JP4289052B2 - Carburized gear with excellent impact fatigue strength and manufacturing method thereof - Google Patents
Carburized gear with excellent impact fatigue strength and manufacturing method thereof Download PDFInfo
- Publication number
- JP4289052B2 JP4289052B2 JP2003198034A JP2003198034A JP4289052B2 JP 4289052 B2 JP4289052 B2 JP 4289052B2 JP 2003198034 A JP2003198034 A JP 2003198034A JP 2003198034 A JP2003198034 A JP 2003198034A JP 4289052 B2 JP4289052 B2 JP 4289052B2
- Authority
- JP
- Japan
- Prior art keywords
- less
- gear
- carburized
- carburizing
- impact
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 3
- 238000005255 carburizing Methods 0.000 claims description 25
- 229910000760 Hardened steel Inorganic materials 0.000 claims description 11
- 229910045601 alloy Inorganic materials 0.000 claims description 10
- 239000000956 alloy Substances 0.000 claims description 10
- 229910000831 Steel Inorganic materials 0.000 claims description 9
- 239000010959 steel Substances 0.000 claims description 9
- 229910001566 austenite Inorganic materials 0.000 claims description 7
- 239000000203 mixture Substances 0.000 claims description 5
- 229910052757 nitrogen Inorganic materials 0.000 claims description 5
- 229910052799 carbon Inorganic materials 0.000 claims description 3
- 229910052804 chromium Inorganic materials 0.000 claims description 3
- 239000012535 impurity Substances 0.000 claims description 3
- 238000000034 method Methods 0.000 claims description 3
- 229910052698 phosphorus Inorganic materials 0.000 claims description 3
- 230000000694 effects Effects 0.000 description 15
- 239000013078 crystal Substances 0.000 description 9
- 239000010410 layer Substances 0.000 description 8
- 230000003647 oxidation Effects 0.000 description 6
- 238000007254 oxidation reaction Methods 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 230000001965 increasing effect Effects 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 4
- 230000006872 improvement Effects 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 229910052750 molybdenum Inorganic materials 0.000 description 4
- 238000009661 fatigue test Methods 0.000 description 3
- 230000009471 action Effects 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000010791 quenching Methods 0.000 description 2
- 230000000171 quenching effect Effects 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000005728 strengthening Methods 0.000 description 2
- 239000002344 surface layer Substances 0.000 description 2
- 238000005496 tempering Methods 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000009863 impact test Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 238000009628 steelmaking Methods 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
Images
Landscapes
- Gears, Cams (AREA)
- Heat Treatment Of Articles (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、歯車形状に成形後、浸炭処理を施して表層部の硬さを高めた歯車、代表的には自動車の変速機や差動機を構成する浸炭歯車に関し、衝撃疲労強度にすぐれた歯車を提供する。
【0002】
【従来の技術】
歯車の衝撃強度を向上させる手段として、これまで採用されて来たのは、肌焼鋼に対してMoやV等の合金元素を添加すること(特開昭62−1843号)、PやSのような不純物元素の量を低減すること(特開平1−247561号)、Siのような浸炭処理時に粒界酸化層を形成する元素を低減すること(特開平6−100974号)などである。結晶粒を微細化することにより粒界の強度を向上させて、衝撃強度を高めることも知られている。しかし、既知の方法では、材料コストや加工コストが高くかかる割に、衝撃強度が改善される度合いは、期待ほどではなかった。
【0003】
歯車の用途によっては、衝撃強度、すなわち強い衝撃に耐える特性だけでなく、衝撃疲労強度、すなわちある程度の衝撃が繰り返し加わる場合に、それに耐える特性が重要な場合がある。これまでの技術で与えられる浸炭歯車は、上述の、衝撃強度の改善度合いが低いということに加えて、衝撃疲労強度の点で不満足なものであった。
【0004】
発明者らは、このような従来技術の問題を解決することを意図して、従来の取り組みとは異なる観点から、結晶粒度が衝撃疲労強度に与える影響を調査した結果、結晶粒度を適度に粗大化させることによって、衝撃疲労亀裂が発生した後の亀裂伝播速度を遅延させることができ、衝撃疲労強度にとっては有利に作用することを見出した。つまり、これまでは、組織が微細であることが衝撃強度を高くするために必要であるという固定観念にとらわれ、ひたすら微細組織の実現を追求していたが、繰り返し加わる衝撃に対応する衝撃疲労強度に関しては、微細組織よりもむしろ、ある程度の粗大さをもった組織の方が、有益であるという事実の発見である。
【0005】
さらに研究を重ねた発明者らは、肌焼鋼にホウ素を添加することにより粒界を強化すれば、衝撃疲労亀裂それ自体の発生を抑制できること、さらには、浸炭操作を真空またはそれに近い減圧下に実施することによって、表面欠陥である粒界酸化層をなくせば、衝撃疲労亀裂の発生がいっそう抑制できることを見出した。
【0006】
【発明が解決しようとする課題】
本発明の目的は、発明者らが得た上記の知見を活用し、従来の肌焼鋼を材料とする浸炭歯車にくらべて、衝撃強度はもとより、衝撃疲労強度が大いに改善された浸炭歯車と、その製造方法を提供することにある。
【0007】
【課題を解決する為の手段】
本発明の浸炭歯車は、質量%で、C:0.1〜0.3%、Si:1.0%以下およびMn:0.3〜1.7%に加え、Cr:1.6%以下、およびMo:1.0%以下の1種または2種を含有し、Al:0.005%以下、N:0.014%以下、P:0.03%以下、S:0.035%以下であって、残部がFeおよび不可避的不純物からなる合金組成を有する肌焼鋼を歯車形状に成形し、浸炭してなり、歯底の組織がJISオーステナイト結晶粒度番号の4〜6番であることを特徴とする衝撃疲労強度にすぐれた浸炭歯車である。
【0008】
【発明の実施の形態】
本発明の浸炭歯車を構成する肌焼鋼は、上記した基本的な合金成分に加えて、下記のグループに属する任意添加元素を、ひとつまたはふたつ以上含有することができる。
I)B:0.001〜0.005%
II)Pb:0.3%以下、Bi:0.15%以下およびCa:0.1%以下の1種または2種以上
【0009】
以下、本発明の浸炭歯車を構成する肌焼鋼の合金組成および組織について説明する。「%」は、質量%を示す。
【0010】
C:0.1〜0.3%
Cは浸炭焼入れ後の硬さを向上させて、浸炭部品の強度を向上させる作用を有する。この効果は、C含有量が0.1%未満では乏しく、一方で0.3%を超えると、靭性の低下、衝撃強度の低下を生じる。
【0011】
Si:1.0%以下、好ましくは0.5%以下
Siは、鋼の焼入れ性を高めるのに有効な元素である。1.0%を超える含有は、浸炭時の粒界酸化を助長し、強度の低下をもたらす。0.5%以下が好ましい。浸炭を、粒界酸化が起こりにくい条件、すなわち真空またはそれに近い減圧下で実施する場合は、肌焼鋼のSi含有量を1.0%まで増大しても、問題は生じない。
【0012】
Mn:0.3〜1.7%
Mnもまた、鋼の焼入れ性を高めるのに役立つ。靭性を高く得るためには、浸炭後に適度な量のオーステナイトが残留することも必要であり、そのため、0.3%以上の添加を要する。一方、過剰な含有は冷間鍛造性を低下させ、浸炭後の粒界酸化を助長するため、その上限を1.7%と定めた。
【0013】
Al:0.005%以下、N:0.014%以下
これらの成分は、積極的に添加すれば窒化物AlNが微細に鋼中に析出し、これが浸炭時における結晶粒界の移動を妨げる、いわゆるピンニング効果によって、結晶粒の成長を抑制する。Alを0.005%以下、Nは0.014%以下、好ましくは0.005%以下に制限することによりこの効果が失われ、ある程度粗大な結晶粒を得ることが可能になる。
【0014】
P:0.03%以下
Pは浸炭層の靭性を低くする。その含有量が0.03%を超えると、衝撃強度の低下が著しい。したがってこの値を上限とした。
【0015】
S:0.035%以下
Sも、浸炭層の靭性を低くし、その含有量が0.03%を超えると、衝撃強度の低下が著しい。そこで、Pと同様、これを上限とした。
【0016】
歯底のJISオーステナイト結晶粒度番号:4〜6番
ここで「歯底」の語は、歯車の歯の底と、その両側にある歯の立ち上がり部、いわゆる「歯底アール部」を包含する広い意味を有する。衝撃疲労強度に関しては、むしろ歯底アール部の組織が重要である。発明者らが見出したように、歯底の組織の結晶粒度が7番以上の細粒では、衝撃疲労亀裂が伝播する速度が速くなり、破面の形態がディンプル(延性)破面またはへき開(脆性)破面となり、破壊寿命が短い。一方、結晶粒度が3番以下の粗粒では、衝撃疲労亀裂が伝播する領域においても粒界で亀裂が進展し、この場合も破壊寿命が短い。結晶粒度が4〜6番の組織であれば、衝撃疲労亀裂の伝播が遅く、破面の形態がストライエーション破面となり、長い破壊寿命が得られる。
【0017】
Cr:1.6%以下、Mo:1.0%以下およびNi:3.0%以下の1種または2種以上
Cr、MoおよびNiは、いずれも鋼の焼入れ性を高めるのに有効な成分であるから、適量を添加するとよい。MoおよびNiには、浸炭層の靭性を向上させるという効果もある。Crの過剰な添加は結晶粒界の脆化を招くから、上限1.6%以内の添加に止める。Moは過剰にあっても効果が飽和し、コスト上不利になるので、1.0%までの添加が得策である。
【0018】
B:0.001〜0.005%
Bは鋼の焼入れ性を向上させる元素である。また、浸炭層の結晶粒界に偏析して、浸炭層の粒界を強化する作用もある。こうした効果を得るには、Bを0.001%以上添加する必要がある。しかし、0.005%を超えて添加すると、焼入れ性向上の効果が施和するだけでなく、熱間および冷間の加工性が低下する。
【0019】
Nb:0.005%以下
Nbは鋼中のC、Nと反応して炭窒化物を形成し、それらがAlNと同様にピンニング効果を示して、浸炭時のオーステナイト結晶粒の粗大化を防止する作用がある。Nb量を0.005%以下に制限することによりこの効果が失われ、適宜に粗大な結晶粒を得ることが可能になる。Nbは、通常の製鋼原料からはめったに入ってくる成分ではないが、場合により混入することがあるから、本発明の肌焼鋼を製造するに当たっては、原料の吟味を要する。
【0020】
浸炭の条件:A=t×e(-29450/T)
[ここで、T:浸炭温度(K)、t:浸炭時間(min)]とするとき、
3.5×10-9<A<14.1×10-9
浸炭温度と浸炭時間との関係が、上記の範囲にある条件下に浸炭することが、衝撃疲労強度にすぐれた浸炭歯車を製造する上で好ましい。すでに説明したように、本発明は、AlNなどが結晶粒粗大化を抑制する作用を避けて、JISオーステナイト結晶粒度番号にして4〜6番の、適度に粗大化した組織を得ることを特徴とするが、このような組織を得るために適切な浸炭処理の条件が、上記の浸炭温度および浸炭時間の組み合わせである。上式のAの値が3.5×10-9よりも小さい条件で処理をした場合は、結晶粒が目標とする6番よりも微細になり、また、Aの値が14.1×10-9よりも大きい場合は4番よりも大きくなる。
【0021】
真空下の浸炭:この場合はSi:0.5%を超えて1.0%まで可
ここで「真空下」の語は、おおよそ0.5〜1.0kPaの圧力であることを意味する。1.0kPaより低い真空度では、表層の酸化による強度への影響が無視できない。真空度は高いほうがよいが、0.5kPaを超えて減圧してもコストがかかるだけで、さらなる強度の向上は得難くなり、実益がない。上に述べたように、多量のSiは浸炭時の粒界酸化を助長し、強度の低下をもたらすが、真空浸炭のような粒界酸化の抑制が可能な熱処理を行なう場合は、0.5%という上限を超えてSiを存在させることができる。ただし過剰な含有は機械加工性を著しく損なうから、Si量は多くても1.0%の限界までに止めるべきである。
【0022】
【実施例】
表1(実施例)および表2(比較例)に示す合金組成をもつ肌焼鋼を、常法にしたがって真空溶解により製造し、150kgのインゴットに鋳造した。各インゴットを圧延し焼きならしした後、機械加工により、図1に示す形状・寸法の歯車試験片(モジュール1.5)素材を得た。各試験片素材について、図2に示すヒートパターンで浸炭焼入れ・焼戻しを行ない、仕上げ加工を施した。ただし、実施例4に限り、真空浸炭焼入れ・焼戻しを実施した。
【0023】
このようにして製作した歯車試験片に対し、落錘型衝撃試験機により衝撃疲労試験を実施した。また、歯底アール部分のオーステナイト結晶粒度を、JIS−G0551に規定された方法により測定した。それらの結果を、あわせて表1および表2に示す。衝撃疲労試験は、図3に示すように、歯車試験片(1)を相手歯車(2)と噛み合わせた後、歯車試験片に結合しているトルクアーム(4)に衝撃負荷を繰り返し加え、衝撃トルク毎の破損回数を求める試験である。図3において、符号(3)は固定端、(5)は衝撃荷重負荷位置である。この試験結果を、図4のグラフに示す。
【0024】
実施例1および2は、AlおよびNの量を低減して、結晶粒度を6番または5.5番にすることにより、比較例2とくらべたとき、衝撃疲労強度が向上している。実施例3および4は、Bを添加するとともにAl,Nbを低減し、結晶粒度を5番または6番にすることにより、比較例2にくらべて衝撃疲労強度が向上している。実施例5においてはS量を高めに添加しているが、真空浸炭による粒界酸化層の低減の効果により、高い衝撃強度を得ることができている。比較例3および4は、肌焼鋼の合金成分が実施例2および4と同一であるにもかかわらず、浸炭処理時のA値が好適範囲になかったため、結晶粒度が4〜6の範囲を外れており、その結果として、衝撃疲労強度の顕著な向上が認められない。
【0025】
【0026】
【発明の効果】
本発明による浸炭歯車は、従来の同種製品にくらべて材料コスト、加工コストを増加させることなく、衝撃疲労強度特性を大幅に向上させることができた。したがってこの歯車は、衝撃荷重負荷を受ける歯車部品として好適であって、同じ寸法であれば高強度化したものを、また一定の強度要求を満たしたものとしては軽量化してものを提供することができ、コストダウンにも寄与する。
【図面の簡単な説明】
【図1】 本発明の実施例で製造した、歯車試験片の形状を示す縦断面図。
【図2】 本発明の実施例で行なった浸炭焼入れ焼戻しの、ヒートパターンを示す図。
【図3】 本発明の実施例で行なった衝撃試験の方法を示す装置の平面図。
【図4】 本発明の実施例で得た、衝撃負荷トルクと破損回数の関係を示すグラフ。
【符号の説明】
1 歯車試験片
2 相手歯車
3 固定端
4 トルクアーム
5 衝撃荷重負荷位置[0001]
BACKGROUND OF THE INVENTION
TECHNICAL FIELD The present invention relates to a gear that has been carburized and formed into a gear shape, and has increased surface layer hardness, typically a carburized gear that constitutes a transmission or a differential of an automobile, and has excellent impact fatigue strength. I will provide a.
[0002]
[Prior art]
As means for improving the impact strength of gears, alloy elements such as Mo and V have been added to case-hardened steel (Japanese Patent Laid-Open No. 62-1843), P and S. Reducing the amount of impurity elements such as (JP-A-1-247561), reducing elements forming a grain boundary oxide layer at the time of carburizing treatment such as Si (JP-A-6-100804). . It is also known to improve the impact strength by improving the grain boundary strength by refining crystal grains. However, in the known method, the degree of improvement in impact strength is not as high as expected, although the material cost and processing cost are high.
[0003]
Depending on the use of the gear, not only the impact strength, that is, the property to withstand a strong impact, but also the impact fatigue strength, that is, the property to withstand a certain amount of impact when repeatedly applied may be important. The carburized gears given in the prior art have been unsatisfactory in terms of impact fatigue strength in addition to the above-mentioned improvement in impact strength being low.
[0004]
The inventors have investigated the influence of the crystal grain size on impact fatigue strength from a viewpoint different from the conventional approach, with the intention of solving such problems of the prior art. It was found that the crack propagation speed after the occurrence of the impact fatigue crack can be delayed by making it effective, and this has an advantageous effect on the impact fatigue strength. In other words, until now, we have been pursuing the realization of a fine structure because of the fixed idea that a fine structure is necessary to increase the impact strength, but impact fatigue strength corresponding to repeated impacts Is the discovery of the fact that an organization with some degree of coarseness is more beneficial than a microstructure.
[0005]
Furthermore, the inventors who have conducted further research can suppress the occurrence of impact fatigue cracks themselves by strengthening the grain boundaries by adding boron to the case-hardened steel. It was found that the occurrence of impact fatigue cracks can be further suppressed by eliminating the grain boundary oxide layer which is a surface defect.
[0006]
[Problems to be solved by the invention]
The purpose of the present invention is to utilize the above knowledge obtained by the inventors, and to provide a carburized gear with significantly improved impact fatigue strength as well as impact strength compared to conventional carburized gear made of case-hardened steel. It is in providing the manufacturing method.
[0007]
[Means for solving the problems]
The carburized gear of the present invention is, in mass%, C: 0.1 to 0.3%, Si: 1.0% or less and Mn: 0.3 to 1.7%, Cr: 1.6% or less , and Mo: contain one or two or more than 1.0%, Al: 0.005% or less, N: 0.01 4% or less, P: 0.03% or less, S: 0.035% A case-hardened steel having an alloy composition consisting of Fe and inevitable impurities is formed into a gear shape and carburized, and the root structure is JIS austenite grain size number 4-6 It is a carburized gear with excellent impact fatigue strength .
[0008]
DETAILED DESCRIPTION OF THE INVENTION
The case-hardened steel constituting the carburized gear of the present invention can contain one or two or more optional additive elements belonging to the following groups in addition to the basic alloy components described above.
I) B: 0.001 to 0.005%
II) One or more of Pb: 0.3% or less, Bi: 0.15% or less, and Ca: 0.1% or less
Hereinafter, the alloy composition and structure of the case hardening steel constituting the carburized gear of the present invention will be described. “%” Indicates mass%.
[0010]
C: 0.1 to 0.3%
C has the effect | action which improves the hardness after carburizing quenching and improves the intensity | strength of a carburized component. This effect is poor when the C content is less than 0.1%, while when it exceeds 0.3%, the toughness and impact strength are reduced.
[0011]
Si: 1.0% or less, preferably 0.5% or less Si is an element effective for improving the hardenability of steel. If the content exceeds 1.0%, grain boundary oxidation during carburization is promoted, resulting in a decrease in strength. 0.5% or less is preferable. When carburizing is carried out under conditions where grain boundary oxidation is unlikely to occur, that is, under vacuum or a reduced pressure close thereto, no problem arises even if the Si content of the case-hardened steel is increased to 1.0%.
[0012]
Mn: 0.3 to 1.7%
Mn also helps to increase the hardenability of the steel. In order to obtain high toughness, it is also necessary that an appropriate amount of austenite remains after carburization, and therefore, addition of 0.3% or more is required. On the other hand, an excessive content reduces cold forgeability and promotes grain boundary oxidation after carburizing, so the upper limit was set to 1.7%.
[0013]
Al: 0.005% or less, N: 0.01 4% or less of these components, positively be added nitrides AlN finely precipitates in the steel, which prevents the movement of grain boundaries during carburizing The growth of crystal grains is suppressed by a so-called pinning effect. 0.005% of Al or less, N 0.01 4% or less, preferably this effect is lost by limiting below 0.005%, it is possible to obtain some coarse grains.
[0014]
P: 0.03% or less P lowers the toughness of the carburized layer. When the content exceeds 0.03%, the impact strength is remarkably lowered. Therefore, this value was made the upper limit.
[0015]
S: 0.035% or less S also lowers the toughness of the carburized layer, and when its content exceeds 0.03%, the impact strength is significantly reduced. Therefore, like P, this is the upper limit.
[0016]
JIS austenite grain size number of the tooth bottom: No. 4-6 Here, the term “tooth bottom” is broad including the tooth bottom of the gear and the rising parts of the teeth on both sides, so-called “tooth bottom round part” Has meaning. In terms of impact fatigue strength, the tissue at the root of the root is rather important. As the inventors have found, when the grain size of the tooth bottom tissue is 7 or more, the speed at which impact fatigue cracks propagate is increased, and the form of the fracture surface is a dimple (ductile) fracture surface or cleavage ( It becomes brittle) and has a short fracture life. On the other hand, in the case of coarse grains having a crystal grain size of No. 3 or less, cracks develop at the grain boundaries even in the region where the impact fatigue crack propagates, and in this case, the fracture life is short. If the grain size is 4-6, the propagation of impact fatigue cracks is slow, the shape of the fracture surface becomes a striation fracture surface, and a long fracture life is obtained.
[0017]
One or more of Cr: 1.6% or less, Mo: 1.0% or less, and Ni: 3.0% or less Cr, Mo, and Ni are all effective components for enhancing the hardenability of steel. Therefore, an appropriate amount may be added. Mo and Ni also have the effect of improving the toughness of the carburized layer. Since excessive addition of Cr causes embrittlement of crystal grain boundaries, the addition is limited to an upper limit of 1.6%. Even if Mo is excessive, the effect is saturated and disadvantageous in terms of cost. Therefore, it is advantageous to add up to 1.0%.
[0018]
B: 0.001 to 0.005%
B is an element that improves the hardenability of steel. It also has the effect of segregating at the grain boundaries of the carburized layer and strengthening the grain boundaries of the carburized layer. In order to obtain such an effect, it is necessary to add 0.001% or more of B. However, if added over 0.005%, not only the effect of improving hardenability is applied, but also hot and cold workability is lowered.
[0019]
Nb: 0.005% or less Nb reacts with C and N in the steel to form carbonitrides, which, like AlN, exhibit a pinning effect and prevent coarsening of austenite grains during carburizing. There is an effect. By limiting the Nb amount to 0.005% or less, this effect is lost, and appropriately coarse crystal grains can be obtained. Nb is not a component that is rarely introduced from ordinary steelmaking raw materials, but it may be mixed in depending on the case. Therefore, in producing the case-hardened steel of the present invention, it is necessary to examine the raw materials.
[0020]
Carburizing conditions: A = t × e (-29450 / T)
[Where T: carburizing temperature (K), t: carburizing time (min)]
3.5 × 10 −9 <A <14.1 × 10 −9
Carburizing under the condition that the relationship between the carburizing temperature and the carburizing time is in the above range is preferable in producing a carburized gear having excellent impact fatigue strength. As described above, the present invention is characterized in that a moderately coarsened structure having a JIS austenite grain size number of 4-6 is obtained by avoiding the action of AlN and the like to suppress grain coarsening. However, a suitable carburizing condition for obtaining such a structure is a combination of the above carburizing temperature and carburizing time. When the treatment is performed under the condition that the value of A in the above formula is smaller than 3.5 × 10 −9 , the crystal grain becomes finer than the target No. 6, and the value of A is 14.1 × 10 If it is greater than -9, it will be greater than 4.
[0021]
Carburizing under vacuum: in this case Si: over 0.5% to 1.0% possible The term “ under vacuum” here means a pressure of approximately 0.5 to 1.0 kPa. When the degree of vacuum is lower than 1.0 kPa, the influence on the strength due to oxidation of the surface layer cannot be ignored. A higher degree of vacuum is better, but even if the pressure is reduced beyond 0.5 kPa, it is only costly, and it is difficult to obtain further improvement in strength, and there is no real benefit. As described above, a large amount of Si promotes grain boundary oxidation during carburizing and causes a decrease in strength. However, when performing heat treatment capable of suppressing grain boundary oxidation such as vacuum carburizing, 0.5% Si can be present beyond the upper limit of%. However, since excessive content significantly impairs machinability, the Si content should be limited to a limit of 1.0% at most.
[0022]
【Example】
Case-hardened steels having the alloy compositions shown in Table 1 (Examples) and Table 2 (Comparative Examples) were manufactured by vacuum melting according to a conventional method, and cast into 150 kg ingots. After rolling and normalizing each ingot, a gear test piece (module 1.5) material having the shape and dimensions shown in FIG. 1 was obtained by machining. Each specimen material was carburized and tempered with the heat pattern shown in FIG. 2 and finished. However, only in Example 4, vacuum carburizing and tempering were performed.
[0023]
The gear fatigue test piece thus manufactured was subjected to an impact fatigue test using a drop weight type impact tester. Moreover, the austenite crystal grain size of the tooth root radius part was measured by the method prescribed | regulated to JIS-G0551. The results are also shown in Table 1 and Table 2. In the impact fatigue test, as shown in FIG. 3, after the gear test piece (1) is engaged with the counterpart gear (2), an impact load is repeatedly applied to the torque arm (4) coupled to the gear test piece, This is a test to determine the number of breaks for each impact torque. In FIG. 3, reference numeral (3) is a fixed end, and (5) is an impact load position. The test results are shown in the graph of FIG.
[0024]
In Examples 1 and 2, the impact fatigue strength is improved when compared with Comparative Example 2 by reducing the amount of Al and N and making the grain size No. 6 or No. 5.5. In Examples 3 and 4, impact fatigue strength is improved as compared with Comparative Example 2 by adding B, reducing Al and Nb, and making the grain size No. 5 or No. 6. In Example 5, the amount of S is increased, but high impact strength can be obtained due to the effect of reducing the grain boundary oxide layer by vacuum carburization. In Comparative Examples 3 and 4, since the alloy value of the case-hardened steel is the same as in Examples 2 and 4, the A value at the time of carburizing treatment was not in the preferred range, so the crystal grain size was in the range of 4-6. As a result, no significant improvement in impact fatigue strength is observed.
[0025]
[0026]
【The invention's effect】
The carburized gear according to the present invention can greatly improve the impact fatigue strength characteristics without increasing the material cost and the processing cost as compared with the conventional similar products. Therefore, this gear is suitable as a gear part that receives an impact load, and can provide a higher strength if it has the same dimensions, and a reduced weight if it satisfies a certain strength requirement. Can contribute to cost reduction.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view showing the shape of a gear specimen manufactured in an embodiment of the present invention.
FIG. 2 is a diagram showing a heat pattern of carburizing, quenching, and tempering performed in an example of the present invention.
FIG. 3 is a plan view of an apparatus showing an impact test method performed in an embodiment of the present invention.
FIG. 4 is a graph showing the relationship between impact load torque and the number of breakage obtained in an example of the present invention.
[Explanation of symbols]
1 Gear test piece 2 Counter gear 3 Fixed end 4 Torque arm 5 Impact load position
Claims (5)
A=t×e(-29450/T)
[ここで、T:浸炭温度(K)、t:浸炭時間(min)]
3.5×10-9<A<14.1×10-9
の範囲にある条件で浸炭することを特徴とする衝撃疲労強度にすぐれた浸炭歯車の製造方法。A case-hardened steel having the alloy composition according to claim 1 or 2 is formed into a gear shape, and A defined by the following formula:
A = t × e (-29450 / T)
[Where T: carburizing temperature (K), t: carburizing time (min)]
3.5 × 10 −9 <A <14.1 × 10 −9
A method of manufacturing a carburized gear excellent in impact fatigue strength, characterized by carburizing under conditions in the range of.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003198034A JP4289052B2 (en) | 2003-07-16 | 2003-07-16 | Carburized gear with excellent impact fatigue strength and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003198034A JP4289052B2 (en) | 2003-07-16 | 2003-07-16 | Carburized gear with excellent impact fatigue strength and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005036257A JP2005036257A (en) | 2005-02-10 |
JP4289052B2 true JP4289052B2 (en) | 2009-07-01 |
Family
ID=34207969
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003198034A Expired - Fee Related JP4289052B2 (en) | 2003-07-16 | 2003-07-16 | Carburized gear with excellent impact fatigue strength and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4289052B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4728883B2 (en) * | 2006-06-16 | 2011-07-20 | 新日本製鐵株式会社 | Carburized and hardened steel and carburized parts with excellent low cycle fatigue properties |
JP4964001B2 (en) * | 2007-03-29 | 2012-06-27 | 株式会社神戸製鋼所 | Gears with excellent low cycle fatigue strength |
JP5505263B2 (en) * | 2010-11-05 | 2014-05-28 | 新日鐵住金株式会社 | Carburized and hardened steel and carburized parts with excellent low cycle fatigue properties |
CN114737115A (en) * | 2022-03-28 | 2022-07-12 | 承德建龙特殊钢有限公司 | CrMnB gear steel and preparation method and application thereof |
-
2003
- 2003-07-16 JP JP2003198034A patent/JP4289052B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2005036257A (en) | 2005-02-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101248317B1 (en) | Steel sheet for brake disc, and brake disc | |
JP5669339B2 (en) | Manufacturing method of high strength carburized parts | |
JP2011153364A (en) | Crankshaft and method for producing the same | |
JP6741060B2 (en) | Gear component and manufacturing method thereof | |
JP3562192B2 (en) | Component for induction hardening and method of manufacturing the same | |
JP4688691B2 (en) | Case-hardened steel with excellent low cycle fatigue strength | |
JP2010189697A (en) | Crankshaft and method for producing the same | |
JP3915710B2 (en) | Carburized differential gear with excellent low cycle impact fatigue resistance | |
JPH11131176A (en) | Induction hardened parts and production thereof | |
JP3543557B2 (en) | Carburized gear | |
JP2007231337A (en) | Hot rolled steel sheet and steel component | |
EP3467133B1 (en) | Case-hardened steel and manufacturing method therefor as well as gear component manufacturing method | |
JP5445345B2 (en) | Steel bar for steering rack bar and manufacturing method thereof | |
WO2017209180A1 (en) | Case-hardened steel and manufacturing method therefor as well as gear component manufacturing method | |
JP3550886B2 (en) | Manufacturing method of gear steel for induction hardening excellent in machinability and fatigue strength | |
JP4289052B2 (en) | Carburized gear with excellent impact fatigue strength and manufacturing method thereof | |
JP5365477B2 (en) | Steel for surface hardening treatment | |
JP2008179848A (en) | Steel for gear having superior impact fatigue resistance and contact fatigue strength, and gear using the same | |
JP6825605B2 (en) | Carburizing member | |
JP5131770B2 (en) | Non-tempered steel for soft nitriding | |
JP7623411B2 (en) | Nitriding steel with excellent cold forgeability and nitriding properties and cold forged nitrided parts | |
JP6256416B2 (en) | Case-hardened steel | |
JPWO2004035848A1 (en) | Steel for machine structures and drive shafts with excellent rolling, fire cracking resistance and torsional properties | |
JP7368697B2 (en) | Steel for carburized gears, carburized gears, and method for manufacturing carburized gears | |
KR100913172B1 (en) | Carburizing ultra high strength steel with excellent contact fatigue strength |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060516 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080512 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080527 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080728 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20081028 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20081212 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090310 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090323 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 4289052 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120410 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120410 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130410 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130410 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140410 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |