JP4283377B2 - Asymmetric epoxidation catalyst for enones and method for producing optically active epoxide using the same - Google Patents
Asymmetric epoxidation catalyst for enones and method for producing optically active epoxide using the same Download PDFInfo
- Publication number
- JP4283377B2 JP4283377B2 JP14385299A JP14385299A JP4283377B2 JP 4283377 B2 JP4283377 B2 JP 4283377B2 JP 14385299 A JP14385299 A JP 14385299A JP 14385299 A JP14385299 A JP 14385299A JP 4283377 B2 JP4283377 B2 JP 4283377B2
- Authority
- JP
- Japan
- Prior art keywords
- oxide
- trans
- carbon atoms
- optically active
- methylphenyl
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Epoxy Compounds (AREA)
- Catalysts (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、エノン類の不斉エポキシ化触媒及びそれを用いた光学活性エポキシドの製造方法に関する。
【0002】
【従来の技術】
エノン類の不斉エポキシ化反応としては、光学活性ジヒドロキシ化合物と希土類金属アルコキシドのテトラヒドロフラン溶液より調製される錯体触媒の存在下、カルコン等のカルボニル基に隣接する炭素−炭素二重結合を有する化合物を、ヒドロキシパーオキシド化合物で不斉エポキシ化する方法が知られており、具体的には、(R)−ビナフトールとランタントリイソプロポキシドのテトラヒドロフラン溶液を(R)−ランタン−ビナフトキシド錯体として反応に用いている(特開平10−120668号公報)。
【0003】
【発明が解決する課題】
しかしながら、特開平10−120668号公報に記載の方法では、例えば、酸化剤としてtert−ブチルハイドロパーオキシド(以下TBHPと略す)を用いた場合、目的とする光学活性エポキシドが低収率、低光学純度でしか得られない。このため満足出来る結果を得るためには、3位にメチロールを導入したビナフトールを用い、さらに特殊な酸化剤であるクメンハイドロパーオキシド(以下CMHPと略す)を用いる必要があった。
【0004】
【課題を解決するための手段】
本発明者らは、反応性が高く、かつ高光学純度を与える触媒の開発について鋭意検討した結果、(A)ビナフトール、(B)ランタントリイソプロポキシド、並びに(C)ルチジン−N−オキサイド、1,3−ジメチル−2−イミダゾリジノン、ヘキサメチルホスホルトリアミド、トリフェニルフォスフィンオキサイド、トリ(2−メチルフェニル)フォスフィンオキサイド及びトリ(4−メチルフェニル)フォスフィンオキサイドからなる群より選ばれる1種を含有することを特徴とするエノン類の不斉エポキシ化触媒を見出し本発明を完成させるに至った。
【0005】
すなわち本発明は、上記エノン類の不斉エポキシ化触媒、及びこの触媒の存在下、下記一般式(1)
【0006】
【化3】
【0007】
(式中、R1、R2は各々独立して、炭素数1〜20の直鎖状、分枝状若しくは環式のアルキル基、芳香族基、炭素数1〜5のアルキル基で1〜5置換された芳香族基、炭素数1〜5のアルコキシ基で1〜5置換された芳香族基、ハロゲン元素で1〜5置換された芳香族基、芳香族基で置換された炭素数1〜5の直鎖状、分枝状若しくは環式アルキル基、又はハロゲン化芳香族基で置換された炭素数1〜5の直鎖状、分枝状若しくは環式アルキル基を表わす。)
で示されるエノン類と酸化剤を反応させることを特徴とする下記一般式(2)
【0008】
【化4】
【0009】
(式中、R1、R2は前記と同じ定義であり、*印は光学活性炭素を示す。)
で示される光学活性エポキシドの製造方法である。
【0010】
本発明を以下詳細に説明する。
【0011】
本発明の触媒は、(A)ビナフトールと、(B)ランタントリイソプロポキシドと、(C)ルチジン−N−オキサイド、1,3−ジメチル−2−イミダゾリジノン、ヘキサメチルホスホルトリアミド、トリフェニルフォスフィンオキサイド、トリ(2−メチルフェニル)フォスフィンオキサイド又はトリ(4−メチルフェニル)フォスフィンオキサイドを含有する。
【0012】
本発明において、ビナフトールとしては、(R)−ビナフトール、(S)−ビナフトールが挙げられる。
【0013】
本発明の触媒の構成比は、特に限定するものでないが、(B)ランタンイオン1モルに対して、(A)ビナフトールが通常1〜3モル、(C)ルチジン−N−オキサイド、1,3−ジメチル−2−イミダゾリジノン、ヘキサメチルホスホルトリアミド、トリフェニルフォスフィンオキサイド、トリ(2−メチルフェニル)フォスフィンオキサイド又はトリ(4−メチルフェニル)フォスフィンオキサイドが通常0.1〜10モル、好ましくは1〜10モルである。
【0014】
本発明の触媒は、エノン類の不斉エポキシ化反応に利用可能であり、高い反応性を示し、また生成物に高い光学純度を与える。
【0015】
本発明の触媒を用い反応させることにより発現する光学絶対配置は、一般的には、触媒を構成するビナフトールの光学絶対配置に依存し、(R)−ビナフトールを用いた場合に、生成物の不斉炭素の光学絶対配置が(R)体になる基質は、(S)−ビナフトールを用いれば、生成物の不斉炭素の光学絶対配置は(S)体になる関係にある。但し、(R)−ビナフトールを用いれば、生成物の不斉炭素の光学絶対配置が(R)体になるというわけではなく、基質の種類等によって生成物の光学絶対配置は異なる。本発明の触媒を用いて不斉エポキシ化反応を行った場合、一般的には、(R)−ビナフトールを用いれば、生成するエノンのエポキシドの2位(α位)と3位(β位)の光学絶対配置は(2S,3R)になり、一方、(S)−ビナフトールを用いれば、(2R,3S)になる。
【0016】
本発明の方法において、触媒の使用量は特に限定するものではないが、反応に具される基質に対して、ランタンイオンのモル数を基準として、0.01〜50モル%、さらに好ましくは0.1〜25モル%の範囲である。
【0017】
本発明の方法に適用可能な溶剤としては触媒及びエポキシ化反応に不活性溶剤であればあらゆる溶剤が適用可能であるが、触媒の安定性、エポキシ化反応の反応成績の面でジメチルエーテル、ジイソプロピルエーテル、1,2−ジメトキシエタン、テトラヒドロフラン(以下THFと略す)等のエーテル系溶剤が好ましく、中でも最も高結果を与えるのはTHFである。
【0018】
溶剤の使用量としては、反応に具するエノンに対して重量換算で2〜200倍量、さらに好ましくは5〜100倍量の範囲である。
【0019】
本発明の方法に適用可能なエノンとしては、下記一般式(1)
【0020】
【化5】
【0021】
(式中、R1、R2は各々独立して、炭素数1〜20の直鎖状、分枝状若しくは環式のアルキル基、芳香族基、炭素数1〜5のアルキル基で1〜5置換された芳香族基、炭素数1〜5のアルコキシ基で1〜5置換された芳香族基、ハロゲン元素で1〜5置換された芳香族基、芳香族基で置換された炭素数1〜5の直鎖状、分枝状若しくは環式アルキル基、又はハロゲン化芳香族基で置換された炭素数1〜5の直鎖状、分枝状若しくは環式アルキル基を表わす。)
で示される化合物であればあらゆるものが適用可能であるが、具体的には、メチルビニルケトン、trans−3−ペンテン−2−オン、trans−3−ヘキセン−2−オン、trans−3−ヘプテン−2−オン、trans−3−オクテン−2−オン、trans−3−ノネン−2−オン、エチルビニルケトン、trans−4−ヘキセン−3−オン、trans−4−へプテン−3−オン、trans−4−オクテン−3−オン、trans−4−ノネン−3−オン、イソプロピルビニルケトン、trans−2−メチル−4−ヘキセン−3−オン、trans−2−メチル−4−へプテン−3−オン、trans−2−メチル−4−オクテン−3−オン、trans−2−メチル−4−ノネン−3−オン、trans−1,3−ジフェニル−2−プロピレンン−1−オン(カルコン)、trans−2−メチル−5−フェニル−4−ペンテン−3−オン、4−メチル−1−フェニル−3−ペンテン−2−オン、4−フェニル−3−ブチレン−2−オン、6−フェニル−3−へキセン−2−オン、5−フェニル−3−ヘキセン−2−オン等が挙げられる。
【0022】
本発明の方法において酸化剤として使用するTBHPは、市販のデカン等の溶液をそのまま用いても良いし、70%又は90%水溶液よりトルエン抽出し、硫酸マグネシウム等で乾燥の後、本発明に使用しても良い。また、TBHPにこだわることなくクメンハイドロパーオキサイド等の他の酸化剤を用いても何等支障はなく、さらに、反応基質の種類によっては、クメンハイドロパーオキサイドを用いることによりほぼ定量的に純粋な光学活性体を与える場合もある。
【0023】
酸化剤の使用量は、反応に具するエノンに対して理論的には等量で充分であるが、反応を完結させるために好ましくは1.1モル倍量以上使用する。
【0024】
本発明の方法における反応温度は、エノンの基質の違いにより異なるが、通常−50℃〜100℃の範囲でき、反応時間としては、通常24時間以内で反応が完結し、特にトリフェニルフォスフィンオキサイドを用いた場合においては、多くの場合において2時間以内に反応が完結する。
【0025】
触媒調製時及び反応時に系内を脱水し、また触媒形成反応、エポキシ化反応を加速する目的で、必要に応じてゼオライトをエノンに対してあらゆる量比で使用可能であるが、通常エノン1mmolに対して10mg〜2g程度、好ましくは等重量程度使用する。ゼオライトの種類としてはモレキューラシーブ3A、4A、5Aに代表されるA型ゼオライト、モレキュラシーブ13X、Y型、L型等様々なゼオライトが適用可能であるが、モレキューラシーブ4Aが好ましい。
【0026】
反応終了後、後処理、カラムクロマトグラフィー等で精製を行うことにより、目的物のα,β−エポキシケトンを高収率、高光学純度で得る。
【0027】
【発明の効果】
本発明の触媒により、高反応性、高収率かつ高光学純度でのエノン類の不斉エポキシ化反応が提供されるので、本発明は各種医農薬中間体の製造方法として極めて有用である。
【0028】
【実施例】
以下実施例により本発明を具体的に説明するが、本発明は実施例のみに限定されるものではない。なお、生成物の光学純度の検定は、以下のとおり実施した。
【0029】
すなわち、ダイセル(株)のキラルカラムOB−H又はADを装着した高速液体クロマトグラフィーで行い、溶離溶媒:Hexane/i−PrOH=2/1〜100/1(vol/vol)、流量1ml/minで測定した。
【0030】
trans−2,3−エポキシ−1,3−ジフェニルプロパン−1−オンの場合、キラルカラムOB−Hを用い、溶離溶媒:Hexane/i−PrOH=2/1、流量1ml/minの条件下で、保持時間24分に(2S,3R体)、32分に(2R,3S体)の各エナンチオマーのピークが出現した。
【0031】
実施例1
10mlのナス型フラスコにモレキュラーシーブス4A(506mg)を入れ、真空ポンプで減圧下、ヒートガンで30分加熱し、乾燥させた。室温まで冷却の後、トリフェニルフォスフィンオキサイド(21.2mg、0.0758mmol)、(R)−ビナフトール(7.2mg、0.0251mmol)及びマグネチックスタラーチップを入れ反応系をアルゴンガスで置換した。次いで、THF(1ml)を加え、5分攪拌することにより溶解させた後、ランタンイソプロポキシド(La(O−iPr)3、8.0mg、0.0253mmol)のTHF溶液(1.52ml)を加え、1時間攪拌することにより触媒溶液を調製した。
【0032】
得られた触媒溶液に、TBHPのデカン溶液(5M、0.15ml、0.76mmol)を加え30分攪拌した後、カルコン(105.4mg、0.506mmol)のTHF(1ml)溶液を加え反応を行った。反応の進行はシリカゲル薄層クロマトグラフィーにより、30分後に終了したことを確認した。
【0033】
反応終了後、シリカゲル500mg、メタノール3mlを添加し15分攪拌し、次いで濾過、濃縮することにより残査を得、シリカゲルカラム(Hexane/AcOEt=30/1)で精製精製することによりtrans−(2S,3R)−エポキシ−1,3−ジフェニルプロパン−1−オンを無色透明なオイルして得た(収量:112.4mg、収率:99%、光学純度:96%ee)。
【0034】
実施例2
実施例1と同じ反応装置を用い、トリフェニルフォスフィンオキサイドをトリ(4−メチルフェニル)フォスフィンオキサイド(24.4mg、0.0758mmol)に変えた以外は実施例1と同じ操作を行い触媒溶液を調製した。得られて触媒溶液を用い実施例1と同様にカルコンのエポキシ化反応を行い、30分の反応でtrans−(2S,3R)−エポキシ−1,3−ジフェニルプロパン−1−オン:107.8mgを得た(収率:95%、光学純度94%ee、無色透明液体)。
【0036】
実施例4
実施例1と同じ反応装置を用い、トリフェニルフォスフィンオキサイドをルチジン−N−オキサイドに変えた以外は実施例1と同じ操作を行い、3.0時間の反応で、trans−(2S,3R)−エポキシ−1,3−ジフェニルプロパン−1−オンを収率96%、光学純度74%eeで得た。
【0037】
実施例5
実施例1と同じ反応装置を用い、トリフェニルフォスフィンオキサイドを1,3−ジメチル−2−イミダゾリノンに変えた以外は実施例1と同じ操作を行い、3.0時間の反応で、trans−(2S,3R)−エポキシ−1,3−ジフェニルプロパン−1−オンを収率97%、光学純度68%eeで得た。
【0038】
実施例6
実施例1と同じ反応装置を用い、トリフェニルフォスフィンオキサイドをトリ(2−メチルフェニル)フォスフィンオキサイドに変えた以外は実施例1と同じ操作を行い、1.5時間の反応で、trans−(2S,3R)−エポキシ−1,3−ジフェニルプロパン−1−オンを収率96%、光学純度73%eeで得た。
【0039】
比較例1
実施例1と同じ反応装置を用い、トリフェニルフォスフィンオキサイドを添加しない以外は実施例1と同じ試剤を用いて同様の操作を行い、3時間反応で、trans−(2S,3R)−エポキシ−1,3−ジフェニルプロパン−1−オンを収率86%、光学純度73%eeで得た。
【0040】
実施例7
実施例1と同じ反応装置を用い、実施例1と同じ触媒溶液を調製した。用いるエノンをカルコンからtrans−2−メチル−5−フェニル−4−ペンテン−3−オン(87.7mg)に変更した以外同じ操作を行い、12時間の反応でtrans−(4S,5R)−エポキシ−2−メチル−5−フェニルペンタン−3−オン:64.2mgを得た(収率:67%、光学純度:96%ee、無色透明液体)。
【0041】
実施例8
実施例1と同じ反応装置を用い、実施例1と同じ触媒溶液を調製した。用いるエノンをカルコンからtrans−4−メチル−1−フェニル−2−ペンテン−1−オン(87.7mg)に変更した以外同じ操作を行い、1時間の反応でtrans−(2S,3R)−エポキシ−4−メチル−1−フェニルペンタン−1−オン:85.2mgを得た(収率:89%、光学純度:93%ee、無色透明液体)。
【0042】
実施例9
実施例1と同じ反応装置を用い、実施例1と同じ触媒溶液を調製した。用いるエノンをカルコンからtrans−4−フェニル−3−ブテン−2−オン(74.0mg)に変更した以外同じ操作を行い、6時間の反応でtrans−(3S,4R)−エポキシ−4−フェニルブタン−2−オン:75.5mgを得た(収率:92%、光学純度:93%ee、無色透明液体)。
【0043】
実施例10
実施例1と同じ反応装置を用い、実施例1と同じ触媒溶液を調製した。用いるエノンをカルコンからtrans−6−フェニル−3−ヘキセン−2−オン(88.2mg)に変更した以外同じ操作を行い、1時間の反応でtrans−(3S,4R)−エポキシ−6−フェニルヘキサン−1−オン:88.6mgを得た(収率:92%、光学純度:87%ee、無色透明液体)。
【0044】
実施例11
実施例1と同じ反応装置を用い、TBHPをクメンハイドロパーオキサイドにに変更した以外は実施例1と同じ操作を行い、1時間の反応でtrans−(2S,3R)−エポキシ−1,3−ジフェニルプロパン−1−オンを収率95%、光学純度:99%eeで得た。
【0045】
実施例12
実施例1と同じ反応装置を用い、モレキュラーシーブ−4Aの使用量を506mgから100mgに変更し、TBHPをクメンハイドロパーオキサイドにに変更した以外は実施例1と同じ操作を行い、10分の反応でtrans−(2S,3R)−エポキシ−1,3−ジフェニルプロパン−1−オンを収率97%、光学純度:99.8%eeで得た。
【0046】
実施例13
実施例1と同じ反応装置を用い、モレキュラーシーブ−4Aの使用量を506mgから25mgに変更し、TBHPをクメンハイドロパーオキサイドにに変更した以外は実施例1と同じ操作を行い、15分の反応でtrans−(2S,3R)−エポキシ−1,3−ジフェニルプロパン−1−オンを収率97%、光学純度:99.8%eeで得た。
【0047】
実施例14
実施例1と同じ反応装置を用い、トリフェニルフォスフィンオキサイドの使用量を21.2mgから7.0mgに変更した以外は実施例1と同じ操作を行い、1時間の反応でtrans−(2S,3R)−エポキシ−1,3−ジフェニルプロパン−1−オンを収率91%、光学純度:93%eeで得た。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an asymmetric epoxidation catalyst for enones and a method for producing an optically active epoxide using the same.
[0002]
[Prior art]
As an asymmetric epoxidation reaction of enones, a compound having a carbon-carbon double bond adjacent to a carbonyl group such as chalcone in the presence of a complex catalyst prepared from a tetrahydrofuran solution of an optically active dihydroxy compound and a rare earth metal alkoxide. A method of asymmetric epoxidation with a hydroxy peroxide compound is known. Specifically, a tetrahydrofuran solution of (R) -binaphthol and lanthanum triisopropoxide is used as a (R) -lanthanum-binaphthoxide complex in the reaction. (JP-A-10-120668).
[0003]
[Problems to be solved by the invention]
However, in the method described in JP-A-10-120668, for example, when tert-butyl hydroperoxide (hereinafter abbreviated as TBHP) is used as the oxidizing agent, the target optically active epoxide is low in yield and low optical properties. It can only be obtained with purity. For this reason, in order to obtain satisfactory results, it was necessary to use binaphthol into which methylol was introduced at the 3-position, and to use cumene hydroperoxide (hereinafter abbreviated as CMHP) which is a special oxidizing agent.
[0004]
[Means for Solving the Problems]
As a result of intensive studies on the development of a catalyst having high reactivity and high optical purity, the present inventors have found that (A) binaphthol, (B) lanthanum triisopropoxide, and (C) lutidine-N-oxide, Selected from the group consisting of 1,3-dimethyl-2-imidazolidinone, hexamethylphosphortriamide, triphenylphosphine oxide, tri (2-methylphenyl) phosphine oxide and tri (4-methylphenyl) phosphine oxide The present invention has been completed by finding an asymmetric epoxidation catalyst of enones characterized by containing one of the above.
[0005]
That is, the present invention provides an asymmetric epoxidation catalyst of the above enones and the following general formula (1) in the presence of this catalyst.
[0006]
[Chemical 3]
[0007]
Wherein R 1 and R 2 are each independently a linear, branched or cyclic alkyl group having 1 to 20 carbon atoms, an aromatic group, or an alkyl group having 1 to 5 carbon atoms. 5 substituted aromatic groups, 1-5 substituted aromatic groups with 1-5 carbon atoms, 1-5 substituted aromatic groups with halogen elements, 1 carbon substituted with aromatic groups Represents a linear, branched or cyclic alkyl group having 5 to 5 carbon atoms, or a linear, branched or cyclic alkyl group having 1 to 5 carbon atoms substituted with a halogenated aromatic group.
The following general formula (2), characterized by reacting an enone represented by the formula (1) with an oxidizing agent
[0008]
[Formula 4]
[0009]
(In the formula, R 1 and R 2 have the same definitions as above, and * indicates optically active carbon.)
It is a manufacturing method of optically active epoxide shown by these.
[0010]
The present invention is described in detail below.
[0011]
The catalyst of the present invention comprises (A) binaphthol, (B) lanthanum triisopropoxide, (C) lutidine-N-oxide, 1,3-dimethyl-2-imidazolidinone, hexamethylphosphotriamide, trimethyl It contains phenylphosphine oxide, tri (2-methylphenyl) phosphine oxide or tri (4-methylphenyl) phosphine oxide.
[0012]
In the present invention, binaphthol includes (R) -binaphthol and (S) -binaphthol.
[0013]
The composition ratio of the catalyst of the present invention is not particularly limited, but (A) binaphthol is usually 1 to 3 moles per mole of (B) lanthanum ion, (C) lutidine-N-oxide, 1, 3 -Dimethyl-2-imidazolidinone, hexamethylphosphotriamide, triphenylphosphine oxide, tri (2-methylphenyl) phosphine oxide or tri (4-methylphenyl) phosphine oxide is usually 0.1 to 10 mol , Preferably 1 to 10 mol.
[0014]
The catalyst of the present invention can be used for asymmetric epoxidation reaction of enones, exhibits high reactivity, and gives high optical purity to the product.
[0015]
The optical absolute configuration expressed by the reaction using the catalyst of the present invention generally depends on the optical absolute configuration of binaphthol constituting the catalyst. When (R) -binaphthol is used, the product has no When (S) -binaphthol is used as the substrate in which the optical absolute configuration of the asymmetric carbon is in the (R) form, the optical asymmetric configuration of the asymmetric carbon of the product is in the relationship of being in the (S) form. However, when (R) -binaphthol is used, the optical absolute configuration of the asymmetric carbon of the product does not become the (R) isomer, and the optical absolute configuration of the product varies depending on the type of substrate. When an asymmetric epoxidation reaction is carried out using the catalyst of the present invention, generally, when (R) -binaphthol is used, the 2-position (α-position) and 3-position (β-position) of the epoxide of the enone to be produced The optical absolute configuration of (2S, 3R) becomes (2S, 3R), while when (S) -binaphthol is used, it becomes (2R, 3S).
[0016]
In the method of the present invention, the amount of the catalyst used is not particularly limited, but is 0.01 to 50 mol%, more preferably 0, based on the number of moles of lanthanum ion with respect to the substrate included in the reaction. The range is from 1 to 25 mol%.
[0017]
As the solvent applicable to the method of the present invention, any solvent can be used as long as it is an inert solvent for the catalyst and the epoxidation reaction. However, dimethyl ether and diisopropyl ether in terms of the stability of the catalyst and the reaction result of the epoxidation reaction Ether solvents such as 1,2-dimethoxyethane and tetrahydrofuran (hereinafter abbreviated as THF) are preferred, and among them, THF gives the highest results.
[0018]
The amount of the solvent used is in the range of 2 to 200 times, more preferably 5 to 100 times the amount of enone included in the reaction in terms of weight.
[0019]
The enone applicable to the method of the present invention includes the following general formula (1)
[0020]
[Chemical formula 5]
[0021]
Wherein R 1 and R 2 are each independently a linear, branched or cyclic alkyl group having 1 to 20 carbon atoms, an aromatic group, or an alkyl group having 1 to 5 carbon atoms. 5 substituted aromatic groups, 1-5 substituted aromatic groups with 1-5 carbon atoms, 1-5 substituted aromatic groups with halogen elements, 1 carbon substituted with aromatic groups Represents a linear, branched or cyclic alkyl group having 5 to 5 carbon atoms, or a linear, branched or cyclic alkyl group having 1 to 5 carbon atoms substituted with a halogenated aromatic group.
Any compound can be used as long as it is a compound represented by the formula: methyl vinyl ketone, trans-3-penten-2-one, trans-3-hexen-2-one, trans-3-heptene. 2-one, trans-3-octen-2-one, trans-3-nonen-2-one, ethyl vinyl ketone, trans-4-hexen-3-one, trans-4-hept-3-one, trans-4-octen-3-one, trans-4-nonen-3-one, isopropyl vinyl ketone, trans-2-methyl-4-hexen-3-one, trans-2-methyl-4-heptene-3 -One, trans-2-methyl-4-octen-3-one, trans-2-methyl-4-nonen-3-one, trans-1,3-di Enyl-2-propylen-1-one (chalcone), trans-2-methyl-5-phenyl-4-penten-3-one, 4-methyl-1-phenyl-3-penten-2-one, 4- Phenyl-3-butylen-2-one, 6-phenyl-3-hexen-2-one, 5-phenyl-3-hexen-2-one and the like can be mentioned.
[0022]
TBHP used as an oxidizing agent in the method of the present invention may be a commercially available decane solution or the like, or extracted with 70% or 90% aqueous solution, dried with magnesium sulfate, etc., and used in the present invention. You may do it. Moreover, there is no problem even if other oxidizing agents such as cumene hydroperoxide are used without sticking to TBHP. Furthermore, depending on the type of reaction substrate, almost quantitatively pure optical can be obtained by using cumene hydroperoxide. In some cases, an active form is given.
[0023]
The amount of the oxidizing agent used is theoretically equivalent to the enone included in the reaction, but it is preferably used in an amount of 1.1 mol times or more in order to complete the reaction.
[0024]
Although the reaction temperature in the method of the present invention varies depending on the enone substrate, it can usually be in the range of −50 ° C. to 100 ° C., and the reaction time is usually completed within 24 hours. In particular, triphenylphosphine oxide. In many cases, the reaction is completed within 2 hours.
[0025]
For the purpose of dehydrating the system at the time of catalyst preparation and reaction, and accelerating the catalyst formation reaction and epoxidation reaction, zeolite can be used in any quantitative ratio with respect to enone as necessary. On the other hand, about 10 mg to 2 g, preferably about equal weight is used. Various types of zeolite such as A-type zeolite represented by molecular sieves 3A, 4A, and 5A, molecular sieve 13X, Y-type, and L-type are applicable as the type of zeolite, but molecular sieve 4A is preferable.
[0026]
After completion of the reaction, purification is carried out by post-treatment, column chromatography or the like to obtain the target α, β-epoxyketone in high yield and high optical purity.
[0027]
【The invention's effect】
Since the catalyst of the present invention provides an asymmetric epoxidation reaction of enones with high reactivity, high yield and high optical purity, the present invention is extremely useful as a method for producing various pharmaceutical and agrochemical intermediates.
[0028]
【Example】
EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited only to the examples. The optical purity of the product was tested as follows.
[0029]
That is, it was performed by high performance liquid chromatography equipped with a chiral column OB-H or AD of Daicel Corporation, and the elution solvent: Hexane / i-PrOH = 2/1 to 100/1 (vol / vol), with a flow rate of 1 ml / min. It was measured.
[0030]
In the case of trans-2,3-epoxy-1,3-diphenylpropan-1-one, a chiral column OB-H is used, and the elution solvent is Hexane / i-PrOH = 2/1, and the flow rate is 1 ml / min. A peak of each enantiomer of (2S, 3R form) appeared at a retention time of 24 minutes and (2R, 3S form) at 32 minutes.
[0031]
Example 1
Molecular sieves 4A (506 mg) was placed in a 10 ml eggplant-shaped flask, dried for 30 minutes with a heat gun under reduced pressure with a vacuum pump, and dried. After cooling to room temperature, triphenylphosphine oxide (21.2 mg, 0.0758 mmol), (R) -binaphthol (7.2 mg, 0.0251 mmol) and a magnetic stirrer chip were added, and the reaction system was replaced with argon gas. . Next, THF (1 ml) was added and dissolved by stirring for 5 minutes, and then a THF solution (1.52 ml) of lanthanum isopropoxide (La (O-iPr) 3, 8.0 mg, 0.0253 mmol) was added. In addition, a catalyst solution was prepared by stirring for 1 hour.
[0032]
TBHP in decane (5M, 0.15 ml, 0.76 mmol) was added to the resulting catalyst solution and stirred for 30 minutes, and then a solution of chalcone (105.4 mg, 0.506 mmol) in THF (1 ml) was added to react. went. The progress of the reaction was confirmed by silica gel thin layer chromatography to be completed after 30 minutes.
[0033]
After completion of the reaction, 500 mg of silica gel and 3 ml of methanol were added and stirred for 15 minutes, followed by filtration and concentration to obtain a residue, which was purified and purified on a silica gel column (Hexane / AcOEt = 30/1) to produce trans- (2S , 3R) -epoxy-1,3-diphenylpropan-1-one was obtained as a colorless and transparent oil (yield: 112.4 mg, yield: 99%, optical purity: 96% ee).
[0034]
Example 2
Using the same reactor as in Example 1, the same operation as in Example 1 was carried out except that triphenylphosphine oxide was changed to tri (4-methylphenyl) phosphine oxide (24.4 mg, 0.0758 mmol). Was prepared. The obtained catalyst solution was used to carry out the epoxidation reaction of chalcone in the same manner as in Example 1, and trans- (2S, 3R) -epoxy-1,3-diphenylpropan-1-one: 107.8 mg after 30 minutes of reaction. (Yield: 95%, optical purity 94% ee, colorless and transparent liquid).
[0036]
Example 4
Using the same reaction apparatus as in Example 1, except that triphenylphosphine oxide was changed to lutidine-N-oxide, the same operation as in Example 1 was performed, and trans- (2S, 3R) was performed for 3.0 hours. -Epoxy-1,3-diphenylpropan-1-one was obtained with a yield of 96% and an optical purity of 74% ee.
[0037]
Example 5
Using the same reaction apparatus as in Example 1, except that triphenylphosphine oxide was changed to 1,3-dimethyl-2-imidazolinone, the same operation as in Example 1 was performed. (2S, 3R) -epoxy-1,3-diphenylpropan-1-one was obtained with a yield of 97% and an optical purity of 68% ee.
[0038]
Example 6
Using the same reaction apparatus as in Example 1, except that triphenylphosphine oxide was changed to tri (2-methylphenyl) phosphine oxide, the same operation as in Example 1 was performed, and the reaction was performed for 1.5 hours. (2S, 3R) -epoxy-1,3-diphenylpropan-1-one was obtained with a yield of 96% and an optical purity of 73% ee.
[0039]
Comparative Example 1
Using the same reaction apparatus as in Example 1, except that triphenylphosphine oxide was not added, the same operation was performed using the same reagent as in Example 1, and the reaction was conducted for 3 hours with trans- (2S, 3R) -epoxy- 1,3-diphenylpropan-1-one was obtained with a yield of 86% and an optical purity of 73% ee.
[0040]
Example 7
Using the same reactor as in Example 1, the same catalyst solution as in Example 1 was prepared. The same operation was carried out except that the enone used was changed from chalcone to trans-2-methyl-5-phenyl-4-penten-3-one (87.7 mg), and trans- (4S, 5R) -epoxy was reacted for 12 hours. -2-Methyl-5-phenylpentan-3-one: 64.2 mg was obtained (yield: 67%, optical purity: 96% ee, colorless and transparent liquid).
[0041]
Example 8
Using the same reactor as in Example 1, the same catalyst solution as in Example 1 was prepared. The same operation was performed except that the enone used was changed from chalcone to trans-4-methyl-1-phenyl-2-penten-1-one (87.7 mg), and trans- (2S, 3R) -epoxy was reacted for 1 hour. -4-Methyl-1-phenylpentan-1-one: 85.2 mg was obtained (yield: 89%, optical purity: 93% ee, colorless and transparent liquid).
[0042]
Example 9
Using the same reactor as in Example 1, the same catalyst solution as in Example 1 was prepared. The same operation was carried out except that the enone used was changed from chalcone to trans-4-phenyl-3-buten-2-one (74.0 mg), and trans- (3S, 4R) -epoxy-4-phenyl was reacted for 6 hours. Butan-2-one: 75.5 mg was obtained (yield: 92%, optical purity: 93% ee, colorless and transparent liquid).
[0043]
Example 10
Using the same reactor as in Example 1, the same catalyst solution as in Example 1 was prepared. The same operation was performed except that the enone used was changed from chalcone to trans-6-phenyl-3-hexen-2-one (88.2 mg), and trans- (3S, 4R) -epoxy-6-phenyl was reacted for 1 hour. Hexan-1-one: 88.6 mg was obtained (yield: 92%, optical purity: 87% ee, colorless and transparent liquid).
[0044]
Example 11
Using the same reaction apparatus as in Example 1, except that TBHP was changed to cumene hydroperoxide, the same operation as in Example 1 was performed, and trans- (2S, 3R) -epoxy-1,3- Diphenylpropan-1-one was obtained with a yield of 95% and an optical purity of 99% ee.
[0045]
Example 12
Using the same reaction apparatus as in Example 1, the amount of molecular sieve-4A used was changed from 506 mg to 100 mg, and TBHP was changed to cumene hydroperoxide. Obtained trans- (2S, 3R) -epoxy-1,3-diphenylpropan-1-one with a yield of 97% and an optical purity of 99.8% ee.
[0046]
Example 13
Using the same reaction apparatus as in Example 1, the amount of molecular sieve-4A used was changed from 506 mg to 25 mg, and TBHP was changed to cumene hydroperoxide. Obtained trans- (2S, 3R) -epoxy-1,3-diphenylpropan-1-one with a yield of 97% and an optical purity of 99.8% ee.
[0047]
Example 14
Using the same reaction apparatus as in Example 1, except that the amount of triphenylphosphine oxide used was changed from 21.2 mg to 7.0 mg, the same operation as in Example 1 was performed, and trans- (2S, 3R) -epoxy-1,3-diphenylpropan-1-one was obtained with a yield of 91% and an optical purity of 93% ee.
Claims (3)
で示されるエノン類と酸化剤を反応させることを特徴とする下記一般式(2)
で示される光学活性エポキシドの製造方法。In the presence of the catalyst solution according to claim 1, the following general formula (1)
The following general formula (2), characterized by reacting an enone represented by the formula (1) with an oxidizing agent
The manufacturing method of the optically active epoxide shown by these.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14385299A JP4283377B2 (en) | 1998-07-08 | 1999-05-24 | Asymmetric epoxidation catalyst for enones and method for producing optically active epoxide using the same |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10-192743 | 1998-07-08 | ||
JP19274398 | 1998-07-08 | ||
JP14385299A JP4283377B2 (en) | 1998-07-08 | 1999-05-24 | Asymmetric epoxidation catalyst for enones and method for producing optically active epoxide using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000229242A JP2000229242A (en) | 2000-08-22 |
JP4283377B2 true JP4283377B2 (en) | 2009-06-24 |
Family
ID=26475469
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14385299A Expired - Fee Related JP4283377B2 (en) | 1998-07-08 | 1999-05-24 | Asymmetric epoxidation catalyst for enones and method for producing optically active epoxide using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4283377B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4525993B2 (en) * | 2000-03-13 | 2010-08-18 | 東ソー株式会社 | Asymmetric epoxidation catalyst and method for producing optically active epoxide |
US6680275B2 (en) * | 2000-02-23 | 2004-01-20 | Tosoh Corporation | Catalyst for asymmetric epoxidation of enones and process for producing optically active epoxide employing it |
JP4529419B2 (en) * | 2002-11-25 | 2010-08-25 | 東ソー株式会社 | Optically active fluorine-containing compounds and methods for producing them |
-
1999
- 1999-05-24 JP JP14385299A patent/JP4283377B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2000229242A (en) | 2000-08-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Hamada et al. | Highly enantioselective benzylic hydroxylation with concave type of (salen) manganese (III) complex | |
KR100473698B1 (en) | Stereoselective ring opening reactions | |
US4471130A (en) | Method for asymmetric epoxidation | |
Giuseppone et al. | Mukaiyama aldol and Michael reactions catalyzed by lanthanide iodides | |
US4594439A (en) | Method for asymmetric epoxidation | |
US6201123B1 (en) | Catalyst composition, catalyst solution and process for preparing optically active epoxide | |
JP4283377B2 (en) | Asymmetric epoxidation catalyst for enones and method for producing optically active epoxide using the same | |
EP0046033B1 (en) | Method for asymmetric epoxidation | |
Mihara et al. | Photo-controlled lewis acidity: chiral (on) ru-salen catalyzed hetero diels-alder reaction and kinetic resolution of racemic epoxides | |
EP1366815B1 (en) | Catalyst for asymmetric epoxidations of enones and process for producing optically active epoxide employing it | |
JP4378826B2 (en) | Complex catalyst for asymmetric epoxidation reaction of enones and method for producing optically active epoxide using the same | |
JP4525993B2 (en) | Asymmetric epoxidation catalyst and method for producing optically active epoxide | |
JP4239622B2 (en) | Asymmetric epoxy catalyst and method for producing optically active epoxide using the same | |
EP0826652B1 (en) | Process for preparing asymmetric compound by using metal complex | |
JP3957346B2 (en) | Method for producing optically active alcohol | |
US6054065A (en) | Chiral ligand and method for preparing cyanohydrins from aldehydes | |
JP4050294B2 (en) | Optically active cobalt (II) complex | |
US6787657B2 (en) | Optically active epoxypropionate derivative, intermediate thereof and processes for their production | |
JP2000334307A (en) | Catalyst for asymmetric epoxidation of enones and method for producing optically active epoxide using the same | |
JP3924613B2 (en) | Production of α, β-epoxyamide | |
JP2001233869A (en) | Optically active epoxy propionate derivatives, intermediates thereof, and methods for their production | |
JP4386626B2 (en) | Novel chiral metal complex solid catalyst, intermediates thereof, method for producing them, and method for producing asymmetric epoxy compound using the catalyst | |
RU2283316C1 (en) | METHOD FOR PREPARING N2, N2, N6, N6-TETRAALKYL-4a,5,7a,8-TETRAHYDRO-1,3-DIPHENYLALUMINA[3,4-f]ISOALUMINAINDOL-2,6-(4H,7H)-DIAMINES | |
JP2001354665A (en) | Optically active epoxy propionate derivatives and methods for their production | |
JPH07188243A (en) | Process for producing optically active chromene oxides |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060323 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20081205 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20081216 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090216 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090310 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090319 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120327 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130327 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130327 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140327 Year of fee payment: 5 |
|
LAPS | Cancellation because of no payment of annual fees |