[go: up one dir, main page]

JP4279947B2 - Mg treatment method for molten steel - Google Patents

Mg treatment method for molten steel Download PDF

Info

Publication number
JP4279947B2
JP4279947B2 JP18011299A JP18011299A JP4279947B2 JP 4279947 B2 JP4279947 B2 JP 4279947B2 JP 18011299 A JP18011299 A JP 18011299A JP 18011299 A JP18011299 A JP 18011299A JP 4279947 B2 JP4279947 B2 JP 4279947B2
Authority
JP
Japan
Prior art keywords
molten steel
slag
mgo
mass
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18011299A
Other languages
Japanese (ja)
Other versions
JP2001011527A (en
Inventor
昌文 瀬々
隆 諸星
龍介 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP18011299A priority Critical patent/JP4279947B2/en
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to EP10186292.8A priority patent/EP2292352B1/en
Priority to CA002334352A priority patent/CA2334352C/en
Priority to KR1020057018257A priority patent/KR100706973B1/en
Priority to CNB2005100068043A priority patent/CN1321766C/en
Priority to KR1020007013895A priority patent/KR100550678B1/en
Priority to EP10186285.2A priority patent/EP2308617B1/en
Priority to CN 00800836 priority patent/CN1258413C/en
Priority to EP07005688.2A priority patent/EP1803512B1/en
Priority to PCT/JP2000/002296 priority patent/WO2000061322A1/en
Priority to AU36746/00A priority patent/AU753777B2/en
Priority to EP00915437A priority patent/EP1099498A4/en
Priority to US09/719,206 priority patent/US6585799B1/en
Priority to EP10186277.9A priority patent/EP2308616B1/en
Publication of JP2001011527A publication Critical patent/JP2001011527A/en
Priority to US10/222,362 priority patent/US6918969B2/en
Application granted granted Critical
Publication of JP4279947B2 publication Critical patent/JP4279947B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、金属MgやMg合金のMg歩留りを高くし、鋳造した鋳片の凝固組織や鋼材の組織を微細にする溶鋼のMg処理方法に関する。
【0002】
【従来の技術】
従来、鋳片は、溶鋼を造塊法や連続鋳造法等により、スラブやブルーム、ビレット、薄肉鋳片等に鋳造し、これを所定のサイズに切断することにより製造している。また、鋳片を均熱炉等を用いて加熱し、圧延や鍛造等の加工を施すことにより、鋼板や形鋼等の鋼材が製造される。
しかし、鋳片の凝固組織(以下組織という)や鋼材の組織が粗大な場合、組織の粗大化に起因した表面割れ等の表面欠陥や内部割れ、中心偏析、センターポロシティ等の内部欠陥が発生し、鋳片や鋼材の手入れや屑化等による歩留りの低下を招く等の問題がある。
この対策として、特開平7−48616号公報には、溶鋼を覆ったスラグのMgOの含有量を3〜15質量%、FeO、Fe23、MnOの総量を5質量%以下に調整したCaO−SiO2−Al23系である溶鋼に、金属MgやMg合金を添加する方法が記載されている。そして、溶鋼に添加したMg歩留りの向上を図り、粗大化し易いAl23を微細な酸化物にして、鋳片や鋼材の欠陥を防止している。
また、特開平9−194986号公報には、溶鋼にNb、V、Mo等を微量添加し、Mgを添加して、さらに加速冷却圧延することにより、微細ベイナイト組織を備えた高強度で靱性に優れた鋼材を製造する方法が開示されている。
【0003】
【発明が解決しようとする課題】
しかしながら、特開平7−48616号公報では、溶鋼を覆ったスラグのFeO、Fe23、MnOの総量を5質量%以下に調整しているため、スラグ中のSiO2の含有量が多い場合は、金属MgやMg合金を添加した際に、含まれるSiO2と反応してMg歩留りが低下する。しかも、Mg歩留りの低下は、溶鋼中のAl23等をMgOを含む酸化物に改質することができず、Al23系の粗大な酸化物が形成されて鋳片や鋼材の品質欠陥が生じる。
更に、スラグのFeO、Fe23、MnO(以下スラグ酸化物という)の総量が低下し過ぎると、溶鋼中に添加されたMgと反応するスラグ酸化物が不足してMgOを十分に生成できず、凝固核として作用するMgOやMgOを含んだ酸化物を形成することができない。
その結果、鋳片や鋼材等の組織が粗大化して、表面あるいは内部に、割れや中心偏析、センターポロシティ等の欠陥が生じる。
また、特開平9−194986号公報では、Nb、V、Mo等の微量元素とMgを併用添加するため、この微量元素によって鋼材の機械強度が変化し、加工性や絞り性等が要求される鋼材への適用が難しいと言う難点がある。
更に、鋳片を圧延する際に、加速冷却(圧延のパス間で水冷却を行う圧延方法)を行うことによって、鋼材を微細組織にするため、水冷却時間が増加し、圧延等の生産性が低下する。
このように、いずれの方法においても溶鋼に金属MgやMg合金を添加した際に、操業に支障を生じることなく、Mgが酸化してMgOになる歩留りを高め、鋳片の組織や鋼材の組織を微細にして、鋳片及び鋼材の表面や内部の欠陥を抑制し、鋳片及び鋼材の手入れや屑化等を防止して品質の向上を図る方法について具体的に示されていない等の問題がある。
【0004】
本発明はかかる事情に鑑みてなされたもので、操業に支障を生じることなく、溶鋼中におけるMgOの生成を高めて、鋳片や鋼材の組織を微細にすることができる溶鋼のMg処理方法を提供することを目的とする。
【0005】
【課題を解決するための手段】
前記目的に沿う本発明の溶鋼のMg処理方法は、溶鋼にMgを添加して、凝固組織を微細化する処理方法において、前記溶鋼を覆うスラグ中に、FeO、Fe 2 3 、MnO、SiO 2 の総重量を1〜11.3質量%の濃度で含有させ、前記溶鋼を覆う前記スラグの厚みを50〜200mmに調整している。
この方法により、スラグに含まれる酸化物の総重量を所定値にしているので、溶鋼に添加したMgをMgOやMgOを含む酸化物に生成する歩留りを高くでき、微細なMgOあるいはMgOを含む酸化物(以下MgO酸化物という)にして溶鋼中に分散させることができる。
そして、この溶鋼を鋳造した鋳片の組織を微細にすることができ、鋳片の表面に発生する割れやへこみ疵、内部に生じる割れや中心偏析、センターポロシティ等を抑制し、鋳片の手入れや屑化等を防止して良鋳片の歩留りを向上でき、この鋳片に圧延等の加工を施した鋼材の品質も向上できる。
【0006】
ここで、前記スラグ中の酸化物をFeO、Fe23、MnO、SiO2とする。
これにより、スラグ中の酸化物によるMgの消費を抑制して溶鋼温度の低下やスラグ性状の変化等の操業への支障をなくして、Mgの歩留りを高くして溶鋼に効率良く添加することができる。しかも、溶鋼内にMgO酸化物を生成し、溶鋼が凝固する際に凝固核として作用させることができる。
【0007】
更に、前記溶鋼中に含まれるAl23を0.005〜0.10質量%にすることが好ましい。
これにより、Al23系の酸化物の粗大化を抑制し、融点の高いAl23をMgO・Al23等の複合酸化物にでき、しかも、MgOの分散性を利用して微細にして、凝固核として作用するMgO酸化物の比率を高めることができる。
【0008】
【発明の実施の形態】
続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態につき説明し、本発明の理解に供する。
図1は本発明の一実施の形態に係る溶鋼のMg処理方法に適用されるMgの添加装置の説明図、図2はMg添加前のスラグ中のFeO、Fe23、MnO、SiO2の総質量%とMg処理後の溶鋼中のMg歩留りの関係を表すグラフである。
図1に示すように、本発明の一実施の形態に係る溶鋼のMg処理方法に適用されるMgの添加装置10は、金属MgあるいはMg合金からなり、外周を鉄板でくるんだ棒状のワイヤー11と、ワイヤー11を案内するガイドパイプ12と、ワイヤー11を送り出す供給装置13とを有しており、図示しない転炉、真空二次精錬炉等を用いて溶製され、取鍋14に受湯された溶鋼16にMgを供給する。
【0009】
以下、Mgの添加装置10を用いた溶鋼のMg処理方法について説明する。
転炉を用いて脱炭精錬した後、真空二次精錬(二次精錬)を行って溶製した溶鋼16を取鍋14に受湯する。
溶鋼16中には、Al23をアルミニウムやアルミ合金の脱酸剤調整等を行うことにより、0.005〜0.10質量%含ませておく。
これは、MgO・Al23等の複合酸化物の生成を促進して高融点のMgO酸化物を形成するためであり、更に、分散性が悪く凝集し易いAl23をMgOと結合させることにより、微細化と分散性を良くし、凝固核としての働きを高め、鋳片や鋼材の組織を微細にするためである。
なお、溶鋼中に含まれるAl23が0.005質量%より少ないと、生成したMgOがFe23、SiO2等と結合して低融点の酸化物を形成し、凝固核としての働きが低下する。一方、溶鋼中に含まれるAl23が0.10質量%より多くなると、凝集し易いAl23が多くなり過ぎて、鋳片や鋼材に酸化物に起因した欠陥が生じる場合がある。
溶鋼16を受湯する際に、転炉から混入したり、二次精錬で添加したフラックス等により生成したスラグ15も流入して取鍋14内の溶鋼16の表面を覆うことになる。このスラグ15は、スラグストッパー等を操作して50〜200mmの厚みに調整する。
次に、供給装置13を作動してガイドパイプ12により金属MgやMg合金のワイヤー11を案内しながら2〜50m/分の速度で、スラグ15を貫通して溶鋼16に侵入させ、溶鋼16の熱により溶解させ溶鋼16中にMgを添加する。
【0010】
従来、溶鋼の表面を覆うスラグは、CaO、SiO2、Al23、FeO、Fe23、MnO等を主成分としているので、このスラグに覆われた溶鋼にMgを添加すると、溶鋼とスラグの界面で、スラグ中の酸化物と金属MgやMg合金が反応して生じたMgOがスラグ中に取り込まれる。その結果、溶鋼中のMgの濃度を高めることができず、溶鋼中でMgO酸化物を生成するためのMg歩留りが低下していた。
この現象について、研究を積み重ねた結果、酸化物の生成自由エネルギーがMgOより大きい、言い換えると、熱力学的に不安定である酸化物の総重量と溶鋼中でのMgO酸化物を生成するためのMg歩留りに重要な関係があることを知見し得た。
【0011】
すなわち図2に示すように、Mg添加前のスラグ中における熱力学的に不安定な酸化物であるFeO、Fe23、MnO、SiO2(スラグ酸化物)の総質量%を1〜30質量%の範囲にして、金属MgやMg合金のワイヤーをスラグを貫通して溶鋼に供給することにより、10質量%以上のMg歩留りを達成することが判った。
なお、このMg歩留りは、溶鋼中に含まれるMgやMgO酸化物の全てをMg量に換算した際の歩留りである。実際に溶鋼中でのMgの存在の形態は、その殆どがMgOの単体か、あるいはMgO・Al23等の複合酸化物の状態で存在する。
溶鋼にMgを添加すると前記スラグ酸化物は、下記の(1)〜(4)式で示す化学反応によってMgにより還元されるものと考えられる。
FeO+Mg→MgO+Fe ・・・(1)
Fe23+3Mg→3MgO+2Fe ・・・(2)
MnO+Mg→MgO+Mn ・・・(3)
SiO2+2Mg→2MgO+Si ・・・(4)
つまり、溶鋼に添加されたMgは、前記(1)〜(4)式で示す化学反応で消費され、生成したMgOがスラグ中に移行する。
この場合、スラグ中のFeO、Fe23、MnO、SiO2(スラグ酸化物)の総質量%が1質量%より少ないと、添加した金属MgやMg合金中のMgとスラグとの反応を抑制できるが、スラグと溶鋼の熱力学的平衡によって決定される溶鋼中の溶解酸素の量も少なくなる。
その結果、一旦溶鋼中に添加されたMgそのものがMgOあるいはMgO・Al23等の複合酸化物を形成せずに、時間が経過するにつれて蒸発してMg歩留りが低下する。
【0012】
また、前記スラグ酸化物の総質量%が30質量%を超えると、溶鋼に添加した金属MgやMg合金中のMgとスラグの反応が激しくなって、添加したMgの多くが前記(1)〜(4)式の化学反応でMgOを生成してスラグ中に移行するので、溶鋼中で凝固核として機能する微細なMgO酸化物を形成する量が減少し、添加したMgの歩留りが低下し、鋳片の組織の微細化が図れない。
しかも、微細化に必要なMg濃度にするには、添加量を増加する必要があり、製造コストの上昇や金属MgやMg合金の添加による温度の低下、スラグ性状の変化等により操業に支障が生じる。
【0013】
このように、溶鋼16に添加したMgの歩留りを高め、MgO、MgO・Al23等の高融点の複合酸化物を形成して、より安定して微細な凝固核を生成するには、スラグ15中のスラグ酸化物を(5)式で示される範囲にすると良く、さらに2〜20質量%の範囲にするとより好ましい結果が得られる。
質量%≦FeO+Fe23+MnO+SiO2≦30質量%・・・(5)
溶鋼16を覆うスラグ15中のスラグ酸化物の濃度を(5)で示す範囲に調整するには、Mgを添加する前のスラグ15を掻き出してスラグ15の量を減少して、溶鋼16中の還元成分による還元を容易にするか、あるいはスラグ15に還元剤を添加して処理する等の一般に用いる方法を適用することができる。
なお、溶鋼16に添加するMg合金としては、Si−Mg、Fe−Si−Mg、Al−Mg、Fe−Si−Mn−Mg等の合金を用いることができる。
【0014】
【実施例】
次に、溶鋼のMg処理方法の実施例について説明する。
取鍋に150トンの溶鋼を受湯し、この溶鋼を覆うスラグの厚みを100mmにし、FeO、Fe23、MnO、SiO2の総重量を所定の範囲に調整し、このスラグを貫通して溶鋼にMg純分で50kg(0.0333質量%)となるようにMg合金ワイヤーを供給した。
更に、この溶鋼を鋳型内寸法が厚み250mm、幅1200mmである連続鋳造装置を用いて0.6m/分の鋳造速度で鋳造した。
そして、Mg処理後の溶鋼中のMg質量%、鋳片中のMg質量%、鋳片の組織の微細化状態を調査した。その結果を表1に示す。
実施例1は、Mg添加前のスラグ中のFeO、Fe23、MnO、SiO2の総重量を2.5質量%にした場合であり、溶鋼中のMgを0.0041質量%、鋳片中のMgを0.0015質量%にでき、鋳片組織も微細であり、良好な結果が得られた。
実施例2、参考例3、4は、Mg添加前のスラグ中のFeO、Fe23、MnO、SiO2の総重量をそれぞれ11.3、16.1、22.4質量%にした場合であり、溶鋼中のMgがそれぞれ0.0061、0.0065、0.0063質量%、鋳片中のMgが0.0020、0.0035、0.0031質量%と歩留りが安定して高くでき、鋳片組織も微細であり、優れた結果が得られた。
参考例5は、Mg添加前のスラグ中のFeO、Fe23、MnO、SiO2の総重量を28.5質量%にした場合であり、溶鋼中のMgを0.0036質量%、鋳片中のMgを0.0019質量%にでき、鋳片組織も微細であり、良好な結果が得られた。
【0015】
【表1】

Figure 0004279947
【0016】
これに対して、比較例1は、Mg添加前のスラグ中のFeO、Fe23、MnO、SiO2の総重量を0.5質量%にした場合であり、溶鋼中のMgが0.0025質量%、鋳片中のMgが0.0009質量%となり、Mgの歩留りが悪く、鋳片組織の一部が粗大になり悪い結果となった。
比較例2は、Mg添加前のスラグ中のFeO、Fe23、MnO、SiO2の総重量を36.3質量%にした場合であり、溶鋼中のMgが0.0028質量%、鋳片中のMgが0.0008質量%になり、Mgの歩留りが悪く、鋳片組織の一部が粗大になり悪い結果であった。
【0017】
以上、本発明の実施の形態を説明したが、本発明は、上記した形態に限定されるものでなく、要旨を逸脱しない条件の変更等は全て本発明の適用範囲である。
例えば、金属MgあるいはMg合金のワイヤーによってMgを添加する際に、取鍋16の他に、タンディッシュや鋳型内の溶鋼に添加することができる。
更に、金属MgやMg合金を粒状にしたものを窒素ガスやアルゴンガス等の気体で搬送し、ランスから溶鋼中に吹き込んで添加することもできる。
また、金属MgやMg合金の添加位置を溶鋼面から1m以上の深さにすることにより、Mgの蒸発を抑制し、歩留りを高めることができる。
【0018】
【発明の効果】
請求項1、2記載の溶鋼のMg処理方法は、溶鋼にMgを添加して、凝固組織を微細化する処理方法において、溶鋼を覆うスラグ中に、Mgによって還元されるFeO、Fe 2 3 、MnO、SiO 2 を1〜11.3質量%の濃度で含有させているので、溶鋼に添加したMg歩留りを高くでき、高価なMgの使用量を節減して製造コストを低減し、しかも、安定した操業を可能にできる。
更に、溶鋼中に微細なMgOあるいはMgO酸化物を効率良く生成し、鋳造した鋳片及び鋼材の組織を微細にして表面及び内部欠陥を抑制し、手入れや屑化等を防止して良製品歩留りや品質特性等を向上することができる。
【0019】
特に、請求項記載の溶鋼のMg処理方法は、スラグ中FeO、Fe23、MnO、SiO2 を含有させるので、スラグによるMgのロスを最小限にし、溶鋼へのMg歩留りをより安定して高くできる。
しかも、Mgの添加に伴う溶鋼の温度低下やスラグの性状の変化を確実に抑制して、より安定した操業を行うことができる。
【0020】
請求項記載の溶鋼のMg処理方法は、溶鋼中に含まれるAl23を0.005〜0.10質量%にするので、有害なAl23をMgO・Al23の複合酸化物にし、MgOの分散性を利用して微細化の効果を高め、鋳片及び鋼材の組織を安定して微細にし、手入れや屑化等のない良製品の歩留りを向上することができる。
【図面の簡単な説明】
【図1】本発明の一実施の形態に係る溶鋼のMg処理方法に適用されるMgの添加装置の説明図である。
【図2】Mg添加前のスラグ中のFeO、Fe23、MnO、SiO2の総質量%とMg処理後の溶鋼中のMg歩留りの関係を表すグラフである。
【符号の説明】
10:Mgの添加装置、11:ワイヤー、12:ガイドパイプ、13:供給装置、14:取鍋、15:スラグ、16:溶鋼[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a Mg treatment method for molten steel in which the Mg yield of metal Mg or Mg alloy is increased and the solidification structure of a cast slab or the structure of a steel material is made fine.
[0002]
[Prior art]
Conventionally, slabs are manufactured by casting molten steel into slabs, blooms, billets, thin-walled slabs, etc. by an ingot-making method or a continuous casting method, and cutting them into a predetermined size. Moreover, steel materials, such as a steel plate and a shaped steel, are manufactured by heating slab using a soaking furnace etc. and performing processes, such as rolling and forging.
However, if the solidification structure of the slab (hereinafter referred to as the structure) or the structure of the steel material is coarse, surface defects such as surface cracks, internal cracks, center segregation, center porosity, and other internal defects are caused by the coarsening of the structure. However, there is a problem in that the yield decreases due to the care and scraping of slabs and steel materials.
As a countermeasure, Japanese Patent Laid-Open No. 7-48616 discloses CaO in which the content of MgO in the slag covering the molten steel is adjusted to 3 to 15 % by mass , and the total amount of FeO, Fe 2 O 3 and MnO is adjusted to 5 % by mass or less. A method of adding metal Mg or Mg alloy to molten steel that is —SiO 2 —Al 2 O 3 type is described. And the improvement of the Mg yield added to molten steel is aimed at, Al 2 O 3 which is easy to coarsen is made into a fine oxide, and the defect of a slab and steel materials is prevented.
Further, in JP-A-9-194986, a small amount of Nb, V, Mo or the like is added to molten steel, Mg is added, and accelerated cooling and rolling are performed, thereby achieving high strength and toughness with a fine bainite structure. A method for producing an excellent steel material is disclosed.
[0003]
[Problems to be solved by the invention]
However, in JP-A-7-48616, since the total amount of FeO, Fe 2 O 3 and MnO in the slag covering the molten steel is adjusted to 5 % by mass or less, the content of SiO 2 in the slag is large. When Mg or Mg alloy is added, it reacts with SiO 2 contained to lower the Mg yield. In addition, the decrease in Mg yield cannot be achieved by modifying Al 2 O 3 or the like in molten steel into an oxide containing MgO, and an Al 2 O 3 based coarse oxide is formed, resulting in slabs and steel materials. Quality defects occur.
Furthermore, if the total amount of FeO, Fe 2 O 3 and MnO (hereinafter referred to as slag oxide) in the slag is too low, the slag oxide that reacts with Mg added to the molten steel will be insufficient and sufficient MgO can be generated. Therefore, an oxide containing MgO or MgO that acts as a solidification nucleus cannot be formed.
As a result, the structure of the slab or steel material becomes coarse, and defects such as cracks, center segregation, and center porosity occur on the surface or inside.
Further, in Japanese Patent Laid-Open No. 9-194986, since trace elements such as Nb, V, and Mo are added together with Mg, the mechanical strength of the steel material is changed by the trace elements, and workability, squeezability, and the like are required. There is a difficulty that it is difficult to apply to steel.
Furthermore, when the slab is rolled, accelerated cooling (rolling method in which water cooling is performed between rolling passes) is performed to make the steel material a fine structure, so that the water cooling time is increased and productivity such as rolling is increased. Decreases.
As described above, in any method, when metal Mg or Mg alloy is added to molten steel, the yield of Mg is oxidized to MgO without causing any trouble in operation, and the structure of slab or steel material Is not specifically shown on how to improve the quality by minimizing the surface of the slab and steel, suppressing defects on the surface and inside of the slab and preventing the slab and steel from being cared for and scrapped. There is.
[0004]
The present invention has been made in view of such circumstances, and provides a Mg treatment method for molten steel that can increase the production of MgO in molten steel and make the structure of a slab or steel material finer without causing trouble in operation. The purpose is to provide.
[0005]
[Means for Solving the Problems]
The Mg treatment method of the molten steel of the present invention that meets the above-mentioned object is a treatment method in which Mg is added to the molten steel to refine the solidification structure. In the slag covering the molten steel, FeO, Fe 2 O 3 , MnO, SiO The total weight of 2 is contained at a concentration of 1 to 11.3 mass%, and the thickness of the slag covering the molten steel is adjusted to 50 to 200 mm .
By this method, since the total weight of oxides contained in the slag is set to a predetermined value, the yield of producing Mg added to molten steel into oxides containing MgO and MgO can be increased, and oxidation containing fine MgO or MgO is possible. Can be dispersed in the molten steel (hereinafter referred to as MgO oxide).
And the structure of the slab cast from this molten steel can be made finer, and cracks and dents generated on the surface of the slab, cracks and central segregation occurring inside, center porosity, etc. can be suppressed, and the slab can be maintained. The yield of good cast slabs can be improved by preventing scraps and the like, and the quality of steel materials obtained by subjecting the slabs to processing such as rolling can be improved.
[0006]
Here, FeO oxide in said slag, Fe 2 O 3, MnO, shall be the SiO 2.
As a result, the consumption of Mg by oxides in the slag is suppressed, there is no hindrance to operations such as a decrease in molten steel temperature and slag properties change, and the yield of Mg can be increased and efficiently added to the molten steel. it can. In addition, MgO oxide can be generated in the molten steel and can act as a solidification nucleus when the molten steel is solidified.
[0007]
Furthermore, it is preferable that the Al 2 O 3 contained in the molten steel to 0.005 to 0.10 mass%.
As a result, the coarsening of the Al 2 O 3 oxide can be suppressed, and Al 2 O 3 having a high melting point can be made into a composite oxide such as MgO · Al 2 O 3 , and the dispersibility of MgO can be utilized. The ratio of MgO oxide acting as solidification nuclei can be increased by making it fine.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be described with reference to the accompanying drawings for understanding of the present invention.
FIG. 1 is an explanatory diagram of an apparatus for adding Mg applied to an Mg treatment method for molten steel according to an embodiment of the present invention, and FIG. 2 is a diagram of FeO, Fe 2 O 3 , MnO, and SiO 2 in slag before Mg addition. It is a graph showing the relationship of the total mass% of Mg, and the Mg yield in the molten steel after Mg processing.
As shown in FIG. 1, a Mg addition device 10 applied to a molten steel Mg treatment method according to an embodiment of the present invention is made of metal Mg or Mg alloy, and a rod-shaped wire 11 whose outer periphery is wrapped with an iron plate. And a guide pipe 12 that guides the wire 11 and a supply device 13 that sends out the wire 11. The guide pipe 12 is melted using a converter, a vacuum secondary refining furnace, or the like (not shown), and the ladle 14 receives hot water. Mg is supplied to the molten steel 16.
[0009]
Hereinafter, the Mg processing method of the molten steel using the Mg addition apparatus 10 is demonstrated.
After decarburizing and refining using a converter, the molten steel 16 melted by vacuum secondary refining (secondary refining) is received in the ladle 14.
The molten steel 16, by performing the adjustment of the Al 2 O 3 with a deoxidizer for aluminum or aluminum alloy, made to contain 0.005 to 0.10 wt%.
This is to promote the formation of composite oxides such as MgO · Al 2 O 3 to form a high melting point MgO oxide. Furthermore, Al 2 O 3 which has poor dispersibility and easily aggregates is combined with MgO. This is to improve the miniaturization and dispersibility, enhance the function as solidification nuclei, and make the structure of the slab and steel material fine.
When the Al 2 O 3 content in the molten steel is less than 0.005 % by mass , the produced MgO combines with Fe 2 O 3 , SiO 2 and the like to form a low melting point oxide, Work decreases. On the other hand, if Al 2 O 3 contained in the molten steel is more than 0.10 % by mass, the amount of Al 2 O 3 that tends to agglomerate increases too much, and defects due to oxides may occur in the slab or steel material. .
When the molten steel 16 is received, the slag 15 mixed from the converter or generated by the flux added by secondary refining also flows in to cover the surface of the molten steel 16 in the ladle 14. The slag 15 is adjusted to a thickness of 50 to 200 mm by operating a slag stopper or the like.
Next, the supply device 13 is operated to guide the metal Mg or Mg alloy wire 11 through the guide pipe 12 and penetrate the slag 15 through the slag 15 at a speed of 2 to 50 m / min. Mg is added to the molten steel 16 by melting with heat.
[0010]
Conventionally, the slag covering the surface of the molten steel is mainly composed of CaO, SiO 2 , Al 2 O 3 , FeO, Fe 2 O 3 , MnO, etc. Therefore, when Mg is added to the molten steel covered with this slag, MgO produced by the reaction of the oxide in the slag with the metal Mg or Mg alloy is taken into the slag at the interface between the slag and the slag. As a result, the Mg concentration in the molten steel could not be increased, and the Mg yield for generating MgO oxide in the molten steel was reduced.
As a result of accumulated research on this phenomenon, the free energy of formation of oxide is larger than MgO, in other words, the total weight of oxide that is thermodynamically unstable and the formation of MgO oxide in molten steel. It was found that there was an important relationship with Mg yield.
[0011]
That is, as shown in FIG. 2, the total mass% of FeO, Fe 2 O 3 , MnO, and SiO 2 (slag oxide), which are thermodynamically unstable oxides in the slag before the addition of Mg, is 1-30. It has been found that Mg yield of 10 % by mass or more can be achieved by supplying a metal Mg or Mg alloy wire to the molten steel through the slag in the mass% range.
In addition, this Mg yield is a yield at the time of converting all the Mg and MgO oxide contained in molten steel into the amount of Mg. Actually, most of Mg exists in molten steel in the form of a simple substance of MgO or a complex oxide such as MgO.Al 2 O 3 .
When Mg is added to molten steel, the slag oxide is considered to be reduced by Mg by chemical reactions represented by the following formulas (1) to (4).
FeO + Mg → MgO + Fe (1)
Fe 2 O 3 + 3Mg → 3MgO + 2Fe (2)
MnO + Mg → MgO + Mn (3)
SiO 2 + 2Mg → 2MgO + Si (4)
That is, Mg added to the molten steel is consumed by the chemical reaction represented by the above formulas (1) to (4), and the generated MgO moves into the slag.
In this case, when the total mass% of FeO, Fe 2 O 3 , MnO, and SiO 2 (slag oxide) in the slag is less than 1 mass% , the reaction between Mg in the added metal Mg or Mg alloy and the slag occurs. Although it can be suppressed, the amount of dissolved oxygen in the molten steel determined by the thermodynamic equilibrium between the slag and molten steel is also reduced.
As a result, Mg itself once added to the molten steel does not form a composite oxide such as MgO or MgO.Al 2 O 3 , but evaporates over time and the Mg yield decreases.
[0012]
Moreover, when the total mass% of the slag oxide exceeds 30 mass% , the reaction between Mg in the molten steel and Mg in the Mg alloy and the slag becomes intense, and most of the added Mg is (1) to Since MgO is generated by the chemical reaction of formula (4) and moves into the slag, the amount of fine MgO oxide that functions as solidification nuclei in the molten steel decreases, and the yield of added Mg decreases, The structure of the slab cannot be refined.
In addition, in order to obtain the Mg concentration necessary for miniaturization, it is necessary to increase the amount of addition, which hinders operation due to an increase in manufacturing cost, a decrease in temperature due to the addition of metallic Mg or Mg alloy, a change in slag properties, etc. Arise.
[0013]
Thus, in order to increase the yield of Mg added to the molten steel 16 and form a high-melting-point composite oxide such as MgO, MgO.Al 2 O 3 , and more stably generate fine solidification nuclei, The slag oxide in the slag 15 may be in the range represented by the formula (5), and more preferably in the range of 2 to 20 % by mass .
1 % by mass ≦ FeO + Fe 2 O 3 + MnO + SiO 2 ≦ 30 % by mass (5)
In order to adjust the concentration of the slag oxide in the slag 15 covering the molten steel 16 to the range indicated by (5), the amount of the slag 15 is reduced by scraping the slag 15 before adding Mg. A commonly used method such as facilitating reduction with the reducing component or adding a reducing agent to the slag 15 for treatment can be applied.
In addition, as Mg alloy added to the molten steel 16, alloys, such as Si-Mg, Fe-Si-Mg, Al-Mg, and Fe-Si-Mn-Mg, can be used.
[0014]
【Example】
Next, an example of the Mg treatment method for molten steel will be described.
The ladle receives 150 tons of molten steel, the thickness of the slag covering this molten steel is 100 mm, the total weight of FeO, Fe 2 O 3 , MnO, and SiO 2 is adjusted to a predetermined range, and this slag is penetrated. Then, the Mg alloy wire was supplied to the molten steel so that the pure Mg content was 50 kg (0.0333 mass% ).
Further, this molten steel was cast at a casting speed of 0.6 m / min using a continuous casting apparatus having a mold inner dimension of 250 mm thickness and a width of 1200 mm.
Then, the Mg mass% in the molten steel after Mg treatment, the Mg mass% in the slab, and the refined state of the slab structure were investigated. The results are shown in Table 1.
Example 1 is a case where the total weight of FeO, Fe 2 O 3 , MnO, and SiO 2 in the slag before the addition of Mg is 2.5 % by mass. Mg in the molten steel is 0.0041 % by mass , casting Mg in the piece could be 0.0015 % by mass , the slab structure was fine, and good results were obtained.
In Example 2 and Reference Examples 3 and 4, the total weight of FeO, Fe 2 O 3 , MnO, and SiO 2 in the slag before adding Mg was 11.3, 16.1, 22.4 % by mass , respectively. , and the 0.0061,0.0065,0.0063 mass% Mg in the molten steel, respectively, Mg in the cast slab is 0.0020,0.0035,0.0031 wt% and the yield can be increased stably The slab structure was also fine, and excellent results were obtained.
Reference Example 5 is a case where the total weight of FeO, Fe 2 O 3 , MnO, and SiO 2 in the slag before the addition of Mg was 28.5 % by mass , and the Mg in the molten steel was 0.0036 % by mass , Mg in the piece could be 0.0019 % by mass , the slab structure was fine, and good results were obtained.
[0015]
[Table 1]
Figure 0004279947
[0016]
On the other hand, Comparative Example 1 is a case where the total weight of FeO, Fe 2 O 3 , MnO, and SiO 2 in the slag before adding Mg is 0.5 mass% , and Mg in the molten steel is 0.00. 0025 mass% , Mg in the slab was 0.0009 mass% , the yield of Mg was poor, part of the slab structure became coarse, and the result was bad.
Comparative Example 2 is a case where the total weight of FeO, Fe 2 O 3 , MnO, and SiO 2 in the slag before the addition of Mg is 36.3 % by mass , and Mg in the molten steel is 0.0028 % by mass . Mg in the piece was 0.0008 % by mass , the yield of Mg was poor, and a part of the slab structure became coarse, which was a bad result.
[0017]
Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and all changes in conditions and the like that do not depart from the gist are within the scope of the present invention.
For example, when adding Mg by a metal Mg or Mg alloy wire, in addition to the ladle 16, it can be added to tundish or molten steel in a mold.
Further, the metal Mg or Mg alloy in a granular form can be conveyed by a gas such as nitrogen gas or argon gas, and blown into the molten steel from the lance and added.
Further, by making the addition position of metal Mg or Mg alloy at a depth of 1 m or more from the molten steel surface, it is possible to suppress the evaporation of Mg and increase the yield.
[0018]
【The invention's effect】
The Mg treatment method for molten steel according to claim 1 or 2 is a treatment method in which Mg is added to the molten steel to refine the solidification structure. FeO, Fe 2 O 3 reduced by Mg in the slag covering the molten steel. Since MnO and SiO 2 are contained at a concentration of 1 to 11.3 mass%, the Mg yield added to the molten steel can be increased, the amount of expensive Mg used is reduced, and the manufacturing cost is reduced. Enables stable operation.
Furthermore, fine MgO or MgO oxide is efficiently generated in molten steel, the structure of cast slabs and steel materials is refined to suppress surface and internal defects, and maintenance and scrapping are prevented, resulting in good product yield. And quality characteristics can be improved.
[0019]
In particular, Mg processing method of the molten steel according to claim 1 is, FeO in the slag, Fe 2 O 3, MnO, since the inclusion of SiO 2, to minimize the loss of Mg due to the slag, more the Mg yield in the molten steel Can be stable and high.
In addition, the temperature drop of the molten steel and the change in the properties of the slag accompanying the addition of Mg can be reliably suppressed, and more stable operation can be performed.
[0020]
Mg treatment method of the molten steel according to claim 2, since the Al 2 O 3 contained in molten steel 0.005 to 0.10 wt%, a harmful Al 2 O 3 of MgO · Al 2 O 3 composite It is possible to increase the effect of refinement by using oxides and dispersibility of MgO, to stably refine the structure of the slab and the steel material, and to improve the yield of good products without care or scrapping.
[Brief description of the drawings]
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is an explanatory diagram of an Mg addition apparatus applied to a molten steel Mg treatment method according to an embodiment of the present invention.
FIG. 2 is a graph showing the relationship between the total mass% of FeO, Fe 2 O 3 , MnO, and SiO 2 in slag before Mg addition and the Mg yield in molten steel after Mg treatment.
[Explanation of symbols]
10: Mg addition device, 11: wire, 12: guide pipe, 13: feeding device, 14: ladle, 15: slag, 16: molten steel

Claims (2)

溶鋼にMgを添加して、凝固組織を微細化する処理方法において、前記溶鋼を覆うスラグ中に、FeO、Fe 2 3 、MnO、SiO 2 の総重量を1〜11.3質量%の濃度で含有させ、前記溶鋼を覆う前記スラグの厚みを50〜200mmに調整しておくことを特徴とする溶鋼のMg処理方法。In the processing method of adding Mg to molten steel to refine the solidification structure, the total weight of FeO, Fe 2 O 3 , MnO, and SiO 2 is 1 to 11.3 mass% in the slag covering the molten steel in is contained, Mg treatment method of the molten steel, characterized that you adjust the thickness of the slag covering the molten steel 50 to 200 mm. 請求項記載の溶鋼のMg処理方法において、前記溶鋼中に含まれるAl23を0.005〜0.10質量%とすることを特徴とする溶鋼のMg処理方法。The molten steel Mg treatment method according to claim 1 , wherein Al 2 O 3 contained in the molten steel is 0.005 to 0.10 mass% .
JP18011299A 1999-04-08 1999-06-25 Mg treatment method for molten steel Expired - Fee Related JP4279947B2 (en)

Priority Applications (15)

Application Number Priority Date Filing Date Title
JP18011299A JP4279947B2 (en) 1999-06-25 1999-06-25 Mg treatment method for molten steel
AU36746/00A AU753777B2 (en) 1999-04-08 2000-04-07 Cast steel piece and steel product excellent in forming characteristics and method for treatment of molted steel therefor and method for production thereof
KR1020057018257A KR100706973B1 (en) 1999-04-08 2000-04-07 Cast steel piece with fine solidification sturcture and excellent forming characteristics and steel product and seamless steel pipe produced by using the same
CNB2005100068043A CN1321766C (en) 1999-04-08 2000-04-07 Cast steel and steel material with excellent workability, method for processing molten steel therefor and method for manufacturing the cast steel and steel material
KR1020007013895A KR100550678B1 (en) 1999-04-08 2000-04-07 Treatment method of molten steel to refine solidification structure of cast steel
EP10186285.2A EP2308617B1 (en) 1999-04-08 2000-04-07 Method for processing molten steel
CN 00800836 CN1258413C (en) 1999-04-08 2000-04-07 Treatment method of molten steel
EP07005688.2A EP1803512B1 (en) 1999-04-08 2000-04-07 Cast steel with excellent workability and method for manufacturing the cast steel
EP10186292.8A EP2292352B1 (en) 1999-04-08 2000-04-07 Method for processing molten steel for cast steel and steel material with excellent workability
CA002334352A CA2334352C (en) 1999-04-08 2000-04-07 Cast steel piece and steel material with excellent workability, method for processing molten steel therefor and method for manufacutring the cast steel and steel material
EP00915437A EP1099498A4 (en) 1999-04-08 2000-04-07 STEEL CASTING PIECE AND STEEL PRODUCT WITH EXCELLENT FORMING PROPERTIES AND METHOD FOR TREATING IT FOR SUITABLE MOLTEN STEEL AND METHOD FOR THE PRODUCTION THEREOF
US09/719,206 US6585799B1 (en) 1999-04-08 2000-04-07 Cast steel piece and steel product excellent in forming characteristics and method for treatment of molted steel therefor and method for production thereof
EP10186277.9A EP2308616B1 (en) 1999-04-08 2000-04-07 Cast steel and steel material with excellent workability, method for processing molten steel therefor and method for manufacturing the cast steel and steel material
PCT/JP2000/002296 WO2000061322A1 (en) 1999-04-08 2000-04-07 Cast steel piece and steel product excellent in forming characteristics and method for treatment of molted steel therefor and method for production thereof
US10/222,362 US6918969B2 (en) 1999-04-08 2002-08-16 Cast steel and steel material with excellent workability, method for processing molten steel therefor and method for manufacturing the cast steel and steel material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18011299A JP4279947B2 (en) 1999-06-25 1999-06-25 Mg treatment method for molten steel

Publications (2)

Publication Number Publication Date
JP2001011527A JP2001011527A (en) 2001-01-16
JP4279947B2 true JP4279947B2 (en) 2009-06-17

Family

ID=16077639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18011299A Expired - Fee Related JP4279947B2 (en) 1999-04-08 1999-06-25 Mg treatment method for molten steel

Country Status (1)

Country Link
JP (1) JP4279947B2 (en)

Also Published As

Publication number Publication date
JP2001011527A (en) 2001-01-16

Similar Documents

Publication Publication Date Title
CN114318154B (en) A kind of high-cleanliness welding wire steel L-S3 and its preparation method
WO2000061322A1 (en) Cast steel piece and steel product excellent in forming characteristics and method for treatment of molted steel therefor and method for production thereof
WO2023062856A1 (en) Ni-based alloy having excellent surface properties and production method thereof
EP4458507A1 (en) Steel for submerged-arc welding wire, wire rod, submerged-arc welding wire and preparation method therefor
JP4911298B2 (en) Manufacturing method of high Mn steel
JP3510989B2 (en) Refining method of Si alloy iron and stainless steel used for refining stainless steel
JP4279947B2 (en) Mg treatment method for molten steel
KR100844794B1 (en) Highly clean refining method of austenitic stainless steel
JP4354026B2 (en) Stainless steel manufacturing method
JP3282865B2 (en) Manufacturing method of high carbon steel for high strength ultra fine wire
JP3416858B2 (en) Stainless steel manufacturing method
CN117512272B (en) H08Mn welding strip steel production method based on converter direct up and premelting slag washing
JPH07103416B2 (en) High carbon steel wire manufacturing method
JP4287974B2 (en) Method for processing molten steel with finely solidified structure characteristics
JP3631629B2 (en) Mild steel for strips and its manufacturing method
JP3870743B2 (en) Steel continuous casting method
RU2228235C2 (en) Steel casting (variants) and steel material with improved workability, method for processing melt steel (variants) and method for making steel casting and steel material
JP4283434B2 (en) Treatment method of molten steel with excellent solidification structure characteristics
JP2663231B2 (en) Prevention method of agglomeration of alumina in low carbon molten steel
JPH10152755A (en) Steel material for steel plate for cans with few defects and manufacturing method
CN117737599A (en) High-nitrogen vanadium microalloyed steel and preparation method thereof
JP2001089807A (en) Processing of molten steel
WO2025041489A1 (en) Stainless steel having excellent surface properties
JP4081218B2 (en) Continuous casting method
JP2001252747A (en) How to process molten steel with excellent quality characteristics

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081028

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090303

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090313

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4279947

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140319

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees