JP4283757B2 - Thick steel plate and manufacturing method thereof - Google Patents
Thick steel plate and manufacturing method thereof Download PDFInfo
- Publication number
- JP4283757B2 JP4283757B2 JP2004322418A JP2004322418A JP4283757B2 JP 4283757 B2 JP4283757 B2 JP 4283757B2 JP 2004322418 A JP2004322418 A JP 2004322418A JP 2004322418 A JP2004322418 A JP 2004322418A JP 4283757 B2 JP4283757 B2 JP 4283757B2
- Authority
- JP
- Japan
- Prior art keywords
- residual
- steel plate
- strength
- fraction
- amount
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 229910000831 Steel Inorganic materials 0.000 title claims description 101
- 239000010959 steel Substances 0.000 title claims description 101
- 238000004519 manufacturing process Methods 0.000 title claims description 14
- 238000010438 heat treatment Methods 0.000 claims description 28
- 239000000463 material Substances 0.000 claims description 26
- 229910052799 carbon Inorganic materials 0.000 claims description 16
- 229910001563 bainite Inorganic materials 0.000 claims description 14
- 229910052804 chromium Inorganic materials 0.000 claims description 12
- 239000000203 mixture Substances 0.000 claims description 11
- 229910001568 polygonal ferrite Inorganic materials 0.000 claims description 11
- 229910052802 copper Inorganic materials 0.000 claims description 10
- 229910000734 martensite Inorganic materials 0.000 claims description 10
- 230000009466 transformation Effects 0.000 claims description 10
- 229910052757 nitrogen Inorganic materials 0.000 claims description 9
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 8
- 229910052748 manganese Inorganic materials 0.000 claims description 8
- 229910052750 molybdenum Inorganic materials 0.000 claims description 8
- 238000005098 hot rolling Methods 0.000 claims description 7
- 239000012535 impurity Substances 0.000 claims description 7
- 229910052759 nickel Inorganic materials 0.000 claims description 6
- 229910052758 niobium Inorganic materials 0.000 claims description 5
- 229910052720 vanadium Inorganic materials 0.000 claims description 5
- 229910052726 zirconium Inorganic materials 0.000 claims description 5
- 229910052742 iron Inorganic materials 0.000 claims description 4
- 230000000694 effects Effects 0.000 description 24
- 230000000052 comparative effect Effects 0.000 description 13
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 12
- 238000005096 rolling process Methods 0.000 description 11
- 238000001816 cooling Methods 0.000 description 10
- 238000000034 method Methods 0.000 description 9
- 229910001566 austenite Inorganic materials 0.000 description 8
- 239000010953 base metal Substances 0.000 description 7
- 238000003466 welding Methods 0.000 description 7
- 230000007423 decrease Effects 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 238000002441 X-ray diffraction Methods 0.000 description 5
- 229910052721 tungsten Inorganic materials 0.000 description 5
- 239000006104 solid solution Substances 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 230000033228 biological regulation Effects 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 3
- 150000004767 nitrides Chemical class 0.000 description 3
- 230000000717 retained effect Effects 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 229910001567 cementite Inorganic materials 0.000 description 2
- 238000009863 impact test Methods 0.000 description 2
- KSOKAHYVTMZFBJ-UHFFFAOYSA-N iron;methane Chemical compound C.[Fe].[Fe].[Fe] KSOKAHYVTMZFBJ-UHFFFAOYSA-N 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 238000010791 quenching Methods 0.000 description 2
- 230000000171 quenching effect Effects 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 238000005728 strengthening Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000005496 tempering Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 229910000746 Structural steel Inorganic materials 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000009749 continuous casting Methods 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010191 image analysis Methods 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000010421 standard material Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- 150000003568 thioethers Chemical class 0.000 description 1
- 238000011282 treatment Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/005—Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/14—Ferrous alloys, e.g. steel alloys containing titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/38—Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/005—Ferrite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/008—Martensite
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Heat Treatment Of Steel (AREA)
- Heat Treatment Of Sheet Steel (AREA)
Description
本発明は、強度−延性バランスおよび溶接性に優れた、590〜780MPa級の高強度厚鋼板およびその製造方法に関するものである。 The present invention relates to a high-strength thick steel plate of 590 to 780 MPa class excellent in strength-ductility balance and weldability and a method for producing the same.
従来より、船舶、海洋構造物、橋梁、建築構造物などの大型構造物には、軽量化が指向されており、これら建築、構造用の厚鋼板には、590MPa級以上の高強度厚鋼板が求められている。このような高強度厚鋼板には、特に、建築構造物や鋼構造物の耐震性を向上させるという観点から、均一伸びが高いことも要求される。この均一伸びは、鋼板が破断に至るまでの途中で局部収縮が開始するまでの伸びのことを意味し、鋼板が変形する際の安定性の指標となるものであり、均一伸びの値が高い方が良好な耐震性が得られるとされている。 Conventionally, large structures such as ships, offshore structures, bridges, and building structures have been lightened, and high-strength steel sheets of 590 MPa class or higher have been used for these structural and structural steel sheets. It has been demanded. Such high-strength thick steel plates are also required to have high uniform elongation, particularly from the viewpoint of improving the earthquake resistance of building structures and steel structures. This uniform elongation means the elongation until the local contraction starts in the middle of the steel sheet until it breaks, and is an index of stability when the steel sheet is deformed, and the value of the uniform elongation is high. It is said that better earthquake resistance is obtained.
この均一伸びを向上させる手段としては、オーステナイトの変態誘起塑性(以下、「TRIP」という)を利用して、残留オーステナイト(残留γ)量を増加させることが従来から知られている。 As means for improving the uniform elongation, it has been conventionally known to increase the amount of retained austenite (residual γ) by utilizing transformation-induced plasticity (hereinafter referred to as “TRIP”) of austenite.
例えば、自動車や各種の産業機械に用いられる高強度部材の素材としての熱延高張力鋼板の分野では、プレス加工等の成形加工によって所定の形状に加工されるために、強度−延性バランスに優れた鋼板が要求される。このため、好適な組織の微細化と残留オーステナイトのTRIP現象とを組み合わせた高強度で且つ強度−延性バランスに優れた鋼の製造方法が、例えば、特許文献1〜3などに開示されている。 For example, in the field of hot-rolled high-tensile steel sheet as a material for high-strength members used in automobiles and various industrial machines, it is processed into a predetermined shape by forming such as pressing, so it has an excellent strength-ductility balance. Steel plate is required. For this reason, for example, Patent Documents 1 to 3 disclose steel manufacturing methods that combine a suitable structure refinement with the TRIP phenomenon of retained austenite and have an excellent strength-ductility balance.
また、特許文献4では、強度−延性バランスに優れるとともに化成処理を施すことができる熱延高張力鋼板として、Cを0.05〜0.30%含有する熱延高張力鋼板について、体積割合でオーステナイトを15%以上含有し、残部が実質的に平均結晶粒径が1.5〜3μmのポリゴナルフェライトからなることが提案されている。 Moreover, in patent document 4, about the hot-rolling high-tensile steel plate which contains 0.05 to 0.30% of C as a hot-rolled high-tensile steel plate which is excellent in strength-ductility balance and can be subjected to chemical conversion treatment, by volume ratio. It has been proposed that 15% or more of austenite is contained, and the balance is substantially composed of polygonal ferrite having an average crystal grain size of 1.5 to 3 μm.
これら特許文献1〜4は、大入熱溶接される厚鋼板とは違い、自動車や各種の産業機械に用いられる鋼板であり、大入熱溶接時のHAZ靱性などは当然考慮していない。このため、当然ながら、大入熱溶接時のHAZ靱性が低いために、建築物や橋梁などの大型構造物用の厚鋼板には適用できない。また、組織としても、ポリゴナルフェライトは、高強度厚鋼板の強度−延性バランスや、耐溶接割れ性や大入熱HAZ靭性を低下させる。 These patent documents 1 to 4 are steel plates used for automobiles and various industrial machines, unlike thick steel plates that are subjected to high heat input welding, and naturally do not consider the HAZ toughness during high heat input welding. For this reason, naturally, since the HAZ toughness at the time of high heat input welding is low, it cannot be applied to a thick steel plate for large structures such as buildings and bridges. Also, as a structure, polygonal ferrite lowers the strength-ductility balance of a high-strength thick steel plate, weld crack resistance, and high heat input HAZ toughness.
更に、均一伸びを向上させるために、残留γを増加させると、島状マルテンサイトも増加して母材靭性が低下することも問題となる。 Further, when the residual γ is increased in order to improve the uniform elongation, the island-like martensite also increases and the base material toughness decreases.
こうしたことから、大入熱溶接される厚鋼板においても、良好な母材靭性を確保しつつ均一伸びを向上させる技術として、特許文献5では、C:0.010〜0.06%の590MPa級高張力厚鋼板において、0.5体積%以上の残留オーステナイトを存在させるとともに、島状マルテンサイト分率を20体積%以下とし、[Mn]+1.5×[Cr]+2×[Mo]で表されるKP値(%)を特定範囲とすることが提案されている。
しかし、上記特許文献5は、その実施例表3の通り、引張強度618MPaで均一伸びが13.1%程度と、引張強度の割りには延性が低く、強度−延性バランス(引張強度×均一伸び)も低いレベルでしかない。 However, according to the above-mentioned Patent Document 5, the tensile strength is 618 MPa and the uniform elongation is about 13.1% as shown in Table 3. The ductility is low for the tensile strength, and the strength-ductility balance (tensile strength × uniform elongation). ) Is only at a low level.
こうしたことから、590MPa級以上の高強度厚鋼板においては、良好な母材靭性や大入熱溶接性を確保しつつ、均一伸びを向上させ、強度−延性バランスに優れた厚鋼板が望まれているのが実状である。 For these reasons, in a high strength thick steel plate of 590 MPa class or higher, a thick steel plate with improved uniform elongation and excellent strength-ductility balance is desired while ensuring good base metal toughness and high heat input weldability. The reality is.
本発明は、この様な事情に鑑みてなされたものであって、その目的は、良好な母材靭性や大入熱溶接性を確保しつつ、均一伸びを向上させ、強度−延性バランスに優れた590〜780MPa級の高強度厚鋼板およびその製造方法を提供することである。 The present invention has been made in view of such circumstances, and its purpose is to improve the uniform elongation while ensuring good base material toughness and large heat input weldability, and excellent strength-ductility balance. Another object of the present invention is to provide a high strength thick steel plate of 590 to 780 MPa class and a method for producing the same.
この目的を達成するために、本発明の厚鋼板の要旨は、質量%で、C:0.01〜0.10%、Si:0.05〜2.0%、Mn:1.5〜7.0%、Al:0.1%以下(0%を含まない)、Ti:0.002〜0.1%、N:0.001〜0.01%、を各々含有し、残部が鉄および不可避不純物である厚鋼板であって、厚鋼板組織における残留γの分率が1.0〜30体積%であり、ポリゴナルフェライトの分率が0〜26体積%であり、残部ベイナイトからなるものであり、かつ、この残留γの分率が下記KTP値を満たすものである。
ここでKTP値=−3.14×103 +163×〔γR 分率〕+5.09×105 ×(1/Ms〔γR 〕)で表され、0≦KTP値≦2730である。
但し、Ms〔γR 〕は、残留γのMs点(マルテンサイト変態開始温度)で、
Ms〔γR 〕=550−361〔%C(γR )〕−39〔%Mn〕−20〔%Cr〕−17〔%Ni〕−10〔%Cu〕−5〔%Mo〕で表される。
但し、%C(γR )は残留γ中のC量である。
To this end, the gist of the steel plate of the present invention, in mass%, C: 0.01~0.10%, Si : 0.05~2.0%, Mn: 1.5~7 0.0%, Al: 0.1% or less (excluding 0%), Ti: 0.002 to 0.1%, N: 0.001 to 0.01%, respectively, the balance being iron and Thick steel plate which is an inevitable impurity, the fraction of residual γ in the thick steel plate structure is 1.0 to 30% by volume, the fraction of polygonal ferrite is 0 to 26% by volume, and the balance is bainite And the fraction of residual γ satisfies the following KTP value.
Here, KTP value = −3.14 × 10 3 + 163 × [γR fraction] + 5.09 × 10 5 × (1 / Ms [γR]), and 0 ≦ KTP value ≦ 2730.
However, Ms [γR] is the Ms point of residual γ (martensitic transformation start temperature),
Ms [γR] = 550-361 [% C (γR)]-39 [% Mn] -20 [% Cr] -17 [% Ni] -10 [% Cu] -5 [% Mo]
However,% C (γR) is the amount of C in the residual γ.
なお、上記Ms〔γR 〕の式において、本発明においては、Cr、Ni、Cu、Moの量が含まれ、考慮されている。これは、Cr、Cu、Moを選択的に実質量含む場合だけではなく、Cr、Ni、Cu、Moを計測可能な不純物量レベルとして含む場合も、厳密にはMs〔γR 〕の値に影響するため、重要なMs〔γR 〕の計算において考慮すべきとの認識からきている。 In the Ms [γR] formula, the present invention includes and takes into account the amounts of Cr , Ni, Cu, and Mo. This, Cr, C u, not only the case where Mo selectively include substantial amounts, Cr, Ni, Cu, also include a measurable impurity levels Mo, strictly to the value of Ms [γR] Because it has an influence, it comes from the recognition that it should be taken into account in the calculation of important Ms [γR].
また、この目的を達成するために、本発明の強度−延性バランスおよび溶接性に優れた厚鋼板の製造方法の要旨は、請求項1〜6に記載のいずれかの成分組成からなる鋼素材を、加熱して熱間圧延後に強制冷却を行ない、その後、(Thold−Ae1 )/(Ae3−Ae1 )×100が5〜50の範囲となる加熱温度Tholdに加熱して保持する熱処理を行なうことである。 Moreover, in order to achieve this objective, the summary of the manufacturing method of the thick steel plate excellent in the strength-ductility balance and weldability of this invention is the steel raw material which consists of one of the component compositions of Claims 1-6. Then, after heating and hot rolling, forced cooling is performed, and then, heat treatment is performed by heating and holding at a heating temperature T hold in which (T hold −Ae 1) / (Ae 3 −Ae 1) × 100 is in the range of 5-50. That is.
本発明では、高強度な590〜780MPa級の厚鋼板において、均一伸びを向上させるために、残留γ量を増加させる乃至確保する点は、前記従来技術と共通する。 In the present invention, in the high-strength 590-780 MPa class thick steel plate, in order to improve uniform elongation, the amount of residual γ is increased or secured in common with the prior art.
しかし、本発明では、更に、残留γ中のC量を多くして(C濃度を高くして)、残留γの安定性を確保する。これによって、残留γの分率(量)と残留γの安定性とをバランスさせることができ、均一伸びを向上させ、優れた強度−延性バランスを確保できる。また、島状マルテンサイトの増加をも抑制し、靱性を確保することができる。 However, in the present invention, the amount of C in the residual γ is further increased (the C concentration is increased) to ensure the stability of the residual γ. This makes it possible to balance the fraction (amount) of residual γ and the stability of residual γ, improve uniform elongation, and secure an excellent strength-ductility balance. Moreover, the increase of island-like martensite can also be suppressed and toughness can be ensured.
したがって、本発明における上記KTP値は、残留γの安定性の指標、あるいは、オーステナイトの変態誘起塑性(「TRIP」)効果の指標、更には、強度−延性バランスの指標と言えるものである。 Therefore, the KTP value in the present invention can be said to be an indicator of the stability of residual γ, an indicator of the transformation induced plasticity (“TRIP”) effect of austenite, and an indicator of the strength-ductility balance.
前記した特許文献5の強度−延性バランス(引張強度×均一伸び)が低いのは、残留γの分率(量)は確保しているものの、残留γ中のC量が少ないために、残留γが不安定となっているためと推考される。 The strength-ductility balance (tensile strength x uniform elongation) of Patent Document 5 described above is low because the fraction (amount) of residual γ is secured, but the amount of C in the residual γ is small. Is considered to be unstable.
本発明の590〜780MPa級の高強度厚鋼板は、このように、良好な母材靭性や大入熱溶接性を確保しつつ、均一伸びを向上させ、強度−延性バランスに優れ、良好な耐震性が得られる。この結果、船舶、海洋構造物、橋梁、建築構造物などの大型構造物等に用いられて最適である。 Thus, the 590-780 MPa class high-strength thick steel plate of the present invention improves the uniform elongation while ensuring good base metal toughness and high heat input weldability, and has excellent strength-ductility balance, and good earthquake resistance. Sex is obtained. As a result, it is optimal for use in large structures such as ships, offshore structures, bridges, and building structures.
先ず、本発明の590〜780MPa級の高強度厚鋼板は、主相となる組織はベイナイトとする。ベイナイト組織は、良好な母材靭性や大入熱溶接性を確保しつつ、均一伸び向上、良好な強度−延性バランス、良好な耐震性などを、前提として、保障する。このため、厚鋼板は、残留γを含むベイナイト主体の組織とする。 First, in the 590-780 MPa class high-strength thick steel plate of the present invention, the structure that becomes the main phase is bainite. The bainite structure ensures good base material toughness and high heat input weldability, and ensures uniform elongation improvement, good strength-ductility balance, good earthquake resistance, and the like. For this reason, the thick steel plate has a bainite-based structure including residual γ .
しかし、製造上のコストや限界などから、このベイナイトの他、上記特性を阻害しない範囲で、ポリゴナルフェライトやマルテンサイトあるいはセメンタイトの生成乃至混在は許容する。ただ、これらの組織は、強度−延性バランスを低下させるため、できるだけ少ない方が好ましい。特に、圧延後の冷却過程で生成乃至混在しやすい、ポリゴナルフェライトは、強度−延性バランスや、耐溶接割れ性や大入熱HAZ靭性の改善の点から、厚鋼板組織の分率を15%以下とすることが好ましい。 However, due to manufacturing costs and limitations, the generation or mixing of polygonal ferrite, martensite, or cementite is permitted within the range that does not impair the above characteristics in addition to the bainite. However, these structures are preferably as small as possible because they reduce the strength-ductility balance. In particular, polygonal ferrite, which is likely to be generated or mixed in the cooling process after rolling, has a steel sheet microstructure fraction of 15% in terms of strength-ductility balance, weld crack resistance and high heat input HAZ toughness. The following is preferable.
これらポリゴナルフェライト、ベイナイトなどの変態組織の分率(体積分率)については、各鋼板の板厚1/4部位について、表面研磨後、3%ナイタール腐食液で腐食した後、光学顕微鏡によって組織を観察し(倍率:1000倍)、50μ角の領域をn=10で撮影し、ポイントカウンティング法などの画像解析によって測定する。 As for the fraction (volume fraction) of the transformation structure such as polygonal ferrite and bainite, the surface thickness of each steel sheet ¼ part was ground and then corroded with 3% nital corrosive solution, and then the structure was examined by an optical microscope. (Magnification: 1000 times), an area of 50 μ square is photographed at n = 10, and measured by image analysis such as a point counting method.
(残留γ)
次ぎに本発明における厚鋼板組織中の残留γ規定について、以下に説明する。本発明厚鋼板組織における残留γの分率は、優れた強度−延性バランスを得る前提として、体積分率で1.0〜30%とする。残留γの分率が1.0%未満では、残留γの「TRIP」効果が発揮されない。その結果、前提として、590〜780MPa級の高強度厚鋼板において、引張強度×均一伸びが14000以上の、優れた強度−延性バランスが得られない。一方、残留γの分率が30%を超えた場合、島状マルテンサイトが増加しやすくなり、靱性が低下する。
(Residual γ)
Next, the regulation of residual γ in the steel plate structure in the present invention will be described below. The fraction of residual γ in the steel sheet structure of the present invention is 1.0 to 30% in terms of volume fraction on the premise of obtaining an excellent strength-ductility balance. If the fraction of residual γ is less than 1.0%, the “TRIP” effect of residual γ is not exhibited. As a result, as a premise, in a high strength thick steel plate of 590 to 780 MPa class, an excellent strength-ductility balance with a tensile strength × uniform elongation of 14,000 or more cannot be obtained. On the other hand, when the fraction of residual γ exceeds 30%, island martensite tends to increase and toughness decreases.
(KTP値)
本発明では、更に、前記した通り、残留γ中のC量を多くして(C濃度を高くして)、残留γの安定性を確保する。これによって、残留γの分率(量)と残留γの安定性とをバランスさせることができ、均一伸びを向上させることができる。この結果、590〜780MPa級の高強度厚鋼板において、引張強度×均一伸びが14000以上の、優れた強度−延性バランスを確保できる。
(KTP value)
In the present invention, as described above, the amount of C in the residual γ is increased (the C concentration is increased) to ensure the stability of the residual γ. Thereby, the fraction (amount) of residual γ and the stability of residual γ can be balanced, and uniform elongation can be improved. As a result, in a high strength thick steel plate of 590 to 780 MPa class, an excellent strength-ductility balance with a tensile strength × uniform elongation of 14,000 or more can be ensured.
残留γのMs点(マルテンサイト変態開始温度)は、残留γの安定性を示し、残留γ中のC量レベルが高いほど、また、Mn、Cr、Ni、Cuなどの各量が多いほど、下記Ms〔γR 〕式の通り、残留γのMs点であるMs〔γR 〕は低下して、残留γが安定化する。 The Ms point (martensite transformation start temperature) of the residual γ indicates the stability of the residual γ, and the higher the amount of C in the residual γ, the more each amount of Mn, Cr, Ni, Cu, etc. as follows Ms [gamma R] expression is Ms point of the residual gamma Ms [gamma R] is reduced, the residual gamma is stabilized.
そして、下記KTP値式の通り、このMs〔γR 〕が低いほど、また、γR 分率が高いほど、このMs〔γR 〕の逆数とγR 分率との和となるKTP値は0よりも大きくなる。したがって、下記KTP値は、残留γの安定性の指標、あるいは、オーステナイトの変態誘起塑性(「TRIP」)効果の指標、更には、強度−延性バランスの指標と言える。残留γの分率(量)と残留γの安定性とをバランスさせることができる。 As shown in the following KTP value equation, the lower the Ms [γ R ] and the higher the γ R fraction, the higher the KTP value that is the sum of the reciprocal of this Ms [γ R ] and the γ R fraction is Greater than zero. Therefore, the following KTP value can be said to be an index of stability of residual γ, an index of austenite transformation-induced plasticity (“TRIP”) effect, and an index of strength-ductility balance. The fraction (amount) of residual γ can be balanced with the stability of residual γ.
一方、上記KTP値が0未満では、残留γ中のC量レベルが低下し、残留γのMs点であるMs〔γR 〕が上昇して、残留γが不安定化する。このため、強度−延性バランスが低下する。
KTP値=−3.14×103 +163×〔γR 分率〕+5.09×105 ×(1/Ms〔γR 〕)≧0
但し、Ms〔γR 〕は、残留γのMs点(マルテンサイト変態開始温度)で、
Ms〔γR 〕=550−361〔%C(γR )〕−39〔%Mn〕−20〔%Cr〕−17〔%Ni〕−10〔%Cu〕−5〔%Mo〕で表される。
但し、%C(γR )は残留γ中のC量である。
On the other hand, if the KTP value is less than 0, the C amount level in the residual γ decreases, Ms [γ R ], which is the Ms point of the residual γ, increases, and the residual γ becomes unstable. For this reason, strength-ductility balance falls.
KTP value = −3.14 × 10 3 + 163 × [γ R fraction] + 5.09 × 10 5 × (1 / Ms [γ R ]) ≧ 0
Where Ms [γ R ] is the Ms point of residual γ (martensitic transformation start temperature),
Ms [γ R ] = 550-361 [% C (γ R )]-39 [% Mn] -20 [% Cr] -17 [% Ni] -10 [% Cu] -5 [% Mo] The
However,% C (γ R ) is the amount of C in the residual γ.
このKTP値の式自体は、残留γ(γR )の量と、残留γの安定性が、「TRIP」減少に及ぼす影響を定量的に評価するため、残留γの量と、残留γの安定性(残留γのMs点で代替え)を変化させた種々のサンプルを作り込み、これらサンプル得られたTS(引張強度)×EL(均一伸び)と、上記各パラメータから重回帰式を作成し、TS×EL=14000となる条件(強度−延性バランスの臨界条件)が0になるように規格化した式である。 This equation for the KTP value itself is used to quantitatively evaluate the effect of the amount of residual γ (γ R ) and the stability of residual γ on the decrease in “TRIP”, so the amount of residual γ and the stability of residual γ Various samples with different properties (replaced by the Ms point of residual γ) were made, and a multiple regression equation was created from the TS (tensile strength) × EL (uniform elongation) obtained from these samples and the above parameters, This is a formula normalized so that the condition of TS × EL = 14000 (critical condition of strength-ductility balance) becomes zero.
(残留γの計測)
上記残留γの分率は、鋼板の板厚1/4部位について、鋼板組織のX線回折測定から計測できる。即ち、例えば、X線回折測定装置(理学電気製RAD-RU300)を用い、ターゲットをCo、ターゲット出力を40kV-200mAとして、鋼板組織のX線回折ピークを求め、リーベルト法により理論強度比を計算によって求めて、残留γ量(Vγ量)を測定する。
(Measurement of residual γ)
The fraction of the residual γ can be measured from the X-ray diffraction measurement of the steel sheet structure at a ¼ thickness portion of the steel sheet. That is, for example, using an X-ray diffraction measuring device (RAD-RU300 manufactured by Rigaku Corporation), setting the target as Co and the target output as 40 kV-200 mA, obtain the X-ray diffraction peak of the steel sheet structure, and calculate the theoretical intensity ratio by the Liberty method. The residual γ amount (Vγ amount) is determined by calculation.
更に、上記残留γ中のC量(C濃度)である、%C(γR )は、鋼板試料に標準物質としてSiを塗布して、上記X線回折測定し、Si、残留γ(γR )のX線回折ピーク位置を決定する。このピーク位置を用いて、残留γの格子定数a0 を測定する。使用ピークは(111)、(200)、(220)、(311)とする。 Further,% C (γ R ), which is the amount of C (C concentration) in the residual γ, is obtained by applying Si as a standard material to a steel sheet sample and measuring the X-ray diffraction to obtain Si, residual γ (γ R ) X-ray diffraction peak position is determined. Using this peak position, the lattice constant a 0 of the residual γ is measured. The usage peaks are (111), (200), (220), and (311).
そして、この格子定数a0 から、「D.J.Dyson et al.,Journal of The Iron and Steel Institute, (1970)p469〜474 」に記載の次式計算式により、残留γ中のC量(C濃度)を求める。次式計算式は、残留γ中のC量に対して、鋼板中に含まれる他の炭化物形成元素をマイナス因子として計算するものである。
%C(γR )=(a0 −3.578−0.00095×%Mn+0.0002×%Ni−0.0006×%Cr−0.022×%N−0.0056×%Al−0.0004×%Co−0.0015×%Cu−0.0031×%Mo−0.0051×%Nb−0.0039×%Ti−0.0018×%V−0.0018×%W)/0.033
From the lattice constant a 0 , the amount of C (C concentration) in the residual γ is calculated by the following equation described in “DJDyson et al., Journal of The Iron and Steel Institute, (1970) p469-474”. Ask. The following equation is calculated with respect to the amount of C in the residual γ, with other carbide forming elements contained in the steel sheet as a negative factor.
% C (γ R ) = (a 0 −3.578−0.00095 ×% Mn + 0.0002 ×% Ni−0.0006 ×% Cr−0.022 ×% N−0.0056 ×% Al-0. 0004 ×% Co−0.0015 ×% Cu−0.0031 ×% Mo−0.0051 ×% Nb−0.0039 ×% Ti−0.0018 ×% V−0.0018 ×% W) / 0. 033
(厚鋼板の組成)
本発明厚鋼板の組成(単位:質量%)について、各元素の限定理由を含めて、以下に説明する。本発明厚鋼板の上記組織を制御して、良好な母材靭性や大入熱溶接性を確保しつつ、均一伸びを向上させ、強度−延性バランスに優れ、良好な耐震性を得る前提として、本発明厚鋼板の組成は、下記に示す範囲内とし、規定の方法で製造することが有効である。
(Composition of thick steel plate)
The composition (unit:% by mass) of the thick steel plate of the present invention will be described below including the reasons for limiting each element. As a premise of controlling the above-mentioned structure of the steel plate of the present invention and improving the uniform elongation while ensuring good base material toughness and large heat input weldability, excellent strength-ductility balance, and obtaining good earthquake resistance, The composition of the steel plate of the present invention is within the range shown below, and it is effective to manufacture it by a prescribed method.
即ち、質量%で、C:0.01〜0.10%、Si:0.05〜2.0%、Mn:1.5〜7.0%、Al:0.1%以下(0%を含まない)、Ti:0.002〜0.1%、N:0.001〜0.01%、を各々含有し、残部が鉄および不可避不純物である厚鋼板とする。 That is, in mass%, C: 0.01 to 0.10%, Si: 0.05 to 2.0%, Mn: 1.5 to 7.0%, Al: 0.1% or less (0% Not included), Ti: 0.002 to 0.1%, N: 0.001 to 0.01%, respectively, with the balance being iron and inevitable impurities.
以下、各元素量を規定した理由について詳述する。
C:0.01〜0.10%。
C(炭素)は「TRIP」効果を発揮させ、残留γ中のC量を多くして(C濃度を高くして)、残留γの安定性を確保し、上記KTP値を0以上として、590〜780MPa級の高強度厚鋼板において、引張強度×均一伸びが14000以上の優れた強度−延性バランスを確保するために重要な元素である。更に、Cは溶接時におけるHAZ部の耐溶接割れ性や、大入熱HAZ靭性と、母材の強度確保にも有効である。
Hereinafter, the reason for defining the amount of each element will be described in detail.
C: 0.01 to 0.10%.
C (carbon) exhibits the “TRIP” effect, increases the amount of C in the residual γ (increases the C concentration), ensures the stability of the residual γ, and sets the KTP value to 0 or more. In a high strength thick steel plate of ˜780 MPa class, it is an important element for ensuring an excellent strength-ductility balance of tensile strength × uniform elongation of 14,000 or more. Furthermore, C is also effective for ensuring the weld crack resistance of the HAZ part during welding, high heat input HAZ toughness, and ensuring the strength of the base material.
こうした効果を発揮させるためには、少なくとも0.01%必要であり、C含有量が0.01%未満では、「TRIP」効果が発揮されず、残留γ中のC量が少なくなり、残留γのMs点であるMs〔γR 〕が上昇して、残留γが不安定となり、上記KTP値が0未満となる。このため、590〜780MPa級の高強度厚鋼板において、引張強度×均一伸びが14000以上の優れた強度−延性バランスを確保できなくなる。 In order to exert such an effect, at least 0.01% is necessary. If the C content is less than 0.01%, the “TRIP” effect is not exhibited, and the amount of C in the residual γ decreases, and the residual γ Ms [γ R ], which is the Ms point, increases, the residual γ becomes unstable, and the KTP value becomes less than 0. For this reason, in a high-strength thick steel plate of 590 to 780 MPa class, it becomes impossible to ensure an excellent strength-ductility balance of tensile strength × uniform elongation of 14,000 or more.
一方、C量が0.10%を超えて過剰になると、高冷却速度側で低温変態ベイナイトでなくマルテンサイトが生成するようになり、却って、耐溶接割れ性および大入熱HAZ靭性が改善されない。したがって、C含有量は0.01〜0.10%、好ましくは0.02〜0.08%の範囲とする。 On the other hand, when the amount of C exceeds 0.10% and becomes excessive, martensite is generated instead of low-temperature transformation bainite on the high cooling rate side. On the other hand, weld crack resistance and high heat input HAZ toughness are not improved. . Therefore, the C content is 0.01 to 0.10%, preferably 0.02 to 0.08%.
Si:0.05〜2.0%。
Siは、セメンタイト形成の抑制効果があり、強度−延性バランスを向上させる。また、固溶強化し母材強度の確保に寄与する。これの効果は、0.05%以上、好ましくは0.2%以上の含有で発揮される。一方、2.0%を超えて過剰に含まれると、母材靭性とHAZ靭性がともに低下する。このため、Si含有量は0.05〜2.0%、好ましくは0.2〜2.0%の範囲とする。
Si: 0.05-2.0%.
Si has an effect of suppressing the formation of cementite and improves the strength-ductility balance. In addition, solid solution strengthening contributes to securing the strength of the base material. This effect is exhibited when the content is 0.05% or more, preferably 0.2% or more. On the other hand, if it exceeds 2.0% and is contained excessively, both the base metal toughness and the HAZ toughness are lowered. For this reason, Si content is 0.05 to 2.0%, preferably 0.2 to 2.0%.
Mn:1.5〜7.0%。
Mnは、鋼の焼入れ性を改善する作用を有するとともに、高冷却速度乃至低冷却速度で低温変態ベイナイトを生成しやすくする。Mn含有量が1.0%未満であると、所望の焼入れ性改善作用が発揮されず、残留γが不安定化し、母材強度も不足するため、強度−延性バランスが低下する。一方、7.0%を超えて過剰に含有させると、HAZ靭性が劣化する。したがって、Mn含有量の範囲は1.5〜7.0%の範囲、好ましくは2.0〜6.0%の範囲とする。
Mn: 1.5 to 7.0%.
Mn has the effect of improving the hardenability of the steel and makes it easy to generate low temperature transformation bainite at a high cooling rate or a low cooling rate. When the Mn content is less than 1.0%, the desired hardenability improving effect is not exhibited, the residual γ is destabilized, and the strength of the base material is insufficient, so that the strength-ductility balance is lowered. On the other hand, if it is contained excessively over 7.0%, the HAZ toughness deteriorates. Therefore, the range of the Mn content is in the range of 1.5 to 7.0%, preferably in the range of 2.0 to 6.0%.
Al:0.1%以下(0%を含まない)。
Alは、固溶している窒素をAlNとして固定し、また固溶強化により、強度−延性バランスを高める。一方、Alが0.1%を超えて過剰に含まれていると、固溶強化しすぎて靱性などの母材特性を低下させる。このため、Al含有量は窒素量によって定まり、窒素が無い場合には、特に含有する必要が無くなる。したがって、Al含有量は0.1%以下(0%を含まない)、好ましくは0.05%以下(0%を含まない)とする。
Al: 0.1% or less (excluding 0%).
Al fixes the solid solution nitrogen as AlN and enhances the strength-ductility balance by solid solution strengthening. On the other hand, when Al is contained excessively exceeding 0.1%, the solid solution strengthens too much and the base material properties such as toughness are deteriorated. For this reason, the Al content is determined by the amount of nitrogen, and when there is no nitrogen, it is not necessary to contain it in particular. Therefore, the Al content is 0.1% or less (not including 0%), preferably 0.05% or less (not including 0%).
Ti(total 量):0.002〜0.1%。
Tiは、Tiは窒素と窒化物、あるいは酸素と酸化物を形成して、大入熱溶接時におけるHAZ部のγ粒を微細化し、HAZ靭性改善に寄与する点で有用である。この様な効果を有効に発揮させるには、Ti(total 量)で0.002%以上含有させる。一方、Ti量が、Ti(total 量)で、0.1%を超えて過剰になると、Ti窒化物やTi酸化物が過多あるいは粗大となって、却って、HAZ靭性と母材靭性がともに劣化する。したがって、全Ti含有量(total 量)は0.002〜0.1%、好ましくは0.005〜0.05%の範囲とする。
Ti (total amount): 0.002 to 0.1%.
Ti is useful in that Ti forms nitrogen and nitride, or oxygen and oxide, refines the γ grains in the HAZ part during high heat input welding, and contributes to the improvement of HAZ toughness. In order to exhibit such an effect effectively, Ti (total amount) is contained by 0.002% or more. On the other hand, if the amount of Ti is Ti (total amount) exceeding 0.1%, Ti nitride and Ti oxide become excessive or coarse, and on the contrary, both HAZ toughness and base metal toughness deteriorate. To do. Therefore, the total Ti content (total amount) is 0.002 to 0.1%, preferably 0.005 to 0.05%.
N:0.001〜0.01%。
N(窒素)は、Tiは窒素と窒化物、あるいは酸素と酸化物を形成して、大入熱溶接時におけるHAZ部のγ粒を微細化し、HAZ靭性改善に寄与する点で有用である。この様な効果を有効に発揮させるには、0.001%以上含有させる。一方、N量を0.01%を超えて過剰に含有させると、母材靭性とHAZ靭性をともに劣化させる。したがって、N含有量は0.001〜0.01%、好ましくは0.0030〜0.0080%の範囲とする。
N: 0.001 to 0.01%.
N (nitrogen) is useful in that Ti forms nitrogen and nitride, or oxygen and oxide, refines the γ grains in the HAZ part during high heat input welding, and contributes to the improvement of HAZ toughness. In order to exhibit such an effect effectively, 0.001% or more is contained. On the other hand, if the N amount exceeds 0.01%, the base material toughness and the HAZ toughness are both deteriorated. Therefore, the N content is in the range of 0.001 to 0.01%, preferably 0.0030 to 0.0080%.
以下に、選択的に含有させる元素について説明する。
Cr、Cu、Moのいずれか一種または二種以上。
Cr、Cu、Moは、ともに、前記KTP値におけるMs〔γR 〕の式でマイナス項となって、残留γを安定化させ、強度−延性バランスを高める。この効果を発揮させる場合には、Cr、Cu、Moのいずれか一種または二種以上を、選択的に、合計で0.2%以上含有させる。
Hereinafter, elements to be selectively contained will be described.
Any one or more of Cr , Cu and Mo.
Cr , Cu, and Mo all become negative terms in the expression of Ms [γR] in the KTP value, stabilize residual γ, and increase the strength-ductility balance. In order to exert this effect, one or more of Cr , Cu, and Mo are selectively contained in a total amount of 0.2% or more.
一方、これら元素の一種または二種以上を合計で5%を超えて、過剰に含有させると、残留γが安定になり過ぎ、却って「TRIP」効果が得られなくなる。したがって、Cr、Cu、Moのいずれか一種または二種以上を選択的に含有させる場合は、合計で0.2〜5%、好ましくは合計で0.5〜3.0%の範囲とする。 On the other hand, if one or more of these elements exceeds 5% in total and excessively contained, the residual γ becomes too stable and the “TRIP” effect cannot be obtained. Therefore, when one or more of Cr , Cu and Mo are selectively contained, the total content is 0.2 to 5%, preferably the total content is 0.5 to 3.0%. .
B:0.0005〜0.0050%。
Bは、圧延後の冷却過程でのポリゴナルフェライトの形成を抑制し、母材強度を確保する。また、鋼組織を微細化して母材靱性を改善する効果がある。この効果は0.0005%以上の含有で発揮される。一方、B含有量が0.0050%を超ると、これらの効果が飽和する。よって、B含有量は0.0005〜0.0050%の範囲とする。
B: 0.0005 to 0.0050%.
B suppresses the formation of polygonal ferrite in the cooling process after rolling, and ensures the strength of the base material. In addition, there is an effect of improving the base material toughness by refining the steel structure. This effect is exhibited when the content is 0.0005% or more. On the other hand, when the B content exceeds 0.0050%, these effects are saturated. Therefore, the B content is in the range of 0.0005 to 0.0050%.
Nb、V、Zr、Wのいずれか一種または二種以上。
Nb、V、Zr、Wは、炭化物(MC)を形成し、母材強度を高める効果がある。この効果を発揮させる場合には、Nb、V、Zr、Wのいずれか一種または二種以上を、選択的に、合計で0.01%以上含有させる。
Any one or more of Nb, V, Zr and W.
Nb, V, Zr, and W have the effect of forming carbide (MC) and increasing the strength of the base material. In order to exert this effect, one or more of Nb, V, Zr and W are selectively contained in a total of 0.01% or more.
一方、これら元素の一種または二種以上を合計で0.5%を超えて、過剰に含有させると、却って、MCが多くなりすぎ、鋼中のフリー炭素が減少して、残留γの安定性を低下させる。したがって、Nb、V、Zr、Wのいずれか一種または二種以上を選択的に含有させる場合は、合計で0.01〜0.5%の範囲とする。 On the other hand, if one or more of these elements exceeds 0.5% in total and excessively contained, MC increases too much, free carbon in steel decreases, and stability of residual γ Reduce. Therefore, in the case where one or more of Nb, V, Zr, and W are selectively contained, the total content is made 0.01 to 0.5%.
REM:0.001〜0.1%。
REMは、MnS等の硫化物などの介在物を微細化させてHAZ靭性を改善する。この効果を発揮させる場合には、選択的に0.001%以上含有させる。しかし、REMは、0.1%を超えても効果が飽和する。したがって、REMを選択的に含有させる場合は、0.001〜0.1%の範囲とする。
REM: 0.001 to 0.1%.
REM refines the inclusions such as sulfides such as MnS to improve the HAZ toughness. In order to exhibit this effect, 0.001% or more is selectively contained. However, even if REM exceeds 0.1%, the effect is saturated. Therefore, when REM is contained selectively, the content is made 0.001 to 0.1%.
次ぎに、不可避的不純物について、以下に説明する。上記以外の元素は不純物であり、厚鋼板特性を阻害しない範囲での含有を許容する。例えば、P(りん)やS(硫黄)も不可避不純物として存在する元素であり、溶接性や母材靭性を低下させる等の悪影響を及ぼす。よってPは0.020%以下、Sは0.010%以下に抑えるのがよい。 Next, inevitable impurities will be described below. Elements other than the above are impurities, and inclusion in a range that does not impair the properties of the thick steel plate is allowed. For example, P (phosphorus) and S (sulfur) are elements present as unavoidable impurities, and have an adverse effect such as reducing weldability and base metal toughness. Therefore, it is preferable to keep P at 0.020% or less and S at 0.010% or less.
(製造方法)
本発明厚鋼板は、熱間圧延を含めて、工程自体は常法にて製造することができる。即ち、転炉等の通常の溶製法で溶製し、ついで連続鋳造法等の通常の鋳造法で所定寸法の鋼素材(スラブ)とする。鋼素材(スラブ)は、通常の厚鋼板の製造方法通り、加熱後、熱間圧延を行ない、圧延方向に沿う集合組織の発達を阻止して、熱間圧延終了時において再結晶させた組織とする。熱間圧延終了後の鋼板は水焼き入れを施す。その後、鋼板の焼戻しを行ない製品厚鋼板とする。
(Production method)
The steel plate of the present invention can be produced by a conventional method including the hot rolling. That is, the steel material is melted by a normal melting method such as a converter and then a steel material (slab) having a predetermined size is formed by a normal casting method such as a continuous casting method. The steel material (slab) is a structure that is recrystallized at the end of the hot rolling by performing hot rolling after heating, preventing the development of the texture along the rolling direction, in accordance with the normal method for producing thick steel plates. To do. The steel sheet after hot rolling is subjected to water quenching. Thereafter, the steel plate is tempered to obtain a product thick steel plate.
圧延条件は特には限定しないが、好ましくは1000〜1200℃に加熱後、仕上げ圧延温度を700〜900℃として圧延する。このような低温圧延によって、後述する2相域での熱処理後の組織を微細化でき、母材靱性などの特性を向上できる。 Although rolling conditions are not specifically limited, Preferably, after heating to 1000-1200 degreeC, a finish rolling temperature is made 700-900 degreeC and rolled. By such low temperature rolling, the structure after heat treatment in the two-phase region described later can be refined, and characteristics such as base material toughness can be improved.
また、圧延後の水焼き入れなどの強制冷却における冷却速度は1.0〜20℃/sで冷却することが好ましい。このように冷却速度を高め、ベイナイトの分率を高めることで、後述する2相域での熱処理後の組織を微細化でき、母材靱性などの特性を向上できる。 The cooling rate in forced cooling such as water quenching after rolling is preferably 1.0 to 20 ° C./s. Thus, by increasing the cooling rate and increasing the fraction of bainite, the structure after heat treatment in the two-phase region described later can be refined, and characteristics such as base material toughness can be improved.
前記組織の条件を満足するためには、特に、上記熱処理(焼戻し、テンパー)の際の温度条件に注意する。熱処理の温度は、Ae1とAe3の間の、α+γ2相域に過熱する。具体的には、熱処理の温度(加熱温度:Thold:℃)が、(Thold−Ae1 )/(Ae3−Ae1 )×100(%)が5〜50%の範囲となるように加熱して保持する。この温度に保持することで、微細なオーステナイトを作り込み、その後、室温まで冷却した際に、残留γを体積分率で1.0〜30%形成させたベイナイト組織とすることができる。なお、保持時間は、これらの効果が得られるに十分な時間とするが、3分以上保持することが好ましい。 In order to satisfy the conditions of the structure, attention is particularly paid to the temperature conditions during the heat treatment (tempering, tempering). The temperature of the heat treatment is overheated to the α + γ2 phase region between Ae1 and Ae3. Specifically, the heat treatment temperature (heating temperature: T hold : ° C.) is heated so that (T hold −Ae 1) / (Ae 3 −Ae 1) × 100 (%) is in the range of 5 to 50%. Hold. By holding at this temperature, fine austenite can be made, and then, when cooled to room temperature, a bainite structure in which a residual γ is formed in a volume fraction of 1.0 to 30% can be obtained. The holding time is set to a time sufficient to obtain these effects, but is preferably held for 3 minutes or more.
加熱温度:Tholdが、(Thold−Ae1 )/(Ae3−Ae1 )×100で5%未満となって、Ae1未満のα+θ域となった場合、室温まで冷却した際に、体積分率で1.0%以上の、十分な量の残留γが確保できない。 Heating temperature: When T hold is (T hold −Ae1) / (Ae3−Ae1) × 100 and less than 5%, α + θ region less than Ae1, A sufficient amount of residual γ of 1.0% or more cannot be secured.
一方、熱処理の温度が、(Thold−Ae1 )/(Ae3−Ae1 )×100で50%を超えて、Ae3を超えてγ域となった場合、室温まで冷却した際に、残留γが体積分率で30%を超え、残留γ中への炭素の濃化が十分にできないので、残留γの安定性が低下し、却って残留γの十分な量の確保ができなくなる。 On the other hand, when the temperature of the heat treatment exceeds 50% at (T hold −Ae1) / (Ae3−Ae1) × 100, exceeds Ae3 and becomes the γ region, the residual γ is reduced in volume when cooled to room temperature. Since the fraction exceeds 30% and carbon cannot be sufficiently concentrated in the residual γ, the stability of the residual γ is lowered, and on the contrary, a sufficient amount of the residual γ cannot be secured.
以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより、下記実施例によって制限を受けるものではなく、前記、後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples, and the present invention is not limited to the following examples. Of course, it is also possible to implement them, and they are all included in the technical scope of the present invention.
表1(発明例A〜Pおよび比較例Q〜W)に示す化学成分組成の鋼を真空溶解して150kg鋳塊を作成した。この鋳塊を、表2に示す圧延条件にて多パス圧延および強制冷却して、板厚30mmの鋼板を得た。この鋼板を表2および表3に示す2相域熱処理条件にて熱処理(加熱時間は共通して約1時間)し、供試材とした。なお、表1には、各鋼板のAe1とAe3とを、熱力学ソフトであるサーモカルクで計算した値を記載している。 Steels having chemical composition shown in Table 1 (Invention Examples A to P and Comparative Examples Q to W) were vacuum melted to prepare 150 kg ingots. This ingot was subjected to multi-pass rolling and forced cooling under the rolling conditions shown in Table 2 to obtain a steel plate having a thickness of 30 mm. This steel plate was heat-treated under the two-phase region heat treatment conditions shown in Table 2 and Table 3 (heating time is commonly about 1 hour) to obtain a test material. Table 1 shows the values calculated by thermocalc as thermodynamic software for Ae1 and Ae3 of each steel plate.
また、表2の2相域熱処理の加熱条件には、表3に記載の、この2相域熱処理における加熱温度(Thold:℃)の条件式、(Thold−Ae1 )/(Ae3−Ae1 )×100(%)の値を、加熱温度の誤差に基づく誤差範囲(±%)とともに記載している。 The heating conditions for the two-phase region heat treatment in Table 2 include the conditional expression of the heating temperature (T hold : ° C.) in the two-phase region heat treatment shown in Table 3, (T hold −Ae1) / (Ae3−Ae1). ) × 100 (%) is described together with an error range (±%) based on the error of the heating temperature.
この様にして得た鋼板から試料を採取し、表3に示すように、厚鋼板組織における、ポリゴナルフェライトの体積分率(α分率:%)、残留γの分率(γR 分率:%)、残留γ中のC量〔C(γR ):%〕、残留γのMs点(Ms〔γR 〕:℃)、KTP値を各々、前記した測定方法や計算方法で求めた。また、残部の組織がベイナイト主体であるかどうかも確認した。 A sample was taken from the steel plate thus obtained, and as shown in Table 3, the volume fraction of polygonal ferrite (α fraction:%) and the fraction of residual γ (γ R fraction) in the thick steel plate structure. :%), The amount of C in the residual γ [C (γ R ):%], the Ms point of the residual γ (Ms [γ R ]: ° C.), and the KTP value were determined by the measurement method and calculation method described above, respectively. . It was also confirmed whether the remaining structure was mainly bainite.
そして、同じ試料の、母材引張特性、溶接性を測定した。これらの結果を表3に示す。 And the base material tensile characteristics and weldability of the same sample were measured. These results are shown in Table 3.
(母材引張特性)
上記試料からJIS4A号試験片を採取して、JISZ2241に準じた引張試験を行い鋼板の引張強度(TS:MPa)、および均一伸び(EL:荷重が最大値から5%低下した時の歪み量uE(5%down)を求めた。更に、TS×ELの強度−延性バランスも求めた。ここで、強度−延性バランス(MPa%)は、14000以上であるものが優れると評価した。
(Base material tensile properties)
A JIS4A test piece was taken from the above sample and subjected to a tensile test according to JISZ2241, and the tensile strength (TS: MPa) of the steel sheet and uniform elongation (EL: strain amount when load decreased by 5% from the maximum value uE Further, the strength-ductility balance of TS × EL was also obtained, and it was evaluated that the strength-ductility balance (MPa%) of 14000 or more was excellent.
(母材靭性)
板厚t/4の深さ部分からシャルピー試験片を切り出し、JISZ2242に準じたシャルピー衝撃試験を行い、0℃での靱性(vE0 :J)を測定した。そしてvE0 が110J以上の場合を母材靭性に優れていると評価した。
(Base material toughness)
A Charpy test piece was cut out from the depth portion of the plate thickness t / 4, a Charpy impact test according to JISZ2242 was performed, and the toughness (vE0: J) at 0 ° C was measured. The case where vE0 was 110 J or more was evaluated as being excellent in base metal toughness.
(溶接継手靭性)
上記試料から切り出した試験片(サイズ12.5mm×32mm×55mm)を1400℃および1200℃に加熱し、該温度で5秒間保持した後、800℃から500℃までを730秒間で冷却する熱サイクル(5kJ/mmの入熱でSAW溶接したときのHAZの熱履歴に相当)を施した。これら各試験片からシャルピー試験片を採取して、JISZ2242に準じたシャルピー衝撃試験を行い、0℃での靱性(vE0 :J)を測定した。そしてvE0 が100J以上の場合を溶接継手靭性に優れていると評価した。
(Welded joint toughness)
A heat cycle in which a test piece (size: 12.5 mm × 32 mm × 55 mm) cut out from the sample is heated to 1400 ° C. and 1200 ° C., held at the temperature for 5 seconds, and then cooled from 800 ° C. to 500 ° C. for 730 seconds. (Corresponding to the thermal history of HAZ when SAW welding is performed with a heat input of 5 kJ / mm). Charpy test pieces were collected from each of these test pieces and subjected to a Charpy impact test in accordance with JISZ2242, and the toughness (vE0: J) at 0 ° C. was measured. The case where vE0 was 100 J or more was evaluated as being excellent in weld joint toughness.
表1〜3より明らかな通り、発明例1〜17は、本発明組成を満足する表1の発明例A〜Pの鋼を用いるとともに、表2における1と2の好ましい2相域熱処理の製造条件範囲で製造されている。このため、厚鋼板組織における残留γの分率が1.0〜30%の範囲であり、かつ、この残留γの分率が下記KTP値を満たすものである。また、発明例1〜17の鋼板組織は、表3のγR分率(残留γの分率)と、α分率(ポリゴナルフェライトの分率)とを除く残部はベイナイトであり、ベイナイトを主体とする組織であった。 As is apparent from Tables 1 to 3, Invention Examples 1 to 17 use the steels of Invention Examples A to P in Table 1 that satisfy the composition of the present invention, and manufacture of preferable two-phase region heat treatments 1 and 2 in Table 2. Manufactured in a range of conditions. For this reason, the fraction of residual γ in the steel plate structure is in the range of 1.0 to 30%, and the fraction of residual γ satisfies the following KTP value. In addition, the steel sheet structures of Invention Examples 1 to 17 are bainite, with the remainder excluding the γR fraction (residual γ fraction) and α fraction (polygonal ferrite fraction) shown in Table 3 being mainly bainite. It was an organization.
この結果、590MPa級以上の高強度厚鋼板において、14000MPa%以上の強度−延性バランスが得られている。また、母材靱性にも優れている。更に、熱サイクル特性も100J以上の靱性が得られ、溶接継手靭性など、溶接性にも優れている。 As a result, in a high-strength thick steel plate of 590 MPa class or higher, a strength-ductility balance of 14000 MPa% or higher is obtained. Moreover, it is excellent in base material toughness. Furthermore, a thermal cycle characteristic of toughness of 100 J or more is obtained, and weldability such as weld joint toughness is also excellent.
これらの結果は、高強度な590〜780MPa級の厚鋼板として、建築構造物や鋼構造物に用いられた場合、良好な耐震性が得られることを示している。 These results show that good earthquake resistance is obtained when used as a high strength 590-780 MPa class thick steel plate in a building structure or a steel structure.
これに対して、比較例18〜24は、いずれかの元素の成分組成が発明範囲より外れる表1の比較例Q〜Wの鋼を用いている。このため、圧延、2相域熱処理などの製造条件も好ましい範囲で製造されているにもかかわらず、残留γの分率など組織規定が外れるか、あるいは入っていても、14000MPa%以上の強度−延性バランスか、母材靱性か、熱サイクル特性かの、いずれか、あるいは全ての特性が発明例に比して劣る。 On the other hand, Comparative Examples 18 to 24 use steels of Comparative Examples Q to W in Table 1 in which the component composition of any element falls outside the scope of the invention. For this reason, even if the production conditions such as rolling and two-phase region heat treatment are produced within a preferable range, even if the structure regulation such as the fraction of residual γ is out of or included, the strength of 14000 MPa% or more− Either or all of the properties of ductility balance, base material toughness, and thermal cycle properties are inferior to those of the inventive examples.
また、比較例25は、本発明組成を満足する表1の発明例Aの鋼を用いているのもかかわらず、圧延、2相域熱処理などの製造条件が好ましい範囲外で製造されており、残留γの分率など組織規定が外れ、14000MPa%以上の強度−延性バランスか、熱サイクル特性か、いずれか、あるいは両方の特性が発明例に比して劣る。 Further, Comparative Example 25 is manufactured outside the preferable range of manufacturing conditions such as rolling, two-phase region heat treatment, etc., despite using the steel of Invention Example A in Table 1 that satisfies the composition of the present invention, The structural regulation such as the fraction of residual γ is not satisfied, and either the strength-ductility balance of 14000 MPa% or more, the thermal cycle characteristics, or both characteristics are inferior to the invention examples.
この結果、これら比較例は、耐震性が要求される建築構造物や鋼構造物用の590〜780MPa級厚鋼板としては使用できない。 As a result, these comparative examples cannot be used as 590-780 MPa class thick steel plates for building structures and steel structures that require earthquake resistance.
比較例18は、鋼QのC量が高過ぎ上限を外れる。このため、残留γの分率などの組織は発明範囲内であるものの、熱サイクル特性が低く溶接性が劣る。 In Comparative Example 18, the C amount of steel Q is too high and deviates from the upper limit. For this reason, although the structure such as the fraction of residual γ is within the scope of the invention, the thermal cycle characteristics are low and the weldability is poor.
比較例19は、鋼RのSi量が高過ぎ上限を外れる。このため、残留γの分率などの組織は発明範囲内であるものの、熱サイクル特性が低く溶接性が劣る。 In Comparative Example 19, the amount of Si in steel R is too high and deviates from the upper limit. For this reason, although the structure such as the fraction of residual γ is within the scope of the invention, the thermal cycle characteristics are low and the weldability is poor.
比較例20は、鋼SのSi量が低過ぎ下限を外れる。このため、残留γが少なく、残留γの分率がKTP値を満たさず、強度−延性バランスが劣る。 In Comparative Example 20, the amount of Si in steel S is too low and deviates from the lower limit. For this reason, the residual γ is small, the fraction of the residual γ does not satisfy the KTP value, and the strength-ductility balance is inferior.
比較例21は、鋼TのMn量が低過ぎ下限を外れる。このため、残留γの分率がKTP値を満たさず、強度−延性バランスが劣る。 In Comparative Example 21, the amount of Mn in the steel T is too low and falls below the lower limit. For this reason, the fraction of residual γ does not satisfy the KTP value, and the strength-ductility balance is inferior.
比較例22は、鋼UのMn量が高過ぎ上限を外れる。このため、残留γの分率などの組織は発明範囲内であるものの、熱サイクル特性が低く溶接性が劣る。 In Comparative Example 22, the Mn amount of the steel U is too high and deviates from the upper limit. For this reason, although the structure such as the fraction of residual γ is within the scope of the invention, the thermal cycle characteristics are low and the weldability is poor.
比較例23は、鋼VのAl量が高過ぎ上限を外れる。このため、ポリゴナルフェライトの量(α分率)が多くなり、残留γの分率がKTP値を満たさず、強度−延性バランス、熱サイクル特性ともに劣る。 In Comparative Example 23, the Al amount of the steel V is too high and deviates from the upper limit. For this reason, the amount (α fraction) of polygonal ferrite increases, the fraction of residual γ does not satisfy the KTP value, and the strength-ductility balance and thermal cycle characteristics are inferior.
比較例24は、鋼WのTi量が高過ぎ上限を外れる。このため、Tiの炭化物が生じて、残留γが形成されず、強度−延性バランス、熱サイクル特性ともに劣る。 In Comparative Example 24, the Ti amount of the steel W is too high and deviates from the upper limit. For this reason, Ti carbides are generated, the residual γ is not formed, and the strength-ductility balance and thermal cycle characteristics are inferior.
比較例25は、本発明組成を満足する表1の発明例Aの鋼を用いているのもかかわらず、表2の3の好ましい範囲外の2相域熱処理で製造されている。このため、残留γの分率が少な過ないために、KTP値を満たさず、強度−延性バランス、熱サイクル特性ともに劣る。 Comparative Example 25 is manufactured by a two-phase heat treatment outside the preferable range of 3 in Table 2, although the steel of Invention Example A in Table 1 that satisfies the composition of the present invention is used. For this reason, since the fraction of residual γ is small, the KTP value is not satisfied, and the strength-ductility balance and thermal cycle characteristics are inferior.
以上の結果から、本発明の成分組成と組織の規定の、高強度な590〜780MPa級の厚鋼板の場合に、強度−延性バランスと溶接性靭性改善の臨界的な意義が裏付けられる。 The above results support the critical significance of strength-ductility balance and weldability toughness improvement in the case of high-strength 590-780 MPa grade thick steel sheets with the component composition and structure defined in the present invention.
以上説明したように、本発明によれば、良好な母材靭性や大入熱溶接性を確保しつつ、均一伸びを向上させ、強度−延性バランスに優れた590〜780MPa級の高強度厚鋼板およびその製造方法を提供できる。このため、本発明厚鋼板は、耐震性が要求される構造物、建築構造物用に適用できる。
As described above, according to the present invention, a high strength thick steel plate of 590 to 780 MPa class that improves uniform elongation and has excellent strength-ductility balance while ensuring good base material toughness and large heat input weldability. And a manufacturing method thereof. For this reason, this invention steel plate is applicable to the structure and building structure with which earthquake resistance is requested | required.
Claims (6)
ここでKTP値=−3.14×103 +163×〔γR 分率〕+5.09×105 ×(1/Ms〔γR 〕)で表され、0≦KTP値≦2730である。
但し、Ms〔γR 〕は、残留γのMs点(マルテンサイト変態開始温度)で、
Ms〔γR 〕=550−361〔%C(γR )〕−39〔%Mn〕−20〔%Cr〕−17〔%Ni〕−10〔%Cu〕−5〔%Mo〕で表される。
但し、%C(γR )は残留γ中のC量である。 In mass%, C: 0.01 to 0.10%, Si: 0.05 to 2.0%, Mn: 1.5 to 7.0%, Al: 0.1% or less (excluding 0%) ), Ti: 0.002 to 0.1%, N: 0.001 to 0.01%, respectively, and the balance is a steel plate with iron and inevitable impurities, and the residual γ in the steel plate structure The fraction is 1.0 to 30% by volume, the fraction of polygonal ferrite is 0 to 26% by volume, is composed of the remainder bainite, and the fraction of residual γ satisfies the following KTP value. steel plate you, characterized in that.
Here, KTP value = −3.14 × 10 3 + 163 × [γR fraction] + 5.09 × 10 5 × (1 / Ms [γR]), and 0 ≦ KTP value ≦ 2730.
However, Ms [γR] is the Ms point of residual γ (martensitic transformation start temperature),
Ms [γR] = 550-361 [% C (γR)]-39 [% Mn] -20 [% Cr] -17 [% Ni] -10 [% Cu] -5 [% Mo]
However,% C (γR) is the amount of C in the residual γ.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004322418A JP4283757B2 (en) | 2004-11-05 | 2004-11-05 | Thick steel plate and manufacturing method thereof |
KR20050104808A KR100712794B1 (en) | 2004-11-05 | 2005-11-03 | Thick steel plate excellent in strength-ductility balance and welding property, and process for producing the same |
CNB2005101202124A CN100343407C (en) | 2004-11-05 | 2005-11-07 | Strength-ductility balanced plate steel with excellent weldability and manufacturing methods thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004322418A JP4283757B2 (en) | 2004-11-05 | 2004-11-05 | Thick steel plate and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006131958A JP2006131958A (en) | 2006-05-25 |
JP4283757B2 true JP4283757B2 (en) | 2009-06-24 |
Family
ID=36725768
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004322418A Expired - Lifetime JP4283757B2 (en) | 2004-11-05 | 2004-11-05 | Thick steel plate and manufacturing method thereof |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP4283757B2 (en) |
KR (1) | KR100712794B1 (en) |
CN (1) | CN100343407C (en) |
Families Citing this family (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4653038B2 (en) * | 2006-08-21 | 2011-03-16 | 株式会社神戸製鋼所 | High tensile steel plate and method for manufacturing the same |
JP4653039B2 (en) * | 2006-08-21 | 2011-03-16 | 株式会社神戸製鋼所 | High tensile steel plate and method for manufacturing the same |
JP4976905B2 (en) * | 2007-04-09 | 2012-07-18 | 株式会社神戸製鋼所 | Thick steel plate with excellent HAZ toughness and base metal toughness |
KR100954042B1 (en) * | 2007-04-09 | 2010-04-20 | 가부시키가이샤 고베 세이코쇼 | Thick steel plate with good HAZ toughness |
CN101960037B (en) * | 2008-10-23 | 2012-05-23 | 新日本制铁株式会社 | High tensile strength steel thick plate having excellent weldability and tensile strength of 780MPa or above, and process for manufacturing same |
CN102341518B (en) * | 2009-04-03 | 2013-04-10 | 株式会社神户制钢所 | Cold-rolled steel sheet and method for producing the same |
JP5029748B2 (en) * | 2010-09-17 | 2012-09-19 | Jfeスチール株式会社 | High strength hot rolled steel sheet with excellent toughness and method for producing the same |
KR101278004B1 (en) * | 2011-06-28 | 2013-06-27 | 현대제철 주식회사 | High strength steel plate and method of manufacturing the steel plate |
JP5857905B2 (en) * | 2012-07-25 | 2016-02-10 | 新日鐵住金株式会社 | Steel material and manufacturing method thereof |
KR101320222B1 (en) * | 2013-04-30 | 2013-10-21 | 현대제철 주식회사 | High strength steel plate and method of manufacturing the steel plate |
CN103667963B (en) * | 2013-12-06 | 2015-12-09 | 武汉钢铁(集团)公司 | The low-carbon bainite construction(al)steel of a kind of yield tensile ratio < 0.8 and production method |
RU2659549C2 (en) | 2014-01-06 | 2018-07-02 | Ниппон Стил Энд Сумитомо Метал Корпорейшн | Hot-formed member and process for its manufacturing |
US10774405B2 (en) | 2014-01-06 | 2020-09-15 | Nippon Steel Corporation | Steel and method of manufacturing the same |
CN103789704B (en) * | 2014-01-25 | 2015-12-02 | 安徽省临泉县智创精机有限公司 | A kind of high-ductility alloy steel and preparation method thereof |
KR101746971B1 (en) * | 2015-12-10 | 2017-06-14 | 주식회사 포스코 | Steel wire rod and steel wire having excellent hydrogen induced cracking resistance and method for manufacturing thereof |
KR101798771B1 (en) * | 2016-06-21 | 2017-11-17 | 주식회사 포스코 | Ultra high strength and high ductility steel sheet having superior yield strength and method for manufacturing the same |
KR102250977B1 (en) | 2016-08-22 | 2021-05-11 | 제이에프이 스틸 가부시키가이샤 | Automotive member with resistance welding |
KR101908804B1 (en) | 2016-12-21 | 2018-10-16 | 주식회사 포스코 | Steel sheet for pressure vessel having excellent post weld heat treatment resistance and method for manufacturing the same |
CN107312981A (en) * | 2017-06-13 | 2017-11-03 | 南京钢铁股份有限公司 | A kind of high tough thick steel plates of low yield strength ratio and its manufacture method |
CN109652733B (en) * | 2019-01-07 | 2021-01-26 | 南京钢铁股份有限公司 | 690 MPa-grade super-thick steel plate and manufacturing method thereof |
CN115323251B (en) * | 2022-08-24 | 2023-06-27 | 东北大学 | An ultra-thick, high-strength, high-toughness, high-homogeneity extra-thick steel plate for hydropower and its manufacturing method |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3168665B2 (en) * | 1992-01-18 | 2001-05-21 | 住友金属工業株式会社 | Hot-rolled high-strength steel sheet with excellent workability and its manufacturing method |
JP3242303B2 (en) * | 1995-09-29 | 2001-12-25 | 川崎製鉄株式会社 | High-strength hot-rolled steel sheet having ultrafine grains and excellent in ductility, toughness, fatigue properties and strength-ductility balance, and method for producing the same |
DE60026746T2 (en) * | 1999-10-04 | 2006-11-16 | Hitachi Metals, Ltd. | belts |
JP3731560B2 (en) * | 2001-08-16 | 2006-01-05 | 住友金属工業株式会社 | Steel plate with excellent workability and shape freezing property and its manufacturing method |
JP3668713B2 (en) * | 2001-11-26 | 2005-07-06 | 株式会社神戸製鋼所 | High tensile steel plate with excellent weldability and uniform elongation |
JP3924159B2 (en) * | 2001-11-28 | 2007-06-06 | 新日本製鐵株式会社 | High-strength thin steel sheet with excellent delayed fracture resistance after forming, its manufacturing method, and automotive strength parts made from high-strength thin steel sheet |
JP3793478B2 (en) * | 2002-04-01 | 2006-07-05 | 新日本製鐵株式会社 | Method for producing high-strength steel sheets and steel pipes that suppress the inclusion of coarse crystal grains and have excellent low-temperature toughness |
JP4214370B2 (en) * | 2002-10-15 | 2009-01-28 | 住友金属工業株式会社 | Hot-rolled high-tensile steel material and manufacturing method thereof |
-
2004
- 2004-11-05 JP JP2004322418A patent/JP4283757B2/en not_active Expired - Lifetime
-
2005
- 2005-11-03 KR KR20050104808A patent/KR100712794B1/en active IP Right Grant
- 2005-11-07 CN CNB2005101202124A patent/CN100343407C/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
KR100712794B1 (en) | 2007-04-30 |
JP2006131958A (en) | 2006-05-25 |
CN100343407C (en) | 2007-10-17 |
KR20060052433A (en) | 2006-05-19 |
CN1769509A (en) | 2006-05-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4283757B2 (en) | Thick steel plate and manufacturing method thereof | |
KR100799421B1 (en) | 490MPa-resistance-ratio cold-formed steel pipe with excellent weldability and manufacturing method | |
JP5609383B2 (en) | High strength hot rolled steel sheet with excellent low temperature toughness and method for producing the same | |
JP5162382B2 (en) | Low yield ratio high toughness steel plate | |
JP6477570B2 (en) | Hot-rolled steel sheet and manufacturing method thereof | |
JP6327282B2 (en) | High strength hot rolled steel sheet and method for producing the same | |
JP6149368B2 (en) | Manufacturing method of high-tensile steel plate with excellent delayed fracture resistance | |
WO2020039979A1 (en) | Hot rolled steel plate and manufacturing method thereof | |
JP7339339B2 (en) | Ultra-high-strength steel material with excellent cold workability and SSC resistance, and method for producing the same | |
JP5045074B2 (en) | High tensile thin-walled steel sheet having low yield ratio and manufacturing method thereof | |
JP4005517B2 (en) | High-strength composite steel sheet with excellent elongation and stretch flangeability | |
JP6795048B2 (en) | Non-treated low yield ratio high-strength thick steel sheet and its manufacturing method | |
JP5139015B2 (en) | Thick high-strength steel sheet for large heat input welding with low base metal low-temperature toughness variation and excellent heat-affected zone toughness, and method for producing the same | |
JP4324226B1 (en) | High-strength cold-rolled steel sheet with excellent yield stress, elongation and stretch flangeability | |
JP2020037734A (en) | High strength and low yield ratio thick steel plate having excellent toughness in base material and weld heat-affected zone, while having smaller acoustic anisotropy, and method for producing the same | |
JP5333021B2 (en) | High strength steel plate excellent in ductility, weldability and surface properties, and method for producing the same | |
JP5151693B2 (en) | Manufacturing method of high-strength steel | |
JP2007197823A (en) | LOW YIELD RATIO OF 550 MPa CLASS HIGH-TENSILE STEEL PLATE, AND ITS MANUFACTURING METHOD | |
JP3854807B2 (en) | High tensile steel plate with excellent weldability and uniform elongation | |
WO2016152675A1 (en) | High-strength steel sheet having excellent workability | |
JP4008378B2 (en) | Low yield ratio high strength steel with excellent toughness and weldability | |
JP5369462B2 (en) | Low yield ratio high strength steel sheet and method for producing the same | |
JPWO2020202333A1 (en) | Electric pipe and its manufacturing method, and steel pipe pile | |
JP3737300B2 (en) | Non-tempered low yield ratio high tensile strength steel plate with excellent weldability | |
JP2002241891A (en) | Structural steel having excellent brittle crack propagation stopping characteristic and fatigue crack propagation characteristic after plastic deformation and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060925 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080813 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080826 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20081021 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20081202 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090127 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090317 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090319 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4283757 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120327 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130327 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140327 Year of fee payment: 5 |