[go: up one dir, main page]

JP4281609B2 - Aluminum alloy extruded material excellent in formability and method for producing the same - Google Patents

Aluminum alloy extruded material excellent in formability and method for producing the same Download PDF

Info

Publication number
JP4281609B2
JP4281609B2 JP2004129452A JP2004129452A JP4281609B2 JP 4281609 B2 JP4281609 B2 JP 4281609B2 JP 2004129452 A JP2004129452 A JP 2004129452A JP 2004129452 A JP2004129452 A JP 2004129452A JP 4281609 B2 JP4281609 B2 JP 4281609B2
Authority
JP
Japan
Prior art keywords
mass
aluminum alloy
extrusion
temperature
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004129452A
Other languages
Japanese (ja)
Other versions
JP2005307322A (en
Inventor
政仁 谷津倉
祥史 望月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Light Metal Co Ltd
Original Assignee
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Light Metal Co Ltd filed Critical Nippon Light Metal Co Ltd
Priority to JP2004129452A priority Critical patent/JP4281609B2/en
Publication of JP2005307322A publication Critical patent/JP2005307322A/en
Application granted granted Critical
Publication of JP4281609B2 publication Critical patent/JP4281609B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Extrusion Of Metal (AREA)

Description

本発明は、二輪車部品のような薄肉で複雑な形状の部材の成形が可能で、かつ、溶接後の強度が要求される部材に適した、強度および成形性に優れたアルミニウム合金押出材に関する。   The present invention relates to an aluminum alloy extruded material excellent in strength and formability suitable for a member capable of forming a thin and complex member such as a motorcycle part and requiring strength after welding.

成形性の良いアルミニウム合金としては、Al−Mg−Si系の、いわゆる6000系アルミニウム合金が知られている。この系の合金は強度、耐食性とも良好であるために、各種構造材料として広範に使用されている。しかし、6000系アルミニウム合金は溶接後の強度に問題があるため、溶接接合して使用する態様には不適である。
溶接後の機械的特性が要求されるような部材には、Al−Zn−Mg系の、いわゆる7000系アルミニウム合金が使用されている。押出材として用いることも、例えば特許文献1,2,3,4で提案されている。
As an aluminum alloy with good formability, a so-called 6000 series aluminum alloy of Al-Mg-Si series is known. Since this type of alloy has good strength and corrosion resistance, it is widely used as various structural materials. However, since the 6000 series aluminum alloy has a problem in strength after welding, it is unsuitable for an embodiment in which it is used after being welded.
For a member that requires mechanical properties after welding, a so-called 7000 series aluminum alloy of Al—Zn—Mg series is used. Use as an extruded material is also proposed in Patent Documents 1, 2, 3, and 4, for example.

特許文献1では、Zn:6.00wt%を超え7.50wt%以下,Mg:0.10〜0.80wt%,Cu:0.10〜0.30wt%,Zr:0.10〜0.30wt%,Mn:0.05〜0.30wt%を含み、Fe+Siが0.30wt%以下でかつFe/Siが1.5以上であり、残部Alと不可避的不純物とからなり不可避的不純物が各々0.05wt%以下でその合計が0.15wt%以下である合金鋳塊を420〜520℃の温度で2〜24時間均質化処理した後、430〜520℃の温度で押出し加工を施し、次に、90〜110℃の温度で2〜12時間一段目の時効処理した後、さらに120〜180℃の温度で5〜24時間二段目の時効処理を施して、曲げ加工性に優れたアルミニウム合金押出材を得ている。   In Patent Document 1, Zn: more than 6.00 wt% and 7.50 wt% or less, Mg: 0.10 to 0.80 wt%, Cu: 0.10 to 0.30 wt%, Zr: 0.10 to 0.30 wt %, Mn: 0.05 to 0.30 wt%, Fe + Si is 0.30 wt% or less and Fe / Si is 1.5 or more, and the balance is made of Al and unavoidable impurities. An alloy ingot having a total content of 0.05 wt% or less and a total of 0.15 wt% or less is homogenized for 2 to 24 hours at a temperature of 420 to 520 ° C, and then subjected to extrusion at a temperature of 430 to 520 ° C. An aluminum alloy having excellent bending workability after first-stage aging treatment at a temperature of 90 to 110 ° C. for 2 to 12 hours and further at the temperature of 120 to 180 ° C. for 5 to 24 hours. Extruded material is obtained.

特許文献2では、Zn:4.0〜6.5wt%,Mg:0.4〜1.8wt%,Cu:0.1〜0.5wt%,Zr:0.1〜0.5wt%を含み、さらにMn:0.05〜0.20wt%,Cr:0.05〜0.20wt%のうち1種または2種を含み、FeとSiをFe+Siが0.6wt%以下でかつFe/Siが1.5以上を満足する量を含み、残部がAlと不可避的不純物とからなり、不可避的不純物が各々0.05wt%以下で、その合計が0.15wt%以下からなるAl−Zn−Mg系合金鋳塊を420〜520℃で2〜24時間の条件で均質化熱処理し、その後430〜520℃で押出を行い、押出時に微霧を噴霧して冷却速度10〜50℃/sで常温まで冷却し、その後、人工時効処理として一段目を90〜110℃で2〜12時間、二段目を120〜170℃で5〜24時間の条件で熱処理を行って強度と成形性に優れたAl−Zn−Mg系合金中空形材を得ている。   Patent Document 2 includes Zn: 4.0-6.5 wt%, Mg: 0.4-1.8 wt%, Cu: 0.1-0.5 wt%, Zr: 0.1-0.5 wt% Further, Mn: 0.05 to 0.20 wt%, Cr: 0.05 to 0.20 wt% of one or two of them, Fe and Si, Fe + Si is 0.6 wt% or less and Fe / Si is Al-Zn-Mg system containing an amount satisfying 1.5 or more, the balance being Al and unavoidable impurities, each of unavoidable impurities being 0.05 wt% or less, and the total being 0.15 wt% or less The alloy ingot is subjected to homogenization heat treatment at 420 to 520 ° C. for 2 to 24 hours, then extruded at 430 to 520 ° C., sprayed with fine mist at the time of extrusion, and cooled to room temperature at a cooling rate of 10 to 50 ° C./s. After cooling, as the artificial aging treatment, the first stage at 90-110 ° C. for 2-12 hours, the second stage A heat treatment is performed at 120 to 170 ° C. for 5 to 24 hours to obtain an Al—Zn—Mg based alloy hollow shape excellent in strength and formability.

特許文献3には、Zn:8.5〜12.0%,Mg:1.5〜3.0%、Cu:1.5〜3.0%,Zr:0.05〜0.3%を含有し、さらに必要に応じてMn:0.1〜0.8%、Cr:0.12〜0.30%,Ti:0.1%以下、B:0.08%以下のうちの1種または2種を含み、残部Alおよび不可避的不純物からなることを特徴とする疲労強度に優れた高強度アルミニウム合金押出材が提案されている。   Patent Document 3 includes Zn: 8.5 to 12.0%, Mg: 1.5 to 3.0%, Cu: 1.5 to 3.0%, Zr: 0.05 to 0.3%. Further, if necessary, one of Mn: 0.1 to 0.8%, Cr: 0.12 to 0.30%, Ti: 0.1% or less, B: 0.08% or less Alternatively, there has been proposed a high-strength aluminum alloy extruded material excellent in fatigue strength, characterized by comprising two types, the balance being Al and inevitable impurities.

さらに、特許文献4では、Zn:4.5〜7.5%,Mg:0.20%以上0.50%未満,Ti:0.001〜0.1%,B:0.0001〜0.08%,Fe:0.35%以下,Si:0.30%以下,Cu:0.2%以下を含有し、Mn:0.1〜0.3%,Zr:0.1〜0.3%,Cr:0.05〜0.2%のうち1種または2種以上を含有し、残部がAl及び不可避不純物からなるアルミニウム合金を、液体窒素により押出ダイスを冷却して又は押出ダイスを冷却しないで、高速押出加工し、次いで人工時効処理して、液体窒素冷却を行って押出した場合は表面粗さRmax10μm以下、液体窒素冷却を行わないで押出した場合はRmax15μm以下、且つ表面再結晶層の厚さが50μm以下で、さらにSCC性に優れると同時に、強加工領域でのスウェージング加工性と曲げ加工性および溶接後の硬度回復特性に優れたオートバイ構造部材用アルミニウム合金押出形材を得ている。 Furthermore, in Patent Document 4, Zn: 4.5 to 7.5%, Mg: 0.20% or more and less than 0.50%, Ti: 0.001 to 0.1%, B: 0.0001 to 0.00%. Contains 0.8%, Fe: 0.35% or less, Si: 0.30% or less, Cu: 0.2% or less, Mn: 0.1 to 0.3%, Zr: 0.1 to 0.3 %, Cr: 0.05 to 0.2% of one or more of aluminum alloy, the balance being Al and inevitable impurities, cooling the extrusion die with liquid nitrogen or cooling the extrusion die Without extruding, followed by artificial aging treatment, liquid nitrogen cooling and extrusion, surface roughness R max 10 μm or less, when extrusion without liquid nitrogen cooling R max 15 μm or less, and The surface recrystallized layer has a thickness of 50 μm or less, and also has excellent SCC properties, and at the same time, it is swayed in a strongly processed region. Interested ring workability and bending workability and excellent hardness recovery characteristics after welding motorcycle structural member for an aluminum alloy extruded shapes.

特開平6−306522号公報JP-A-6-306522 特開平8−144031号公報Japanese Patent Laid-Open No. 8-144031 特開平8−295977号公報JP-A-8-295977 特開平10−298691号公報JP-A-10-298691

しかしながら、Zn含有量が多く、しかもMg,Mn,CrおよびCuを含有させた7000系アルミニウム合金は、アルミニウム合金の中では最も強度が高い部類の合金であるが、Mgを含有しているため、押出加工性が比較的悪く、薄肉材の製造は行い難い。例えば、特許文献3に記載のMgおよびCuを多量に含有している素材は、時効処理後に600MPaを超えるほどの高強度を有するが、熱間での変形抵抗が高く、肉厚2mm以下の薄肉管状体を工業的に押出し成形することは非常に難しい。また、特許文献1,2に記載の素材もMg,MnとCr、およびCuを含んでいるために強度も高いが、同様に変形抵抗が高く、図1に示すような薄肉サイズの押出材を得ようとすると2200tを超えるほどの押圧力を必要とし、押し詰まりやダイスの破損が起き易くなる。結果的にコスト上昇の一因になっている。   However, the 7000 series aluminum alloy containing a large amount of Zn and containing Mg, Mn, Cr and Cu is a class of alloy having the highest strength among aluminum alloys, but contains Mg. The extrudability is relatively poor and it is difficult to produce a thin-walled material. For example, the material containing a large amount of Mg and Cu described in Patent Document 3 has a high strength exceeding 600 MPa after aging treatment, but has a high hot deformation resistance and a thin wall thickness of 2 mm or less. It is very difficult to extrude a tubular body industrially. Moreover, although the raw materials described in Patent Documents 1 and 2 also contain Mg, Mn, Cr, and Cu, the strength is high. If it is going to be obtained, a pressing force exceeding 2200 t is required, and clogging or die damage is likely to occur. As a result, it contributes to the cost increase.

一方で、特許文献4にみられるように、Cu含有量を抑えた素材は、強度が低くなるため、例えば二輪車の部品材として用いようとするとき、所望の機械的特性が得られない。
このように、既存の技術を、溶接後の機械的特性が要求される建築構造材,自動車フレーム,二輪車の部品等に適用するための薄肉押出材の製造にしようとすると、いずれも歩留まりが悪く、生産コストが高くなってしまう。
本発明は、このような問題を解消すべく案出されたものであり、強度特に溶接後の強度が高く、しかも成形性に優れたアルミニウム合金押出材を提供するものである。
On the other hand, as can be seen in Patent Document 4, a material with a reduced Cu content has low strength, so that, for example, when it is used as a component material for a motorcycle, desired mechanical characteristics cannot be obtained.
As described above, when trying to apply the existing technology to a thin-wall extruded material to be applied to building structural materials, automobile frames, motorcycle parts, etc. that require mechanical properties after welding, the yield is poor. The production cost will be high.
The present invention has been devised to solve such problems, and provides an extruded aluminum alloy material having high strength, particularly strength after welding, and excellent formability.

本発明の成形性に優れたアルミニウム合金押出材は、その目的を達成するため、Zn:4.5〜7質量%,Mg:0.2〜0.38質量%,Cu:0.25〜0.4質量%,Zr:0.1〜0.3質量%を含み、さらにSi:0.05〜0.3質量%およびFe:0.05〜0.3質量%を(Fe質量%/Si質量%)=1〜3の範囲で含み、残部がAlと不可避的不純物とからなることを特徴とする。
さらに、Ti:0.001〜0.2質量%、B:0.0001〜0.01質量%のうちの1種または2種を含有させることもできる。
In order to achieve the object, the aluminum alloy extruded material having excellent formability according to the present invention is Zn: 4.5-7 mass%, Mg: 0.2-0.38 mass%, Cu: 0.25-0. 0.4% by mass, Zr: 0.1 to 0.3% by mass, Si: 0.05 to 0.3% by mass, and Fe: 0.05 to 0.3% by mass (Fe mass% / Si (Mass%) = 1-3, and the balance is made of Al and inevitable impurities.
Furthermore, 1 type or 2 types in Ti: 0.001-0.2 mass% and B: 0.0001-0.01 mass% can also be contained.

また、上記の成分組成を有するアルミニウム合金素材を、下記(1)で示す条件で均質化処理し、その後に下記(2)で示す条件で押出加工することにより成形性に優れたアルミニウム合金押出材が得られる。
(1)均質化処理条件
・加熱速度 200℃/h以下
・均質化温度×時間 450〜520℃×1〜24h
・冷却速度 150℃/h以上
(2)押出加工条件
・押出加工温度 450〜540℃
・ダイス温度 400〜500℃
・形材出側温度 450℃以上
・冷却温度 100℃/min以上
さらに、押出加工後に、引抜き工程を付加してもよい。
Further, an aluminum alloy material having the above component composition is homogenized under the conditions shown in the following (1), and then extruded under the conditions shown in the following (2), thereby extruding an aluminum alloy material excellent in formability. Is obtained.
(1) Homogenization treatment conditions-Heating rate 200 ° C / h or less-Homogenization temperature x time 450-520 ° C x 1-24h
・ Cooling rate: 150 ° C./h or more (2) Extrusion conditions ・ Extrusion temperature: 450 to 540 ° C.
-Die temperature 400-500 ° C
-Shaped material outlet side temperature: 450 ° C or higher-Cooling temperature: 100 ° C / min or higher Further, a drawing step may be added after the extrusion process.

本発明によれば、Al−Zn−Mg系アルミニウム合金において、組織強化元素であるMn,Crを含有させずに、他の元素、特にCu,Si,Feの含有量を調整することにより、また、均質化条件や押出条件等を調整することにより、Al−Zn−Mg系アルミニウム合金であっても肉厚2mm以下の薄肉管状体を容易に押出加工でき、しかも溶接性を維持しつつ所望の機械的強度が発揮できるアルミニウム合金押出材を製造することができた。
したがって、溶接後の機械的特性が要求される建築構造材,自動車フレーム,二輪車の部品材等に適用するための薄肉押出材を低コストで製造することができる。
According to the present invention, in an Al—Zn—Mg-based aluminum alloy, by adjusting the content of other elements, particularly Cu, Si, and Fe, without including Mn and Cr, which are structural strengthening elements, By adjusting the homogenization conditions, extrusion conditions, etc., it is possible to easily extrude a thin tubular body having a thickness of 2 mm or less even if it is an Al—Zn—Mg based aluminum alloy, while maintaining weldability. An aluminum alloy extruded material capable of exhibiting mechanical strength could be produced.
Therefore, it is possible to produce a thin extruded material to be applied to a building structure material, an automobile frame, a motorcycle part material, or the like that requires mechanical properties after welding.

本発明を具体的に説明する。
まず、本発明Al−Zn−Mg系アルミニウム合金を構成する成分の作用および含有量について説明する。
通常の7000系合金に含まれているMnやCrは析出物を形成して再結晶化を抑制し、機械的性質の向上および溶接時の割れ防止に寄与している。しかし、熱間変形抵抗値が高まって押出加工性を悪化させるため、薄肉材の製造が困難になる。そこで、本発明合金では、MnおよびCrは含有させていない。但し、溶製時に、原料であるアルミニウム合金スクラップから不可避的に不純物として混入するMn,Crは考慮に入れられていない。両者とも0.05質量%未満であれば押出成形性にはほとんど影響しない。
The present invention will be specifically described.
First, the effect | action and content of the component which comprises this invention Al-Zn-Mg type aluminum alloy are demonstrated.
Mn and Cr contained in a normal 7000 series alloy form precipitates and suppress recrystallization, contributing to improvement of mechanical properties and prevention of cracking during welding. However, since the hot deformation resistance value is increased and the extrudability is deteriorated, it is difficult to produce a thin material. Therefore, the alloy of the present invention does not contain Mn and Cr. However, Mn and Cr which are inevitably mixed as impurities from the raw aluminum alloy scrap during melting are not taken into consideration. If both are less than 0.05 mass%, extrusion moldability is hardly affected.

Zn:4.5〜7質量%
ZnはMg−Zn系の析出物を形成し、アルミニウム合金の強度を向上させるための最も重要な成分であり、その好ましい含有範囲は4.5〜7質量%である。Zn含有量が4.5質量%未満では強度向上の効果が十分ではない。7質量%を超えて含有してもそれ以上の強度向上が期待できなく、逆に耐食性が低下する。
Zn: 4.5-7 mass%
Zn forms the Mg—Zn-based precipitate and is the most important component for improving the strength of the aluminum alloy, and its preferable content range is 4.5 to 7% by mass. If the Zn content is less than 4.5% by mass, the effect of improving the strength is not sufficient. Even if the content exceeds 7% by mass, no further improvement in strength can be expected, and the corrosion resistance decreases.

Mg:0.2〜0.38質量%
MgはMg−Zn系の析出物を形成し、母相中に分散して押出材の機械的強度を向上させる。この効果はMgを0.2質量%以上含有させたとき顕著となる。逆に0.38質量%を超えて添加すると熱間変形抵抗が高まり、成形性および押出加工性が悪化し、生産性が低下する。したがって、Mgの含有量は0.2〜0.38質量%とする。好ましくは0.30〜0.35質量%とする。
Mg: 0.2 to 0.38% by mass
Mg forms a Mg—Zn-based precipitate and is dispersed in the matrix phase to improve the mechanical strength of the extruded material. This effect becomes remarkable when Mg is contained in an amount of 0.2% by mass or more. On the other hand, when the content exceeds 0.38% by mass, hot deformation resistance is increased, moldability and extrusion processability are deteriorated, and productivity is lowered. Therefore, the content of Mg is set to 0.2 to 0.38% by mass. Preferably it is 0.30-0.35 mass%.

Cu:0.25〜0.4質量%
Cuは母相中に固溶し、機械的強度を向上させる。この効果は、Cu含有量が0.25質量%以上で顕著になる。逆に0.4質量%を超えて含有させると耐食性が低下する。したがって、Cu含有量は0.25〜0.4質量%とする。0.25〜0.35質量%とすることが好ましい。
Cu: 0.25 to 0.4 mass%
Cu dissolves in the matrix and improves the mechanical strength. This effect becomes remarkable when the Cu content is 0.25% by mass or more. On the other hand, if the content exceeds 0.4% by mass, the corrosion resistance decreases. Therefore, the Cu content is set to 0.25 to 0.4 mass%. It is preferable to set it as 0.25-0.35 mass%.

Zr:0.1〜0.3質量%
ZrはAl−Zr系化合物を形成して母相中に分散し、ピン留め効果によって再結晶粒の粗大化を抑制して強度を高め、また溶接時の割れ発生も防止する。この効果は、Zr含有量が0.1質量%以上で顕著となる。しかし、0.3質量%を超えて含有させると粗大なAl−Zr系化合物が生成して熱間加工性を低下させる。また析出物が過剰に生成すると熱間変形抵抗性が増大し、押出加工性を阻害することになる。
Zr: 0.1 to 0.3% by mass
Zr forms an Al—Zr-based compound and is dispersed in the matrix phase, and the pinning effect suppresses the coarsening of the recrystallized grains to increase the strength, and also prevents cracking during welding. This effect becomes remarkable when the Zr content is 0.1% by mass or more. However, if the content exceeds 0.3% by mass, a coarse Al—Zr-based compound is generated and the hot workability is lowered. Further, when the precipitate is generated excessively, the hot deformation resistance is increased and the extrusion processability is hindered.

Si:0.05〜0.3質量%
SiはAl−Si−Fe系の化合物を形成し、マトリックス中に微細分散して結晶粒の粗大化を抑制することにより、機械的強度を向上させる。この効果は、Si含有量を0.05質量%以上としたときに顕著となる。しかし、0.3質量%を超えて含有させるとMg−Si系化合物が形成されるためにMg−Zn系化合物の形成が阻害される。このため自然時効硬化性が低下し、溶接後に十分な強度が得られない。好ましくは、0.05〜0.15質量%の範囲で含有させる。
Si: 0.05-0.3 mass%
Si forms an Al—Si—Fe-based compound and is finely dispersed in the matrix to suppress the coarsening of crystal grains, thereby improving the mechanical strength. This effect becomes significant when the Si content is 0.05 mass% or more. However, when the content exceeds 0.3% by mass, an Mg—Si compound is formed, and thus the formation of the Mg—Zn compound is inhibited. For this reason, natural age hardenability falls and sufficient intensity | strength is not obtained after welding. Preferably, it is contained in the range of 0.05 to 0.15% by mass.

Fe:0.05〜0.3質量%
FeはAl−Si−Fe系の化合物を形成し、マトリックス中に微細分散して結晶粒の粗大化を抑制することにより、機械的強度を向上させる。この効果は、Fe含有量を0.05質量%以上としたときに顕著となる。しかし、0.3質量%を超えて含有させるとAl−Si−Fe系化合物が多量に分散するため、押出材の表面性状が損なわれる。好ましくは、0.10〜0.20質量%の範囲で含有させる。
Fe: 0.05-0.3 mass%
Fe forms an Al—Si—Fe-based compound and is finely dispersed in the matrix to suppress the coarsening of crystal grains, thereby improving the mechanical strength. This effect becomes prominent when the Fe content is 0.05 mass% or more. However, when the content exceeds 0.3% by mass, the Al—Si—Fe-based compound is dispersed in a large amount, so that the surface properties of the extruded material are impaired. Preferably, it is contained in the range of 0.10 to 0.20% by mass.

(Fe質量%/Si質量%)=1〜3
押出後の結晶粒粗大化防止効果を得るためにFe,Siを含有させている。その他に鋳造割れを抑制する効果もあるが、上記の通り、両者の含有量が多すぎると機械的性質を低下させ、また押出加工性を阻害することになる。そこで、Al−Si−Fe系化合物を効率的に形成させるために、Fe/Si比を1〜3に規制する。Fe/Si比が1に満たないと、過剰となったSiがMgと化合物を形成してMg−Zn系化合物の形成を阻害し、機械的性質が低下する。またFe/Si比が3を超えると、過剰となったFeがAl−Fe系化合物を形成して押出加工性を低下させることになる。
(Fe mass% / Si mass%) = 1-3
Fe and Si are contained in order to obtain the effect of preventing grain coarsening after extrusion. In addition, although there is an effect of suppressing casting cracks, as described above, if the content of both is too large, the mechanical properties are deteriorated and the extrusion processability is inhibited. Therefore, the Fe / Si ratio is restricted to 1 to 3 in order to efficiently form the Al—Si—Fe based compound. If the Fe / Si ratio is less than 1, excess Si forms a compound with Mg, which inhibits the formation of the Mg—Zn compound and the mechanical properties deteriorate. On the other hand, when the Fe / Si ratio exceeds 3, excess Fe forms an Al—Fe-based compound, which deteriorates extrusion processability.

Ti:0.001〜0.2質量%、B:0.0001〜0.01質量%以下のうちの1種または2種
Ti、Bは、鋳造材の結晶粒を微細化させ、鋳造時の割れ防止と押出加工性を向上させる作用を有している。このため、Ti:0.001〜0.2質量%、B:0.0001〜0.01質量%の範囲で、これらのうちの1種または2種を合金中に含有させることができる。Ti、Bの含有量がそれぞれ上限を超えると粗大な化合物が形成されて押出材の表面性状を悪化させることになる。
Ti: 0.001 to 0.2% by mass, B: 0.0001 to 0.01% by mass or less of one or two types of Ti and B are used to refine crystal grains of the cast material, It has the effect of preventing cracking and improving extrudability. For this reason, in the range of Ti: 0.001-0.2 mass% and B: 0.0001-0.01 mass%, these 1 type or 2 types can be contained in an alloy. When the content of Ti and B exceeds the upper limit, a coarse compound is formed and the surface properties of the extruded material are deteriorated.

ところでAl−Zn−Mg系アルミニウム合金の押出材は、一般に均質化熱処理した鋳塊を熱間押出加工してプレス焼入れまたは別途溶体化処理し、その後に人工時効処理する方法で製造される。
本発明のアルミニウム合金押出材も、各段階での温度条件や処理時間条件を限定することにより、所期の目的を達成することができている。
以下、その製造条件およびその限定理由について説明する。
By the way, an extruded material of an Al—Zn—Mg-based aluminum alloy is generally manufactured by a method in which a homogenized heat-treated ingot is hot-extruded and subjected to press quenching or a separate solution treatment, and then an artificial aging treatment.
The aluminum alloy extruded material of the present invention can also achieve the intended purpose by limiting the temperature conditions and processing time conditions at each stage.
Hereinafter, the manufacturing conditions and the reasons for limitation will be described.

(1)均質化処理
加熱速度;200℃/h以下
加熱速度が速いとAl−Zr系析出物が粗大化し、再結晶化抑制効果を下げ、機械的性質が低下する。また、溶接時の割れ感受性も高くなる。しかし遅すぎると経済的でない。好ましくは約100℃/h程度とする。
(1) Homogenization treatment / heating rate: 200 ° C./h or less When the heating rate is high, the Al—Zr-based precipitates are coarsened, the effect of suppressing recrystallization is lowered, and the mechanical properties are lowered. Moreover, the crack sensitivity at the time of welding also becomes high. However, it is not economical if it is too late. Preferably, it is about 100 ° C./h.

均質化温度×時間;450〜520℃×1〜24h
鋳造時に生じたMg,Zn等の偏析を均質化し、押出中に十分な固溶状態を得ること、および押出材の再結晶化抑制に適したAl−Zr系化合物を形成させるために実施する。450℃に満たない温度では24時間処理しても十分な組織は得られない。一方、520℃を超えたり、24時間を超えて処理すると、Mg,Znは均質化されるものの、Al−Zr系化合物が粗大化し、押出材の再結晶抑制効果が十分に得られない。1時間未満の処理では均質化が不十分である。したがって均質化処理は450〜520℃×1〜24hの条件で行う。
-Homogenization temperature x time; 450-520 ° C x 1-24h
This is carried out in order to homogenize the segregation of Mg, Zn, etc. generated during casting, to obtain a sufficient solid solution state during extrusion, and to form an Al—Zr compound suitable for suppressing recrystallization of the extruded material. Even at a temperature of less than 450 ° C. for 24 hours, a sufficient structure cannot be obtained. On the other hand, when it exceeds 520 ° C. or exceeds 24 hours, Mg and Zn are homogenized, but the Al—Zr-based compound is coarsened and the effect of suppressing recrystallization of the extruded material cannot be sufficiently obtained. Homogenization is insufficient in the treatment for less than 1 hour. Therefore, the homogenization treatment is performed under conditions of 450 to 520 ° C. × 1 to 24 hours.

冷却速度;150℃/h以上
上記の高温保持により、Mg,Znは均質化されるが、冷却速度が遅い場合には粗大な析出物を形成し、押出中に十分な溶体化ができない。
したがって、均質化後の冷却速度は速く、150℃/h以上にする。
Cooling rate: 150 ° C./h or more Mg and Zn are homogenized by maintaining the above high temperature, but when the cooling rate is slow, coarse precipitates are formed and sufficient solution cannot be formed during extrusion.
Therefore, the cooling rate after homogenization is fast and is 150 ° C./h or more.

(2)押出加工
押出加工温度;450〜560℃
押出直後の形材温度が450〜560℃になるように、ビレット加熱温度,押出速度を調整する。これにより、Mg,Znを十分に固溶させることが可能となる。450℃に満たないと固溶状態が不十分となり、その後の時効処理によっても十分な強度が得られない。一方、560℃を超えた温度で押出すと、再結晶化し易く、強度が低下するばかりでなく、溶接時の割れ感受性が高くなる。このため、薄肉中空材の製造においては、ビレット温度を450〜540℃に、ダイス温度を400〜500℃にして、3〜20m/minの押出速度で押出すことが好ましい。
(2) Extrusion / extrusion temperature: 450-560 ° C.
The billet heating temperature and the extrusion speed are adjusted so that the shape material temperature immediately after extrusion is 450 to 560 ° C. Thereby, Mg and Zn can be sufficiently dissolved. If it is less than 450 ° C., the solid solution state becomes insufficient, and sufficient strength cannot be obtained even by the subsequent aging treatment. On the other hand, when extruded at a temperature exceeding 560 ° C., it is easy to recrystallize and not only the strength is lowered, but also cracking sensitivity at the time of welding is increased. For this reason, in the manufacture of thin hollow materials, it is preferable to extrude at an extrusion speed of 3 to 20 m / min with a billet temperature of 450 to 540 ° C. and a die temperature of 400 to 500 ° C.

冷却温度;100℃/min以
肉厚2mm以上の標準的な管状体や厚肉材では断面の剛性が高いため、押出直後の高温時でも変形し難いが、本発明で目標とするような肉厚2mm以下の薄肉押出材では高温時および冷却過程で変形し易いため、変形防止を目的に押出直後から積極的に形材を冷却する。平均冷却速度100℃/min以上で150℃以下まで冷却することで変形を抑制することができる。冷却速度は、200℃/min以上とすることが好ましい。
冷却方法としては、空冷や液体窒素噴霧冷却が好ましい。水冷の場合、冷却が強すぎて冷却のバラツキが起こりやすく、冷却のバラツキによる変形が生じやすい。したがって薄肉押出材の場合には水冷は好ましくない。
And cooling temperature; rigidity of the cross-section is high at 100 ° C. / min or more on <br/> thickness 2mm or more standard tubular body and a thick material, hard to deform even at a high temperature immediately after extrusion, but in the present invention Since a thin extruded material having a thickness of 2 mm or less, which is the target, is easily deformed at high temperatures and in the cooling process, the shape is actively cooled immediately after extrusion for the purpose of preventing deformation. Deformation can be suppressed by cooling to an average cooling rate of 100 ° C./min or higher to 150 ° C. or lower. The cooling rate is preferably 200 ° C./min or more.
As a cooling method, air cooling or liquid nitrogen spray cooling is preferable. In the case of water cooling, the cooling is too strong and variations in cooling tend to occur, and deformation due to variations in cooling tends to occur. Therefore, water cooling is not preferable in the case of a thin extruded material.

(3)引抜加工
高い寸法精度が要求される場合には、引抜加工を施す。但し、変形抵抗が高い場合は、引抜く前に焼きなまし処理を施しても良い。焼きなまし処理としては、200〜270℃×1〜6hrが好ましい。
引抜率は5〜25%とすることが好ましい。5%に満たないと引抜加工での寸法精度向上効果は得られない。一方、25%を超えて引抜くと材料が破断する。なお、本材料は室温環境下で時効硬化する合金であることから、押出後に引抜加工する際には10日以内に実施することが好ましい。
また、本材料には、時効硬化を促進させるために、人工時効を施しても良い。人工時効としては、80〜110℃×4〜12hr+120〜170℃×4〜24hrの二段時効を行うことが好ましい。
(3) Drawing processing When high dimensional accuracy is required, drawing processing is performed. However, if the deformation resistance is high, an annealing treatment may be performed before drawing. The annealing treatment is preferably 200 to 270 ° C. × 1 to 6 hours.
The drawing rate is preferably 5 to 25%. If it is less than 5%, the effect of improving the dimensional accuracy in the drawing process cannot be obtained. On the other hand, if it exceeds 25%, the material breaks. In addition, since this material is an alloy which age-hardens in a room temperature environment, it is preferable to carry out within 10 days when drawing after extrusion.
In addition, the material may be subjected to artificial aging in order to promote age hardening. As artificial aging, it is preferable to perform two-stage aging of 80 to 110 ° C. × 4 to 12 hours + 120 to 170 ° C. × 4 to 24 hours.

表1に示した各種組成の203mmφビレットを鋳造し、このビレットに昇温速度100℃/h,保持温度480℃×4h,冷却速度300℃/hの均質化処理を施した。
続いて図1に示すような長径120mm,短径85mm,肉厚1.3mmなる断面寸法を有する薄肉楕円管を押出成形した。この際、ビレット温度は500℃,ダイス温度は470℃,押出速度は6m/minとした。冷却条件は表1に示した通りである。なお、冷却はエアー冷却で行った。
また、試験No.4については、押出後、200℃×4hrの焼きなましを行った後に引抜加工を行い、可否評価を行った。引抜率は断面減少率で示した。
A 203 mmφ billet having various compositions shown in Table 1 was cast, and the billet was subjected to a homogenization treatment at a heating rate of 100 ° C./h, a holding temperature of 480 ° C. × 4 h, and a cooling rate of 300 ° C./h.
Subsequently, a thin elliptical tube having a cross-sectional dimension of 120 mm in major axis, 85 mm in minor axis and 1.3 mm in thickness as shown in FIG. 1 was extruded. At this time, the billet temperature was 500 ° C., the die temperature was 470 ° C., and the extrusion speed was 6 m / min. The cooling conditions are as shown in Table 1. The cooling was performed by air cooling.
For test No. 4, after extrusion, annealing was performed at 200 ° C. for 4 hours, and then drawing was performed to evaluate whether it was possible. The drawing rate is shown by the cross-sectional reduction rate.

押出した材料について、JIS5号の試験片を切り出し、引張試験を行った。また溶接後についても、同様の引張試験を行った。なお、溶接後の引張試験は、溶接部が試験片の平行部の中央に位置するように採取した。
その結果を表2に示す。
なお、表2中、押出性の押出可否は、図1に示す寸法の中空体を2200t以下で押出せたものは○で、押出力が2200tを超え、押し詰まり等により、押出材が得られなかったものを×で表示した。同じく寸法精度は、外寸JIS特殊級を満足するもの(高さ±0.86mm,幅±1.12mm)を○で、JIS特殊級外を×で表示した。
また、引抜の可否は、引抜けたものを○で表示した。
さらに、強度評価に関しては、引張強さ220MPa以上、0.2%耐力170MPa以上のものを○とし、それに満たないものを×とした。溶接後の引張強さに関しても250MPa以上のものを○とし、それに満たないものを×とした。
以上を勘案して総合評価を下した。
About the extruded material, the test piece of JIS5 was cut out and the tension test was done. A similar tensile test was performed after welding. In addition, the tensile test after welding was extract | collected so that a welding part might be located in the center of the parallel part of a test piece.
The results are shown in Table 2.
In Table 2, the extrudability of extrudability is ◯ when the hollow body having the dimensions shown in FIG. 1 is extruded at 2200 t or less, the pushing force exceeds 2200 t, and the extruded material is obtained due to clogging or the like. Those that did not appear were marked with x. Similarly, the dimensional accuracy is indicated by ○ for those satisfying the outer dimensions JIS special class (height ± 0.86 mm, width ± 1.12 mm), and x outside the JIS special class.
In addition, whether or not pulling is possible is indicated by ○.
Furthermore, regarding the strength evaluation, those having a tensile strength of 220 MPa or more and a 0.2% proof stress of 170 MPa or more were rated as ◯, and those less than that were rated as x. Regarding the tensile strength after welding, those with a pressure of 250 MPa or more were marked with ◯, and those with less than that were marked with x.
Considering the above, we made a comprehensive evaluation.

Figure 0004281609
Figure 0004281609

Figure 0004281609
Figure 0004281609

表2に示す結果からもわかるように、本発明例である試験No.1〜5は、押出加工性に優れ、かつ強度も高い。ただし、押出加工後の冷却速度が遅い試験No.5については、冷却の際に変形が大きく、寸法精度が悪くなっていた。
これに対して、Cu含有量が少ない試験No.6は、押出加工は可能であるものの、耐力が低くなっている。また、Mn含有量が多い試験No.7、およびMg含有量が多い試験No.8では、熱間変形抵抗が高まり、押出加工を行おうとした際、押出力が2200tを超えて押し詰まり等が起こり、押出加工できなかった。
As can be seen from the results shown in Table 2, Test Nos. 1 to 5 as examples of the present invention are excellent in extrusion processability and high in strength. However, for test No. 5 where the cooling rate after extrusion was slow, the deformation was large during cooling and the dimensional accuracy was poor.
On the other hand, test No. 6 with a low Cu content has low proof stress, although it can be extruded. In Test No. 7 with a high Mn content and Test No. 8 with a high Mg content, hot deformation resistance increased, and when the extrusion process was attempted, the pushing force exceeded 2200 t, and clogging or the like occurred. Occurred and could not be extruded.

押出成形した薄肉楕円管の形状を説明する図Diagram illustrating the shape of an extruded thin-walled elliptical tube

Claims (4)

Zn:4.5〜7質量%,Mg:0.2〜0.38質量%,Cu:0.25〜0.4質量%,Zr:0.1〜0.3質量%を含み、さらにSi:0.05〜0.3質量%およびFe:0.05〜0.3質量%を(Fe質量%/Si質量%)=1〜3の範囲で含み、残部がAlと不可避的不純物とからなることを特徴とする成形性に優れたアルミニウム合金押出材。   Zn: 4.5-7 mass%, Mg: 0.2-0.38 mass%, Cu: 0.25-0.4 mass%, Zr: 0.1-0.3 mass%, and further Si : 0.05-0.3 mass% and Fe: 0.05-0.3 mass% in the range of (Fe mass% / Si mass%) = 1-3, with the balance being Al and inevitable impurities An aluminum alloy extruded material excellent in formability characterized by さらに、Ti:0.001〜0.2質量%、B:0.0001〜0.01質量%のうちの1種または2種を含有する請求項1に記載の成形性に優れたアルミニウム合金押出材。   The aluminum alloy extrusion excellent in formability according to claim 1, further comprising one or two of Ti: 0.001-0.2 mass% and B: 0.0001-0.01 mass%. Wood. 請求項1または2に記載の成分組成を有するアルミニウム合金素材を、下記(1)で示す条件で均質化処理し、その後に下記(2)で示す条件で押出加工することを特徴とする成形性に優れたアルミニウム合金押出材の製造方法。
(1)均質化処理条件
・加熱速度 200℃/h以下
・均質化温度×時間 450〜520℃×1〜24h
・冷却速度 150℃/h以上
(2)押出加工条件
・押出加工温度 450〜540℃
・ダイス温度 400〜500℃
・形材出側温度 450℃以上
・冷却温度 100℃/min以上
A formability characterized by homogenizing the aluminum alloy material having the component composition according to claim 1 or 2 under the conditions shown in the following (1) and then extruding it under the conditions shown in the following (2). The manufacturing method of the aluminum alloy extrusion material excellent in.
(1) Homogenization treatment conditions-Heating rate 200 ° C / h or less-Homogenization temperature x time 450-520 ° C x 1-24h
・ Cooling rate: 150 ° C./h or more (2) Extrusion conditions ・ Extrusion temperature: 450 to 540 ° C.
-Die temperature 400-500 ° C
・ Shape outlet temperature 450 ℃ or more ・ Cooling temperature 100 ℃ / min or more
押出加工後に引抜き工程を付加する請求項3に記載の成形性に優れたアルミニウム合金押出材の製造方法。   The manufacturing method of the aluminum alloy extrusion material excellent in the moldability of Claim 3 which adds a drawing process after an extrusion process.
JP2004129452A 2004-04-26 2004-04-26 Aluminum alloy extruded material excellent in formability and method for producing the same Expired - Fee Related JP4281609B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004129452A JP4281609B2 (en) 2004-04-26 2004-04-26 Aluminum alloy extruded material excellent in formability and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004129452A JP4281609B2 (en) 2004-04-26 2004-04-26 Aluminum alloy extruded material excellent in formability and method for producing the same

Publications (2)

Publication Number Publication Date
JP2005307322A JP2005307322A (en) 2005-11-04
JP4281609B2 true JP4281609B2 (en) 2009-06-17

Family

ID=35436415

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004129452A Expired - Fee Related JP4281609B2 (en) 2004-04-26 2004-04-26 Aluminum alloy extruded material excellent in formability and method for producing the same

Country Status (1)

Country Link
JP (1) JP4281609B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5409125B2 (en) * 2009-05-29 2014-02-05 アイシン軽金属株式会社 7000 series aluminum alloy extruded material excellent in SCC resistance and method for producing the same
CN102978488B (en) * 2012-12-11 2014-12-31 丛林集团有限公司 Production technology of aluminum alloy sectional bar for automobile bumper
CN106868361A (en) 2015-12-10 2017-06-20 华为技术有限公司 Aluminum alloy materials and the shell using the aluminum alloy materials
CN111636015B (en) * 2020-07-22 2022-03-15 广东澳美铝业有限公司 Processing technology of high-strength easy-to-weld aluminum alloy section
CN119411038B (en) * 2025-01-07 2025-03-11 湖南乾龙新材料有限公司 A production process for 7xxx aluminum alloy coils with high cold upsetting formability

Also Published As

Publication number Publication date
JP2005307322A (en) 2005-11-04

Similar Documents

Publication Publication Date Title
US8133331B2 (en) Aluminum-zinc-magnesium-scandium alloys and methods of fabricating same
EP2728026A1 (en) Damage tolerant aluminium material having a layered microstructure
JP5204793B2 (en) High strength aluminum alloy extruded material with excellent stress corrosion cracking resistance
WO2019171818A1 (en) Al-Mg-Si-BASED ALUMINUM ALLOY HOLLOW EXTRUDED MATERIAL AND METHOD FOR PRODUCING SAME
JPH08144031A (en) Production of aluminum-zinc-magnesium alloy hollow shape excellent in strength and formability
JP2004084058A (en) Method for producing aluminum alloy forging for transport structural material and aluminum alloy forging
JP3681822B2 (en) Al-Zn-Mg alloy extruded material and method for producing the same
WO2015129304A1 (en) High-strength aluminum alloy extrudate with excellent formability
JP2016138317A (en) High strength aluminum alloy extrusion material excellent in impact resistance and manufacturing method therefor
JP4281609B2 (en) Aluminum alloy extruded material excellent in formability and method for producing the same
JP3710249B2 (en) Aluminum extruded profile and method for producing extruded profile and structural member
JP2003181530A (en) Method for manufacturing aluminum alloy extruded material having excellent bending workability and energy absorbing characteristics
JP2010196089A (en) Extruded pipe of aluminum alloy having high strength and superior stress corrosion cracking resistance for hydroforming process
JPH05112840A (en) Baking hardenability al-mg-si alloy sheet excellent in press formability and its manufacture
JP2002363677A (en) Al-Mg BASED ALUMINUM ALLOY HOLLOW EXTRUSION MATERIAL FOR BULGING
EP2006404A1 (en) 6000 aluminum extrudate excelling in paint-baking hardenability and process for producing the same
JP2003034835A (en) Aluminum alloy sheet and manufacturing method therefor
JP2012201923A (en) Aluminum extruded shape and extrusion molding method thereof
JP2000160272A (en) Al ALLOY SHEET EXCELLENT IN PRESS FORMABILITY
US8313590B2 (en) High strength aluminium alloy extrusion
JP4707074B2 (en) Al-Mg aluminum alloy hollow extruded material for bulge forming
JPH0718389A (en) Production of al-mg series alloy sheet for forming
JP4771791B2 (en) Method for producing aluminum alloy sheet for forming
JP7543161B2 (en) Aluminum alloy extrusions
JPH05295478A (en) Aluminum alloy extruded material excellent in bendability and its manufacture

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060628

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070213

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090224

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090309

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees