality of fluid flow paths 17 are formed concentrically on the grindstone base 16, and in order to communicate the fluid flow paths 17 with each other, the fluid flow paths 17 are based on the thickness direction. A plurality of fluid flow paths 18 are formed radially by shifting toward the end face 12 side. Further, a supply / discharge port 19 communicating with each fluid flow path 18 is formed to open to the outside in the radial center of the grindstone base 16. When the grindstone 10 is attached to the grindstone holder 20, it is formed in the grindstone holder 20. The supply / discharge port 19 faces and communicates with the fluid flow path 21. Accordingly, each fluid channel 17 communicates with the fluid channel 21 via the fluid channel 18 and the supply / discharge port 19.

研磨層15の厚みtの部分と砥石基部16のうち流体流路17が形成された厚みt1の部分は、気孔が連通した開気孔(open pore)構造の多孔質体となっており、他の部分は気孔が閉じられた閉気孔(close pore)構造の多孔質体となっている。開気孔構造の多孔質体における気孔率は20%以下であり、開気孔構造の多孔質体における気孔率は20〜60%となっている。このように、砥石基部16の基端面12側は閉気孔構造となっているので、流体流路21から研磨液等の加圧流体を供給すると、閉気孔構造の砥石基部16の外周面からは加圧流体は漏出することなく、開気孔構造の研磨層15を加圧流体が透過して加圧流体は加工面11に供給される。一方、流体流路21に負圧供給源を連通させると、砥石基部16の外周面からは外部の流体が浸入することなく、加工面11に供給された研磨液は開気孔構造の研磨層15を透過して給排口19から排出される。ただし、砥石10全体を開気孔構造の多孔質体により形成し、砥石10のうち加工面11以外の外面つまり基端面12と外周面とを封孔処理し、これらの面からの流体の漏出と流入とを防止するようにしても良い。   The portion of the polishing layer 15 having the thickness t and the portion of the grinding wheel base 16 having the thickness t1 in which the fluid flow path 17 is formed are porous bodies having an open pore structure in which pores communicate with each other. The part is a porous body having a closed pore structure in which the pores are closed. The porosity of the porous body having an open pore structure is 20% or less, and the porosity of the porous body having an open pore structure is 20 to 60%. Thus, since the base end surface 12 side of the grindstone base portion 16 has a closed pore structure, when a pressurized fluid such as a polishing liquid is supplied from the fluid channel 21, the outer peripheral surface of the grindstone base portion 16 having the closed pore structure is formed. The pressurized fluid passes through the polishing layer 15 having the open pore structure without leaking the pressurized fluid, and the pressurized fluid is supplied to the processing surface 11. On the other hand, when a negative pressure supply source is communicated with the fluid flow path 21, an external fluid does not enter from the outer peripheral surface of the grindstone base 16, and the polishing liquid supplied to the processing surface 11 is a polishing layer 15 having an open pore structure. And is discharged from the supply / discharge port 19. However, the entire grindstone 10 is formed of a porous body having an open pore structure, and the outer surface other than the processing surface 11, that is, the base end surface 12 and the outer peripheral surface of the grindstone 10 are sealed, and fluid leaks from these surfaces. Inflow may be prevented.

図2に示すように、砥石10は砥石ホルダー20を介して研磨装置の砥石回転シャフト22に取り付けられるようになっており、砥石回転シャフト22を駆動する図示しないモータにより砥石10は砥石ホルダー20を介して回転駆動される。砥石回転シャフト22に形成された流体案内流路23は、ロータリジョイント24を介して真空ポンプ25に接続され、真空ポンプ25とロータリジョイント24とを接続する流体案内流路26aには流路開閉弁27aと圧力調整弁28aとが取り付けられている。したがって、流路開閉弁27aを開いた状態のもとで真空ポンプ25を作動させると、研磨層15の気孔は、流体案内流路23を介して真空ポンプ25に連通して大気圧よりも低い真空状態つまり負圧状態となり、砥石10の加工面11には外部から気孔内に周囲空気や液体が流入することになる。   As shown in FIG. 2, the grindstone 10 is attached to the grindstone rotating shaft 22 of the polishing apparatus via the grindstone holder 20, and the grindstone 10 holds the grindstone holder 20 by a motor (not shown) that drives the grindstone rotating shaft 22. It is rotationally driven through. A fluid guide channel 23 formed in the grindstone rotating shaft 22 is connected to a vacuum pump 25 via a rotary joint 24, and a channel opening / closing valve is connected to the fluid guide channel 26 a connecting the vacuum pump 25 and the rotary joint 24. 27a and a pressure regulating valve 28a are attached. Therefore, when the vacuum pump 25 is operated with the flow path opening / closing valve 27a opened, the pores of the polishing layer 15 communicate with the vacuum pump 25 via the fluid guide flow path 23 and are lower than the atmospheric pressure. A vacuum state, that is, a negative pressure state occurs, and ambient air or liquid flows into the pores from the outside to the processed surface 11 of the grindstone 10.

ロータリジョイント24には加圧ポンプ29が接続され、加圧ポンプ29とロータリジョイント24とを接続する流体案内流路26bには流路開閉弁27bと圧力調整弁28bとが取り付けられている。加圧ポンプ29は容器30内に収容された研磨液等の液体を加圧して吐出し、流路開閉弁27bを開いた状態のもとで加圧ポンプ29を作動させると、液体が流体案内流路23を介して研磨層15の気孔内に入り込んで加工面11から流出することになる。   A pressure pump 29 is connected to the rotary joint 24, and a channel opening / closing valve 27 b and a pressure adjusting valve 28 b are attached to the fluid guide channel 26 b connecting the pressure pump 29 and the rotary joint 24. The pressurizing pump 29 pressurizes and discharges a liquid such as a polishing liquid contained in the container 30, and when the pressurizing pump 29 is operated with the flow path opening / closing valve 27 b opened, the liquid is guided to the fluid. It enters the pores of the polishing layer 15 through the flow path 23 and flows out of the processed surface 11.

砥石回転シャフト22の上方には、シリコンウエハ等の被加工物Wを支持してこれを回転させる真空チャック31が装着されたワーク回転シャフト32が設けられている。このワーク回転シャフト32は砥石10の加工面11に沿う方向に水平方向に移動自在となるとともに上下方向に移動自在となっており、真空チャック31に支持された被加工物Wを砥石10に向けて接近離反移動させることができる。さらに、被加工物Wを砥石10に接触させた状態でワーク回転シャフト32および真空チャック31の自重により被加工物Wに対して押し付け力を加えることができる。この自重による押し付け力に加えて、空気圧シリンダなどによりワーク回転シャフト32に推力を加えて被加工物Wに対して押し付け力を付加するようにしても良い。   Above the grindstone rotating shaft 22 is provided a work rotating shaft 32 to which a vacuum chuck 31 for supporting and rotating a workpiece W such as a silicon wafer is mounted. The workpiece rotating shaft 32 is movable in the horizontal direction along the processing surface 11 of the grindstone 10 and is also movable in the vertical direction. The workpiece W supported by the vacuum chuck 31 is directed toward the grindstone 10. Can be moved closer and away. Furthermore, a pressing force can be applied to the workpiece W by the dead weight of the workpiece rotating shaft 32 and the vacuum chuck 31 while the workpiece W is in contact with the grindstone 10. In addition to the pressing force due to its own weight, a pressing force may be applied to the workpiece W by applying a thrust to the workpiece rotating shaft 32 by a pneumatic cylinder or the like.

真空チャック31は複数の吸気孔33が形成されたチャック板34を有し、それぞれの吸気孔33に連通する真空流路35がワーク回転シャフト32に形成されている。真空流路35はロータリジョイント36を介して真空ポンプ37に接続され、真空ポンプ37とロータリジョイント36とを接続する真空供給路38には流路開閉弁39が取り付けられている。したがって、真空ポンプ37を作動させて真空流路35を大気圧よりも低い圧力にすると、吸気孔33内に外部空気が流入して被加工物Wは真空チャック31に真空吸着されて保持される。   The vacuum chuck 31 has a chuck plate 34 in which a plurality of intake holes 33 are formed, and a vacuum channel 35 communicating with each of the intake holes 33 is formed in the work rotation shaft 32. The vacuum flow path 35 is connected to a vacuum pump 37 via a rotary joint 36, and a flow path opening / closing valve 39 is attached to a vacuum supply path 38 that connects the vacuum pump 37 and the rotary joint 36. Therefore, when the vacuum pump 37 is operated to bring the vacuum flow path 35 to a pressure lower than the atmospheric pressure, external air flows into the intake hole 33 and the workpiece W is vacuum-adsorbed and held by the vacuum chuck 31. .

図4に示すように、それぞれの流体流路17は、径方向に等ピッチとなって形成され、加工面11に沿う平面に分散して形成されているので、給排口19から研磨液等の加圧流体を供給すると加工面11全体から加圧流体が流出し、被加工物Wの被加工面と砥石10の加工面11との間には研磨液等の流体の流れが生成される。一方、給排口19から負圧流体を供給すると加工面11全体から外部の流体が研磨層15内に浸入することになり、被加工物Wの被加工面と砥石10の加工面11との間には外部空気や研磨液等の流体の流れが生成される。図2に示す場合には、研磨層15の外径が約300mmであり、流体流路17の径方向のピッチは約15mmとなっている。   As shown in FIG. 4, the respective fluid flow paths 17 are formed at equal pitches in the radial direction, and are distributed in a plane along the processing surface 11. When the pressurized fluid is supplied, the pressurized fluid flows out from the entire processing surface 11, and a fluid flow such as a polishing liquid is generated between the processing surface of the workpiece W and the processing surface 11 of the grindstone 10. . On the other hand, when a negative pressure fluid is supplied from the supply / discharge port 19, an external fluid enters the polishing layer 15 from the entire processing surface 11, and the processing surface of the workpiece W and the processing surface 11 of the grindstone 10 are in contact with each other. In the meantime, a flow of fluid such as external air or polishing liquid is generated. In the case shown in FIG. 2, the outer diameter of the polishing layer 15 is about 300 mm, and the pitch in the radial direction of the fluid flow path 17 is about 15 mm.

図5は本発明の他の実施の形態である砥石10を示す断面図であり、図5は図4と同様に砥石10内に形成された流体流路17の部分を示す。図5に示す砥石10に形成された流体流路17は渦巻き状に連なっており、流体流路17は加工面11に沿う平面に分散して径方向に所定のピッチとなって形成されている。この場合にも図4に示す場合と同様に砥石10には径方向に複数本の流体流路18が流体流路17に連通させて形成されている。ただし、図5に示す流体流路17は渦巻き状に連なった一続きの流路により形成されているので、流体流路17の中央部分に直接給排口19を連通させるようにしても、流体流路17の全体に加圧流体を案内することができる。   FIG. 5 is a cross-sectional view showing a grindstone 10 according to another embodiment of the present invention, and FIG. 5 shows a portion of a fluid flow path 17 formed in the grindstone 10 as in FIG. The fluid flow path 17 formed in the grindstone 10 shown in FIG. 5 is continuous in a spiral shape, and the fluid flow paths 17 are dispersed in a plane along the processing surface 11 and formed at a predetermined pitch in the radial direction. . Also in this case, as in the case shown in FIG. 4, a plurality of fluid flow paths 18 are formed in the grindstone 10 so as to communicate with the fluid flow paths 17 in the radial direction. However, since the fluid flow path 17 shown in FIG. 5 is formed by a continuous flow path that is spirally connected, the fluid supply port 17 may be directly connected to the central portion of the fluid flow path 17 so that the fluid flow The pressurized fluid can be guided to the entire flow path 17.

図6(A)は本発明の他の実施の形態である砥石10を示す断面図であり、図6(B)は図6(A)における6B−6B線に沿う断面図であり、図6(A)は図4と同様に砥石10内に形成された流体流路17の部分を示す。図6に示す砥石10に形成された流体流路17は格子状となっており、加工面11に沿う方向における流体流路17の全面積は、図4および図5に示す場合よりも大きくなるとともに加工面11に沿う方向の分散密度は高くなっている。格子状の流体流路17は全体的に連通しているので、図6(B)に示すように、流体流路17の中央部分に直接給排口19が連通されており、砥石10全体の厚み寸法は図4および図5に示される砥石10よりも薄くすることができる。ただし、上述した場合と同様に、放射方向の流体流路18を砥石10に形成しても良い。   6A is a cross-sectional view showing a grindstone 10 according to another embodiment of the present invention, and FIG. 6B is a cross-sectional view taken along line 6B-6B in FIG. 6A. (A) shows the part of the fluid flow path 17 formed in the grindstone 10 like FIG. The fluid flow path 17 formed in the grindstone 10 shown in FIG. 6 has a lattice shape, and the total area of the fluid flow path 17 in the direction along the processing surface 11 is larger than that shown in FIGS. 4 and 5. At the same time, the dispersion density in the direction along the processed surface 11 is high. Since the lattice-like fluid flow path 17 communicates as a whole, as shown in FIG. 6 (B), the supply / discharge port 19 is directly communicated with the central portion of the fluid flow path 17 so that the grindstone 10 as a whole. The thickness dimension can be made thinner than the grindstone 10 shown in FIGS. However, the radial fluid flow path 18 may be formed in the grindstone 10 in the same manner as described above.

図1〜図6に示すように、一体成形された砥石10の内部には流体流路17,18が設けられており、加圧ポンプ29により加圧された研磨液を給排口19から流体流路17,18内に供給すると、給排口19の面積と流体圧力との積に応じた背圧が砥石10に加わるのみであり、砥石10の基端面12のほぼ全体に流体圧力を加える場合に比して、砥石10を砥石ホルダー20から離す方向に作用する背圧は僅かである。したがって、砥石10は砥石ホルダー20から浮き上がる方向には変形しない。また、流体流路17,18内に加圧流体の圧力が加わっても、流体流路17,18は組織的に連なって一体となっている砥石10の内部に形成されているので、砥石10に亀裂が発生したり、変形したりすることが防止される。   As shown in FIGS. 1 to 6, fluid flow paths 17 and 18 are provided inside the integrally formed grindstone 10, and the polishing liquid pressurized by the pressure pump 29 is fluidized from the supply / discharge port 19. When supplied into the flow paths 17 and 18, a back pressure corresponding to the product of the area of the supply / discharge port 19 and the fluid pressure is only applied to the grindstone 10, and the fluid pressure is applied to almost the entire base end surface 12 of the grindstone 10. Compared to the case, the back pressure acting in the direction of separating the grindstone 10 from the grindstone holder 20 is slight. Therefore, the grindstone 10 does not deform in the direction of lifting from the grindstone holder 20. Further, even if the pressure of the pressurized fluid is applied to the fluid flow paths 17 and 18, the fluid flow paths 17 and 18 are formed in the grindstone 10 that is integrated and integrated systematically. It is possible to prevent cracks from being generated or deformed.

砥石10を用いた研磨加工としては、遊離砥粒を有する研磨液を加圧ポンプ29により加圧して流体流路17を介して加工面11から流出させるようにした被加工物Wの研磨加工、および回路パターン形成前のウエハまたは回路パターンが形成されたウエハの表面を加工面11から化学研磨剤を有するスラリーを流出させるようにした研磨加工つまりCMP加工に適用することができる。このような研磨加工においては、加工面11から砥石10と被加工物Wとの間に研磨液等を供給することになるので、被加工物Wの被加工面全体に確実に研磨液を供給することができる。しかも、砥石10は、通常のCMP加工のようなウレタン等からなる研磨パッドに比して、加工面11の硬度が高いので、ウエハの表面にうねり等を発生させることなく、高い平坦度で研磨加工を行うことができ、さらに、加工面11と被加工物Wとの間の圧力を調整することによって、研磨加工時間や研磨量を容易に設定することができる。   As the polishing process using the grindstone 10, the polishing process of the workpiece W in which the polishing liquid having free abrasive grains is pressurized by the pressure pump 29 and flows out from the processing surface 11 through the fluid flow path 17, Further, the present invention can be applied to a polishing process, that is, a CMP process in which a slurry having a chemical abrasive is allowed to flow out from the processed surface 11 on the surface of the wafer before the circuit pattern is formed or the wafer on which the circuit pattern is formed. In such a polishing process, since a polishing liquid or the like is supplied from the processing surface 11 between the grindstone 10 and the workpiece W, the polishing liquid is reliably supplied to the entire processing surface of the workpiece W. can do. In addition, since the grindstone 10 has a higher hardness of the processed surface 11 than a polishing pad made of urethane or the like as in a normal CMP process, the grindstone 10 is polished with high flatness without causing waviness or the like on the surface of the wafer. Processing can be performed, and further, by adjusting the pressure between the processing surface 11 and the workpiece W, the polishing processing time and the polishing amount can be easily set.

内部に流体流路17,18が形成された砥石10を製造するには、砥粒と結合材と助剤との混合物を成形型内に注入する。一方、消失樹脂等のように熱を加えると消失する消失材料からなる中子を流体流路17,18の形状に予め製造しておき、混合物を成形型内に注入する際に混合物の内部に中子を投入する。このようにして砥石10に対応した形状に成形された砥石素材を焼成炉において加熱することにより、中子が消失とするとともに砥粒が結合材により連結され、内部に気孔を有し流体流路17,18が形成された多孔質体からなる砥石10が一体に製造される。砥石10の気孔率は、助剤の量を増やすと小さくなるが、助剤の量以外に焼成温度等によっても気孔率を調整することができる。   In order to manufacture the grindstone 10 in which the fluid flow paths 17 and 18 are formed, a mixture of abrasive grains, a binder, and an auxiliary agent is injected into a mold. On the other hand, a core made of a disappearing material that disappears when heat is applied, such as a disappearing resin, is manufactured in the shape of the fluid flow paths 17 and 18 in advance, and the mixture is injected into the mold when injected into the mold. Insert the core. By heating the grinding wheel material formed in the shape corresponding to the grinding wheel 10 in the firing furnace in this manner, the core disappears and the abrasive grains are connected by the binder, and the fluid flow path has pores inside. A grindstone 10 made of a porous body on which 17 and 18 are formed is integrally manufactured. Although the porosity of the grindstone 10 decreases as the amount of the auxiliary agent is increased, the porosity can be adjusted not only by the amount of the auxiliary agent but also by the firing temperature or the like.

したがって、上述のように砥石10を研磨層15の部分と砥石基部16とにより形成する場合には、例えば助剤の量を研磨層15と砥石基部16とで相違させることにより、研磨層15と砥石基部16のうち流体流路17が形成された部分(厚みt+t1の部分)とを開気孔構造の多孔質体とし、この部分よりも基端面12側の部分を閉気孔構造の多孔質体とすることができる。   Therefore, when the grindstone 10 is formed by the portion of the polishing layer 15 and the grindstone base 16 as described above, for example, by making the amount of the auxiliary agent different between the polishing layer 15 and the grindstone base 16, The portion of the grindstone base 16 where the fluid flow path 17 is formed (the portion of thickness t + t1) is a porous body having an open pore structure, and the portion closer to the base end face 12 than this portion is a porous body having a closed pore structure. can do.

ただし、研磨層15を有する部分と他の部分とを別々に成型し、これらを突き合わせた状態で焼成するようにしても良く、それぞれの部分を別々に成型、焼成した後に、両方をガラス接着剤層を介して突き合わせた状態のもとでガラス接着剤層を溶融して接合するようにしても良い。いずれの場合にも、砥石10全体はそれを構成する組織が連なった状態となって一体に形成されているので、流体流路17,18内に加圧された研磨液を供給しても、砥石10は変形したり、亀裂を発生させたりすることなく、高精度の研磨加工を行うことができる。なお、上述したように、砥石10全体を開気孔構造の多孔質体により形成し、砥石10のうち加工面11以外の外面つまり基端面12と外周面とを封孔処理し、これらの面からの流体の漏出と流入とを防止するようにしても良い。   However, the part having the polishing layer 15 and the other part may be molded separately and fired in a state where they are abutted, and after each part is separately molded and fired, both are made of glass adhesive. The glass adhesive layer may be melted and bonded under a state of being butted through the layers. In any case, since the entire grindstone 10 is formed integrally with the structure constituting it, even if a pressurized polishing liquid is supplied into the fluid flow paths 17 and 18, The grindstone 10 can be polished with high accuracy without being deformed or causing cracks. In addition, as above-mentioned, the grindstone 10 whole is formed with the porous body of an open-pore structure, and the outer surface other than the process surface 11 in the grindstone 10, ie, a base end surface 12, and an outer peripheral surface is sealed, and from these surfaces The fluid may be prevented from leaking out and flowing in.

砥石10を構成する砥粒としては、ダイヤモンドつまりダイヤモンド砥粒が使用されており、その平均粒径は0.1〜300μmとなっている。ただし、ダイヤモンドに代えて、立方晶窒化ホウ素(CBN)砥粒つまりCBNを使用するようにしても良く、ダイヤモンドとCBNとの混合物を使用するようにしても良く、さらには、炭化ケイ素SiCつまりGC、ムライト(3Al2O3-2SiO2)、または溶融アルミナAl2O3つまりWAの単体或いはこれらの混合体を使用するようにしても良い。砥石10を構成する結合材としては、ビトリファイドボンドが使用されているが、それぞれの結合材としてはビトリファイドボンド以外に、レジノイドボンド、メタルボンド、電着ボンドなど種々のボンド材を使用することができる。 As the abrasive grains constituting the grindstone 10, diamond, that is, diamond abrasive grains are used, and the average particle diameter is 0.1 to 300 μm. However, instead of diamond, cubic boron nitride (CBN) abrasive grains or CBN may be used, a mixture of diamond and CBN may be used, and silicon carbide SiC or GC. , Mullite (3Al 2 O 3 -2SiO 2 ), or molten alumina Al 2 O 3, that is, WA alone or a mixture thereof may be used. Vitrified bonds are used as the binding material constituting the grindstone 10, but various bonding materials such as resinoid bonds, metal bonds, and electrodeposition bonds can be used as the respective binding materials in addition to vitrified bonds. .

図7(A)は砥石10を用いた研磨装置の全体構成を示す側面図であり、図7(B)は図7(A)の正面図であり、図8は図7(B)における8−8線に沿う拡大断面図である。   7A is a side view showing the overall configuration of the polishing apparatus using the grindstone 10, FIG. 7B is a front view of FIG. 7A, and FIG. 8 is 8 in FIG. 7B. It is an expanded sectional view which follows -8 line.

この研磨装置は図2に示した砥石回転シャフト22が回転自在に組み込まれた基台41と、この基台41に設けられた研磨ヘッド42とを有しており、研磨ヘッド42には2本のワーク回転シャフト32がそれぞれ回転自在に設けられている。したがって、図示する研磨装置は、同時に2つの被加工物Wを研磨加工することができる。   This polishing apparatus has a base 41 in which the grindstone rotating shaft 22 shown in FIG. 2 is rotatably incorporated, and a polishing head 42 provided on the base 41, and two polishing heads 42 are provided. The workpiece rotation shafts 32 are rotatably provided. Therefore, the illustrated polishing apparatus can polish two workpieces W at the same time.

砥石回転シャフト22には図8に示すようにプーリ43が固定され、図7(A)に示すように基台41に固定されたモータ44のプーリ45とプーリ43との間にはベルト46が掛け渡されており、砥石回転シャフト22はモータ44により回転駆動される。砥石回転シャフト22に取り付けられたロータリジョイント24には流体案内流路23を構成するホース47が接続されており、このホース47を介してロータリジョイント24には図2に示した真空ポンプ25と加圧ポンプ29のいずれか一方または両方が接続される。   A pulley 43 is fixed to the grindstone rotating shaft 22 as shown in FIG. 8, and a belt 46 is interposed between the pulley 45 and the pulley 43 of the motor 44 fixed to the base 41 as shown in FIG. The grindstone rotating shaft 22 is rotationally driven by a motor 44. A hose 47 constituting the fluid guide channel 23 is connected to the rotary joint 24 attached to the grindstone rotating shaft 22, and the rotary pump 24 and the vacuum pump 25 shown in FIG. Either one or both of the pressure pumps 29 are connected.

研磨ヘッド42にはこれに水平方向に固定されたガイドレール48に沿って摺動する摺動台49が設けられており、摺動台49にはそれぞれのワーク回転シャフト32が上下方向に移動自在かつ回転自在に設けられている。それぞれのワーク回転シャフト32の上端部側にはスプライン51が設けられ、このスプライン51に噛み合うプーリ52が摺動台49に回転自在に組み込まれ、プーリ52と摺動台49に固定されたモータ53のプーリ54との間にはベルト55が掛け渡されており、モータ53によりワーク回転シャフト32は回転駆動される。ワーク回転シャフト32は摺動台49に上下動自在に装着されたスリーブ55内に組み込まれており、スリーブ55を介してワーク回転シャフト32を上下動してこれを砥石10に向けて接近離反移動させるために、摺動台49に取り付けられた空気圧シリンダ56のピストンロッド57がスリーブ55に連結されている。ワーク回転シャフト32の端部にはロータリジョイント36が取り付けられており、このロータリジョイント36は図2に示すように真空ポンプ37に接続されている。図8は図7に示すように研磨ヘッド42に設けられた2本のワーク回転シャフト32の一方を示すが、両方とも同一の構造となっている。   The polishing head 42 is provided with a slide base 49 that slides along a guide rail 48 fixed in the horizontal direction to the polishing head 42, and each work rotation shaft 32 is movable in the vertical direction on the slide base 49. And it is rotatably provided. A spline 51 is provided on the upper end side of each work rotation shaft 32, and a pulley 52 meshing with the spline 51 is rotatably incorporated in a slide base 49, and a motor 53 fixed to the pulley 52 and the slide base 49. A belt 55 is stretched between the pulley 54 and the work rotation shaft 32 by a motor 53. The work rotation shaft 32 is incorporated in a sleeve 55 that is mounted on the slide base 49 so as to be movable up and down. The work rotation shaft 32 is moved up and down via the sleeve 55 and moved toward and away from the grindstone 10. For this purpose, the piston rod 57 of the pneumatic cylinder 56 attached to the slide base 49 is connected to the sleeve 55. A rotary joint 36 is attached to the end of the work rotation shaft 32, and this rotary joint 36 is connected to a vacuum pump 37 as shown in FIG. FIG. 8 shows one of the two workpiece rotating shafts 32 provided on the polishing head 42 as shown in FIG. 7, both of which have the same structure.

図7および図8に示す研磨装置によりシリコンウエハ等のような円板状の被加工物Wの表面を研磨加工するには、それぞれの真空チャック31に被加工物Wを保持させた状態のもとで空気圧シリンダ56によりワーク回転シャフト32を砥石10に向けて接近移動させる。モータ53によりワーク回転シャフト32を回転させるとともにモータ44により砥石回転シャフト22を回転させながら砥石10の加工面11に被加工物Wを接触させる。両方のモータ44,53により砥石10と被加工物Wは相対的に摺動した状態となり、この状態のもとで真空ポンプ25を駆動させると加工面11と被加工物Wの被加工面との間には砥石10の気孔を介して負圧空気の流れが発生するとともに、これらの間は負圧状態となって大気圧よりも低い圧力が発生した状態となる。一方、加圧ポンプ29から空気や液体を加工面11と被加工物Wとの間に供給すると、これらの間は大気圧よりも高い圧力が発生した状態となる。それぞれの圧力は、圧力調整弁28a,28bにより調整される。このように隙間内の圧力を調整しその厚みを変化させることにより被加工面に接触する砥粒の数を変化させることができ、研磨量や被加工面の仕上げ精度を調整することができる。   In order to polish the surface of a disk-shaped workpiece W such as a silicon wafer by the polishing apparatus shown in FIGS. 7 and 8, the workpiece W is held in the respective vacuum chucks 31. Then, the work rotation shaft 32 is moved toward the grindstone 10 by the pneumatic cylinder 56. The workpiece W is brought into contact with the processing surface 11 of the grindstone 10 while the workpiece 53 is rotated by the motor 53 and the grindstone rotation shaft 22 is rotated by the motor 44. The grindstone 10 and the workpiece W are slid relative to each other by the motors 44 and 53. When the vacuum pump 25 is driven in this state, the machining surface 11 and the workpiece surface of the workpiece W In between, a flow of negative pressure air is generated through the pores of the grindstone 10, and between these, a negative pressure state occurs and a pressure lower than the atmospheric pressure is generated. On the other hand, when air or liquid is supplied from the pressurizing pump 29 between the processing surface 11 and the workpiece W, a pressure higher than the atmospheric pressure is generated between them. Each pressure is adjusted by pressure regulating valves 28a and 28b. In this way, by adjusting the pressure in the gap and changing the thickness thereof, the number of abrasive grains contacting the work surface can be changed, and the polishing amount and the finishing accuracy of the work surface can be adjusted.

本発明は上記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能である。例えば、図示する砥石10は端面に平坦な加工面11が設けられ、平面を研磨加工するためのディスク形の砥石であり、ディスク状に代えてカップ状ないしリング状に砥石を形成し、その端面を加工面として平面研磨加工を行うようにしても良い。また、被加工物の円筒形状の外周面を加工する円筒研磨加工や、被加工物の円筒形状の内周面を加工する内面研磨加工を行うための砥石にも本発明を適用して、内部に流体流路を形成するようにしても良い。   The present invention is not limited to the embodiment described above, and various modifications can be made without departing from the scope of the invention. For example, a grindstone 10 shown in the figure is a disc-shaped grindstone for polishing a flat surface provided with a flat work surface 11 on an end surface, and a grindstone is formed in a cup shape or a ring shape instead of a disc shape. Surface polishing may be performed using the surface as the processing surface. The present invention is also applied to a grinding wheel for processing a cylindrical outer peripheral surface of a workpiece and an inner surface polishing process for processing a cylindrical inner peripheral surface of a workpiece. Alternatively, a fluid flow path may be formed.

本発明の一実施の形態である砥石を示す斜視図である。It is a perspective view which shows the grindstone which is one embodiment of this invention. 図1に示した砥石が砥石ホルダーに取り付けられた状態を示す断面図である。It is sectional drawing which shows the state in which the grindstone shown in FIG. 1 was attached to the grindstone holder. 図2の一部拡大断面図である。It is a partially expanded sectional view of FIG. 図2における4−4線に沿う方向の砥石の断面図である。It is sectional drawing of the grindstone of the direction in alignment with line 4-4 in FIG. 本発明の他の実施の形態である砥石を示す断面図である。It is sectional drawing which shows the grindstone which is other embodiment of this invention. (A)は本発明の他の実施の形態である砥石を示す断面図であり、(B)は(A)における6B−6B線に沿う断面図である。(A) is sectional drawing which shows the grindstone which is other embodiment of this invention, (B) is sectional drawing which follows the 6B-6B line | wire in (A). (A)は砥石を用いた研磨装置の全体構成を示す側面図であり、(B)は(A)の正面図である。(A) is a side view which shows the whole structure of the grinding | polishing apparatus using a grindstone, (B) is a front view of (A). 図7(B)における8−8線に沿う拡大断面図である。It is an expanded sectional view which follows the 8-8 line in FIG.7 (B).

符号の説明Explanation of symbols

10 砥石
11 加工面
12 基端面
15 研磨層
16 砥石基部
17,18 流体流路
19 給排口
20 砥石ホルダー
22 砥石回転シャフト
25 真空ポンプ
29 加圧ポンプ
31 真空チャック
W 被加工物
DESCRIPTION OF SYMBOLS 10 Grinding wheel 11 Processing surface 12 Base end surface 15 Polishing layer 16 Grinding wheel base parts 17 and 18 Fluid flow path 19 Supply / discharge port 20 Grinding wheel holder 22 Grinding wheel rotation shaft 25 Vacuum pump 29 Pressure pump 31 Vacuum chuck W Workpiece

Claims (6)

被加工物の被加工面を研磨加工する砥石であって、
砥粒、結合材および気孔を有する多孔質体により形成され前記被加工面を研磨加工する加工面が設けられた研磨層と、
前記研磨層の気孔を介して前記加工面に連通し且つ前記加工面に沿って延びる管状の流体通路が形成され、砥粒、結合材および気孔を有する多孔質体により前記研磨層と一体に形成される砥石基部とを有し、
前記砥石基部に形成され前記流体通路に連通する給排口からの加圧流体の供給ないし負圧流体の排出により前記被加工面と前記加工面との間に流体の流れを生成するようにしたことを特徴とする砥石。
A grindstone for polishing a workpiece surface of a workpiece,
A polishing layer provided with a processing surface that is formed of a porous body having abrasive grains, a binder, and pores and that polishes the processing surface;
The communication to and fluid passage of the tubular extending along the working surface to the working surface through the pores of the polishing layer is formed, abrasive grains, formed integrally with the abrasive layer of a porous material having a binder and a pore And a grindstone base to be
A fluid flow is generated between the processing surface and the processing surface by supplying pressurized fluid from a supply / exhaust port formed on the grindstone base or communicating with the fluid passage or discharging negative pressure fluid. A whetstone characterized by that.
請求項1記載の砥石において、前記研磨層を前記加工面が平坦となったディスク形状とし、前記研磨層と一体に形成される前記砥石基部をディスク形状とすることを特徴とする砥石。   2. The grindstone according to claim 1, wherein the polishing layer has a disc shape with a flat processed surface, and the grindstone base formed integrally with the polishing layer has a disc shape. 請求項1または2記載の砥石において、遊離砥粒を有する研磨液、化学研磨剤を有するスラリー、またはこれらの混合物を前記流体通路および気孔を介して前記被加工物と前記加工面との間に供給することを特徴とする砥石。   3. The grindstone according to claim 1, wherein a polishing liquid having loose abrasive grains, a slurry having a chemical abrasive, or a mixture thereof is interposed between the workpiece and the processing surface through the fluid passage and pores. A grindstone characterized by being supplied. 請求項1〜3のいずれか1項に記載の砥石において、気孔が連通した開気孔構造の多孔質体により前記研磨層を形成し、気孔が閉じられた閉気孔構造の多孔質体により前記砥石基部を形成することを特徴とする砥石。   The grindstone according to any one of claims 1 to 3, wherein the polishing layer is formed by a porous body having an open pore structure in which pores communicate with each other, and the grindstone is formed by a porous body having a closed pore structure in which pores are closed. A grindstone characterized by forming a base. 請求項1〜3のいずれか1項に記載の砥石において、前記加工面以外の砥石外面に封孔処理層または気孔が閉じられた閉気孔構造の多孔質体からなる閉気孔体層を形成することを特徴とする砥石。   The grindstone according to any one of claims 1 to 3, wherein a closed pore body layer made of a porous body having a closed pore structure in which pores are closed is formed on a grindstone outer surface other than the processed surface. A whetstone characterized by that. 請求項1〜5のいずれか1項に記載の砥石において、
前記流体通路は、同心円状、渦巻き状及び格子状のうちのいずれかの形状を有して形成されることを特徴とする砥石。
In the grindstone according to any one of claims 1 to 5,
The grindstone according to claim 1, wherein the fluid passage is formed to have any one of a concentric shape, a spiral shape, and a lattice shape .
JP2005312334A 2005-10-27 2005-10-27 Whetstone Active JP4292179B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005312334A JP4292179B2 (en) 2005-10-27 2005-10-27 Whetstone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005312334A JP4292179B2 (en) 2005-10-27 2005-10-27 Whetstone

Publications (2)

Publication Number Publication Date
JP2007118119A JP2007118119A (en) 2007-05-17
JP4292179B2 true JP4292179B2 (en) 2009-07-08

Family

ID=38142509

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005312334A Active JP4292179B2 (en) 2005-10-27 2005-10-27 Whetstone

Country Status (1)

Country Link
JP (1) JP4292179B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5373171B1 (en) * 2012-10-20 2013-12-18 株式会社ナノテム Grinding wheel and grinding / polishing apparatus using the same
JP6231334B2 (en) * 2013-09-10 2017-11-15 株式会社ナノテム Thin plate substrate grinding method and grinding apparatus used therefor
TWI583499B (en) * 2015-10-22 2017-05-21 China Grinding Wheel Corp A disc with internal supply of fluid structure
JP6894805B2 (en) 2017-08-21 2021-06-30 株式会社荏原製作所 Polishing liquid discharge method in substrate polishing equipment and substrate polishing equipment
JP7403998B2 (en) * 2019-08-29 2023-12-25 株式会社荏原製作所 Polishing equipment and polishing method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6285355U (en) * 1985-11-15 1987-05-30
JPH01164546A (en) * 1987-12-21 1989-06-28 Hitachi Zosen Corp Grinding work
JPH01193174A (en) * 1988-01-27 1989-08-03 Toshiba Corp Grinding wheel
JPH0224053A (en) * 1988-07-11 1990-01-26 Souzou Kagaku:Kk Grindstone for lapping and manufacture thereof
JP2557340Y2 (en) * 1993-05-10 1997-12-10 株式会社ノリタケカンパニーリミテド Flow-through grinding wheel
JP2002187062A (en) * 2000-12-22 2002-07-02 Toshiba Mach Co Ltd Device, method and grinding wheel for surface grinding

Also Published As

Publication number Publication date
JP2007118119A (en) 2007-05-17

Similar Documents

Publication Publication Date Title
JP5373171B1 (en) Grinding wheel and grinding / polishing apparatus using the same
JP3823086B2 (en) Polishing pad and polishing method
JP5034427B2 (en) Method for releasing dynamic pressure of grinding fluid in grinding, grinding method using the method, and grinding wheel used in the grinding method
WO2018073905A1 (en) Grindstone
JP2017170554A (en) Vitrified grindstone for low pressure lapping for lapping machine and polishing method using the same
JP4746007B2 (en) Grinding tool, grinding method and grinding system
JP4292179B2 (en) Whetstone
JP4336340B2 (en) Polishing method and polishing apparatus
JP5511343B2 (en) Polishing equipment
JP6302889B2 (en) Whetstone
JP4262226B2 (en) Polishing apparatus and polishing method
JPS63288655A (en) Method and device for grinding ceramics
JP4746788B2 (en) Super-abrasive wheel for surface honing, dressing method thereof, and grinding apparatus using the wheel
JPH0683257U (en) Liquid-type grinding wheel
JP2002059360A (en) Lapping machine
JP6231334B2 (en) Thin plate substrate grinding method and grinding apparatus used therefor
JPH11854A (en) Machining method for wafer and surface grinding machine
JP2014200868A (en) Polishing device
TW201815521A (en) Grindstone capable of achieving grinding, polishing, and super-fine polishing using the same grindstone without causing clogging even if it is used continuously
JP6286196B2 (en) Grinding wheel and grinding apparatus using the same
JP2602073B2 (en) Grinding wheel with ultra-thin superabrasive layer and its manufacturing method
JP2017196725A (en) Wrapping polishing surface plate and device using the same
JP2002103224A (en) Rotary dresser
JPH11216675A (en) Highly-accurate, super-abrasive grain wheel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070510

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20080922

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080922

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20081016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081021

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090324

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090406

R150 Certificate of patent or registration of utility model

Ref document number: 4292179

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120410

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120410

Year of fee payment: 3

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120410

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120410

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120410

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130410

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130410

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130410

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140410

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250