[go: up one dir, main page]

JP4288337B2 - A method for differentiating sensitizing effects of hypoxic cell sensitizers and apoptotic signal-retaining agents under hypoxic conditions - Google Patents

A method for differentiating sensitizing effects of hypoxic cell sensitizers and apoptotic signal-retaining agents under hypoxic conditions Download PDF

Info

Publication number
JP4288337B2
JP4288337B2 JP2003193314A JP2003193314A JP4288337B2 JP 4288337 B2 JP4288337 B2 JP 4288337B2 JP 2003193314 A JP2003193314 A JP 2003193314A JP 2003193314 A JP2003193314 A JP 2003193314A JP 4288337 B2 JP4288337 B2 JP 4288337B2
Authority
JP
Japan
Prior art keywords
hypoxic
apoptosis
cells
conditions
irradiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003193314A
Other languages
Japanese (ja)
Other versions
JP2005027515A (en
Inventor
浩治 横山
典彦 辻谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pola Pharma Inc
Original Assignee
Pola Pharma Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pola Pharma Inc filed Critical Pola Pharma Inc
Priority to JP2003193314A priority Critical patent/JP4288337B2/en
Publication of JP2005027515A publication Critical patent/JP2005027515A/en
Application granted granted Critical
Publication of JP4288337B2 publication Critical patent/JP4288337B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Description

【0001】
【発明の属する技術範囲】
本発明は、低酸素性細胞放射線増感剤の増感効果の鑑別法及び低酸素条件下アポトーシス・シグナル保持剤に関する。
【0002】
【従来の技術】
癌放射線治療における最大の課題は、放射線抵抗性の癌細胞の存在であり、かかる放射線抵抗性の癌細胞は低酸素状態の部位に存在し、放射線治療をくぐり抜けて、やがて再酸素化して再発の原因になると言われている。又、これらの細胞の放射線に対する抵抗性は、低酸素状態に於いては、放射線により誘導されたDNA損傷等の酸素による固定が起こらず、DNA損傷をきっかけにして起こるアポトーシスが誘導されにくい為と言われている。この様な放射線抵抗性の低酸素性細胞は、2−ニトロイミダゾール誘導体を共存させることにより、その放射線抵抗性を著しく減じることが知られている。又、この時アポトーシスが起こることが報告されている(非特許文献1参照)。
【0003】
一方、本発明者らは、既に放射線がDNAにラジカルを作り、それに2−ニトロイミダゾール誘導体が反応してDNA損傷をもたらす、あるいは固定することにより、低酸素性細胞の放射線感受性を有するようになることを見出している(非特許文献2参照)。
【0004】
しかしながら、これらの報告に於いては、前記2−ニトロイミダゾール誘導体そのもののアポトーシス・シグナルへの作用は何ら考察されていない。又、低酸素条件とアポトーシスの関係についても、何ら考察されていない。更に、アポトーシス・シグナルと2−ニトロイミダゾール誘導体の関係について記述された報告も今のところ全く為されていない。従って、アポトーシス・シグナルの程度を指標に、2−ニトロイミダゾール誘導体などの低酸素性細胞放射線増感剤の増感効果を鑑別する試みも全く為されていない。
【0005】
一方、低酸素性細胞放射線増感剤の増感効果を、イン・ビトロで、鑑別するには、これまでは、低酸素条件で癌細胞を培養し、放射線増感剤の存在下、及び、非存在下、種々放射線の線量を変えて照射を行い、その後培養し、コロニー形成などより癌細胞の放射線線量と生存細胞量の生存曲線を作成し、生存曲線を比較して鑑別するしか方法が無く、それは極めて煩雑で、労力のかかるものであった。又、定量性についても実験の回数を重ねなければ、なかなか安定しないのが現状であった。
【0006】
他方、本発明者らは、低酸素条件下で照射すると、低酸素及びドラニダゾール、1−(2−ヒドロキシ−1−(ヒドロキシメチル)エトキシメチル)−2−ニトロイミダゾール、ミソニダゾール又はエタニダゾール等の2−ニトロイミダゾール誘導体の影響(増感作用)が見られる細胞(HL60)と、低酸素もこれらの2−ニトロイミダゾール誘導体も全く影響が見られない細胞(MOLT−4)が存在し、低酸素および増感剤の影響(増感作用)が見られる細胞(HL60)では、カスパーゼ3が活性化されるのを見出している(非特許文献3参照)。
【0007】
【非特許文献1】
Aoki M., et al., J. Radiat. Res., 2002, 43, 161-6
【非特許文献2】
Kuwabara, M., et al., J. Radiat. Res. 43, 77-88, 2002
【非特許文献3】
Inanami, O., et al., Int. J. Radiat. Biol. 78, 267-274, 2002
【0008】
【発明が解決しようとする課題】
本発明は、簡便で、定量性に優れる、低酸素性細胞放射線増感剤の増感効果のイン・ビトロでの鑑別法を提供することを課題とする。
【0009】
【課題を解決するための手段】
この様な状況に鑑みて、本発明者らは、簡便で、定量性に優れる、低酸素性細胞放射線増感剤の増感効果のイン・ビトロでの鑑別法を求めて、鋭意研究努力を重ねた結果、低酸素条件下における癌細胞と有酸素条件下における癌細胞について、低酸素性細胞放射線増感剤の存在下及び非存在下でのアポトーシス及び/又はアポトーシス・シグナルの程度を指標とすることにより、この様な鑑別が行えることを見出し、発明を完成させるに至った。
【0010】
即ち、本発明は、放射線抵抗性の癌の放射線療法に使用される、低酸素性細胞放射線増感剤の増感効果の鑑別法であって、低酸素条件下における癌細胞と有酸素条件下に於ける癌細胞について、低酸素性細胞放射線増感剤の存在下及び非存在下でのアポトーシス及び/又はアポトーシス・シグナルの程度を指標とする、増感効果の鑑別法を提供するものである。
【0011】
また、このとき、低酸素性細胞放射線増感剤として用いた2−ニトロイミダゾール誘導体が、低酸素条件下アポトーシス・シグナル保持剤として作用することも見出した。すなわち、本発明は、次の一般式(1)、
【0012】
【化3】

Figure 0004288337
【0013】
(式中、Rは炭素原子間にエーテル結合又はアミド結合を有していてもよく、1〜4個の水酸基を有していてもよい総炭素数4〜8の直鎖又は分岐鎖のアルキル又はアルケニル基を示す)
で表される化合物を有効成分とする低酸素条件下アポトーシス・シグナル保持剤を提供するものである。
【0014】
【発明の実施の形態】
(1)増感効果の鑑別法
本発明の増感効果の鑑別法は、癌放射線療法に於いて、放射線抵抗性の癌の放射線療法に使用される、低酸素性細胞放射線増感剤の増感効果の鑑別法であって、低酸素条件下における癌細胞と有酸素条件下に於ける癌細胞について、低酸素性細胞放射線増感剤の存在下及び非存在下でのアポトーシス及び/又はアポトーシス・シグナルの程度を指標とする。
【0015】
ここで、酸素条件下放射線照射によってアポトーシスが誘導されるが、後記実施例に示すように、被放射線照射細胞を低酸素条件下に置くことにより、この様なアポトーシスは抑制される。又、前記放射線照射によって起こるアポトーシスは、放射線による傷害対象がDNAであるHL60等の細胞でも誘導されるし、MOLT4の様な細胞膜傷害性の細胞に於いても誘導される。従って、従来の「放射線照射によるDNA損傷によってアポトーシスが誘導される」と言う認識は正しくなく、「放射線照射により誘導されるアポトーシス及び/又はアポトーシス・シグナルが、低酸素状態によって阻害される」の認識が正しいことがわかる。従って、低酸素性細胞放射線増感剤の効果は、「低酸素状態になることによって阻害される、アポトーシス及び/又はアポトーシス・シグナルの阻害を妨げ、それを保持する」効果であるといえる。本発明の増感効果の鑑別はこれに基づいて行われるものである。
【0016】
ここで、指標となるアポトーシスの程度は、常法に従って判定すれば良く、例えば、プロピジウム・アイオダイド(Propidium Iodide)による蛍光染色を行った後に、形態学的な観察を行い、クロマチン凝集の程度或いは核断片化の程度を判定することによって鑑別することが出来る。
【0017】
また、アポトーシス・シグナルとしては、アポトーシス誘導に関連することが知られている因子、その因子をコードしたmRNA等の核酸を指標とすることが出来、具体的には、Fas抗原の発現量が好適に例示できる。このものは、常法に従ってウエスタンブロット、Fas mRNAに特異的に結合するプライマー及びプローブを用いたRT−PCR及びノーザンブロットにより、検出、判定することが出来る。また、カスパーゼ(Caspase)、更に上流に位置する活性化ストレス活性化蛋白質リン酸化酵素(Phospho−SAPK/JNK)の発現量、SAPK/JNK(ストレス応答MAPキナーゼ)の発現量、ストレス活性化蛋白質リン酸化酵素(SAPK/JNK)の発現量等も指標として用いることが出来、これらシグナルの発現の程度は、因子そのものをウエスタンブロットにより検出、判定することも出来る。
【0018】
本発明の放射線増感効果の鑑別法は次に示す手順に従って行われる。即ち、
1)癌細胞を10%FBS添加RPMI培地等の細胞培養培地で、5%炭酸ガス気流下前培養する。
2)4種の条件用に分注する。即ち、(1)被験物質(低酸素性細胞放射線増感剤)存在下、有酸素条件培養用、(2)被験物質存在下低酸素条件培養用、(3)被験物質非存在下有酸素条件培養用及び(4)被験物質非存在下低酸素条件用の4種である。分注後、放射線の照射を行い、(1)と(2)に被験物質を添加する。
3)放射線照射及び被験物質添加後、(1)と(3)は有酸素条件下で後培養し、(2)と(4)は低酸素条件下で後培養する。
4)(1)〜(4)におけるアポトーシスの程度、或いは、アポトーシス・シグナルの発現の程度を計測する。(1)〜(4)を比較し、被験物質が存在しない条件で、有酸素条件下で誘導されるアポトーシスが、低酸素条件下でどの程度抑制されるかを判定するまた、被験物質の存在により前記抑制がどの程度緩和されるかを判定し、それを低酸素性細胞に対する増感効果として鑑別する。
【0019】
ここで用いる低酸素性細胞放射線増感剤としては、前記一般式(1)で表される化合物が挙げられる。この化合物は、本発明鑑定法において、また癌放射線療法において低酸素条件下のアポトーシス・シグナル保持剤として作用する。
【0020】
(2)本発明の低酸素条件下アポトーシス・シグナル保持剤
本発明の低酸素条件下アポトーシス・シグナル保持剤は、一般式(1)で表される化合物を有効成分とする。一般式(1)において、Rは、炭素原子間にエーテル結合(−O−)又はアミド結合(CONH)を有していてもよく、1〜4個の水酸基を有していてもよい、総炭素数4〜8の直鎖又は分岐鎖のアルキル又はアルケニル基を示す。
【0021】
この様なRで示される基としては、例えば、2,3−ジヒドロキシメチル−1−(ヒドロキシメチル)プロピルオキシメチル基、2−ヒドロキシ−1−(ヒドロキシメチル)エトキシメチル基、N−(2−ヒドロキシエチル)アミノカルボニルメチル基、4−ヒドロキシ−2−ブテノキシメチル基、2−ヒドロキシ−3−メトキシプロピル基等が好適に例示できる。これらの内、特に好ましい基は、2,3−ジヒドロキシメチル−1−(ヒドロキシメチル)プロピルオキシメチル基、2−ヒドロキシ−1−(ヒドロキシメチル)エトキシメチル基又はN−(2−ヒドロキシエチル)アミノカルボニルメチル基であり、化合物としてはドラニダゾール(a)、1−(2−ヒドロキシ−1−(ヒドロキシメチル)エトキシメチル)−2−ニトロイミダゾール(b)、ミソニダゾール(c)又はエタニダゾール(d)が好ましく例示できる。
【0022】
【化4】
Figure 0004288337
【0023】
【化5】
Figure 0004288337
【0024】
【化6】
Figure 0004288337
【0025】
【化7】
Figure 0004288337
【0026】
かかる一般式(1)で表される化合物は、何れも既知化合物であり、常法に従って製造することが出来る。例えば、ドラニダゾール(a)であれば、エリスリトールの4つの水酸基の内3つの水酸基をアセチル基などで保護し、しかる後にジメトキシメタンと五酸化リンを反応させて、2−メトキシメトキシ−1,3,4−トリアセトキシブタンと為し、これにルイス酸の存在下、無水酢酸を反応させ2−アセトキシメトキシ−1,3,4−トリアセトキシブタンに変換し、これと2−ニトロイミダゾールのトリメチルシリル化物をルイス酸を触媒として縮合し、脱保護することにより得られる。化合物(b)であれば、5−ヒドロキシ−1,3−ジオキソランにジメトキシメタンと五酸化リンを反応させて5−メトキシメトキシ−1,3−ジオキソランと為し、これにルイス酸の存在下、無水酢酸を反応させ5−アセトキシメトキシ−1,3−ジオキソランに誘導し、しかる後、これと2−ニトロイミダゾールのトリメチルシリル化物をルイス酸を触媒として縮合し、脱保護することにより得られる。エタニダゾール(d)であれば、トリメチルアミン等のアルカリ存在下、2−ニトロイミダゾールとブロモ酢酸メチルを縮合させ、しかる後モノエタノールアミンを反応させることにより製造することが出来る。
【0027】
かくして得られた一般式(1)で表される化合物は、低酸素条件下において抑制されるFas抗原などのアポトーシス・シグナルの発現を有酸素下同様維持させる作用を有する。特に、低酸素性の条件で抑制される、放射線照射などに起因する細胞膜傷害をきっかけにして起こるFas抗原の発現を維持し、有酸素下同様にアポトーシスを誘導させる作用を有する。
【0028】
【実施例】
以下に、実施例を挙げて、本発明について更に詳細に説明を加えるが、本発明が、かかる実施例にのみ限定されないことは言うまでもない。
【0029】
<実施例1>
ヒト白血病細胞HL−60とMOLT−4細胞を用いて、酸素存在下(大気圧)でX線照射を行い、しかる後に有酸素条件下及び低酸素条件下に置いた際のアポトーシス発現と、それに対する本発明の低酸素条件下アポトーシス・シグナル保持剤の作用を調べた。
【0030】
HL−60とMOLT−4細胞を播種した培養用ディッシュを氷冷し、酸素存在下(大気圧)にて15Gy照射した後、予め氷中で冷却しておいた低酸素チャンバーに設置し、ドラニダゾール存在下或いは非存在下にて5%炭酸ガスを含む高純度窒素ガス(2L/min)を30分間通気して低酸素条件とした。その後直ちに、低酸素条件で37℃にて6時間インキュベーションした。有酸素条件下の場合は、照射後、5%炭酸ガス気流下、37℃にてインキュベートした。経時的に細胞を採取し、propidium iodide(PI)で染色した後、蛍光顕微鏡にてDNA断片化と核濃縮を指標にアポトーシスを評価した。結果を図1に示す。
【0031】
これより、アポトーシスの発現はX線照射後の低酸素条件により抑制されるが、一般式(1)に表される化合物が共存することにより、かかる抑制は緩和されることがわかる。これは、X線照射の影響がDNA傷害性である、HL60のみならず、膜傷害性であるMOLT−4細胞でも同様に観察された。即ち、1)放射線によるアポトーシス誘導は、DNA傷害のみならず、膜傷害をきっかけにしても誘起される、2)放射線照射後の低酸素条件が1)のアポトーシス誘導を抑制する、3)一般式(1)の化合物が低酸素条件によるアポトーシス誘導の抑制を解除する現象が存在することがわかった。即ち、一般式(1)の化合物の存在下、非存在下に於ける、照射後の低酸素条件と有酸素条件でのアポトーシスの発現の変化を捉えることにより、一般式(1)の化合物の増感効果が鑑別できることがわかる。
【0032】
<実施例2>
実施例1の結果を踏まえて、MOLT−4細胞を用いて、更に、X線照射後のアポトーシス・シグナル誘導と、酸素条件及びアポトーシス・シグナル保持剤の関連を調べた。
(検討1)
MOLT−4細胞における照射後、低酸素インキュベーションによるX線誘発アポトーシス誘導の抑制と、それに対するドラニダゾール処理による増強作用
【0033】
(A)MOLT−4細胞を播種した培養用ディッシュを氷冷し、酸素存在下(大気圧)にて15Gy照射した後、予め氷中で冷却しておいた低酸素チャンバーに設置し、5%炭酸ガスを含む高純度窒素ガス(1L/min)を30分間通気して低酸素条件とした。その後直ちに、低酸素条件で37℃にてインキュベーションした。有酸素条件下の場合は、照射後、5%炭酸ガス気流下、37℃にてインキュベートした。経時的に細胞を採取し、propidium iodide(PI)で染色した後、蛍光顕微鏡にてDNA断片化と核濃縮を指標にアポトーシスを評価した。結果を図2のAに示す。尚、図中黒丸はコントロール(非照射、有酸素条件下)、黒四角は細胞を15Gy照射し、有酸素存在下にてインキュベートしたもの、△は細胞を15Gy照射し、低酸素条件下(5%炭酸ガスを含有する高純度窒素)にてインキュベーションしたもののプロットを示す。
【0034】
(B)Aと同様に7.5Gy或いは15GyのX線を照射し、ドラニダゾール存在下或いは非存在下で有酸素条件或いは低酸素条件にて37℃、6時間インキュベーションした後、細胞を採取した。細胞をPIで染色し、蛍光顕微鏡にてDNA断片化と核濃縮を指標にアポトーシスを評価した。結果は3例の平均と標準誤差により示した。*はp<0.05の危険率で有意であることを示した。結果を図2のBに示す。
【0035】
(A、Bの結果)
図2Aより、照射時、初期損傷が同じでも、照射後低酸素培養をすることでアポトーシスの抑制が起きることがわかる。
【0036】
(検討2)
増殖・サバイバルシグナルに対するX線照射と低酸素培養、ならびにドラニダゾールの効果
【0037】
(A)MOLT−4細胞を播種した培養用ディッシュを氷冷し、酸素存在下(大気圧)にて15Gy照射した後、有酸素条件下(5%炭酸ガス気流下、37℃)にて培養した。経時的に細胞を採取し、PBSで洗浄した後、タンパク溶液を調製した。このタンパク溶液をSDS−PAGEにより分離し、ニトロセルロースに転写した後、リン酸化Akt(活性型)、Akt、リン酸化ERK(活性型)及びERKについて、それぞれの特異抗体により検出した。この結果は図3のAに示す。
【0038】
(B)MOLT−4細胞を播種した培養用ディッシュを予め氷中で冷却しておいた低酸素チャンバーに設置し、5%炭酸ガスを含む高純度窒素ガス(1L/min)を30分間通気して低酸素条件とした。その後直ちに、低酸素条件で37℃にてインキュベーションした。経時的に細胞を採取し、PBSで洗浄した後、タンパク溶液を調製した。このタンパク溶液をSDS−PAGEにより分離し、ニトロセルロースに転写した後、リン酸化Akt(活性化型)、Akt、リン酸化ERK(活性化型)ならびにERKについて、それぞれの特異抗体により検出した。この結果は図3のBに示す。
【0039】
(C)MOLT−4細胞を播種した培養用ディッシュを氷冷し、酸素存在下(大気圧)にて15Gy照射(或いは非照射)した後、予め氷中で冷却しておいた低酸素チャンバーに設置し、ドラニダゾール存在下或いは非存在下にて5%炭酸ガスを含む高純度窒素ガス(1L/min)を30分間通気して低酸素条件とした。その後直ちに、低酸素条件で37℃にてインキュベーションした。有酸素条件下の場合は、15Gy照射(或いは非照射)後、5%炭酸ガス気流下、37℃にてインキュベートした。1.5時間或いは3時間インキュベート後に細胞を採取し、PBSで洗浄した後、タンパク溶液を調製した。このタンパク溶液をSDS−PAGEにより分離し、ニトロセルロースに転写した後、リン酸化Akt(活性化型)、Akt、リン酸化ERK(活性化型)ならびにERKについて、それぞれの特異抗体により検出した。リン酸化Akt(活性化型)及びAktについては3時間インキュベート後、リン酸化ERK(活性化型)及びERKについては1.5時間インキュベート後について検討した。この結果は図3のCに示す。
【0040】
(結果)放射線(図3A)ならびに低酸素(図3B)のみの処理でAktとERK共に活性化することが示された。特にAktの活性化は放射線よりも低酸素の方が強く、持続的であった(図3A、B及びCのレーン2及び4)。また、放射線誘発Aktの活性化(図3Cレーン4)については低酸素条件下では更に強い活性を示し(図3Cレーン5)、それはドラニダゾールで影響を受けなかった(図3Cレーン6)。
【0041】
(検討3)アポトーシスシグナルに対するX線照射と低酸素培養、ならびにドラニダゾールの効果
【0042】
(A)MOLT−4細胞を播種した培養用ディッシュを氷冷し、酸素存在下(大気圧)にて15Gy照射した後、有酸素条件下(5%炭酸ガス気流下、37℃)にて培養した。経時的に細胞を採取し、PBSで洗浄した後、タンパク溶液を調製した。このタンパク溶液をSDS−PAGEにより分離し、ニトロセルロースに転写した後、SAPK/JNK(活性型)、SAPK/JNK、リン酸化p38(活性型)及びp38について、それぞれの特異抗体により検出した。この結果は図4Aに示す。
【0043】
(B)MOLT−4細胞を播種した培養用ディッシュを予め氷中で冷却しておいた低酸素チャンバーに設置し、5%炭酸ガスを含む高純度窒素ガス(1L/min)を30分間通気して低酸素条件とした。その後直ちに、低酸素条件で37℃にてインキュベーションした。経時的に細胞を採取し、PBSで洗浄した後、タンパク溶液を調製した。このタンパク溶液をSDS−PAGEにより分離し、ニトロセルロースに転写した後、SAPK/JNK(活性型)、SAPK/JNK、リン酸化p38(活性型)及びp38について、それぞれの特異抗体により検出した。この結果は図4Bに示す。
【0044】
(C)MOLT−4細胞を播種した培養用ディッシュを氷冷し、酸素存在下(大気圧)にて15Gy照射(或いは非照射)した後、予め氷中で冷却しておいた低酸素チャンバーに設置し、ドラニダゾール存在下或いは非存在下にて5%炭酸ガスを含む高純度窒素ガス(1L/min)を30分間通気して低酸素条件とした。その後直ちに、低酸素条件で37℃にてインキュベーションした。有酸素条件下の場合は、15Gy照射(或いは非照射)後、5%炭酸ガス気流下、37℃にてインキュベートした。1.5時間或いは6時間インキュベート後に細胞を採取し、PBSで洗浄した後、タンパク溶液を調製した。このタンパク溶液をSDS−PAGEにより分離し、ニトロセルロースに転写した後、SAPK/JNK(活性型)、SAPK/JNK、リン酸化p38(活性型)及びp38について、それぞれの特異抗体により検出した。SAPK/JNK(活性型)及びSAPK/JNKについては1.5時間インキュベート後、リン酸化p38(活性型)及びp38については6時間インキュベート後について検討した。この結果は図4Cに示す。
【0045】
(結果)放射線(図4A)のみの処理でSAPK/JNKの強い活性化が観察されたが、p38の活性化は起こさなかった。また、低酸素培養では、SAPK/JNKならびp38の活性化は引き起こさなかった。放射線誘発SAPK/JNKの活性化(図4Cレーン4)はX線照射後、低酸素培養(図4Cレーン5)すると、その活性化は減弱し、さらに、その低酸素培養時にドラニダゾールが存在すると(図4Cレーン6)、酸素条件下で培養した時(図4Cレーン4)の活性まで増強した。このことから、ドラニダゾールの低酸素時の放射線誘発アポトーシス誘導がSAPK/JNKを介して、増強していることが結論づけられた。
【0046】
(検討4)Fas発現とカスパーゼ3活性化に及ぼすX線照射と低酸素培養、ならびにドラニダゾールの効果
【0047】
(A)MOLT−4細胞を播種した培養用ディッシュを氷冷し、酸素存在下(大気圧)にて15Gy照射した後、有酸素条件下(5%炭酸ガス気流下、37℃)にて培養した。経時的に細胞を採取し、PBSで洗浄した後、タンパク溶液を調製した。このタンパク溶液をSDS−PAGEにより分離し、ニトロセルロースに転写した後、Fasの特異抗体により検出した。また、細胞内標準タンパク質として特異抗体によりアクチンを検出した。この結果は図5Aの右側パネルに示す。
【0048】
MOLT−4細胞を播種した培養用ディッシュを予め氷中で冷却しておいた低酸素チャンバーに設置し、5%炭酸ガスを含む高純度窒素ガス(1L/min)を30分間通気して低酸素条件とした。その後直ちに、低酸素条件で37℃にてインキュベーションした。経時的に細胞を採取し、PBSで洗浄した後、タンパク溶液を調製した。このタンパク溶液をSDS−PAGEにより分離し、ニトロセルロースに転写した後、Fasの特異抗体により検出した。また、細胞内標準タンパク質として特異抗体によりアクチンを検出した。この結果は図5Aの右側パネルに示す。
【0049】
(B)MOLT−4細胞を播種した培養用ディッシュを氷冷し、酸素存在下(大気圧)にて15Gy照射(或いは非照射)した後、予め氷中で冷却しておいた低酸素チャンバーに設置し、ドラニダゾール存在下或いは非存在下にて5%炭酸ガスを含む高純度窒素ガス(1L/min)を30分間通気して低酸素条件とした。その後直ちに、低酸素条件で37℃にてインキュベーションした。有酸素条件下の場合は、15Gy照射(或いは非照射)後、5%炭酸ガス気流下、37℃にてインキュベートした。6時間インキュベート後に細胞を採取し、PBSで洗浄した後、タンパク溶液を調製した。このタンパク溶液をSDS−PAGEにより分離し、ニトロセルロースに転写した後、Fasの特異抗体により検出した。また、細胞内標準タンパク質として特異抗体によりアクチンを検出した。結果は3例のブロットをデンシトメーターにかけ、その数値化した濃度の平均と標準誤差により示した。*はp<0.05の危険率で有意であることを示した。この結果は図5Bに示す。
【0050】
(C)上記Bと同一の条件にて細胞質抽出液を調製した。カスパーゼ3の基質としてAc−DEVD−MCA(Acetyl−Asp−Glu−Val−Asp−α−(4−methyl−coumary1−7−amide))を用いて、380nm励起、460nm蛍光での蛍光分光法を用いて検討した。結果は3例の平均と標準誤差により示した。*はp<0.05の危険率で有意であることを示した。この結果は図5Cに示す。
【0051】
(結果)放射線によりFasの発現が観察されたが、低酸素培養のみでは発現は観察されなかった(図5A)。放射線によるFasの発現は、照射後の低酸素培養で有意に抑制し(図5Bレーン5)、ドラニダゾール存在下での低酸素培養では、酸素存在下レベルにまでその発現が増強した(図5Bレーン6)。これは、放射線誘発MOLT−4細胞のアポトーシスがタンパク質合成依存性のFas発現とDISCの形成、カスパーゼ8、3のカスケードで起こることを示した以前の研究と考え合わせると、放射線誘発Fasの低酸素培養による発現低下とドラニダゾールによる増強が、アポトーシスでの低酸素培養による抑制と、ドラニダゾールによる増強を説明しているものと結論づけられる。さらに、カスパーゼ3の活性化(図5C)もFasの発現とパラレルであったことからも、このことを裏付けている。
【0052】
(検討5)MOLT−4細胞の細胞内グルタチオン濃度に及ぼすX線照射、低酸素培養ならびにX線照射+低酸素培養+ドラニダゾールの影響。
【0053】
図5Bと同一の条件にて細胞質抽出液を調製し、これにmomochlobimate溶液及びグルタチオンSトランスフェラーゼを加え、37℃にて30分間作用させた後、生じた蛍光物質を380nm励起、460nm蛍光での蛍光分光法により測定した。還元型グルタチオンにより標準直線を作成し、細胞内グルタチオン濃度を細胞数当たりで算出した。結果は3例の平均と標準誤差により示した。*はp<0.05の危険率で有意であることを示した。この結果は図6に示す。
【0054】
(結果)低酸素のみ(図6レーン2)ならびに低酸素培養+ドラニダゾール処理(図6レーン3)では細胞内グルタチオン濃度に影響は見られなかった。X線照射(図6レーン4)ではコントロールの約半分にまで細胞内グルタチオン濃度は低下したが、照射後の低酸素培養では有意に増加した(図6レーン5)。この増加はドラニダゾール存在下で消失した(図6レーン6)。以上の結果は細胞内グルタチオンを低酸素培養ならびにドラニダゾール処理で修飾し、細胞内情報伝達機構、とりわけアポトーシスシグナルをレドックス制御している可能性が示唆された。
【0055】
(検討6)MOLT−4細胞の放射誘発アポトーシスとSAPK/JNK活性化ならびその発現に及ぼすN−アセチルシステイン(NAC)の影響
【0056】
(A)MOLT−4細胞を播種した培養用ディッシュを氷冷し、酸素存在下(大気圧)にて7.5Gy照射(或いは非照射)した後、15mMのNAC存在下或いは非存在下で有酸素条件下(5%炭酸ガス気流下、37℃)にて培養した。培養9時間後のアポトーシス誘導をPI染色後、蛍光頼微鏡で観察し、カウントした。結果は3例の平均と標準誤差により示した。*はp<0.05の危険率で有意であることを示した。この結果は図7Aに示す。
【0057】
(B)上記と同一の条件にて照射ならびNAC処理を行った。培養1.5時間後に細胞を採取し、PBSで洗浄した後、タンパク溶液を調製した。このタンパク溶液をSDS−PAGEにより分離し、ニトロセルロースに転写した後、SAPK/JNK(活性型)、SAPK/JNKについて、それぞれの特異抗体により検出した。また、細胞内標準タンパク質として特異抗体によりアクチンを検出した。結果は3例のブロットをデンシトメーターにかけ、その数値化した濃度の平均と標準誤差により示した。*はp<0.05の危険率で有意であることを示した。この結果は図7Bに示す。
【0058】
(結果)放射線により誘発されたアポトーシスとSAPK/JNKの活性化は、照射後NAC処理することで減弱することが観察された。これは、放射線誘発SAPK/JNK活性化は細胞内のチオールなどの還元物質により抑制的に制御されていることを示しており、これが放射線誘発アポトーシスのメカニズムの一部に影響を与えていることを示している。したがって、ドラニダゾールによる低酸素条件での放射線誘発アポトーシスの増感も、図6の細胞内グルタチオンの変動から類推すると、こうした細胞内グルタチオンを減少させていることが一つのメカニズムを担っている可能性が強く示唆された。
【0059】
(検討7)Fas発現とカスパーゼ3活性化に及ぼすX線照射と低酸素培養、並びに一般式(1)の化合物効果
【0060】
MOLT−4細胞を播種した培養用ディッシュを氷冷し、酸素存在下(大気圧)にて15Gy照射(或いは非照射)した後、予め氷中で冷却しておいた低酸素チャンバーに設置し、ドラニダゾール、RP170及びPR313(ミソニダゾール)存在下或いは非存在下にて5%炭酸ガスを含む高純度窒素ガス(1L/min)を30分間通気して低酸素条件とした。その後直ちに、低酸素条件で37℃にてインキュベーションした。有酸素条件下の場合は、15Gy照射(或いは非照射)後、5%炭酸ガス気流下、37℃にてインキュベートした。6時間インキュベート後に細胞を採取し、PBSで洗浄した後、タンパク溶液を調製した。このタンパク溶液をSDS−PAGEにより分離し、ニトロセルロースに転写した後、Fasの特異抗体により検出した。また、細胞内標準タンパク質として特異抗体によりアクチンを検出した。この結果は図8に示す。
【0061】
(結果)放射線誘発Fas発現は、照射後の低酸素培養で有意に抑制したが、ドラニダゾール、RP170ならびにPR313存在下での低酸素培養では、酸素存在下で培養した場合と同程度の発現量まで増強した。このことは、今まで見てきた低酸素培養におけるドラニダゾールによる放射線誘発Fasの増強とそれに引き続くアポトーシス誘導は、この増感剤に限局した現象でなく他のイミダゾール誘導体に共通した現象であることが予想された。
【0062】
【発明の効果】
本発明によれば、簡便で、定量性に優れる、低酸素性細胞放射線増感剤の増感効果のイン・ビトロでの鑑別法を提供することができる。
【図面の簡単な説明】
【図1】実施例1の結果を示す図である。(図中PRはドラニダゾールを表す。)
【図2】実施例2の検討1の結果を示す図である。(図中DRはドラニダゾールを表す。)
【図3】実施例2の検討2の結果を示す図である。(図中DRはドラニダゾールを表す。)
【図4】実施例2の検討3の結果を示す図である。(図中DRはドラニダゾールを表す。)
【図5】実施例2の検討4の結果を示す図である。(図中DRはドラニダゾールを表す。)
【図6】実施例2の検討5の結果を示す図である。(図中DRはドラニダゾールを表す。)
【図7】実施例2の検討6の結果を示す図である。
【図8】実施例2の検討7の結果を示す図である。(図中DRはドラニダゾールを表す。)[0001]
[Technical scope to which the invention belongs]
The present invention relates to a method for distinguishing a sensitizing effect of a hypoxic cell radiosensitizer and an apoptosis signal-retaining agent under hypoxic conditions.
[0002]
[Prior art]
The biggest challenge in cancer radiotherapy is the presence of radiation-resistant cancer cells, which are present in hypoxic sites, which have passed through radiotherapy and eventually reoxygenated and relapsed. It is said to be the cause. In addition, the resistance of these cells to radiation is that, under hypoxic conditions, there is no fixation by oxygen such as DNA damage induced by radiation, and apoptosis caused by DNA damage is less likely to be induced. It is said. It is known that such a radiation resistant hypoxic cell significantly reduces the radiation resistance by coexisting a 2-nitroimidazole derivative. In addition, it has been reported that apoptosis occurs at this time (see Non-Patent Document 1).
[0003]
On the other hand, the present inventors have already made radiation sensitive to hypoxic cells by generating radicals in DNA and reacting with 2-nitroimidazole derivatives to cause DNA damage or fixation. (See Non-Patent Document 2).
[0004]
However, in these reports, the effect of the 2-nitroimidazole derivative itself on the apoptosis signal is not considered at all. Moreover, no consideration is given to the relationship between hypoxic conditions and apoptosis. Furthermore, no reports describing the relationship between apoptosis signals and 2-nitroimidazole derivatives have been made so far. Therefore, no attempt has been made to distinguish the sensitizing effect of hypoxic cell radiosensitizers such as 2-nitroimidazole derivatives using the degree of apoptosis signal as an index.
[0005]
On the other hand, in order to differentiate the sensitizing effect of the hypoxic cell radiosensitizer in vitro, until now, cancer cells were cultured under hypoxic conditions, in the presence of the radiosensitizer, and In the absence, irradiation with various radiation doses is performed, followed by culturing, creating a survival curve of the cancer cell radiation dose and the amount of surviving cells by colony formation, etc., and comparing the survival curves for differentiation None, it was extremely cumbersome and labor intensive. In addition, with regard to the quantitative property, it has been difficult to stabilize unless the number of experiments is repeated.
[0006]
On the other hand, the present inventors, when irradiated under hypoxic conditions, showed low oxygen and 2-nitroimidazole such as 1- (2-hydroxy-1- (hydroxymethyl) ethoxymethyl) -2-nitroimidazole, misonidazole or etanidazole. There are cells (HL60) in which the influence (sensitization action) of the nitroimidazole derivative is observed, and cells (MOLT-4) in which neither the hypoxia nor these 2-nitroimidazole derivatives are affected. It has been found that caspase 3 is activated in cells (HL60) in which the influence (sensitization effect) of the sensitizer is observed (see Non-Patent Document 3).
[0007]
[Non-Patent Document 1]
Aoki M., et al., J. Radiat. Res., 2002, 43, 161-6
[Non-Patent Document 2]
Kuwabara, M., et al., J. Radiat. Res. 43, 77-88, 2002
[Non-Patent Document 3]
Inanami, O., et al., Int. J. Radiat. Biol. 78, 267-274, 2002
[0008]
[Problems to be solved by the invention]
An object of the present invention is to provide an in vitro differentiation method for the sensitizing effect of a hypoxic cell radiosensitizer that is simple and excellent in quantitative properties.
[0009]
[Means for Solving the Problems]
In view of such a situation, the present inventors sought for an in vitro differentiation method for the sensitizing effect of a hypoxic cell radiosensitizer that is simple and excellent in quantitativeness, and has made extensive research efforts. As a result of the analysis, with respect to cancer cells under hypoxic conditions and cancer cells under aerobic conditions, the degree of apoptosis and / or apoptosis signal in the presence and absence of hypoxic cell radiosensitizer is used as an index. As a result, the inventors have found that such discrimination can be performed, and have completed the invention.
[0010]
That is, the present invention is a method for differentiating the sensitizing effect of a hypoxic cell radiosensitizer used in radiotherapy for radiation-resistant cancer, which comprises cancer cells under hypoxic conditions and aerobic conditions. A method for distinguishing sensitizing effects of cancer cells in cancer using the degree of apoptosis and / or apoptosis signal in the presence and absence of a hypoxic cell radiosensitizer as an index .
[0011]
Moreover, it discovered that the 2-nitroimidazole derivative used as a hypoxic cell radiosensitizer at this time acted as an apoptosis signal retention agent under hypoxic conditions. That is, the present invention provides the following general formula (1),
[0012]
[Chemical 3]
Figure 0004288337
[0013]
(In the formula, R may have an ether bond or an amide bond between carbon atoms, and may have 1 to 4 hydroxyl groups, a linear or branched alkyl group having 4 to 8 carbon atoms in total. Or an alkenyl group)
The present invention provides an apoptosis / signal retention agent under hypoxic conditions comprising a compound represented by formula (1) as an active ingredient.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
(1) Differentiation method of sensitization effect
The method for differentiating the sensitizing effect of the present invention is a method for differentiating the sensitizing effect of a hypoxic cell radiosensitizer used in radiotherapy of cancer with radioresistance in cancer radiotherapy, For cancer cells under hypoxic conditions and cancer cells under aerobic conditions, the degree of apoptosis and / or apoptosis signal in the presence and absence of a hypoxic cell radiosensitizer is used as an index.
[0015]
Here, apoptosis is induced by irradiation under oxygen conditions, but as shown in the examples below, such apoptosis is suppressed by placing irradiated cells under hypoxic conditions. In addition, apoptosis caused by the radiation irradiation is induced in cells such as HL60, which are DNA-induced damage targets, or in cell membrane-damaging cells such as MOLT4. Therefore, the conventional recognition that “apoptosis is induced by DNA damage caused by irradiation” is incorrect, and “apoptosis and / or apoptosis signal induced by irradiation is inhibited by hypoxia”. You can see that is correct. Therefore, it can be said that the effect of the hypoxic cell radiosensitizer is an effect of “preventing and retaining the inhibition of apoptosis and / or apoptosis signal that is inhibited by becoming hypoxic”. The discrimination of the sensitization effect of the present invention is performed based on this.
[0016]
Here, the degree of apoptosis serving as an index may be determined according to a conventional method. For example, after fluorescent staining with propidium iodide, morphological observation is performed, and the degree of chromatin aggregation or nucleus Identification can be made by determining the degree of fragmentation.
[0017]
In addition, as an apoptosis signal, a factor known to be related to apoptosis induction or a nucleic acid such as mRNA encoding the factor can be used as an index. Specifically, the expression level of Fas antigen is suitable. Can be illustrated. This can be detected and determined by Western blot, RT-PCR using a primer and a probe that specifically binds to Fas mRNA, and Northern blot according to a conventional method. In addition, caspase, expression level of activated stress-activating protein kinase (Phospho-SAPK / JNK) located further upstream, expression level of SAPK / JNK (stress-responsive MAP kinase), stress-activating protein phosphorus The expression level of oxidase (SAPK / JNK) can also be used as an indicator, and the level of expression of these signals can be detected and determined by Western blotting of the factor itself.
[0018]
The method for distinguishing the radiosensitizing effect of the present invention is performed according to the following procedure. That is,
1) Cancer cells are pre-cultured in a cell culture medium such as RPMI medium supplemented with 10% FBS in a 5% carbon dioxide gas stream.
2) Dispense for 4 conditions. That is, (1) for aerobic condition culture in the presence of a test substance (hypoxic cell radiosensitizer), (2) for low oxygen condition culture in the presence of a test substance, (3) aerobic condition in the absence of a test substance There are 4 types for culture and (4) hypoxic conditions in the absence of the test substance. After dispensing, irradiate with radiation and add the test substance to (1) and (2).
3) After irradiation and addition of the test substance, (1) and (3) are post-cultured under aerobic conditions, and (2) and (4) are post-cultured under hypoxic conditions.
4) The degree of apoptosis in (1) to (4) or the degree of expression of an apoptosis signal is measured. Compare (1) to (4) to determine how much apoptosis induced under aerobic conditions is suppressed under hypoxic conditions in the absence of the test substance. To determine how much the suppression is mitigated, and distinguish it as a sensitizing effect on hypoxic cells.
[0019]
Examples of the hypoxic cell radiosensitizer used here include compounds represented by the general formula (1). This compound acts as an apoptosis signal retention agent under hypoxic conditions in the present invention testing method and in cancer radiotherapy.
[0020]
(2) Apoptosis / signal retention agent under hypoxic conditions of the present invention
The apoptosis / signal retention agent under hypoxic conditions of the present invention comprises a compound represented by the general formula (1) as an active ingredient. In the general formula (1), R may have an ether bond (—O—) or an amide bond (CONH) between carbon atoms, and may have 1 to 4 hydroxyl groups. A linear or branched alkyl or alkenyl group having 4 to 8 carbon atoms is shown.
[0021]
Examples of such a group represented by R include 2,3-dihydroxymethyl-1- (hydroxymethyl) propyloxymethyl group, 2-hydroxy-1- (hydroxymethyl) ethoxymethyl group, N- (2- Preferable examples include hydroxyethyl) aminocarbonylmethyl group, 4-hydroxy-2-butenoxymethyl group, 2-hydroxy-3-methoxypropyl group and the like. Among these, particularly preferred groups are 2,3-dihydroxymethyl-1- (hydroxymethyl) propyloxymethyl group, 2-hydroxy-1- (hydroxymethyl) ethoxymethyl group or N- (2-hydroxyethyl) amino. It is a carbonylmethyl group, and the compound is preferably dranidazole (a), 1- (2-hydroxy-1- (hydroxymethyl) ethoxymethyl) -2-nitroimidazole (b), misonidazole (c) or etanidazole (d). It can be illustrated.
[0022]
[Formula 4]
Figure 0004288337
[0023]
[Chemical formula 5]
Figure 0004288337
[0024]
[Chemical 6]
Figure 0004288337
[0025]
[Chemical 7]
Figure 0004288337
[0026]
Any of the compounds represented by the general formula (1) is a known compound and can be produced according to a conventional method. For example, in the case of dranidazole (a), three of the four hydroxyl groups of erythritol are protected with an acetyl group, and then dimethoxymethane and phosphorus pentoxide are reacted to give 2-methoxymethoxy-1,3,3. 4-triacetoxybutane was converted to 2-acetoxymethoxy-1,3,4-triacetoxybutane by reacting with acetic anhydride in the presence of Lewis acid, and this was trimethylsilylated with 2-nitroimidazole. It can be obtained by condensation using Lewis acid as a catalyst and deprotection. In the case of the compound (b), 5-methoxy-1,3-dioxolane is reacted with dimethoxymethane and phosphorus pentoxide to form 5-methoxymethoxy-1,3-dioxolane, and in the presence of a Lewis acid, It is obtained by reacting acetic anhydride to give 5-acetoxymethoxy-1,3-dioxolane, and then condensing this with trimethylsilylated 2-nitroimidazole using Lewis acid as a catalyst and deprotecting. Etanidazole (d) can be produced by condensing 2-nitroimidazole and methyl bromoacetate in the presence of an alkali such as trimethylamine and then reacting with monoethanolamine.
[0027]
The compound represented by the general formula (1) thus obtained has the effect of maintaining the expression of apoptosis signals such as Fas antigen that is suppressed under hypoxic conditions as well as under aerobic conditions. In particular, it has the function of maintaining the expression of Fas antigen that is triggered by radiation membrane damage caused by radiation irradiation and the like, which is suppressed under hypoxic conditions, and induces apoptosis in the same manner as in aerobic conditions.
[0028]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples, but it goes without saying that the present invention is not limited to such examples.
[0029]
<Example 1>
Human leukemia cells HL-60 and MOLT-4 cells were used for X-ray irradiation in the presence of oxygen (atmospheric pressure), and then apoptotic expression when placed under aerobic and hypoxic conditions, The effect of the apoptosis / signal retention agent on hypoxic conditions of the present invention was examined.
[0030]
The culture dish seeded with HL-60 and MOLT-4 cells is ice-cooled, irradiated with 15 Gy in the presence of oxygen (atmospheric pressure), and then placed in a low-oxygen chamber that has been cooled in ice in advance, and dranidazole A high-purity nitrogen gas (2 L / min) containing 5% carbon dioxide gas was bubbled for 30 minutes in the presence or absence of low-oxygen conditions. Immediately thereafter, the mixture was incubated at 37 ° C. for 6 hours under hypoxic conditions. In the case of an aerobic condition, after the irradiation, it was incubated at 37 ° C. in a 5% carbon dioxide gas stream. Cells were collected over time and stained with propidium iodide (PI), and then apoptosis was evaluated with a fluorescence microscope using DNA fragmentation and nuclear enrichment as indicators. The results are shown in FIG.
[0031]
From this, the expression of apoptosis is suppressed by hypoxic conditions after X-ray irradiation, but it can be seen that such suppression is alleviated by the coexistence of the compound represented by the general formula (1). This was similarly observed not only in HL60, in which the influence of X-ray irradiation is DNA damage, but also in MOLT-4 cells, which are membrane damage. That is, 1) induction of apoptosis by radiation is induced not only by DNA damage but also by triggering membrane damage, 2) hypoxic conditions after irradiation suppress 1) apoptosis induction, 3) general formula It has been found that there is a phenomenon in which the compound (1) cancels the suppression of apoptosis induction caused by hypoxic conditions. That is, by capturing changes in apoptosis under hypoxic conditions and aerobic conditions after irradiation in the presence or absence of the compound of the general formula (1), the compound of the general formula (1) It can be seen that the sensitizing effect can be distinguished.
[0032]
<Example 2>
Based on the results of Example 1, MOLT-4 cells were used to further examine the relationship between apoptosis signal induction after X-ray irradiation, oxygen conditions, and apoptosis signal retention agents.
(Examination 1)
Inhibition of X-ray-induced apoptosis induction by hypoxic incubation after irradiation in MOLT-4 cells and its potentiating effect by treatment with dranidazole
[0033]
(A) A culture dish seeded with MOLT-4 cells is ice-cooled, irradiated with 15 Gy in the presence of oxygen (atmospheric pressure), and then placed in a low-oxygen chamber that has been cooled in ice in advance, and 5% High-purity nitrogen gas (1 L / min) containing carbon dioxide gas was aerated for 30 minutes to achieve low oxygen conditions. Immediately thereafter, incubation was performed at 37 ° C. under hypoxic conditions. In the case of an aerobic condition, after irradiation, it was incubated at 37 ° C. in a 5% carbon dioxide gas stream. Cells were collected over time and stained with propidium iodide (PI), and then apoptosis was evaluated with a fluorescence microscope using DNA fragmentation and nuclear enrichment as indicators. The results are shown in FIG. In the figure, black circles are controls (non-irradiated, aerobic conditions), black squares are cells irradiated with 15 Gy and incubated in the presence of aerobic, Δ are cells irradiated with 15 Gy, and hypoxic conditions (5 Plots of those incubated with high purity nitrogen containing% carbon dioxide).
[0034]
(B) X-rays of 7.5 Gy or 15 Gy were irradiated in the same manner as in A, and the cells were collected after incubation at 37 ° C. for 6 hours under aerobic conditions or hypoxic conditions in the presence or absence of dranidazole. The cells were stained with PI, and apoptosis was evaluated with a fluorescence microscope using DNA fragmentation and nuclear enrichment as indicators. The results are shown by the average and standard error of 3 cases. * Indicates significance at p <0.05 risk. The results are shown in FIG.
[0035]
(Results of A and B)
FIG. 2A shows that even when the initial damage is the same at the time of irradiation, suppression of apoptosis occurs by performing hypoxic culture after irradiation.
[0036]
(Examination 2)
Effects of X-ray irradiation, hypoxic culture, and dranidazole on growth and survival signals
[0037]
(A) A culture dish seeded with MOLT-4 cells is ice-cooled, irradiated with 15 Gy in the presence of oxygen (atmospheric pressure), and then cultured under aerobic conditions (5% carbon dioxide gas flow, 37 ° C.). did. Cells were collected over time, washed with PBS, and a protein solution was prepared. This protein solution was separated by SDS-PAGE, transferred to nitrocellulose, and then phosphorylated Akt (active type), Akt, phosphorylated ERK (active type) and ERK were detected by each specific antibody. The result is shown in FIG.
[0038]
(B) The culture dish seeded with MOLT-4 cells was placed in a low-oxygen chamber that had been cooled in ice in advance, and high-purity nitrogen gas (1 L / min) containing 5% carbon dioxide was aerated for 30 minutes. And low oxygen conditions. Immediately thereafter, incubation was performed at 37 ° C. under hypoxic conditions. Cells were collected over time, washed with PBS, and a protein solution was prepared. This protein solution was separated by SDS-PAGE, transferred to nitrocellulose, and then phosphorylated Akt (activated), Akt, phosphorylated ERK (activated) and ERK were detected by each specific antibody. The result is shown in FIG.
[0039]
(C) The culture dish seeded with MOLT-4 cells is ice-cooled, irradiated with 15 Gy in the presence of oxygen (atmospheric pressure) (or non-irradiated), and then placed in a low-oxygen chamber that has been cooled in ice in advance. It was installed, and high-purity nitrogen gas (1 L / min) containing 5% carbon dioxide gas was aerated for 30 minutes in the presence or absence of dranidazole to achieve low oxygen conditions. Immediately thereafter, incubation was performed at 37 ° C. under hypoxic conditions. In the case of an aerobic condition, the cells were incubated at 37 ° C. in a 5% carbon dioxide gas flow after 15 Gy irradiation (or non-irradiation). After incubation for 1.5 hours or 3 hours, cells were collected, washed with PBS, and a protein solution was prepared. This protein solution was separated by SDS-PAGE, transferred to nitrocellulose, and then phosphorylated Akt (activated), Akt, phosphorylated ERK (activated) and ERK were detected by each specific antibody. Phosphorylated Akt (activated) and Akt were examined after 3 hours of incubation, and phosphorylated ERK (activated) and ERK were examined after 1.5 hours of incubation. The result is shown in FIG.
[0040]
(Results) It was shown that both Akt and ERK were activated by treatment with only radiation (FIG. 3A) and hypoxia (FIG. 3B). In particular, Akt activation was stronger and more sustained in hypoxia than radiation (lanes 2 and 4 in FIGS. 3A, B and C). In addition, the activation of radiation-induced Akt (FIG. 3C lane 4) showed stronger activity under hypoxic conditions (FIG. 3C lane 5), and it was not affected by dranidazole (FIG. 3C lane 6).
[0041]
(Study 3) Effects of X-ray irradiation, hypoxic culture, and dranidazole on apoptosis signals
[0042]
(A) A culture dish seeded with MOLT-4 cells is ice-cooled, irradiated with 15 Gy in the presence of oxygen (atmospheric pressure), and then cultured under aerobic conditions (5% carbon dioxide gas flow, 37 ° C.). did. Cells were collected over time, washed with PBS, and a protein solution was prepared. This protein solution was separated by SDS-PAGE, transferred to nitrocellulose, and then SAPK / JNK (active type), SAPK / JNK, phosphorylated p38 (active type) and p38 were detected with their specific antibodies. The result is shown in FIG. 4A.
[0043]
(B) The culture dish seeded with MOLT-4 cells was placed in a low-oxygen chamber that had been cooled in ice in advance, and high-purity nitrogen gas (1 L / min) containing 5% carbon dioxide was aerated for 30 minutes. And low oxygen conditions. Immediately thereafter, incubation was performed at 37 ° C. under hypoxic conditions. Cells were collected over time, washed with PBS, and a protein solution was prepared. This protein solution was separated by SDS-PAGE, transferred to nitrocellulose, and then SAPK / JNK (active type), SAPK / JNK, phosphorylated p38 (active type) and p38 were detected with their specific antibodies. The result is shown in FIG. 4B.
[0044]
(C) The culture dish seeded with MOLT-4 cells is ice-cooled, irradiated with 15 Gy in the presence of oxygen (atmospheric pressure) (or non-irradiated), and then placed in a low-oxygen chamber that has been cooled in ice in advance. It was installed, and high-purity nitrogen gas (1 L / min) containing 5% carbon dioxide gas was aerated for 30 minutes in the presence or absence of dranidazole to achieve low oxygen conditions. Immediately thereafter, incubation was performed at 37 ° C. under hypoxic conditions. In the case of an aerobic condition, the cells were incubated at 37 ° C. in a 5% carbon dioxide gas flow after 15 Gy irradiation (or non-irradiation). After incubation for 1.5 hours or 6 hours, cells were collected, washed with PBS, and a protein solution was prepared. This protein solution was separated by SDS-PAGE, transferred to nitrocellulose, and then SAPK / JNK (active type), SAPK / JNK, phosphorylated p38 (active type) and p38 were detected with their specific antibodies. SAPK / JNK (active form) and SAPK / JNK were examined after 1.5 hours of incubation, and phosphorylated p38 (active form) and p38 were examined after 6 hours of incubation. The result is shown in FIG. 4C.
[0045]
(Results) Strong activation of SAPK / JNK was observed by treatment with radiation (FIG. 4A) alone, but activation of p38 did not occur. In addition, hypoxic culture did not cause SAPK / JNK and p38 activation. The activation of radiation-induced SAPK / JNK (FIG. 4C lane 4) is attenuated in the hypoxic culture (FIG. 4C lane 5) after X-ray irradiation, and further, if dranidazole is present during the hypoxic culture (FIG. 4C lane 4). FIG. 4C lane 6) was enhanced to the activity when cultured under oxygen conditions (FIG. 4C lane 4). From this, it was concluded that the radiation-induced apoptosis induction of dranidazole during hypoxia is enhanced via SAPK / JNK.
[0046]
(Study 4) Effects of X-ray irradiation, hypoxic culture, and dranidazole on Fas expression and caspase 3 activation
[0047]
(A) A culture dish seeded with MOLT-4 cells is ice-cooled, irradiated with 15 Gy in the presence of oxygen (atmospheric pressure), and then cultured under aerobic conditions (5% carbon dioxide gas flow, 37 ° C.). did. Cells were collected over time, washed with PBS, and a protein solution was prepared. This protein solution was separated by SDS-PAGE, transferred to nitrocellulose, and then detected with a Fas specific antibody. In addition, actin was detected with a specific antibody as an intracellular standard protein. The result is shown in the right panel of FIG. 5A.
[0048]
The culture dish seeded with MOLT-4 cells was placed in a low-oxygen chamber that had been cooled in ice in advance, and high-purity nitrogen gas (1 L / min) containing 5% carbon dioxide gas was aerated for 30 minutes to reduce hypoxia. Condition. Immediately thereafter, incubation was performed at 37 ° C. under hypoxic conditions. Cells were collected over time, washed with PBS, and a protein solution was prepared. This protein solution was separated by SDS-PAGE, transferred to nitrocellulose, and then detected with a Fas specific antibody. In addition, actin was detected with a specific antibody as an intracellular standard protein. The result is shown in the right panel of FIG. 5A.
[0049]
(B) The culture dish seeded with MOLT-4 cells is ice-cooled, irradiated with 15 Gy in the presence of oxygen (atmospheric pressure) (or non-irradiated), and then placed in a low-oxygen chamber that has been cooled in ice in advance. It was installed, and high-purity nitrogen gas (1 L / min) containing 5% carbon dioxide gas was aerated for 30 minutes in the presence or absence of dranidazole to achieve low oxygen conditions. Immediately thereafter, incubation was performed at 37 ° C. under hypoxic conditions. In the case of an aerobic condition, the cells were incubated at 37 ° C. in a 5% carbon dioxide gas flow after 15 Gy irradiation (or non-irradiation). After incubation for 6 hours, the cells were collected, washed with PBS, and a protein solution was prepared. This protein solution was separated by SDS-PAGE, transferred to nitrocellulose, and then detected with a Fas specific antibody. In addition, actin was detected with a specific antibody as an intracellular standard protein. The results were expressed by means of a densitometer on three blots and the average of the quantified concentration and the standard error. * Indicates significance at p <0.05 risk. The result is shown in FIG. 5B.
[0050]
(C) A cytoplasmic extract was prepared under the same conditions as in B above. Using Ac-DEVD-MCA (Acetyl-Asp-Glu-Val-Asp-α- (4-methyl-coma1-7-amide)) as a substrate for caspase-3, fluorescence spectroscopy with 380 nm excitation and 460 nm fluorescence was performed. We examined using. The results are shown by the average and standard error of 3 cases. * Indicates significance at p <0.05 risk. The result is shown in FIG. 5C.
[0051]
(Results) Fas expression was observed by radiation, but expression was not observed only in the hypoxic culture (FIG. 5A). The expression of Fas by radiation was significantly suppressed in the hypoxic culture after irradiation (FIG. 5B lane 5), and in the hypoxic culture in the presence of danidazole, the expression was enhanced to the level in the presence of oxygen (FIG. 5B lane). 6). This, combined with previous studies showing that apoptosis in radiation-induced MOLT-4 cells occurs in a cascade of protein synthesis-dependent Fas expression and DISC formation, caspases 8,3, hypoxia in radiation-induced Fas It can be concluded that the decreased expression by culture and the enhancement by dranidazole explain the suppression by hypoxic culture in apoptosis and the enhancement by dranidazole. Furthermore, the activation of caspase 3 (FIG. 5C) was parallel to Fas expression, confirming this.
[0052]
(Study 5) Effects of X-ray irradiation, hypoxic culture and X-ray irradiation + hypoxic culture + Dranidazole on intracellular glutathione concentration of MOLT-4 cells.
[0053]
A cytoplasmic extract is prepared under the same conditions as in FIG. 5B, and a momloblobite solution and glutathione S-transferase are added thereto and allowed to act at 37 ° C. for 30 minutes, and then the resulting fluorescent substance is excited at 380 nm and fluorescent with 460 nm fluorescence. Measured by spectroscopy. A standard straight line was prepared using reduced glutathione, and the intracellular glutathione concentration was calculated per number of cells. The results are shown by the average and standard error of 3 cases. * Indicates significance at p <0.05 risk. The result is shown in FIG.
[0054]
(Results) Hypoxia alone (FIG. 6 lane 2) and hypoxic culture + Dranidazole treatment (FIG. 6 lane 3) had no effect on intracellular glutathione concentration. X-ray irradiation (FIG. 6, lane 4) decreased the intracellular glutathione concentration to about half of the control, but significantly increased in hypoxic culture after irradiation (lane 6 in FIG. 6). This increase disappeared in the presence of dranidazole (FIG. 6, lane 6). These results suggest that intracellular glutathione may be modified by hypoxic culture and treatment with dranidazole to redox-control intracellular signal transduction mechanisms, especially apoptotic signals.
[0055]
(Study 6) Effect of N-acetylcysteine (NAC) on radiation-induced apoptosis and SAPK / JNK activation and its expression in MOLT-4 cells
[0056]
(A) A culture dish seeded with MOLT-4 cells is ice-cooled, irradiated with 7.5 Gy (or non-irradiated) in the presence of oxygen (atmospheric pressure), and then present in the presence or absence of 15 mM NAC. The cells were cultured under oxygen conditions (5% carbon dioxide gas flow, 37 ° C.). Apoptosis induction after 9 hours of culture was observed with a fluorescent microscope after PI staining and counted. The results are shown by the average and standard error of 3 cases. * Indicates significance at p <0.05 risk. The result is shown in FIG. 7A.
[0057]
(B) Irradiation and NAC treatment were performed under the same conditions as above. After 1.5 hours of culture, cells were collected and washed with PBS, and a protein solution was prepared. This protein solution was separated by SDS-PAGE, transferred to nitrocellulose, and then SAPK / JNK (active type) and SAPK / JNK were detected by their specific antibodies. In addition, actin was detected with a specific antibody as an intracellular standard protein. The results were expressed by means of a densitometer on three blots and the average of the quantified concentration and the standard error. * Indicates significance at p <0.05 risk. The result is shown in FIG. 7B.
[0058]
(Results) It was observed that radiation-induced apoptosis and SAPK / JNK activation were attenuated by NAC treatment after irradiation. This indicates that radiation-induced SAPK / JNK activation is repressively regulated by reducing substances such as intracellular thiols, which affects part of the mechanism of radiation-induced apoptosis. Show. Therefore, the sensitization of radiation-induced apoptosis under hypoxic conditions by dranidazole may be one mechanism that the decrease in intracellular glutathione is analogized from the fluctuation of intracellular glutathione in FIG. It was strongly suggested.
[0059]
(Study 7) X-ray irradiation and hypoxic culture on Fas expression and caspase 3 activation, and compound effect of general formula (1)
[0060]
The culture dish seeded with MOLT-4 cells was ice-cooled, irradiated with 15 Gy in the presence of oxygen (atmospheric pressure) (or non-irradiated), and then placed in a low-oxygen chamber that had been cooled in ice in advance. High-purity nitrogen gas (1 L / min) containing 5% carbon dioxide gas was aerated for 30 minutes in the presence or absence of dranidazole, RP170, and PR313 (misonidazole) to achieve low oxygen conditions. Immediately thereafter, incubation was performed at 37 ° C. under hypoxic conditions. In the case of an aerobic condition, it was incubated at 37 ° C. in a 5% carbon dioxide gas stream after irradiation (or non-irradiation) with 15 Gy. After incubation for 6 hours, the cells were collected, washed with PBS, and a protein solution was prepared. This protein solution was separated by SDS-PAGE, transferred to nitrocellulose, and then detected with a Fas specific antibody. In addition, actin was detected with a specific antibody as an intracellular standard protein. The result is shown in FIG.
[0061]
(Results) Radiation-induced Fas expression was significantly suppressed in hypoxic culture after irradiation, but in hypoxic culture in the presence of dranidazole, RP170 and PR313, up to the same level of expression as when cultured in the presence of oxygen Enhanced. This suggests that the enhancement of radiation-induced Fas by dranidazole and the subsequent induction of apoptosis in hypoxic cultures observed so far is not a phenomenon limited to this sensitizer but a phenomenon common to other imidazole derivatives. It was done.
[0062]
【The invention's effect】
According to the present invention, it is possible to provide an in vitro differentiation method for the sensitizing effect of a hypoxic cell radiosensitizer that is simple and excellent in quantitative properties.
[Brief description of the drawings]
FIG. 1 is a diagram showing the results of Example 1. FIG. (In the figure, PR represents dranidazole.)
FIG. 2 is a diagram showing the results of Study 1 of Example 2. FIG. (DR in the figure represents dranidazole.)
3 is a diagram showing the results of Study 2 of Example 2. FIG. (DR in the figure represents dranidazole.)
4 is a diagram showing the results of Study 3 in Example 2. FIG. (DR in the figure represents dranidazole.)
5 is a diagram showing the results of Study 4 in Example 2. FIG. (DR in the figure represents dranidazole.)
6 is a diagram showing the results of Study 5 of Example 2. FIG. (DR in the figure represents dranidazole.)
7 is a diagram showing the results of Study 6 of Example 2. FIG.
8 is a diagram showing the results of Study 7 of Example 2. FIG. (DR in the figure represents dranidazole.)

Claims (4)

放射線抵抗性の癌の放射線療法に使用される低酸素性細胞放射線増感剤の増感効果の鑑別法であって、
(イ)放射線照射による傷害対象がDNAであるか又は細胞膜である癌細胞を放射線照射後、(1)被験物質存在下有酸素条件、(2)被験物質存在下低酸素条件、(3)被験物質非存在下有酸素条件、及び(4)被験物質非存在下低酸素条件、で培養する工程、
(ロ)前記(1)〜(4)におけるアポトーシス又はアポトーシス・シグナルの程度を計測する工程、
(ハ)前記条件(3)で誘導されるアポトーシス又はアポトーシス・シグナルの、前記条件(4)での抑制の程度が、前記条件(2)でどの程度緩和されるかを判定し、それを被験物質の低酸素性細胞に対する増感効果として鑑別する工程
を含む、増感効果の鑑別法。
A method for differentiating the sensitizing effect of a hypoxic cell radiosensitizer used for radiotherapy of radiation resistant cancer,
(A) After irradiation of cancer cells whose damage target by irradiation is DNA or cell membrane, (1) aerobic condition in the presence of test substance, (2) hypoxic condition in the presence of test substance, (3) test Culturing under aerobic conditions in the absence of the substance, and (4) hypoxic conditions in the absence of the test substance,
(B) measuring the degree of apoptosis or apoptosis signal in the above (1) to (4);
(C) Determine the degree of suppression of apoptosis or apoptosis signal induced in the condition (3) under the condition (4) to determine how much the condition (2) mitigates, and test it The process of identifying substances as sensitizing effects on hypoxic cells
Including sensitizing effects.
アポトーシス・シグナルの程度が、Fas抗原の発現量、活性化ストレス活性化蛋白質リン酸化酵素(Phospho−SAPK/JNK)の発現量及びストレス活性化蛋白質リン酸化酵素(SAPK/JNK)の発現量から選択される1種又は2種以上である、請求項1に記載の増感効果の鑑別法。  The degree of apoptosis signal is selected from the expression level of Fas antigen, the expression level of activated stress-activating protein kinase (Phospho-SAPK / JNK), and the expression level of stress-activating protein kinase (SAPK / JNK) The differentiation method of the sensitization effect of Claim 1 which is 1 type, or 2 or more types. 低酸素性細胞放射線増感剤が、次の一般式(1)
Figure 0004288337
(式中、Rは炭素原子間にエーテル結合又はアミド結合を有していてもよく、1〜4個の水酸基を有していてもよい総炭素数4〜8の直鎖又は分岐鎖のアルキル又はアルケニル基を示す)
で表される化合物である請求項1又は2記載の増感効果の鑑別法。
Hypoxic cell radiosensitizer is represented by the following general formula (1)
Figure 0004288337
(In the formula, R may have an ether bond or an amide bond between carbon atoms, and may have 1 to 4 hydroxyl groups, a linear or branched alkyl group having 4 to 8 carbon atoms in total. Or an alkenyl group)
The method for differentiating a sensitizing effect according to claim 1 or 2, wherein the compound is represented by the formula:
癌細胞がHL−60であるかMOLT−4である請求項1記載の増感効果の鑑別法。The method for distinguishing sensitizing effects according to claim 1, wherein the cancer cells are HL-60 or MOLT-4.
JP2003193314A 2003-07-08 2003-07-08 A method for differentiating sensitizing effects of hypoxic cell sensitizers and apoptotic signal-retaining agents under hypoxic conditions Expired - Lifetime JP4288337B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003193314A JP4288337B2 (en) 2003-07-08 2003-07-08 A method for differentiating sensitizing effects of hypoxic cell sensitizers and apoptotic signal-retaining agents under hypoxic conditions

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003193314A JP4288337B2 (en) 2003-07-08 2003-07-08 A method for differentiating sensitizing effects of hypoxic cell sensitizers and apoptotic signal-retaining agents under hypoxic conditions

Publications (2)

Publication Number Publication Date
JP2005027515A JP2005027515A (en) 2005-02-03
JP4288337B2 true JP4288337B2 (en) 2009-07-01

Family

ID=34204814

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003193314A Expired - Lifetime JP4288337B2 (en) 2003-07-08 2003-07-08 A method for differentiating sensitizing effects of hypoxic cell sensitizers and apoptotic signal-retaining agents under hypoxic conditions

Country Status (1)

Country Link
JP (1) JP4288337B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5297815B2 (en) 2007-01-26 2013-09-25 株式会社ポーラファルマ Pharmaceutical composition
CN101541324B (en) 2007-06-14 2011-06-15 株式会社宝丽制药 Pharmaceutical composition
CN111182897A (en) * 2017-10-02 2020-05-19 学校法人庆应义塾 Cancer stem cell inhibitors

Also Published As

Publication number Publication date
JP2005027515A (en) 2005-02-03

Similar Documents

Publication Publication Date Title
Adams et al. Toxicity of nitro compounds toward hypoxic mammalian cells in vitro: dependence on reduction potential
Tanno et al. Serine/threonine kinase AKT is frequently activated in human bile duct cancer and is associated with increased radioresistance
US20210128730A1 (en) Methods for treating tumors
Machida et al. Geldanamycin, an inhibitor of Hsp90, sensitizes human tumour cells to radiation
Yin et al. Niclosamide sensitizes triple-negative breast cancer cells to ionizing radiation in association with the inhibition of Wnt/β-catenin signaling
Baumann et al. Selective inhibition of the epidermal growth factor receptor tyrosine kinase by BIBX1382BS and the improvement of growth delay, but not local control, after fractionated irradiation in human FaDu squamous cell carcinoma in the nude mouse
Ben-Hur et al. Inhibitors of poly (adenosine diphosphoribose) synthetase, examination of metabolic perturbations, and enhancement of radiation response in Chinese hamster cells
JP2014509515A (en) Methods and compositions for predicting response to eribulin
Chen et al. LHPP impedes energy metabolism by inducing ubiquitin-mediated degradation of PKM2 in glioblastoma
Huerta et al. In vitro and in vivo sensitization of SW620 metastatic colon cancer cells to CDDP-induced apoptosis by the nitric oxide donor DETANONOate: Involvement of AIF
JP4288337B2 (en) A method for differentiating sensitizing effects of hypoxic cell sensitizers and apoptotic signal-retaining agents under hypoxic conditions
Van der Schans et al. The influence of oxygen on the induction of radiation damage in DNA in mammalian cells after sensitization by intracellular glutathione depletion
Zhao et al. CRISPR-Cas9 library screening combined with an exosome-targeted delivery system addresses tumorigenesis/TMZ resistance in the mesenchymal subtype of glioblastoma
Kang et al. Echinatin suppresses cutaneous squamous cell carcinoma by targeting GSTM3-mediated ferroptosis
Sun et al. MicroRNA-128 increases glioma cell radio-sensitivity by suppressing senescent evasion through oncogene Bmi-1
WO2016036886A1 (en) Compositions and methods for treating fibrosing disorders and cancer
Graf et al. Autophagy and the functional roles of Atg5 and beclin-1 in the anti-tumor effects of 3β androstene 17α diol neuro-steroid on malignant glioma cells
Peng et al. ACK1 upregulated the proliferation of head and neck squamous cell carcinoma cells by promoting p27 phosphorylation and degradation
Bonner et al. Inhibition of the spectraplakin protein microtubule actin crosslinking factor 1 sensitizes glioblastomas to radiation
Dent et al. AR12 increases BAG3 expression which is essential for Tau and APP degradation via LC3-associated phagocytosis and macroautophagy
WO2024048657A1 (en) Pharmaceutical composition for treating lymphoma
CN115869339A (en) Application of copper chelating agent and AMPK activator in preparation of tumor treatment drug
Kreder et al. Effects of gemcitabine on cell survival and chromosome aberrations after pulsed low dose-rate irradiation
EP3487490A1 (en) Compounds for targeting cancer stem cells
WO2020230701A1 (en) Antitumor agent and compounding agent

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080916

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090224

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20090304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090304

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090304

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4288337

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120410

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130410

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140410

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term