[go: up one dir, main page]

JP4289768B2 - Photovoltaic device - Google Patents

Photovoltaic device Download PDF

Info

Publication number
JP4289768B2
JP4289768B2 JP2000217372A JP2000217372A JP4289768B2 JP 4289768 B2 JP4289768 B2 JP 4289768B2 JP 2000217372 A JP2000217372 A JP 2000217372A JP 2000217372 A JP2000217372 A JP 2000217372A JP 4289768 B2 JP4289768 B2 JP 4289768B2
Authority
JP
Japan
Prior art keywords
film
microcrystalline
germanium
bond
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000217372A
Other languages
Japanese (ja)
Other versions
JP2002033500A (en
Inventor
雅夫 磯村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2000217372A priority Critical patent/JP4289768B2/en
Priority to US09/901,629 priority patent/US6521883B2/en
Publication of JP2002033500A publication Critical patent/JP2002033500A/en
Application granted granted Critical
Publication of JP4289768B2 publication Critical patent/JP4289768B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/545Microcrystalline silicon PV cells

Landscapes

  • Photovoltaic Devices (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、微結晶シリコンゲルマニウム(μc−SiGe)を光活性層に用いた光起電力素子に関する。
【0002】
【従来の技術】
従来、原料ガスのグロー放電分解や光CVD法により形成される非晶質シリコン(以下、a−Siと記す。)を主材料にした光起電力装置は、薄膜、大面積化が容易という特長を持ち、低コスト光起電力装置として期待されている。
【0003】
この種の光起電力装置の構造としては、pin接合を有するpin型a−Si光起電力装置が一般的である。図7はこのような光起電力装置の構造を示し、ガラス基板21上に、透明電極22、p型a−Si層23、真性(i)型a−Si層24、n型a−Si層25、金属電極26を順次積層することにより作成される。この光起電力装置は、ガラス基板21を通して入射する光により光起電力が発生する。
【0004】
上記したa−Si光起電力装置は、光照射後、光劣化が生じることが知られている。そこで、薄膜で且つ光照射に対して安定性の高い材料として、微結晶シリコンがあり、この微結晶シリコンを光活性層に用いた光起電力装置が提案されている。この微結晶シリコンは微結晶Si相とa−Si相とが混在する薄膜である。
【0005】
【発明が解決しようとする課題】
上記したように、非晶質シリコン(Si)系の半導体膜の持つ欠点である光劣化を克服する技術として、微結晶シリコン(Si)が注目されているが、微結晶シリコンは非晶質シリコンに比べ吸収係数が小さい。このため、光活性層に用いようとすると、2μmもしくはそれ以上の膜厚を要するため、太陽電池の生産性を考えた場合、非常に速い成膜速度を要求される。しかしながら、現状では良質な特性を維持したままこのような成膜速度を達成することはできない。
【0006】
そこで、この発明者は、微結晶シリコンより光吸収係数が大きい微結晶シリコンゲルマニウム(SiGe)を光活性層に用い、必要な光活性層の膜厚を薄くすることで、従来の問題点を解決することを鋭意検討した。問題解決には以下の点が満足されなくてはならない。
【0007】
活性層の膜厚を1μm以下にするためには少なくとも微結晶シリコンの3倍程度の吸収係数が必要である。このためには、微結晶シリコンゲルマニウム(SiGe)の中のゲルマニウム(Ge)の組成比が20原子%以上である必要がある。
【0008】
この発明は、上記事情に鑑みなされたものにして、膜厚の薄い微結晶シリコン系半導体薄膜を光活性層に用いた光起電力装置を提供することを目的とする。
【0009】
【課題を解決するための手段】
この発明は、ゲルマニウムの組成比が20原子%以上40原子%以下、且つラマン分光法によって観察されるシリコンとシリコンの結合からの信号強度に対し、ゲルマニウムとゲルマニウムの結合からの信号強度が35%以上55%以下、シリコンとゲルマニウムの結合からの信号強度が前記2信号強度の間である微結晶シリコンゲルマニウムを光活性層として用い、且つその膜厚が1μm以下であることを特徴とする。
【0010】
また、ラマン分光法によって観察されるシリコンとシリコンの結合からの信号強度に対し前記ゲルマニウムとゲルマニウムの結合からの信号強度が35%以上55%以下にするとよい。
【0011】
上記の構成によれば、膜厚の薄い微結晶シリコンゲルマニウムを光活性層に用いて、変換効率の良好な光起電力装置が得られる。
【0012】
【発明の実施の形態】
以下、この発明の実施の形態につき図面を参照して説明する。
図1は微結晶シリコンゲルマニウム(SiGe)膜を光活性層に用いたこの発明の実施形態にかかる光起電力装置を示す断面図である。
【0013】
図1に示すようにこの発明にかかる光起電力装置は、ガラス、金属などからなる支持基板1上に、銀(Ag)などの高反射金属膜2が形成される。なお、基板1表面には光閉じ込め効果を備えるために、エッチングなどにより微小の凹凸が形成されている。この凹凸は高反射金属膜2表面に設けてもよい。そして、高反射金属膜2上に膜厚500ÅのZnOからなる透明導電膜3が設けられる。この透明導電膜3は次に形成されるn型微結晶シリコン(Si)層4と高反射金属膜2との合金化反応等を阻止する。
【0014】
この透明導電膜3上に、膜厚300Åのn型微結晶Si膜4、膜厚5000Åのこの発明にかかるi型微結晶SiGe膜5及び膜厚300Åのp型微結晶Si膜6が順次積層形成されている。そして、p型微結晶Si膜6上に膜厚500ÅのZnOからなる表面透明導電膜7が設けられている。さらに、透明導電膜7上に銀などからなる櫛形電極8が設けられる。光は透明導電膜7側から入射する。
【0015】
上記したZnO膜はスパッター法、n型微結晶Si膜4とp型微結晶Si膜6は13.56MHzの平行平板型RFプラズマCVDにより形成されている。尚、微結晶SiGe膜5以外の部分は特に作成法の指定はなく、この発明の効果が得られるものであれば何でも良い。また、透明導電膜3、7はZnO膜以外のSnO2膜、ITOでも良い。
【0016】
ところで、通常微結晶シリコンを光活性層に用いた光起電力素子は、2μm以上の膜厚を要するが、使用材料量、スループット、素子の安定性等を考慮すると、光活性層の膜厚は0.1〜1.0μmが適当である。そこで、この発明の特徴とするi型微結晶SiGe膜5は次のように形成している。
【0017】
微結晶SiGe膜5は、13.56MHzの平行平板RFプラズマCVDにより、投入電力は200mW/cm2、圧力は39.9Pa、基板温度250℃で形成する。そして、水素希釈率(H2/SiH4+GeH4)は30、ゲルマン流量比(GeH4/SiH4+GeH4)は10%の条件で形成した。尚、プラズマCVDの電源周波数は特に指定するものではなく、さらに高周波であってもかまわないし、直流であってもかまわない。
【0018】
上記条件で作成すると、微結晶SiGe膜5のGe組成比は30原子%、成膜速度は約2Å/秒である。また、上記微結晶SiGe膜5は20Å〜300Åの粒径のSi、Ge、SiGe結晶粒と非晶質部からなり、非晶質部分の比率は10%未満である。また、光吸収係数はそれぞれ800nmで5000cm-1、900nmで1500cm-1、1000nmで800cm-1以上であり、これは微結晶シリコンの値の約4倍である。このため、膜厚は微結晶シリコンの場合の1/4である5000Åとした。
【0019】
図2は、上記した方法により形成したのGe組成比が30原子%の微結晶SiGe膜をラマン分光法で測定したラマン分光スペクトル図である。なお、物質に振動数υ0の単色光を当てて散乱させると、ラマン効果によってストークス線υ0−υmnと反ストークス線υ0+υmnのラマン線が表れる。このラマン線の波長や散乱強度を測定することにより、物質の同定や定量を行うものをラマン分光法という。
【0020】
図2に示すように、上記した方法により形成したのGe組成比が30原子%の微結晶SiGe膜においては、500cm-1付近のピークがシリコンとシリコンの結合(Si−Si)からの信号、400cm-1付近のピークがシリコンとゲルマニウムの結合(Si−Ge)からの信号、そして、280cm-1付近のピークがゲルマニウムとゲルマニウムの結合(Ge−Ge)からの信号である。Si−Geからの信号はピーク高さで比べるとSi−Siのものと比べて70%、Ge−Geからの信号はSi−Siのものと比べて50%である。Si−Geの結合からの信号がSi−SiとGe−Geからの信号の間となる。
【0021】
また、この微結晶シリコンゲルマニウム(SiGe)膜を光活性層に用いた光起電力装置をAM−1.5、100mW/cm2光照射下で変換効率を測定したところ、変換効率は8%を示した。これは活性層として膜厚2μmの微結晶Siを用いた以外は同条件で形成した光起電力素子と同等の値であり、1/4の光活性層の膜厚で同じ特性が得られたことになる。
【0022】
次に、比較のためにGeの組成比は30原子%である微結晶シリコンゲルマニウム(SiGe)であるが、ラマン分光法によって測定される信号強度が上記した実施形態とは異なる微結晶シリコンゲルマニウム膜を形成した。図3は、この比較のために形成したGe組成比が30原子%の微結晶SiGe膜をラマン分光法で測定したラマン分光スペクトル図である。この形成条件は、投入電力を1000mW/cm2、圧力を399Paにした以外は上記の条件と同じである。
【0023】
この条件で形成すると、気相で重合が起こること、表面反応時間が十分でないなどの原因により、組成に偏りができやすくなる。このため、Si−Geからの信号はピーク高さで比べるとSi−Siのものと比べて45%、Ge−Geからの信号は70%となった。
【0024】
この微結晶シリコンゲルマニウム(SiGe)膜を光活性層に用いた光起電力装置をAM−1.5、100mW/cm2光照射下で変換効率を測定したところ、変換効率は3%であった。
【0025】
次に、投入電力及び圧力を変化させてSi−Siの結合からの信号強度に対するGe−Geの結合からの信号が変化した微結晶SiGeを形成し、この膜を光活性層に用いた光起電力装置を作成した。これら光起電力装置をAM−1.5、100mW/cm2光照射下で測定した変換効率の変化を図4に示す。
【0026】
図4から分かるように、ラマン分光法によって観察されるSi−Siの結合からの信号強度に対し、ピーク高さで比べてGe−Geの結合からの信号強度が30%未満及び60%を越えると、僅かな変化によっても変換効率が大幅に減少する。一方、ラマン分光法によって観察されるSi−Siの結合からの信号強度に対し、ピーク高さで比べてGe−Geの結合からの信号強度が30%以上60%以下の場合には、信号強度が多少変化しても変換効率は僅かしか変化しない。量産効率等を考慮した場合、多少の組成の変化により大幅に変換効率が変化することは好ましくない。このため、ラマン分光法によって観察されるSi−Siの結合からの信号強度に対し、ピーク高さで比べてGe−Geの結合からの信号強度が30%以上60%以下の場合であれば、組成の変化によっても大幅に変換効率が変わらずよい特性が得られる。さらに、ラマン分光法によって観察されるSi−Siの結合からの信号強度に対し、ピーク高さで比べてGe−Ge結合からの信号強度が35%以上55%以下の場合には、より良好な結果が得られる。
【0027】
次に、13.56MHzの平行平板RFプラズマCVDにより、投入電力は200mW/cm2、圧力は39.9Pa、基板温度250℃に設定し、水素希釈率(H2/SiH4+GeH4)を30、ゲルマン流量比(GeH4/SiH4+GeH4)を5%から50%まで変化させて、Geの組成比を変化させて微結晶SiGe膜を形成した。この条件で形成した微結晶SiGe膜は、ラマン分光法によって観察されるSi−Siの結合からの信号強度に対し、ピーク高さで比べてGe−Geの結合からの信号強度が30%以上60%以下であった。そして、この微結晶シリコンゲルマニウム膜を光活性層に用いた光起電力装置を作成した。これら光起電力装置をAM−1.5、100mW/cm2光照射下で測定した変換効率の変化を図5に示す。この図5より、Geの組成比が20原子%から40原子%の間で良好な値が得られていることが分かる。
【0028】
次に、この発明の第2の実施形態を図6に示す。図6は、この発明の第2の実施形態にかかる光起電力装置を示す断面図である。尚、上記した実施の形態と同じ部分には、同じ符号を付し、説明を省略する。この実施の形態は、nip構造の半導体層を数段階積層した構造を持つ。すなわち、支持基板1上に高反射金属膜2、透明導電膜3を設け、その上にn型微結晶Si膜4(4a)、i型半導体膜5(5a)、p型半導体膜6(6a)をこの順序で数段階積層形成している。
【0029】
この図6に示す実施形態は、図1に示す実施形態の光起電力素子の入射側にn型微結晶Si膜4a、i型非晶質Si膜5a、p型非晶質SiC膜6aの光起電力素子を積層した構造である。p型非晶質SiC膜6aとi型非晶質Si膜5aは13.56MHzの平行平板型RFプラズマCVDで形成されている。それ以外は上記した実施形態と同じである。
【0030】
上記した第2の実施形態では、第1の実施形態と同測定条件下で、短絡電流12mA/cm2、開放電圧1.30V、曲線因子0.71、変換効率11%を示した。これも微結晶SiGe活性層を微結晶Siにした以外は同条件で形成した光起電力素子と同等の値であり、本発明の効果が示された。
【0031】
なお、この発明は、上記した第1の実施形態のように、基板上にnip構造の半導体層を単層に形成した構造、第2の実施形態のように、基板上にnip構造の半導体層を2層に形成した構造の光起電力装置に限らず、3層以上の構造を有する積層型光起電力装置にも適用することはもちろん可能である。さらに、上記実施の形態とは逆の方向から光が入射するタイプ、すなわち、基板側から光が入射するタイプの光起電力装置にももちろんこの発明は適用できる。
【0032】
【発明の効果】
以上説明したように、この発明によれば、膜厚の薄い微結晶シリコンゲルマニウムを光活性層に用いて、変換効率の良好な光起電力装置を得ることができる。
【図面の簡単な説明】
【図1】微結晶シリコンゲルマニウム(SiGe)膜を光活性層に用いたこの発明の実施形態にかかる光起電力装置を示す断面図である。
【図2】この発明の実施形態にかかるGe組成比が30原子%の微結晶SiGe膜をラマン分光法で測定したラマン分光スペクトル図である。
【図3】比較のために形成したGe組成比が30原子%の微結晶SiGe膜をラマン分光法で測定したラマン分光スペクトル図である。
【図4】Si−Siの結合からの信号強度に対するGe−Geの結合からの信号が変化した微結晶SiGeを光活性層に用いた光起電力装置の変換効率を測定した特性図である。
【図5】Ge組成比を変化させた微結晶SiGeを光活性層に用いた光起電力装置の変換効率を測定した特性図である。
【図6】この発明の第2の実施形態にかかる光起電力素子を示す断面図である。
【図7】従来の光起電力素子の構造を示す断面図である。
【符号の説明】
1 支持基板
2 高反射金属膜
3 透明導電膜
4 n型微結晶Si膜
5 i型微結晶SiGe膜
6 p型微結晶Si膜
7 表面透明導電膜
8 櫛形電極
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a photovoltaic device using microcrystalline silicon germanium (μc-SiGe) as a photoactive layer.
[0002]
[Prior art]
Conventionally, photovoltaic devices mainly made of amorphous silicon (hereinafter referred to as a-Si) formed by glow discharge decomposition of a source gas or a photo-CVD method have the advantage of being thin and easy to increase in area. And is expected as a low-cost photovoltaic device.
[0003]
As a structure of this type of photovoltaic device, a pin type a-Si photovoltaic device having a pin junction is generally used. FIG. 7 shows the structure of such a photovoltaic device. On the glass substrate 21, a transparent electrode 22, a p-type a-Si layer 23, an intrinsic (i) -type a-Si layer 24, an n-type a-Si layer. 25 and the metal electrode 26 are sequentially laminated. In this photovoltaic device, photovoltaic power is generated by light incident through the glass substrate 21.
[0004]
The a-Si photovoltaic device described above is known to undergo photodegradation after light irradiation. Therefore, there is microcrystalline silicon as a material that is a thin film and highly stable to light irradiation, and a photovoltaic device using this microcrystalline silicon for a photoactive layer has been proposed . This microcrystalline silicon is a thin film in which a microcrystalline Si phase and an a-Si phase are mixed.
[0005]
[Problems to be solved by the invention]
As described above, microcrystalline silicon (Si) has attracted attention as a technique for overcoming photodegradation, which is a drawback of amorphous silicon (Si) -based semiconductor films, but microcrystalline silicon is amorphous silicon. The absorption coefficient is smaller than For this reason, if it is used for the photoactive layer, a film thickness of 2 μm or more is required. Therefore, when considering the productivity of the solar cell, a very high film formation rate is required. However, at present, such a deposition rate cannot be achieved while maintaining good quality characteristics.
[0006]
Therefore, the present inventors solved the conventional problems by using microcrystalline silicon germanium (SiGe), which has a light absorption coefficient larger than that of microcrystalline silicon, for the photoactive layer and reducing the required photoactive layer thickness. We studied earnestly. The following points must be satisfied to solve the problem.
[0007]
In order to make the thickness of the active layer 1 μm or less, an absorption coefficient at least about three times that of microcrystalline silicon is required. For this purpose, the composition ratio of germanium (Ge) in microcrystalline silicon germanium (SiGe) needs to be 20 atomic% or more.
[0008]
The present invention has been made in view of the above circumstances, and an object thereof is to provide a photovoltaic device using a thin microcrystalline silicon-based semiconductor thin film as a photoactive layer.
[0009]
[Means for Solving the Problems]
In the present invention, the composition ratio of germanium is 20 atom% or more and 40 atom% or less, and the signal intensity from the bond between germanium and germanium is 35% with respect to the signal intensity from the bond between silicon and silicon observed by Raman spectroscopy. More than 55% , microcrystalline silicon germanium whose signal intensity from the bond of silicon and germanium is between the two signal intensities is used as the photoactive layer, and the film thickness is 1 μm or less.
[0010]
The signal intensity from the germanium-germanium bond is preferably 35% to 55% with respect to the signal intensity from the silicon-silicon bond observed by Raman spectroscopy.
[0011]
According to said structure, a photovoltaic device with favorable conversion efficiency is obtained using a microcrystalline silicon germanium with a thin film thickness for a photoactive layer.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a cross-sectional view showing a photovoltaic device according to an embodiment of the present invention using a microcrystalline silicon germanium (SiGe) film as a photoactive layer.
[0013]
As shown in FIG. 1, in the photovoltaic device according to the present invention, a highly reflective metal film 2 such as silver (Ag) is formed on a support substrate 1 made of glass, metal or the like. In addition, in order to provide a light confinement effect on the surface of the substrate 1, minute irregularities are formed by etching or the like. The unevenness may be provided on the surface of the highly reflective metal film 2. A transparent conductive film 3 made of ZnO having a thickness of 500 mm is provided on the highly reflective metal film 2. The transparent conductive film 3 prevents an alloying reaction between the n-type microcrystalline silicon (Si) layer 4 and the highly reflective metal film 2 to be formed next.
[0014]
On this transparent conductive film 3, an n-type microcrystalline Si film 4 having a thickness of 300 mm, an i-type microcrystalline SiGe film 5 according to the present invention having a thickness of 5000 mm, and a p-type microcrystalline Si film 6 having a thickness of 300 mm are sequentially laminated. Is formed. A surface transparent conductive film 7 made of ZnO with a thickness of 500 mm is provided on the p-type microcrystalline Si film 6. Further, a comb electrode 8 made of silver or the like is provided on the transparent conductive film 7. Light enters from the transparent conductive film 7 side.
[0015]
The above ZnO film is formed by sputtering, and the n-type microcrystalline Si film 4 and the p-type microcrystalline Si film 6 are formed by parallel plate RF plasma CVD at 13.56 MHz. It should be noted that there is no particular designation of the production method for portions other than the microcrystalline SiGe film 5, and any material can be used as long as the effect of the present invention can be obtained. The transparent conductive films 3 and 7 may be SnO 2 films other than ZnO films and ITO.
[0016]
By the way, a photovoltaic element using microcrystalline silicon as a photoactive layer usually requires a film thickness of 2 μm or more. However, considering the amount of material used, throughput, element stability, etc., the film thickness of the photoactive layer is 0.1-1.0 micrometer is suitable. Therefore, the i-type microcrystalline SiGe film 5 which is a feature of the present invention is formed as follows.
[0017]
The microcrystalline SiGe film 5 is formed by parallel plate RF plasma CVD at 13.56 MHz at an input power of 200 mW / cm 2 , a pressure of 39.9 Pa, and a substrate temperature of 250 ° C. The hydrogen dilution ratio (H 2 / SiH 4 + GeH 4 ) was 30 and the germane flow rate ratio (GeH 4 / SiH 4 + GeH 4 ) was 10%. The power supply frequency of plasma CVD is not particularly specified, and may be a higher frequency or a direct current.
[0018]
When prepared under the above conditions, the Ge composition ratio of the microcrystalline SiGe film 5 is 30 atomic%, and the deposition rate is about 2 Å / sec. The microcrystalline SiGe film 5 is composed of Si, Ge, SiGe crystal grains having a particle diameter of 20 to 300 mm and an amorphous part, and the ratio of the amorphous part is less than 10%. Further, 5000 cm -1 respectively the light absorption coefficient 800 nm, it is at 1500 cm -1, 1000 nm at 800 cm -1 or more at 900 nm, which is about 4 times the value of the microcrystalline silicon. For this reason, the film thickness was set to 5000 mm, which is ¼ that of microcrystalline silicon.
[0019]
FIG. 2 is a Raman spectroscopic spectrum diagram of the microcrystalline SiGe film formed by the above-described method and having a Ge composition ratio of 30 atomic% measured by Raman spectroscopy. Note that when a monochromatic light having a frequency υ 0 is applied to the material and scattered, Raman lines of Stokes lines υ 0mn and anti-Stokes lines υ 0 + υ mn appear. A method for identifying and quantifying a substance by measuring the wavelength and scattering intensity of the Raman line is called Raman spectroscopy.
[0020]
As shown in FIG. 2, in the microcrystalline SiGe film formed by the above-described method and having a Ge composition ratio of 30 atomic%, a peak near 500 cm −1 is a signal from a silicon-silicon bond (Si—Si), The peak near 400 cm −1 is the signal from the bond between silicon and germanium (Si—Ge), and the peak near 280 cm −1 is the signal from the bond between germanium and germanium (Ge—Ge). The signal from Si-Ge is 70% compared to that of Si-Si when compared with peak height, and the signal from Ge-Ge is 50% compared to that of Si-Si. The signal from the Si-Ge bond is between the signals from Si-Si and Ge-Ge.
[0021]
In addition, when the photovoltaic device using this microcrystalline silicon germanium (SiGe) film as the photoactive layer was measured for conversion efficiency under AM-1.5, 100 mW / cm 2 light irradiation, the conversion efficiency was 8%. Indicated. This is the same value as the photovoltaic element formed under the same conditions except that microcrystalline Si having a film thickness of 2 μm was used as the active layer, and the same characteristics were obtained with a film thickness of ¼ of the photoactive layer. It will be.
[0022]
Next, for comparison, microcrystalline silicon germanium (SiGe) having a composition ratio of Ge of 30 atomic% is different from the above-described embodiment in the signal intensity measured by Raman spectroscopy. Formed. FIG. 3 is a Raman spectrum obtained by measuring a microcrystalline SiGe film having a Ge composition ratio of 30 atomic% formed for this comparison by Raman spectroscopy. The formation conditions are the same as the above conditions except that the input power is 1000 mW / cm 2 and the pressure is 399 Pa.
[0023]
When formed under these conditions, the composition tends to be biased due to the occurrence of polymerization in the gas phase and insufficient surface reaction time. For this reason, the signal from Si—Ge was 45% compared to that of Si—Si, and the signal from Ge—Ge was 70% when compared in terms of peak height.
[0024]
When the conversion efficiency of the photovoltaic device using this microcrystalline silicon germanium (SiGe) film as a photoactive layer was measured under AM-1.5, 100 mW / cm 2 light irradiation, the conversion efficiency was 3%. .
[0025]
Next, by changing the input power and pressure, microcrystalline SiGe was formed in which the signal from the Ge-Ge bond changed with respect to the signal intensity from the Si-Si bond, and this film was used as a photoactive layer. A power device was created. FIG. 4 shows the change in conversion efficiency measured for these photovoltaic devices under AM-1.5, 100 mW / cm 2 light irradiation.
[0026]
As can be seen from FIG. 4, the signal intensity from the Ge—Ge bond is less than 30% and more than 60% compared to the peak height with respect to the signal intensity from the Si—Si bond observed by Raman spectroscopy. Even a slight change greatly reduces the conversion efficiency. On the other hand, when the signal intensity from the Ge—Ge bond is 30% or more and 60% or less compared with the peak height, the signal intensity from the Si—Si bond observed by Raman spectroscopy. Even if changes slightly, the conversion efficiency changes only slightly. Considering mass production efficiency and the like, it is not preferable that the conversion efficiency changes greatly due to a slight change in composition. For this reason, if the signal intensity from the Ge—Ge bond is 30% or more and 60% or less compared with the peak height with respect to the signal intensity from the Si—Si bond observed by Raman spectroscopy, Even if the composition changes, the conversion efficiency does not change significantly and good characteristics can be obtained. Furthermore, when the signal intensity from the Ge—Ge bond is 35% or more and 55% or less as compared with the peak height, the signal intensity from the Si—Si bond observed by Raman spectroscopy is better. Results are obtained.
[0027]
Next, by 13.56 MHz parallel plate RF plasma CVD, the input power is set to 200 mW / cm 2 , the pressure is set to 39.9 Pa, the substrate temperature is 250 ° C., and the hydrogen dilution rate (H 2 / SiH 4 + GeH 4 ) is set to 30. The microcrystalline SiGe film was formed by changing the germanium flow rate ratio (GeH 4 / SiH 4 + GeH 4 ) from 5% to 50% and changing the composition ratio of Ge. The microcrystalline SiGe film formed under these conditions has a signal intensity from the Ge—Ge bond of 30% or more compared to the signal intensity from the Si—Si bond observed by Raman spectroscopy. % Or less. And the photovoltaic apparatus which used this microcrystal silicon germanium film | membrane for the photoactive layer was created. FIG. 5 shows the change in conversion efficiency measured for these photovoltaic devices under AM-1.5, 100 mW / cm 2 light irradiation. From FIG. 5, it can be seen that good values are obtained when the Ge composition ratio is between 20 atomic% and 40 atomic%.
[0028]
Next, a second embodiment of the present invention is shown in FIG. FIG. 6 is a sectional view showing a photovoltaic apparatus according to the second embodiment of the present invention. In addition, the same code | symbol is attached | subjected to the same part as above-mentioned embodiment, and description is abbreviate | omitted. This embodiment has a structure in which semiconductor layers having a nip structure are stacked in several stages. That is, a highly reflective metal film 2 and a transparent conductive film 3 are provided on a support substrate 1, and an n-type microcrystalline Si film 4 (4a), an i-type semiconductor film 5 (5a), and a p-type semiconductor film 6 (6a) are provided thereon. ) In several layers in this order.
[0029]
In the embodiment shown in FIG. 6, an n-type microcrystalline Si film 4a, an i-type amorphous Si film 5a, and a p-type amorphous SiC film 6a are formed on the incident side of the photovoltaic element of the embodiment shown in FIG. This is a structure in which photovoltaic elements are stacked. The p-type amorphous SiC film 6a and the i-type amorphous Si film 5a are formed by parallel plate type RF plasma CVD at 13.56 MHz. The rest is the same as the above-described embodiment.
[0030]
In the second embodiment described above, a short-circuit current of 12 mA / cm 2 , an open-circuit voltage of 1.30 V, a fill factor of 0.71, and a conversion efficiency of 11% were shown under the same measurement conditions as in the first embodiment. This is also the same value as the photovoltaic element formed under the same conditions except that the microcrystalline SiGe active layer was changed to microcrystalline Si, and the effect of the present invention was shown.
[0031]
The present invention has a structure in which a nip structure semiconductor layer is formed on a substrate as in the first embodiment, and a nip structure semiconductor layer on the substrate as in the second embodiment. Of course, the present invention can be applied not only to a photovoltaic device having a structure in which two layers are formed but also to a stacked photovoltaic device having a structure having three or more layers. Furthermore, the present invention can of course be applied to a photovoltaic device of a type in which light enters from the opposite direction to the above embodiment, that is, a type of light that enters from the substrate side.
[0032]
【The invention's effect】
As described above, according to the present invention, a photovoltaic device with good conversion efficiency can be obtained by using microcrystalline silicon germanium having a small thickness for the photoactive layer.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a photovoltaic device according to an embodiment of the present invention using a microcrystalline silicon germanium (SiGe) film as a photoactive layer.
FIG. 2 is a Raman spectrum obtained by measuring a microcrystalline SiGe film having a Ge composition ratio of 30 atomic% according to an embodiment of the present invention by Raman spectroscopy.
FIG. 3 is a Raman spectrum obtained by measuring a microcrystalline SiGe film having a Ge composition ratio of 30 atomic% formed for comparison by Raman spectroscopy.
FIG. 4 is a characteristic diagram in which the conversion efficiency of a photovoltaic device using microcrystalline SiGe in which the signal from the Ge—Ge bond is changed with respect to the signal intensity from the Si—Si bond is used for the photoactive layer.
FIG. 5 is a characteristic diagram obtained by measuring the conversion efficiency of a photovoltaic device using microcrystalline SiGe having a changed Ge composition ratio as a photoactive layer.
FIG. 6 is a sectional view showing a photovoltaic element according to a second embodiment of the present invention.
FIG. 7 is a cross-sectional view showing the structure of a conventional photovoltaic device.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Support substrate 2 High reflection metal film 3 Transparent conductive film 4 n-type microcrystalline Si film 5 i-type microcrystalline SiGe film 6 p-type microcrystalline Si film 7 Surface transparent conductive film 8 Comb electrode

Claims (1)

ゲルマニウムの組成比が20原子%以上40原子%以下、且つラマン分光法によって観察されるシリコンとシリコンの結合からの信号強度に対し、ゲルマニウムとゲルマニウムの結合からの信号強度が35%以上55%以下、シリコンとゲルマニウムの結合からの信号強度が前記2信号強度の間である微結晶シリコンゲルマニウムを光活性層として用い、且つその膜厚が1μm以下であることを特徴とする光起電力装置。The composition ratio of germanium is 20 atom% or more and 40 atom% or less, and the signal intensity from the bond between germanium and germanium is 35% or more and 55% or less with respect to the signal intensity from the silicon-silicon bond observed by Raman spectroscopy. A photovoltaic device, characterized in that microcrystalline silicon germanium having a signal intensity from a bond of silicon and germanium between the two signal intensities is used as a photoactive layer, and the film thickness is 1 μm or less.
JP2000217372A 2000-07-18 2000-07-18 Photovoltaic device Expired - Fee Related JP4289768B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2000217372A JP4289768B2 (en) 2000-07-18 2000-07-18 Photovoltaic device
US09/901,629 US6521883B2 (en) 2000-07-18 2001-07-11 Photovoltaic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000217372A JP4289768B2 (en) 2000-07-18 2000-07-18 Photovoltaic device

Publications (2)

Publication Number Publication Date
JP2002033500A JP2002033500A (en) 2002-01-31
JP4289768B2 true JP4289768B2 (en) 2009-07-01

Family

ID=18712491

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000217372A Expired - Fee Related JP4289768B2 (en) 2000-07-18 2000-07-18 Photovoltaic device

Country Status (1)

Country Link
JP (1) JP4289768B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4240984B2 (en) 2002-10-08 2009-03-18 三洋電機株式会社 Photoelectric conversion device
JP2007281018A (en) * 2006-04-03 2007-10-25 Mitsubishi Heavy Ind Ltd Photoelectric conversion device and manufacturing method thereof
JP2012522403A (en) * 2009-05-06 2012-09-20 シンシリコン・コーポレーション Photovoltaic cell and method for enhancing light capture in a semiconductor layer stack

Also Published As

Publication number Publication date
JP2002033500A (en) 2002-01-31

Similar Documents

Publication Publication Date Title
US6521883B2 (en) Photovoltaic device
Guha et al. High efficiency multi-junction thin film silicon cells incorporating nanocrystalline silicon
JP2001189478A (en) Semiconductor device and manufacturing method thereof
JPWO2005011002A1 (en) Silicon-based thin film solar cell
JP2005045129A (en) Stacked photoelectric converter device and its manufacturing method
JP2007281018A (en) Photoelectric conversion device and manufacturing method thereof
WO2006057160A1 (en) Thin film photoelectric converter
JP2001156311A5 (en)
JPH11251612A (en) Method for manufacturing photovoltaic element
Cai et al. Enhancing Performance of GaN/Ga2O3 P‐N Junction Uvc Photodetectors via Interdigitated Structure
CN102770966A (en) Thin film photoelectric conversion device and manufacturing method thereof
JP5400322B2 (en) Silicon-based thin film solar cell and method for manufacturing the same
JP2000261011A (en) Silicon-based thin-film photoelectric transducer
Chowdhury et al. Fabrication of thin film nanocrystalline silicon solar cell with low light-induced degradation
JP4289768B2 (en) Photovoltaic device
CN103748692A (en) Solar cell and method for producing a solar cell
JP4222910B2 (en) Photovoltaic device manufacturing method
JP3792376B2 (en) Silicon-based thin film photoelectric conversion device
Smirnov et al. Improved homogeneity of microcrystalline absorber layer in thin-film silicon tandem solar cells
JP6047494B2 (en) Thin film photoelectric conversion device and manufacturing method thereof
JP2008300872A (en) Method for manufacturing laminated photoelectric conversion device
JP2008060605A (en) Stacked photoelectric converter
Huang et al. Development of Hydrogenated Microcrystalline Silicon‐Germanium Alloys for Improving Long‐Wavelength Absorption in Si‐Based Thin‐Film Solar Cells
WO2011105417A1 (en) Solar cell
JP4359913B2 (en) Thin-film silicon solar cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040601

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070813

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071211

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090303

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090331

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120410

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130410

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140410

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees