JP4289718B2 - 電源装置 - Google Patents
電源装置 Download PDFInfo
- Publication number
- JP4289718B2 JP4289718B2 JP11189799A JP11189799A JP4289718B2 JP 4289718 B2 JP4289718 B2 JP 4289718B2 JP 11189799 A JP11189799 A JP 11189799A JP 11189799 A JP11189799 A JP 11189799A JP 4289718 B2 JP4289718 B2 JP 4289718B2
- Authority
- JP
- Japan
- Prior art keywords
- input
- input current
- voltage
- switching signal
- cross point
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000001514 detection method Methods 0.000 claims description 21
- 238000009499 grossing Methods 0.000 claims description 14
- 239000003507 refrigerant Substances 0.000 description 15
- 238000001816 cooling Methods 0.000 description 8
- 238000010438 heat treatment Methods 0.000 description 7
- 239000003990 capacitor Substances 0.000 description 6
- 238000005057 refrigeration Methods 0.000 description 6
- 238000004378 air conditioning Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 238000013459 approach Methods 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
Images
Landscapes
- Inverter Devices (AREA)
- Rectifiers (AREA)
Description
【発明の属する技術分野】
本発明は電源装置に係り、特に、交流電力を直流電力に変換する電源装置に関する。
【0002】
【従来の技術】
冷凍サイクルによって冷暖房を行なう空気調和機(エアコン)では、冷暖房能力を調整するときに、コンプレッサの運転周波数を変更するものがある。すなわち、エアコンでは、コンプレッサの運転周波数を下げることにより冷暖房能力が下がり、コンプレッサの運転周波数を高くすることにより冷暖房能力が高くなる。このようなエアコンでは、インバータ制御によってコンプレッサを駆動するモータの回転数を制御している。
【0003】
インバータ制御を行なう電源装置には、PWM制御を行なうものに加えてPAM(Pulse Amplitude Modulation:パルス振幅変調)制御を行なうものがある。PAM制御では、交流電圧を整流回路によって直流電圧に変換した後、昇圧回路によって所望の電圧に変換するようになっている。この昇圧回路としてはチョッパ回路が一般的に用いられている。
【0004】
昇圧回路(チョッパ回路)は、リアクトル素子とスイッチング素子及びダイオードとコンデンサを備え、スイッチング素子をオンしてリアクトル素子に蓄えたエネルギーを、スイッチング素子をオフすることによりてコンデンサを充電する。これにより、コンデンサには、入力電圧とリアクトル素子に蓄えられたエネルギーに応じた電圧が発生する。
【0005】
このような昇圧回路では、スイッチング素子のオン時間の比率(デューティ比)を制御することにより、前段の整流回路に入力される交流の入力電流の波形及び電流値を制御することができ、直流電圧の制御と共に力率改善及び高調波電流の低減が可能となっている。また、このようなPAM制御を行う電源装置の中には、スイッチング素子のオンオフを間欠的に行うことにより簡易的にPAM制御を行うものもある。
【0006】
一方、整流回路には、力率改善や高調波電流の低減が望まれており、このために受動部品を用いたパッシブ型フィルタがあるが、このパッシブ型フィルタでは、特に入力電圧(電源電圧)が200V以上では、力率改善及び高調波電流の低減に限界があり、装置も大型化してしまう。これに対して、上記の簡易的にPAM制御を行う所謂アクティブフィルタでは、力率改善及び高調波電流の低減が可能となる。
【0007】
【発明が解決しようとする課題】
しかしながら、簡易的なPAM制御を行う電源装置では、主に高調波電流の抑制を目的としており、出力電圧を高めることが困難であるという問題があった。
【0008】
本発明は上記事実に鑑みてなされたものであり、高調波抑制と共に出力電圧の制御を可能とする電源装置を提供することを目的とする。
【0009】
【課題を解決するための手段】
上記目的を達成するために、請求項1記載の発明の電源装置は、入力される交流電力を直流電力に変換して負荷へ供給する電源装置において、前記交流電力を整流する整流手段と、前記整流手段からの出力を倍電圧にすると共に平滑化して直流電力を出力する平滑手段と、前記整流手段の出力端子の間に接続されると共に、入力されるスイッチング信号のオン/オフに基づいて開閉するスイッチング素子と、前記整流手段に入力される入力電圧を検出する入力電圧検出手段と、前記整流手段に入力される入力電流を検出する入力電流検出手段と、前記入力電流検出手段により検出される入力電流値と、前記スイッチング信号を出力する時間に相当する前記入力電圧の位相角及び前記スイッチング信号のデューティ比と、の対応関係を予め定めたテーブルデータが記憶された記憶手段と、前記入力電圧検出手段により検出した入力電圧の第1のゼロクロス点及び当該第1のゼロクロス点の次の第2のゼロクロス点を検出すると共に、前記第1のゼロクロス点を検出した時点から当該第1のゼロクロス点を検出した時点における前記入力電流検出手段により検出された入力電流値に対応する前記入力電圧の位相角に相当する時間が経過するまでの第1の期間は、前記テーブルデータから求めた前記第1のゼロクロス点を検出した時点における前記入力電流検出手段により検出された入力電流値に対応する前記入力電圧の位相角及び前記スイッチング信号のデューティ比で前記スイッチング素子をオン/オフし、前記第1の期間が経過してから前記入力電圧のピークを含む期間が経過した予め定めた時点までの第2の期間は、前記スイッチング信号の出力を停止し、前記第2の期間が経過してから前記予め定めた時点における前記入力電流検出手段により検出された入力電流値に対応する前記入力電圧の位相角に相当する時間が経過するまでの第3の期間は、前記テーブルデータから求めた前記予め定めた時点における前記入力電流検出手段により検出された入力電流値に対応する前記入力電圧の位相角及び前記スイッチング信号のデューティ比で前記スイッチング素子をオン/オフし、前記第3の期間が経過してから前記第2のゼロクロス点を検出するまでの第4の期間は、前記スイッチング信号の出力を停止することにより前記平滑手段からの出力電圧を制御する制御手段と、を有することを特徴としている。
【0010】
請求項1記載の発明によれば、スイッチング素子を駆動するスイッチング信号のデューティ比を入力電流によって制御する。例えば、スイッチング信号のデューティ比を高くすることにより入力電流を増加させることができる。また、スイッチング素子のオン/オフによって出力電圧も変化するので、スイッチング信号のデューティ比によって平滑手段からの出力電圧の制御が可能となる。
【0011】
このような本発明は、前記制御手段が、前記入力電力検出手段によって検出した入力電圧値が正から負または負から正へと反転するゼロクロス点を基準とし、該ゼロクロス点を検出する直前及びゼロクロス点を検出した時点から前記スイッチング素子を入力電流値に基づいて定めた入力電圧値の位相角及びデューティ比に応じてオン/オフする。言い換えれば、入力電圧の半周期内で、かつピークの部分を除いた両端部でスイッチング素子をオン/オフする。入力電圧値の位相角は、ゼロクロス点からの時間に換算することができる。すなわち、位相角を変化させることにより、スイッチングするタイミングを変化させることができる。
【0012】
このように、スイッチング信号を出力するタイミングを入力電圧のゼロクロス点に同期させることにより、入力電流の波形の調整が可能となり、高調波を抑制することができる。なお、入力電流値に基づいて定めた入力電圧値の位相角及びデューティ比は、ROMなどの記憶手段にテーブルデータとして記憶しておき、必要に応じて読み出して制御する。
【0013】
また、入力電圧値の位相角及びデューティ比は、入力電流値、すなわち負荷の大きさに基づいて最適に定められる。このため、出力電圧を効率的に所望の電圧に昇圧する制御が可能となる。さらに、平滑手段は前記整流手段からの出力を倍電圧にするので、少ない入力電力から高出力が可能となり、電源効率が向上する。
【0014】
【発明の実施の形態】
以下に図面を参照しながら、本発明の実施の形態を説明する。図2には、本実施の形態に適用した空気調和機(以下「エアコン10」と言う)の冷凍サイクルを示している。
【0015】
このエアコン10は、被空調室に設置される室内ユニット12と室外に設置される室外ユニット14によって構成されており、室内ユニット12と室外ユニット14とは、冷媒を循環させる太管の冷媒配管16Aと、細管の冷媒配管16Bとで接続されている。
【0016】
室内ユニット12には、熱交換器18が設けられており、冷媒配管16A、16Bのそれぞれの一端がこの熱交換器18に接続されている。また、冷媒配管16Aの他端は、室外ユニット14のバルブ20A、マフラー22Aを介して四方弁24に接続されている。この四方弁24は、アキュムレータ28及びマフラー22Bを介してコンプレッサ26に接続されている。
【0017】
さらに、室外ユニット14には、熱交換器30が設けられている。この熱交換器30は、一方が四方弁24に接続され、他方がキャピラリチューブ32、ストレーナ34、モジュレータ38を介してバルブ20Bに接続されている。また、ストレーナ34とモジュレータ38の間には、電動膨張弁36が設けられ、バルブ20Bには、冷媒配管16Bの他端が接続されている。これによって、室内ユニット12と室外ユニット14の間に冷凍サイクルを形成する冷媒の密閉された循環路が構成されている。
【0018】
エアコン10は、コンプレッサ26と一体に設けているコンプレッサモータ40の回転駆動によってコンプレッサ26が運転されると、この冷凍サイクル中を冷媒が循環される。このとき、エアコン10では、運転モード(冷房モード又は暖房モード)に応じて四方弁24が切換えられ、電動膨張弁36の弁開度を制御することにより、冷媒の蒸発温度が調整される。なお、図2では矢印によって暖房運転時(暖房モード)と冷房運転時(冷房モードまたはドライモード)の冷媒の流れを示している。
【0019】
冷房モードでは、コンプレッサ26によって圧縮された冷媒が熱交換器30へ供給されることにより液化され、この液化された冷媒が室内ユニット12の熱交換器18で気化することにより、熱交換器18を通過する空気を冷却する。また、暖房モードでは、逆に、コンプレッサ26によって圧縮された冷媒が、室内ユニット12の熱交換器18で凝縮されることにより放熱し、この冷媒が放熱した熱で熱交換器18を通過する空気を加熱する。
【0020】
室内ユニット12は、送風用に設けられている図示しないクロスフローファンによって室内ユニット12に吸引した空気を室内へ吹出すときに熱交換器18を通過させ温調する。これにより、室内ユニット12から吹出される空気によって室内が空調される。
【0021】
図1に示されるように、室外ユニット14には、電源装置42及びマイコン44が設けられている。電源装置42は、交流電力をコンプレッサモータ40の駆動用の直流電力に変換する。また、マイコン44は、室外ユニット14の作動を制御すると共に、電源装置42の作動を制御する。
【0022】
例えば、マイコン44は、例えばシリアル通信等によって室内ユニット12に設けられている図示しないマイコンと接続されており、この室内ユニット12のマイコンからの信号に基づいて作動する。なお、マイコン44は、室内ユニット12のマイコンから送出された信号及び外気温度を検出する外気温度センサ、コンプレッサ26の温度を検出するコンプレッサ温度センサ、熱交換器30のコイル温度を検出するコイル温度センサ等の検出結果に基づいてコンプレッサモータ40と共に、四方弁、電動膨張弁36、熱交換器30を冷却する冷却ファン等の駆動を制御する。
【0023】
室外ユニット14に設けられている電源装置42は、整流回路46と平滑回路48を備えており、交流電源50から供給される交流電力を所定電圧の直流電力に変換し、インバータ回路52へ出力する。インバータ回路52は、スイッチング素子が設けられた一般的構成となっており、スイッチング信号によってスイッチング素子がオン/オフ制御されることにより、スイッチング信号に応じた電力をコンプレッサモータ40へ出力し、この電力(電圧)に応じた回転数でコンプレッサモータ40を回転駆動する。
【0024】
インバータ回路52は、マイコン44に接続されており、マイコン44から出力されるスイッチング信号に基づいてスイッチング素子が駆動される。すなわち、マイコン44は、インバータ回路52を用いてPWM制御によってコンプレッサモータ40の回転数を制御している。
【0025】
近年、コンプレッサモータ40としては、DCブラシレスモータを用いており、入力電圧の変化に応じて回転数が変化する。したがって、スイッチング信号のデューティ比に応じた電圧がインバータ回路52からコンプレッサモータ40へ出力されることにより、コンプレッサモータ40は、この電圧に応じた回転数で回転駆動する。
【0026】
このインバータ回路52では、スイッチング信号のデューティ比を一定としたときに、出力電圧がインバータ回路52への入力電圧、すなわち、平滑回路48の出力電圧V0に応じて変化させることができる。これにより、インバータ回路52への入力電圧に応じてもコンプレッサモータ40の回転数が変更可能となっている。すなわち、マイコン44は、PAM制御によってもコンプレッサモータ40の回転数の制御が可能となっている。
【0027】
一方、整流回路46は、ダイオード54をブリッジ状に接続した整流器56が設けられており、この整流器56の入力端子58A、58Bにチョークコイルであるリアクトル60を介して、交流電源50が接続される。本実施の形態に適用したエアコン10の室外ユニット14は、所定電圧(例えば単相100V)の交流電力が供給されることにより運転される。
【0028】
整流器56の出力端子62A、62Bには、ダイオード72、74を介して平滑回路48が接続されている。平滑回路48は、直列接続されたコンデンサ64、66と、このコンデンサ64、66に並列接続されたコンデンサ68によって構成され、整流器56から出力される脈流を平滑化する。これにより、整流回路46は、倍電圧両波整流回路を形成している。
【0029】
ところで、整流器56の出力端子62A、62Bの間には、スイッチング回路76が接続されている。このスイッチング回路76は、スイッチング素子としてIGBT(Insulated Gate Bipolar Transistor)等のスイッチングトランジスタ78とダイオード80によって構成されており、スイッチングトランジスタ78がスイッチング信号によってオンされることにより出力端子62Aから出力端子62Bへ電流が流れるようになっている。
【0030】
このスイッチングトランジスタ78は、駆動回路82を介してマイコン44に接続されており、マイコン44から出力される高周波のスイッチング信号STによってオン/オフされる。
【0031】
一方、マイコン44には、入力電力検出手段として、電源電圧検出回路84と電源電流検出回路84が接続されている。マイコン44は、この電源電圧検出回路84によって電源電圧(入力電圧)と共に入力電圧の波形の位相信号を読み込み、位相信号から電源電圧の波形が切り換わるゼロクロス点P(図3参照)を検出する。マイコン44は、このゼロクロス点Pに基づいてスイッチング信号STを出力するタイミングを設定するようになっている。
【0032】
図3に示されるように、マイコン44は、交流電源50の周波数f1の位相に同期させて、周波数f1の1/2サイクル毎に、スイッチング信号STを出力するようになっている。また、マイコン44では、スイッチング信号STを、スイッチング信号ST1、ST2に分割して出力するように設定されている(以下総称するときは「スイッチング信号ST」とする)。
【0033】
すなわち、マイコン44は、周波数f1の1/2サイクル内で、一例としてスイッチング信号ST1、ST2の何れかを出力する時間α、γと、スイッチング信号STを停止する時間β、δによって4分割するように設定されている。
【0034】
スイッチング信号ST1は、ゼロクロス点P(位相角θ=0)から時間αの間で出力され、スイッチング信号ST2は、次のゼロクロス点(θ=180°)の直前で停止する時間γの間で出力するようにしている。これにより、スイッチング信号ST2と次のスイッチング信号ST1との間で、スイッチング信号STが停止する時間δを設けるようにしている。また、スイッチング信号ST1とスイッチング信号ST2の間の電源電圧のピークを挟んだ時間βの間は、スイッチングを停止する。
【0035】
これにより、マイコン44が、ゼロクロス点Pからスイッチング信号ST1を出力した後、一旦、スイッチング信号STの出力を停止してからスイッチング信号ST2を出力する。
【0036】
また、時間α、γは電圧波形の位相角に換算することができるが、マイコン44では、電源電流検出回路86によって検出する入力電流Ii、すなわち負荷の大きさに基づいてスイッチング信号ST1、ST2の位相角及びデューティ比を変化させるようにしている。この入力電流Iiに応じた位相角及びデューティ比は、負荷の大きさ(エアコン10の動作モード)に応じて予め定められており、テーブルデータとしてマイコン44の図示しないROMに記憶されている。すなわち、マイコン44では、ROMに記憶されたテーブルデータから入力電流Iiの大きさに応じた位相角及びデューティ比を読み込んでPAM制御を行う。
【0037】
なお、本実施の形態では、スイッチング信号ST(ST1、ST2)の周波数fは17kHzとしている。これにより、出力電圧Voは、例えば280V(基準電圧Vs=280V)となるように制御される。
【0038】
次に、本実施の形態の作用を説明する。
【0039】
エアコン10は、図示しないリモコンスイッチの操作によって、運転モード、設定温度等の運転条件、すなわち動作モードが設定され、運転/停止ボタンの操作によって運転開始が指示されると、室内ユニット12に設けている図示しないマイコンが、設定された運転条件に応じて室内を空調するために必要な空調能力を演算し、この演算結果に基づいてコンプレッサモータ40の回転数を設定する。この後、室内ユニット12に設けているマイコンは、設定した回転数でコンプレッサモータ40を駆動するように、室外ユニット14に設けているマイコン44に指示する。
【0040】
マイコン44は、室内ユニット12のマイコンによって指示されたコンプレッサ26の回転数が得られるように電源装置42及びインバータ回路52を制御しながらコンプレッサモータ40を回転駆動する。これにより、エアコン10では、コンプレッサ26で圧縮された冷媒が冷凍サイクル中を循環し、室内ユニット12に設けている熱交換器18を通過する空気を温調する。この室内ユニット12の熱交換器18を通過することにより温調された空気が、室内ユニット12から吹出されることにより、室内の空調が図られる。
【0041】
電源装置42を制御するマイコン44は、交流電源50から整流回路56に入力される入力電圧Viの電圧波形のゼロクロス点Pを検出すると、電源電流検出回路86により検出した入力電流Iiに応じた位相角及びデューティ比を内部のROMから読み出し、この読み出した値に応じた図4(A)に示すようなスイッチング信号ST1を出力する。図4(A)では、一例として電圧波形の位相角θが0°〜30°(180°〜210°)の間(時間α)の間にスイッチング信号ST1が出力され、そのデューティ比は一例として92%である。なお、図4(B)は入力電圧Viの波形、図4(C)は入力電流値Iiの波形、図4(D)はスイッチングトランジスタ78のドレイン−ソース間電流の波形をぞれぞれ示している。
【0042】
電源装置42では、スイッチングトランジスタ78が、電圧波形のゼロクロス点Pからスイッチング信号ST1に基づいてオン/オフされることにより、このスイッチング信号ST1のオン/オフに応じて図4(c)に示すような入力電流Iiが流れる。
【0043】
そして、電圧波形の位相角θが30°を超えるとスイッチング信号ST1の出力を停止する。これにより、スイッチングトランジスタ78によるスイッチングが停止される。
【0044】
次に、電圧波形が次のゼロクロス点P(図3のゼロクロス点P1)に近づくと、電源電流検出回路86により検出した入力電流Iiに応じた位相角及びデューティ比を内部のROMから読み出し、この読み出した値に応じた図4(A)に示すようなスイッチング信号ST2を出力する。図4(A)では、一例として電圧波形の位相角θが129°〜147°(309°〜327°)の間(時間γ)の間にスイッチング信号ST2が出力され、そのデューティ比は一例として43%である。すなわち、位相角θが30°〜129°(210°〜309°)の間(時間β)は、スイッチングが停止される。
【0045】
電源装置42では、スイッチングトランジスタ78が、電圧波形のゼロクロス点Pからスイッチング信号ST2に基づいてオン/オフされることにより、このスイッチング信号ST2のオン/オフに応じて入力電流Iiが流れる。
【0046】
そして、電圧波形の位相角θが147°を超えるとスイッチング信号ST2の出力を停止する。これにより、スイッチングトランジスタ78によるスイッチングが停止される。この後、位相角θが次のゼロクロス点P1(位相角θ=180°)に達すると、新たにスイッチング信号ST1の出力が開始される。すなわち、位相角θが147°〜180°(309°〜0°)の間(時間δ)はスイッチングが停止される。
【0047】
このように、周波数f1の1/2サイクルの両端において入力電流Ii(負荷の大きさ:エアコン10の動作モード)に応じた入力電圧値の位相角及びデューティ比でスイッチング信号ST1及びスイッチング信号ST2をそれぞれ出力することにより、入力電流Iiに応じて最適にゼロクロス点Pの近傍での電流波形を滑らかにすることができ、簡易的なPAM制御を行う場合であってもパッシブ型フィルタを用いる場合と比較して出力電圧を高めることができる(例えば数Vから約50V)。従って、より細かい出力制御(暖房制御)を行うことができる。
【0048】
また、入力電流Iiに応じて最適にゼロクロス点Pの近傍での電流波形を滑らかにすることができるのでPAM制御を行わない場合と比較して力率を改善することができると共に入力電流Iiの高調波成分の低減が可能となる。このため、図5に示すように高調波規格(IEC規格)を満足することができる。図5では、3次以上の高調波について、電流値がすべてIEC規格値以下となっている。さらに、整流回路46は、倍電圧両波整流回路となっているので、電源効率(入力電力に対する出力電力の割合)を向上させることができる。
【0049】
また、マイコン44のROMに入力電流Iiに応じた位相角及びデューティ比を記憶させ、これを必要に応じて読み出してスイッチング信号STを出力するので、制御及び回路構成が簡単になり、低コストとすることができる。
【0050】
【発明の効果】
以上説明したように、本発明によれば、制御手段が、ゼロクロス点を検出する直前及び検出した時点から、入力電流値に基づいて定めた入力電圧値の位相角及びデューティ比に応じてオン/オフするので、間欠的にスイッチングする場合においても出力電圧を昇圧する制御が可能になると共に入力電流の波形の調整が可能となり、高調波を抑制することができる、という効果を有する。
【図面の簡単な説明】
【図1】本実施の形態に適用した電源装置の概略を示すブロック図である。
【図2】本実施の形態の電源装置を適用したエアコンの冷凍サイクルを示す概略図である。
【図3】本発明に係る入力電圧の電圧波形に対するスイッチング信号の出力期間を示す線図である。
【図4】入力電圧の電圧波形に対するスイッチング信号と入力電流の電流波形の概略を示す線図である。
【図5】入力電流に対する高調波レベルの概略を示す線図である。
【符号の説明】
10 エアコン
40 コンプレッサモータ
42 電源装置
44 マイコン(制御手段)
46 整流回路(整流手段)
48 平滑回路(平滑手段)
50 交流電源
52 インバータ回路
60 リアクトル
76 スイッチング回路
78 スイッチングトランジスタ(スイッチング素子)
84 電源電圧検出回路(入力電圧検出手段)
86 電源電流検出回路(入力電流検出手段)
Claims (1)
- 入力される交流電力を直流電力に変換して負荷へ供給する電源装置において、
前記交流電力を整流する整流手段と、
前記整流手段からの出力を倍電圧にすると共に平滑化して直流電力を出力する平滑手段と、
前記整流手段の出力端子の間に接続されると共に、入力されるスイッチング信号のオン/オフに基づいて開閉するスイッチング素子と、
前記整流手段に入力される入力電圧を検出する入力電圧検出手段と、
前記整流手段に入力される入力電流を検出する入力電流検出手段と、
前記入力電流検出手段により検出される入力電流値と、前記スイッチング信号を出力する時間に相当する前記入力電圧の位相角及び前記スイッチング信号のデューティ比と、の対応関係を予め定めたテーブルデータが記憶された記憶手段と、
前記入力電圧検出手段により検出した入力電圧の第1のゼロクロス点及び当該第1のゼロクロス点の次の第2のゼロクロス点を検出すると共に、前記第1のゼロクロス点を検出した時点から当該第1のゼロクロス点を検出した時点における前記入力電流検出手段により検出された入力電流値に対応する前記入力電圧の位相角に相当する時間が経過するまでの第1の期間は、前記テーブルデータから求めた前記第1のゼロクロス点を検出した時点における前記入力電流検出手段により検出された入力電流値に対応する前記入力電圧の位相角及び前記スイッチング信号のデューティ比で前記スイッチング素子をオン/オフし、前記第1の期間が経過してから前記入力電圧のピークを含む期間が経過した予め定めた時点までの第2の期間は、前記スイッチング信号の出力を停止し、前記第2の期間が経過してから前記予め定めた時点における前記入力電流検出手段により検出された入力電流値に対応する前記入力電圧の位相角に相当する時間が経過するまでの第3の期間は、前記テーブルデータから求めた前記予め定めた時点における前記入力電流検出手段により検出された入力電流値に対応する前記入力電圧の位相角及び前記スイッチング信号のデューティ比で前記スイッチング素子をオン/オフし、前記第3の期間が経過してから前記第2のゼロクロス点を検出するまでの第4の期間は、前記スイッチング信号の出力を停止することにより前記平滑手段からの出力電圧を制御する制御手段と、
を有する電源装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11189799A JP4289718B2 (ja) | 1999-04-20 | 1999-04-20 | 電源装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11189799A JP4289718B2 (ja) | 1999-04-20 | 1999-04-20 | 電源装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000308353A JP2000308353A (ja) | 2000-11-02 |
JP4289718B2 true JP4289718B2 (ja) | 2009-07-01 |
Family
ID=14572885
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11189799A Expired - Fee Related JP4289718B2 (ja) | 1999-04-20 | 1999-04-20 | 電源装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4289718B2 (ja) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2818458B1 (fr) * | 2000-12-19 | 2003-03-28 | Leroy Somer Moteurs | Dispositif de production d'electricite a partir du reseau triphase, comprenant un alternateur embarque |
US6614197B2 (en) * | 2001-06-30 | 2003-09-02 | Motorola, Inc. | Odd harmonics reduction of phase angle controlled loads |
KR100639447B1 (ko) * | 2003-04-14 | 2006-10-26 | 마츠시타 덴끼 산교 가부시키가이샤 | 모터 구동 장치, 압축기, 공기 조화기, 냉장고, 전기 세탁기, 송풍기, 전기 청소기, 전기 건조기 및 열 펌프 급탕기 |
EP1826896B1 (en) * | 2004-12-15 | 2019-06-19 | Fujitsu General Limited | Power supply apparatus |
JP2008193772A (ja) * | 2007-02-01 | 2008-08-21 | Toyota Motor Corp | 電気自動車の制御装置および制御方法、ならびに電気自動車 |
JP4842998B2 (ja) * | 2008-06-18 | 2011-12-21 | 日立アプライアンス株式会社 | 電磁誘導加熱装置 |
JP6031793B2 (ja) * | 2012-03-29 | 2016-11-24 | 株式会社富士通ゼネラル | ゼロクロス検出回路及び高力率整流回路 |
CN106537750B (zh) * | 2014-08-05 | 2019-08-20 | 三菱电机株式会社 | 电力转换装置 |
JP6935022B2 (ja) * | 2018-09-28 | 2021-09-15 | 三菱電機株式会社 | 電力変換装置、モータ駆動装置及び空気調和機 |
JP7364053B2 (ja) | 2020-04-15 | 2023-10-18 | 富士電機株式会社 | 集積回路、電源回路 |
-
1999
- 1999-04-20 JP JP11189799A patent/JP4289718B2/ja not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2000308353A (ja) | 2000-11-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7330011B2 (en) | Motor driving apparatus | |
US7292004B2 (en) | Motor driving apparatus | |
US7274579B2 (en) | Converter circuit and motor driving apparatus | |
JP2012231671A (ja) | モーター駆動制御装置、圧縮機、送風機、空気調和機及び冷蔵庫又は冷凍庫 | |
JP2000278955A (ja) | 電源装置及びこの電源装置を用いた空気調和機 | |
JP4289718B2 (ja) | 電源装置 | |
JP4493132B2 (ja) | 電源装置 | |
JP3215302B2 (ja) | 空気調和機 | |
JPH09266674A (ja) | 直流電源装置及びこの直流電源装置を用いた空気調和機 | |
JP4454089B2 (ja) | 電源装置 | |
JP3966635B2 (ja) | 電源装置 | |
JP2000166241A (ja) | 電源装置 | |
JP2004088859A (ja) | 電動機駆動装置および電動機応用装置 | |
KR20140096627A (ko) | 전력변환장치 및 이를 포함하는 공기조화기 | |
CN114270688A (zh) | 电力变换装置以及空气调节机 | |
WO2019208117A1 (ja) | モータ駆動装置及び冷凍サイクル装置 | |
JP2001238454A (ja) | 電源装置 | |
JPH0715966A (ja) | 電動機駆動装置 | |
JP3560454B2 (ja) | 電力変換装置及びこれを利用した空気調和装置 | |
JP2008228511A (ja) | 電源装置 | |
JP2004015944A (ja) | 電源装置 | |
JP2008109722A (ja) | モータ駆動装置 | |
JP2008017627A (ja) | 電源装置およびこれを用いた空気調和機 | |
JP2007185100A (ja) | 電源装置 | |
JP2000014153A (ja) | 電源装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20051024 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20081121 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20081202 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090130 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090303 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090331 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120410 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130410 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140410 Year of fee payment: 5 |
|
LAPS | Cancellation because of no payment of annual fees |