[go: up one dir, main page]

JP4277397B2 - Refrigeration equipment - Google Patents

Refrigeration equipment Download PDF

Info

Publication number
JP4277397B2
JP4277397B2 JP34281899A JP34281899A JP4277397B2 JP 4277397 B2 JP4277397 B2 JP 4277397B2 JP 34281899 A JP34281899 A JP 34281899A JP 34281899 A JP34281899 A JP 34281899A JP 4277397 B2 JP4277397 B2 JP 4277397B2
Authority
JP
Japan
Prior art keywords
medium
flow path
refrigeration apparatus
evaporator
bypass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP34281899A
Other languages
Japanese (ja)
Other versions
JP2001153473A (en
Inventor
慎一 若本
泰城 村上
裕之 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP34281899A priority Critical patent/JP4277397B2/en
Publication of JP2001153473A publication Critical patent/JP2001153473A/en
Application granted granted Critical
Publication of JP4277397B2 publication Critical patent/JP4277397B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/001Ejectors not being used as compression device
    • F25B2341/0012Ejectors with the cooled primary flow at high pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/001Ejectors not being used as compression device
    • F25B2341/0013Ejector control arrangements

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、ビルや住宅の空調、食品の貯蔵や加工などのための冷凍冷蔵に用いる冷凍装置に関するものである。
【0002】
【従来の技術】
図14は、従来の冷凍装置の系統図である。図において、1は、冷凍装置であり、圧縮機2、凝縮器3、流量制御手段4、および蒸発器5が、配管6によって順次、接続されて構成されている。上記圧縮機2は、配管内を流れる媒体を圧縮し、吐出する。また、上記凝縮器3は、外気などと熱交換させることによって媒体を凝縮、即ち液化させるものである。上記流量制御手段4は、一般的に、配管6よりもさらに細い管径をもつ毛細管や、主として円錐形の弁体をもつ弁の開き度合いを変化させて流量を制御する膨張弁が用いられる。上記蒸発器5は、配管内の媒体を空気や水などと熱交換させて蒸気に変化させるものである。
【0003】
次に動作について説明する。図15は、従来装置において配管中を流れる媒体の状態変化を示す圧力−エンタルピー線図である。図中の点線1は、配管内を流れる媒体の飽和液線を示し、点線2は、飽和蒸気線を示す。媒体は、飽和液線の左側で液体状態に、飽和蒸気線の右側で蒸気に、また、飽和液線と飽和蒸気線の間では蒸気と液体が混ざった湿り蒸気になる。一方、図中の実線部分が媒体の状態変化を示す圧力−エンタルピー線図であり、実線▲2▼▲3▼は状態▲3▼を通る等エンタルピー線、実線▲2▼▲3▼’は状態▲3▼を通る等エントロピー線である。
【0004】
図15において、▲1▼は、圧縮機から吐出された媒体の状態を示すもので、圧縮された媒体は高温高圧の蒸気となっている。蒸気となった媒体が凝縮器を通ると外気と熱交換して凝縮し、高温高圧の液体▲2▼に変化する。次いで、液体となった媒体は、流量制御手段4で断熱膨張して低温低圧の湿り蒸気▲3▼になる。さらに、蒸発器5を通って空気や水と熱交換して蒸発し、低温低圧の蒸気▲4▼に変化する。低温低圧の蒸気▲4▼となった媒体は再び圧縮機2に送られて高温高圧の蒸気▲1▼となる冷凍サイクルが繰り返される。
【0005】
ところで、理想的な状態変化である等エントロピー変化による減圧を実現できる場合、凝縮器で高温高圧の液体▲2▼に変化した媒体は、エントロピーが増大することなく低温低圧の湿り蒸気▲3▼'に変化する。この場合、装置の冷却能力は状態▲4▼と状態▲3▼’におけるエンタルピー差であり、上記▲3▼▲4▼の等エンタルピー変化における冷却能力よりも大きくなる。
【0006】
しかしながら、上記流量制御手段4は、上述したように、一般に、細い管径をもつ毛細管や弁の開閉度調整で制御する膨張弁などが用いられている。毛細管を利用した制御では、高温高圧の液体となった媒体は毛細管を流れる際の圧力損失によって減圧し、液体の一部が毛細管の途中から蒸発しながら増速し、大きな圧損を生じて低温低圧の湿り蒸気に変化する。このように高速で流れる際の圧損は不可逆変化をともなうため、媒体が持つエネルギーの一部▲3▼▲3▼’を失う上記▲2▼▲3▼のような等エンタルピー変化になる。また、膨張弁を用いた冷凍装置の場合も弁を通過する際に生じる衝撃波によって媒体が持つエネルギーの一部▲3▼▲3▼’を失う等エンタルピー変化▲2▼▲3▼となり、媒体の蒸発によって得られる冷却能力は、やはり、状態▲4▼と状態▲3▼におけるエンタルピー差である。
【0007】
また、例えば、空気調和・衛生工学会論文集No.70、1998に記載される冷凍装置が検討されている。これは上記圧縮機、凝縮器および蒸発器が設置された従来の冷凍装置に、新たに速度上昇ノズル、低圧室、混合室および圧力回復させるディフューザからなるエジェクタおよび気液分離器を備えたものである。凝縮器から出た高温高圧の蒸気となった媒体は、上記エジェクタと気液分離器の働きによって、圧力回復するとともに、理想的な等エントロピー変化になり、大きな冷却能力で運転できる。しかしながら、この従来装置では、結局、気液分離器や新たな機器を装備する装置構成になって、大型化したり、コストが高くなったり、高精度な流量制御が必要となるなどの問題があった。
【0008】
【発明が解決しようとする課題】
従来の冷凍装置では、凝縮器から流出する高温高圧の冷媒がバルブなどで流量制御される際に圧力損失を起こしたり、衝撃波の発生によって減圧されたりするために、本来、蒸発器で得られる冷却能力が低下し、冷凍装置全体の冷却効率を極めて悪くしている問題があった。また、この改善のために、従来、気液分離器などが使用されていたが、これではコストが高くなったり、高精度な流量制御が必要になり問題があった。
【0009】
この発明は、これら従来の問題点を解消するためのもので、高コストで高精度な媒体制御機器を用いることなく媒体の圧力損失を低減し、廉価で、かつ容易に高効率な冷却サイクルで運転できる冷凍装置を提供するものである。
【0010】
【課題を解決するための手段】
本発明において、第1の構成による冷凍装置は、圧縮、凝縮器、蒸発器、これらを順次接続するメイン流路、上記凝縮器から流出する媒体メイン流路から分岐するバイパス流路、上記バイパス流路に設けられ、上記バイパス流路の媒体を減圧する減圧手段、上記凝縮器と前記蒸発器との間に設置され、上記バイパス流路の媒体を引き込む駆動手段上記バイパス流路の媒体とメイン流路の媒体を合流させる合流手段と合流した媒体を昇圧させる昇圧手段とを有する媒体制御手段、および上記バイパス流路に設置された第2の蒸発器を備えたものである。
【0011】
本発明の第2の構成による冷凍装置は、上記第2の蒸発器は、上記減圧手段の下流に配置され、上記バイパス流路を流れる媒体は、上記減圧手段、第2の蒸発器と順に流れた後に上記駆動手段に引き込まれるものである。
【0012】
本発明の第3の構成による冷凍装置は、上記第2の蒸発器は、上記メイン流路の蒸発器で冷却された水または空気と上記バイパス流路の媒体とを熱交換するものである。
【0013】
本発明の第4の構成による冷凍装置は、上記駆動手段は、上記メイン流路の媒体を加速するノズルと上記バイパス流路の媒体を引き込む低圧室とを有し、上記昇圧手段は、ディフューザで構成されるものである。
【0014】
本発明の第5の構成による冷凍装置は、上記媒体制御手段は、先細末広ノズルで構成されるものである。
【0015】
本発明の第6の構成による冷却装置は、上記媒体制御手段は、隘路を持つオリフィスで構成されるものである。
【0016】
本発明の第7の構成による冷凍装置は、上記媒体制御手段は、弁体、弁座および上記弁体を駆動して上記弁体と上記弁座との隙間の面積を調整することにより媒体の流量を制御する弁駆動装置を有するものである。
【0018】
【発明の実施の形態】
実施の形態1.
以下、本発明に係る冷凍装置の実施の形態1について説明する。図1は、実施の形態1による冷凍装置の系統図を示したものである。図において、1は本発明による冷凍装置であり、2は通常、配管内を流れる媒体を圧縮し、吐出する圧縮機、3は外気などと熱交換させることによって蒸気状態にある媒体を凝縮して液化させる凝縮器、5は空気や水などと熱交換させて媒体を蒸気に変化させる蒸発器であり、配管6によって順次、接続されて構成されている。また、図に示すように、上記凝縮器3と上記蒸発器5の間には、本発明による媒体制御装置500が配管6で接続されて設置されている。上記媒体制御装置500は、上記凝縮器3から流出する媒体の流量、圧力、温度または状態を制御するためのもので、この装置500には上記凝縮器3から吐出する媒体のメイン流路301から分岐するバイパス流路302が設置されている。上記バイパス流路302にはこのバイパス流路302を流れる媒体を減圧する減圧手段303、およびこのバイパス流路302の媒体を駆動する駆動手段201が設置されている。また、上記メイン流路301には、上記バイパス流路302を流れる媒体と上記メイン流路301を流れる媒体とを合流させる合流手段202、合流後のメイン流路の媒体を昇圧させる昇圧手段203が設置された媒体制御手段200、および上記メイン流路301を流れる媒体を冷却させる冷却手段304が設けられている。
【0019】
次に、本実施の形態による冷凍装置の動作について説明する。図2は、本発明の冷凍装置による動作を示す圧力−エンタルピー線図である。図2に示すように圧縮機2で圧縮された媒体は高温高圧の蒸気▲1▼となり、次いで凝縮器3において空気と熱交換して凝縮し、圧力を保った状態で液体▲2▼に変化する。この液化した媒体▲2▼は、メイン流路301、およびメイン流路301と分岐したバイパス流路302に分かれて流れる。バイパス流路302を流れる一部の媒体▲2▼は、減圧手段303を通る際に断熱膨張し、減圧されて低温低圧の湿り蒸気▲3▼’に変化し、その後、冷却手段304において、メイン流路301を通り媒体制御手段200から流出する媒体と熱交換し、加熱されて過熱蒸気▲4▼’に変化する。上記冷却手段304を通ったバイパス流路の媒体は、バイパス流路に設けた駆動手段201に駆動され、媒体制御手段200内に引込まれて状態▲5▼’になる。一方、凝縮器3からメイン流路301側へ流れる残りの媒体▲2▼は、媒体制御手段200へ供給され、この中で増速しながら等エントロピー変化に近い状態で減圧されて湿り蒸気状態▲5▼に変化する。このメイン流路を流れる媒体▲5▼は、合流手段202において、前述のバイパス流路から媒体制御手段200内に引込まれたバイパス流路の媒体▲5▼’と合流して状態▲6▼になり、さらに、昇圧手段203において、等エントロピー変化に近い状態で昇圧されて状態▲7▼に変化する。圧力回復した媒体は、その後、冷却手段304でバイパス流路を流れる媒体と熱交換し、冷却されて状態▲3▼となり、蒸発器5において、空気や水などと熱交換し、低温低圧の蒸気状態▲4▼に変化した後、再び圧縮機2に送られる。このようにして上記の冷却サイクルが繰り返される。
【0020】
以上説明したように、本発明の実施の形態1によれば、媒体制御装置500を設けたことにより、メイン流路を流れる媒体が状態▲3▼から状態▲4▼のように圧損の少ないほぼ理想的なエネルギー変換をする冷却サイクルを容易に実現できる。したがって、装置の冷却能力が向上し、エネルギー損失の少ない高効率な運転が可能となる。
【0021】
実施の形態2.
次に、本発明の実施の形態2による冷凍装置について説明する。本発明は図1に示した系統図において、メイン流路を流れる媒体を冷却させる冷却手段304として、バイパス流路の媒体と熱交換を行う熱交換器を用いた冷凍装置である。このように冷却手段として熱交換器を設置したことにより、上記実施の形態1と同様に、ほぼ理想的なエネルギー変換をする冷却サイクルを容易に実現できる。
【0022】
実施の形態3.
次に、本発明の実施の形態3による冷凍装置について説明する。図3は、本発明の実施の形態3による装置の系統図である。図3において、32はメイン流路の媒体を冷却するための熱交換器であり、駆動手段、合流手段および昇圧手段を設置した媒体制御手段200の設置位置よりも上流側に設置されている。また、31はバイパス流路を流れる媒体の減圧手段としての流量調整バルブであり、バイパス配管30によって上記熱交換器32および媒体制御手段200に順次、接続されている。
【0023】
次に、本実施の形態による冷凍装置の動作について説明する。図4は、本発明の冷凍装置による動作を示す圧力−エンタルピー線図である。図4に示すように圧縮機2で圧縮された媒体は高温高圧の蒸気▲1▼となり、凝縮器3で空気と熱交換して凝縮し、高温高圧の液体▲2▼’に変化する。この液化した媒体▲2▼’は、メイン流路301、およびメイン流路301と分岐したバイパス流路302に分かれて流れる。バイパス流路302を流れる一部の媒体▲2▼’は、減圧手段である流量調整バルブ31において断熱膨張し、減圧されて低温低圧の湿り蒸気状態▲3▼’に変化した後、熱交換器32においてメイン流路301を流れる媒体と熱交換し、加熱されて過熱蒸気状態▲4▼’に変化する。上記熱交換器32を通ったバイパス流路の媒体は、媒体制御手段200内に引込まれて状態▲5▼’になる。一方、凝縮器3からメイン流路301側へ流れる残りの媒体▲2▼’は、上記熱交換器32で冷却されて状態▲2▼になる。その後、媒体制御手段200へ供給され、この中で等エントロピー変化に近い状態で減圧されて湿り蒸気状態▲5▼に変化する。このメイン流路を流れる媒体▲5▼は、バイパス流路から媒体制御手段200内に引込まれたバイパス流路の媒体▲5▼’と合流して状態▲6▼になり、さらに、等エントロピー変化に近い状態で昇圧されて状態▲3▼に変化する。その後、媒体は蒸発器5において、空気や水などと熱交換し、低温低圧の蒸気状態▲4▼に変化した後、再び圧縮機2に送られて高温高圧の蒸気▲1▼となり、上記の冷却サイクルが繰り返される。
【0024】
このように冷却手段を、駆動手段、合流手段および昇圧手段よりも上流側に設置した場合においても、バイパス流路の媒体の圧力、すなわち温度をメイン流路の媒体の温度よりも低くでき、熱交換器32の設置によって媒体の過冷却度を大きくできるために、やはり、エネルギー損失の少ない冷却能力の高い高効率な運転が可能となる。
【0025】
実施の形態4.
次に、本発明の実施の形態4について説明する。図5は、本発明の実施の形態4による冷凍装置を示す系統図である。図において、18は冷却手段としてバイパス流路に設置した熱交換器であり、駆動手段、合流手段および昇圧手段であるエジェクタ10の下流側に設置されている。17は流量調整バルブ、16はバイパス配管である。また、エジェクタ10は前述の媒体制御手段200と同様の機能を持つエジェクタであり、ケーシング11内にメイン流路の媒体の流速を加速させるノズル12、バイパス流路の媒体を駆動して引き込む低圧室13、メイン流路の媒体とバイパス流路の媒体を合流させる合流室14およびメイン流路の媒体を昇圧させるディフューザ15から構成されている。
【0026】
このように熱交換器18を駆動手段、合流手段および昇圧手段の設置位置よりも下流側のバイパス流路に設置して、媒体制御手段である上記エジェクタから流出するメイン流路の媒体を効率よく冷却することにより、理想的な等エントロピー変化の状態に制御できる。そのため、やはり冷却能力の高い高効率な運転が可能となる。
【0027】
実施の形態5.
次に、本発明の実施の形態5による冷凍装置について説明する。図6に本発明の冷却装置の系統図を示した。図において、36はバイパス流路に設置された第2の蒸発器であり、蒸発器5で冷却された水または空気とバイパス流路から流出する媒体と熱交換して気化させるものである。このようにバイパス流路に第2の蒸発器を設置し、熱交換を行って媒体を気化させた後にメイン流路の媒体と合流させるようにしたことにより、やはり媒体をエネルギー損失の少ない理想的な状態に制御できる。そのため、冷却効率の高い運転が可能となる。
【0028】
実施の形態6.
図7、図8および図9は、本発明の実施の形態6による冷凍装置の媒体制御手段部の拡大図である。図7に示した装置は、媒体制御手段200に、バイパス流路からの媒体を合流させるための合流口305を備えた先細末広ノズルが使用され、メイン流路301に設置したものである。図8は、媒体制御手段200として、内部を流れる媒体の流路を絞る隘路を持つオリフィスを使用し、バイパス流路からの媒体を合流させるための合流口305を備えたものである。また、図9は、媒体制御手段200に、膨張弁を使用したものであり、41はケーシング、42は弁体、43は弁座、44は上記弁体42を駆動する弁駆動装置、45はメイン流路からの媒体を膨張弁に流入させる流入管、50はメイン流路の媒体を膨張弁から流出させるテーパーを付けた流出管、305はバイパス流路からの媒体を合流させるための合流口である。上記膨張弁は、弁体42と弁座43の隙間の面積を弁駆動装置44で調整することにより媒体の流量を制御している。
【0029】
このようにバイパス流路の媒体を駆動させる駆動手段と、バイパス流路の媒体とメイン流路の媒体を合流させる合流手段とが、少なくとも媒体が流れる流路の断面積を小さくするするよう絞り込まれた隘路およびバイパスからの媒体の合流口を備えた構造体にすることにより、媒体のエネルギー損失が少ない理想的な状態制御ができ、効率的な運転ができる。
【0030】
実施の形態7.
図10は、本発明の実施の形態7による冷凍装置の系統図である。図10において、100は媒体の温度を測定する温度測定器、101は媒体の圧力を測定する圧力測定器で、冷却手段304と媒体制御装置200の間のメイン流路301に設置されている。また、102は飽和温度算出手段、103は過冷却度算出手段であり、算出された過冷却度に応じてバイパス流路に設けた減圧手段303に信号を送ってバイパス流路の媒体の流量を制御している。図11は、本発明の実施の形態7による同様な冷凍装置の系統図であり、温度測定器100および圧力測定器101により測定された媒体の温度と圧力から飽和温度算出手段102および過冷却度算出手段103により求められる過冷却度に応じて膨張弁の弁駆動装置44に信号を送ってメイン流路の媒体の流量を制御している。
【0031】
上記実施の形態7のように構成することによって、やはり、媒体をエネルギー損失の少ない理想的な状態に制御できる。上記実施例では、過冷却度を算出して制御する場合について説明したが、上記温度測定器および圧力測定器を蒸発器と圧縮機の間に設置し、圧縮機に入る前の媒体の過熱度を算出して減圧手段または媒体制御手段を制御してもよい。また、熱交換器から媒体制御手段に至るバイパス配管内の媒体の温度、圧力を測定して過熱度を算出し、その過熱度に応じて減圧手段または媒体制御手段を制御してもよい。さらに、上記制御パラメータの信号を圧縮機に送って制御しても同様の効果が得られる。
【0032】
実施の形態8.
図12に実施の形態8による冷凍装置の系統図を示す。図12に示した冷凍装置1は、圧縮機2、凝縮器3、蒸発器5およびこれらを順次接続する配管6を備え、上記凝縮器3と上記蒸発器5が流路切換弁400によって動作切換えされるものであり、上記凝縮器3と上記蒸発器5の間に設けられる流路に、実施の形態1で説明した上記バイパス流路、上記減圧手段、上記駆動手段、上記合流手段および上記昇圧手段からなる媒体制御装置500を設置したものである。
【0033】
次に実施の形態8による冷凍装置の動作について説明する。図12に示したように、圧縮機2で圧縮されて高温高圧の蒸気となった媒体は、一方の流路切換弁400を通って凝縮器3に流入し、ここで凝縮されて液体に変化する。上記凝縮器3から吐出した媒体は、もう一方の流路切換弁400を通って、上記凝縮器3と上記蒸発器5の間の流路に設置した媒体制御装置500に流入する。上記媒体制御装置500に流入した媒体は、その中で前述したようにエネルギー損失の少ない状態に制御されて低温低圧の湿り蒸気状態に変化し、蒸発器5に送られて蒸発器5の中で外気や水と熱交換して低温低圧の蒸気に変化する。その後、流路切換弁400を通って再び圧縮機2に送られ、同じサイクルが繰り返される。上記凝縮器3が室外に、蒸発器5が室内に設置されて、冷房運転が行われる場合、以上説明したように、媒体は上記蒸発器5で室内の空気を効率的に冷却できる。一方、上記装置で暖房運転を行う場合には、流路切換弁400によって流路を切換え、圧縮機2から流出する媒体を蒸発器5へ流入させ、上記蒸発器5から流出する媒体を、もう一方の流路切換弁400を切換えて媒体制御装置500へ流れるようにし、さらに、上記媒体制御装置500から出る媒体を、上記媒体制御装置500の下流側に設置した流路切換弁400を切換えて凝縮器3へ送り込むことによって、効率的な暖房運転ができる。上記装置によれば、流路切換弁を切換えるだけで配管内を流れる媒体の流れの方向を全く変えることなく冷暖房運転が可能となる。
【0034】
図13は、実施の形態8による装置の系統図で、流路切換弁400として四方バルブを用いている。図において、(a)は冷房運転、(b)は暖房運転の場合を示している。この図13に示した装置は、上記四方バルブの切換えによって、上述した図12に示した装置の場合と同様に動作して、やはり容易に効率的な運転ができる。
【0035】
以上説明したように、本発明の構成によれば、エネルギー損失の少ない効率的な運転ができるとともに、高価な付帯設備、切換の補修が不要で、一装置、一システムに蒸発器、凝縮器一対で機能させられるため、小型、軽量、安価で、かつ冷房、暖房の切換可能な冷凍装置を実現できる。なお、上述の例では、凝縮器3および蒸発器5が一つづつ設置された場合について説明したが、それぞれが複数台、室外、室内に設置されている場合も、同様な効果がある。
【0036】
【発明の効果】
本発明における冷凍装置は、上記のような構成にしたことにより、いずれの場合においても、高価で高精度な機器を使用することなく、従来、問題となっていた凝縮器から流出する媒体の圧力損失を低減させ、冷却能力、冷却効率を向上させることができる。
したがって、本発明の構成によれば、容易に冷却効率が高いうえに冷却能力の大きなサイクル運転が可能となり、小型、軽量、かつ安価で高性能な冷凍装置を提供できる。
【図面の簡単な説明】
【図1】 本発明の実施の形態1および2を示す例で、冷凍装置の系統図。
【図2】 本発明の冷凍装置による動作を示す圧力-エンタルピー線図
【図3】 本発明の実施の形態3を示す例で、冷凍装置の系統図
【図4】 本発明の冷凍装置による動作を示す圧力-エンタルピー線図
【図5】 本発明の実施の形態4を示す例で、冷凍装置の系統図
【図6】 本発明の実施の形態5を示す例で、冷凍装置の系統図
【図7】 本発明の実施の形態6を示す例で、媒体制御手段部分の拡大図。
【図8】 本発明の実施の形態6を示す例で、媒体制御手段部分の拡大図。
【図9】 本発明の実施の形態6を示す例で、媒体制御手段部分の拡大図。
【図10】 本発明の実施の形態7を示す例で、冷凍装置の系統図。
【図11】 本発明の実施の形態7を示す例で、冷凍装置の系統図。
【図12】 本発明の実施の形態8を示す例で、冷凍装置の系統図。
【図13】 本発明の実施の形態8を示す例で、冷凍装置の系統図。
【図14】 従来の冷凍装置を示す系統図。
【図15】 従来の冷凍装置の動作を示す圧力-エンタルピー線図。
【符号の説明】
1. 冷凍装置、 2. 圧縮機、3. 凝縮器
4. 流量制御手段、5. 蒸発器、6. 配管
7. 気液分離機、10. エジェクタ、11. ケーシング
12. ノズル、13. 低圧室、14. 合流室
15. ディフューザ、16. バイパス配管、
17. 流量調整バルブ、18. 熱交換器、33. 過冷却測定手段
36. 第2の蒸発器、41. ケーシング、42. 弁体、
43. 弁座、 44. 弁駆動装置、45. 流入管、
50. テーパ付流出管、 100. 温度測定装置、
101. 圧力測定装置、 102. 飽和温度算出手段、
103. 過冷却度算出手段、 200. 媒体制御手段、
201. 駆動手段、202. 合流手段、 203. 昇圧手段、
301. メイン流路、 302. バイパス流路、
303. 減圧手段、 304. 冷却手段、 305. 合流口、
400.流路切換弁、 500. 媒体制御装置
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a refrigeration apparatus used for freezing and refrigeration for air conditioning of buildings and houses, storage and processing of foods, and the like.
[0002]
[Prior art]
FIG. 14 is a system diagram of a conventional refrigeration apparatus. In the figure, reference numeral 1 denotes a refrigeration apparatus, in which a compressor 2, a condenser 3, a flow rate control means 4, and an evaporator 5 are sequentially connected by a pipe 6. The compressor 2 compresses and discharges the medium flowing in the pipe. The condenser 3 condenses, that is, liquefies the medium by exchanging heat with outside air or the like. As the flow rate control means 4, generally, a capillary tube having a smaller diameter than the pipe 6 or an expansion valve that controls the flow rate by changing the degree of opening of a valve having a mainly conical valve body is used. The evaporator 5 changes the medium in the pipe into steam by exchanging heat with air or water.
[0003]
Next, the operation will be described. FIG. 15 is a pressure-enthalpy diagram showing a state change of a medium flowing in a pipe in a conventional apparatus. A dotted line 1 in the figure indicates a saturated liquid line of the medium flowing in the pipe, and a dotted line 2 indicates a saturated vapor line. The medium becomes a liquid state on the left side of the saturated liquid line, becomes a vapor on the right side of the saturated vapor line, and becomes a wet vapor in which vapor and liquid are mixed between the saturated liquid line and the saturated vapor line. On the other hand, the solid line portion in the figure is a pressure-enthalpy diagram showing the change in the state of the medium. Solid lines (2) and (3) are isoenthalpy lines passing through state (3) and solid lines (2) and (3) are states. This is an isentropic line passing through (3).
[0004]
In FIG. 15, (1) indicates the state of the medium discharged from the compressor, and the compressed medium is high-temperature and high-pressure steam. When the vaporized medium passes through the condenser, it condenses by exchanging heat with the outside air and changes to a high-temperature and high-pressure liquid (2). Next, the liquid medium is adiabatically expanded by the flow rate control means 4 to become low-temperature and low-pressure wet steam (3). Further, it evaporates through heat exchange with air and water through the evaporator 5 and changes to low-temperature and low-pressure steam (4). The medium that has become the low-temperature and low-pressure steam {circle around (4)} is sent again to the compressor 2 and the refrigeration cycle that becomes the high-temperature and high-pressure steam {circle around (1)} is repeated.
[0005]
By the way, when the pressure reduction by the isentropic change, which is an ideal state change, can be realized, the medium changed into the high-temperature and high-pressure liquid (2) by the condenser does not increase the entropy, and the low-temperature and low-pressure wet steam (3) ' To change. In this case, the cooling capacity of the apparatus is an enthalpy difference between the state (4) and the state (3), and becomes larger than the cooling capacity in the equal enthalpy change of the above (3) and (4).
[0006]
However, as described above, generally, the flow rate control means 4 is a capillary having a thin tube diameter or an expansion valve that is controlled by adjusting the opening / closing degree of the valve. In control using capillaries, the medium that has become a high-temperature and high-pressure liquid is depressurized by pressure loss when flowing through the capillary, and a part of the liquid is accelerated while evaporating from the middle of the capillary, causing a large pressure loss, resulting in low-temperature and low-pressure. Changes to wet steam. Since the pressure loss when flowing at such a high speed is accompanied by an irreversible change, it becomes an enthalpy change like the above (2) (3), which loses a part of energy (3), (3), which the medium has. In the case of a refrigeration apparatus using an expansion valve, the enthalpy change (2) (3) is lost, such as losing a part of energy (3) (3) by the shock wave generated when passing through the valve. The cooling capacity obtained by evaporation is also the enthalpy difference between the state (4) and the state (3).
[0007]
Also, for example, Air Conditioning and Sanitary Engineering Society Proceedings No. 70, 1998 are under consideration. This is a conventional refrigeration system equipped with the above compressor, condenser and evaporator, and newly equipped with a speed increasing nozzle, a low pressure chamber, a mixing chamber and an ejector comprising a pressure recovery diffuser and a gas-liquid separator. is there. The medium that has become high-temperature and high-pressure steam that has come out of the condenser recovers its pressure by the action of the ejector and the gas-liquid separator, changes to an ideal isentropic change, and can be operated with a large cooling capacity. However, this conventional device eventually has a problem in that it becomes a device configuration equipped with a gas-liquid separator and new equipment, which increases in size, increases in cost, and requires high-precision flow rate control. It was.
[0008]
[Problems to be solved by the invention]
In conventional refrigeration equipment, the high-temperature and high-pressure refrigerant flowing out of the condenser causes a pressure loss when the flow rate is controlled by a valve or the like, and the pressure is reduced by the generation of a shock wave. There was a problem that the capacity was lowered and the cooling efficiency of the entire refrigeration apparatus was extremely deteriorated. In addition, a gas-liquid separator or the like has been conventionally used for this improvement, but this has a problem in that the cost is increased and high-precision flow rate control is required.
[0009]
The present invention is intended to solve these conventional problems, and can reduce the pressure loss of the medium without using a high-cost and high-precision medium control device, and can be inexpensive and easily perform a highly efficient cooling cycle. A refrigeration apparatus that can be operated is provided.
[0010]
[Means for Solving the Problems]
In the present invention, the first configuration according to the refrigeration apparatus includes a compressor, a condenser, an evaporator, a main passage which they are sequentially connected, a bypass flow path for branching the medium flowing out of the condenser from the main flow passage, the provided in the bypass passage, pressure reducing means for reducing the medium of the bypass flow path is disposed between the evaporator and the condenser, the drive means and the bypass passage of the medium to draw medium of the bypass flow path And a second evaporator installed in the bypass channel, and a medium control unit having a merging unit for merging the medium and the medium in the main channel and a booster for boosting the merged medium.
[0011]
In the refrigeration apparatus according to the second configuration of the present invention, the second evaporator is disposed downstream of the decompression unit, and the medium flowing through the bypass flow channel flows in order of the decompression unit and the second evaporator. After that, it is pulled into the driving means .
[0012]
In the refrigeration apparatus according to the third configuration of the present invention, the second evaporator exchanges heat between water or air cooled by the evaporator of the main flow path and the medium of the bypass flow path .
[0013]
In the refrigeration apparatus according to the fourth configuration of the present invention, the drive means has a nozzle for accelerating the medium in the main flow path and a low pressure chamber for drawing in the medium in the bypass flow path, and the pressure increase means is a diffuser. It is composed .
[0014]
In the refrigeration apparatus according to the fifth configuration of the present invention, the medium control means is configured by a tapered wide nozzle .
[0015]
In the cooling device according to the sixth configuration of the present invention, the medium control means is configured by an orifice having a bottleneck .
[0016]
In the refrigeration apparatus according to the seventh configuration of the present invention, the medium control means drives the valve body, the valve seat, and the valve body to adjust the area of the gap between the valve body and the valve seat, thereby controlling the medium. It has a valve drive device that controls the flow rate .
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Embodiment 1 FIG.
Hereinafter, a first embodiment of a refrigeration apparatus according to the present invention will be described. FIG. 1 is a system diagram of a refrigeration apparatus according to Embodiment 1. In the figure, 1 is a refrigeration apparatus according to the present invention, 2 is a compressor that normally compresses and discharges a medium flowing in a pipe, and 3 condenses the medium in a vapor state by exchanging heat with outside air or the like. The condenser 5 to be liquefied is an evaporator that exchanges heat with air, water, or the like to change the medium into steam, and is sequentially connected by a pipe 6. As shown in the figure, a medium control device 500 according to the present invention is connected between the condenser 3 and the evaporator 5 by a pipe 6. The medium control device 500 is for controlling the flow rate, pressure, temperature or state of the medium flowing out from the condenser 3, and this device 500 includes a main flow path 301 for the medium discharged from the condenser 3. A branched bypass channel 302 is installed. The bypass channel 302 is provided with a decompression unit 303 for decompressing a medium flowing through the bypass channel 302 and a drive unit 201 for driving the medium in the bypass channel 302. Further, the main flow path 301 includes a merging means 202 for merging the medium flowing through the bypass flow path 302 and the medium flowing through the main flow path 301, and a pressure increasing means 203 for increasing the pressure of the medium in the main flow path after merging. An installed medium control means 200 and a cooling means 304 for cooling the medium flowing through the main flow path 301 are provided.
[0019]
Next, the operation of the refrigeration apparatus according to this embodiment will be described. FIG. 2 is a pressure-enthalpy diagram showing the operation of the refrigeration apparatus of the present invention. As shown in FIG. 2, the medium compressed by the compressor 2 becomes a high-temperature and high-pressure steam (1), then condenses by exchanging heat with air in the condenser 3 and changes into a liquid (2) while maintaining the pressure. To do. This liquefied medium {circle around (2)} flows separately into a main channel 301 and a bypass channel 302 branched from the main channel 301. A part of the medium {circle around (2)} flowing through the bypass passage 302 is adiabatically expanded when passing through the pressure reducing means 303 and is reduced in pressure to change into low-temperature and low-pressure wet steam {circle around (3)}. Heat is exchanged with the medium flowing out from the medium control means 200 through the flow path 301 and is heated to change into superheated steam (4) '. The medium in the bypass flow path that has passed through the cooling means 304 is driven by the drive means 201 provided in the bypass flow path, and is drawn into the medium control means 200 to be in the state (5). On the other hand, the remaining medium {circle around (2)} flowing from the condenser 3 toward the main flow path 301 is supplied to the medium control means 200, and in this state, the pressure is reduced in a state close to an isentropic change while increasing in speed, and the wet vapor state {circle around (2)}. Change to 5 ▼. The medium {circle around (5)} flowing through the main flow path joins with the bypass flow medium {circle around (5)} drawn into the medium control means 200 from the bypass flow path at the merge means 202 and enters the state {circle around (6)}. Further, in the boosting means 203, the voltage is boosted in a state close to the isentropic change and changes to the state (7). The medium whose pressure has been recovered is then heat-exchanged with the medium flowing through the bypass channel by the cooling means 304 and cooled to state (3). In the evaporator 5, heat is exchanged with air, water, etc. After changing to the state (4), it is sent to the compressor 2 again. In this way, the above cooling cycle is repeated.
[0020]
As described above, according to the first embodiment of the present invention, by providing the medium control device 500, the medium flowing through the main flow path has almost no pressure loss from state (3) to state (4). A cooling cycle with ideal energy conversion can be easily realized. Therefore, the cooling capacity of the apparatus is improved, and high-efficiency operation with little energy loss is possible.
[0021]
Embodiment 2. FIG.
Next, a refrigeration apparatus according to Embodiment 2 of the present invention will be described. In the system diagram shown in FIG. 1, the present invention is a refrigeration apparatus using a heat exchanger that performs heat exchange with the medium in the bypass channel as the cooling means 304 that cools the medium flowing in the main channel. By installing the heat exchanger as the cooling means in this manner, a cooling cycle that performs almost ideal energy conversion can be easily realized as in the first embodiment.
[0022]
Embodiment 3 FIG.
Next, a refrigeration apparatus according to Embodiment 3 of the present invention will be described. FIG. 3 is a system diagram of an apparatus according to Embodiment 3 of the present invention. In FIG. 3, 32 is a heat exchanger for cooling the medium of the main flow path, and is installed upstream of the installation position of the medium control means 200 in which the drive means, the merging means and the pressure raising means are installed. Reference numeral 31 denotes a flow rate adjusting valve as a pressure reducing means for the medium flowing through the bypass flow path, which is sequentially connected to the heat exchanger 32 and the medium control means 200 by a bypass pipe 30.
[0023]
Next, the operation of the refrigeration apparatus according to this embodiment will be described. FIG. 4 is a pressure-enthalpy diagram showing the operation of the refrigeration apparatus of the present invention. As shown in FIG. 4, the medium compressed by the compressor 2 becomes high-temperature and high-pressure steam (1), is condensed by exchanging heat with air in the condenser 3, and changes to high-temperature and high-pressure liquid (2). This liquefied medium {circle around (2)} 'is divided into a main channel 301 and a bypass channel 302 branched from the main channel 301. A part of the medium {circle around (2)} flowing through the bypass passage 302 is adiabatically expanded in the flow rate adjusting valve 31 that is a pressure reducing means, and is reduced in pressure to change into a low temperature and low pressure wet steam state {circle around (3)}}, and then the heat exchanger At 32, heat exchange is performed with the medium flowing through the main flow path 301, and the medium is heated to change to a superheated steam state (4). The medium of the bypass flow path that has passed through the heat exchanger 32 is drawn into the medium control means 200 and enters the state (5). On the other hand, the remaining medium {circle around (2)} flowing from the condenser 3 toward the main flow path 301 is cooled by the heat exchanger 32 to be in the state {circle around (2)}. After that, it is supplied to the medium control means 200, where it is depressurized in a state close to the isentropic change and changes to the wet steam state (5). The medium {circle around (5)} flowing through the main flow path joins the bypass flow medium {circle around (5)} drawn into the medium control means 200 from the bypass flow path to become the state {circle around (6)}, and further the isentropic change It is boosted in a state close to, and changes to state (3). Thereafter, the medium exchanges heat with air or water in the evaporator 5 and changes to a low-temperature and low-pressure steam state (4). Then, the medium is sent again to the compressor 2 to become a high-temperature and high-pressure steam (1). The cooling cycle is repeated.
[0024]
As described above, even when the cooling unit is installed upstream of the driving unit, the merging unit, and the boosting unit, the pressure of the medium in the bypass channel, that is, the temperature can be lower than the temperature of the medium in the main channel. Since the degree of supercooling of the medium can be increased by installing the exchanger 32, it is possible to operate with high efficiency and high cooling capacity with little energy loss.
[0025]
Embodiment 4 FIG.
Next, a fourth embodiment of the present invention will be described. FIG. 5 is a system diagram showing a refrigeration apparatus according to Embodiment 4 of the present invention. In the figure, 18 is a heat exchanger installed in the bypass flow path as a cooling means, and is installed downstream of the ejector 10 which is a driving means, a merging means and a boosting means. 17 is a flow rate adjusting valve, and 16 is a bypass pipe. The ejector 10 is an ejector having a function similar to that of the medium control means 200 described above, and is a low pressure chamber that drives and draws the nozzle 12 for accelerating the flow rate of the medium in the main flow path and the medium in the bypass flow path into the casing 11. 13. It is comprised from the confluence | merging chamber 14 which joins the medium of a main flow path, and the medium of a bypass flow path, and the diffuser 15 which pressurizes the medium of a main flow path.
[0026]
In this way, the heat exchanger 18 is installed in the bypass flow path on the downstream side of the installation position of the drive means, the merging means, and the pressure raising means, so that the medium in the main flow path flowing out from the ejector as the medium control means can be efficiently obtained. By cooling, an ideal isentropic change state can be controlled. Therefore, it is possible to operate with high cooling capacity and high efficiency.
[0027]
Embodiment 5 FIG.
Next, a refrigeration apparatus according to Embodiment 5 of the present invention will be described. FIG. 6 shows a system diagram of the cooling device of the present invention. In the figure, reference numeral 36 denotes a second evaporator installed in the bypass channel, which is vaporized by heat exchange between water or air cooled by the evaporator 5 and a medium flowing out of the bypass channel. In this way, the second evaporator is installed in the bypass flow path, heat exchange is performed and the medium is vaporized and then merged with the medium in the main flow path, so that the medium is also ideal with less energy loss. Can be controlled. Therefore, operation with high cooling efficiency is possible.
[0028]
Embodiment 6 FIG.
7, 8 and 9 are enlarged views of the medium control means of the refrigeration apparatus according to Embodiment 6 of the present invention. In the apparatus shown in FIG. 7, a taper wide nozzle provided with a confluence 305 for merging the medium from the bypass flow path is used for the medium control means 200 and is installed in the main flow path 301. FIG. 8 shows an example in which an orifice having a narrow passage for restricting the flow path of the medium flowing inside is used as the medium control means 200 and a merging port 305 for merging the medium from the bypass flow path. FIG. 9 shows an expansion valve used for the medium control means 200, 41 is a casing, 42 is a valve body, 43 is a valve seat, 44 is a valve drive device for driving the valve body 42, 45 is An inflow pipe through which the medium from the main flow path flows into the expansion valve, 50 is a tapered outflow pipe through which the medium from the main flow path flows out from the expansion valve, and 305 is a junction for joining the medium from the bypass flow path It is. The expansion valve controls the flow rate of the medium by adjusting the area of the gap between the valve body 42 and the valve seat 43 by the valve driving device 44.
[0029]
Thus, the drive means for driving the medium of the bypass flow path and the merging means for merging the medium of the bypass flow path and the medium of the main flow path are narrowed down to reduce at least the cross-sectional area of the flow path through which the medium flows. In addition, by using a structure having a confluence of the medium from the bottleneck and the bypass, ideal state control with less energy loss of the medium can be performed, and efficient operation can be performed.
[0030]
Embodiment 7 FIG.
FIG. 10 is a system diagram of a refrigeration apparatus according to Embodiment 7 of the present invention. In FIG. 10, 100 is a temperature measuring device that measures the temperature of the medium, 101 is a pressure measuring device that measures the pressure of the medium, and is installed in the main flow path 301 between the cooling means 304 and the medium control device 200. Reference numeral 102 denotes a saturation temperature calculation means, and 103 denotes a supercooling degree calculation means. A signal is sent to the decompression means 303 provided in the bypass flow path in accordance with the calculated supercooling degree to control the flow rate of the medium in the bypass flow path. I have control. FIG. 11 is a system diagram of a similar refrigeration apparatus according to Embodiment 7 of the present invention. The saturation temperature calculation means 102 and the degree of supercooling are calculated from the temperature and pressure of the medium measured by the temperature measuring device 100 and the pressure measuring device 101. A signal is sent to the valve drive device 44 of the expansion valve in accordance with the degree of supercooling obtained by the calculation means 103 to control the flow rate of the medium in the main flow path.
[0031]
By configuring as in the seventh embodiment, the medium can be controlled to an ideal state with little energy loss. In the above embodiment, the case where the degree of supercooling is calculated and controlled has been described. However, the temperature measuring device and the pressure measuring device are installed between the evaporator and the compressor, and the degree of superheating of the medium before entering the compressor. May be calculated to control the decompression means or the medium control means. Alternatively, the degree of superheat may be calculated by measuring the temperature and pressure of the medium in the bypass pipe from the heat exchanger to the medium control means, and the pressure reducing means or the medium control means may be controlled according to the degree of superheat. Further, the same effect can be obtained even if the control parameter signal is sent to the compressor for control.
[0032]
Embodiment 8 FIG.
FIG. 12 shows a system diagram of a refrigeration apparatus according to Embodiment 8. The refrigeration apparatus 1 shown in FIG. 12 includes a compressor 2, a condenser 3, an evaporator 5, and a pipe 6 that sequentially connects them, and the condenser 3 and the evaporator 5 are switched in operation by a flow path switching valve 400. In the flow path provided between the condenser 3 and the evaporator 5, the bypass flow path, the pressure reducing means, the driving means, the merging means, and the pressure increasing described in the first embodiment are provided. A medium control device 500 comprising means is installed.
[0033]
Next, the operation of the refrigeration apparatus according to Embodiment 8 will be described. As shown in FIG. 12, the medium compressed into the high-temperature and high-pressure vapor by the compressor 2 flows into the condenser 3 through one flow path switching valve 400, where it is condensed and changed into a liquid. To do. The medium discharged from the condenser 3 passes through the other flow path switching valve 400 and flows into the medium control device 500 installed in the flow path between the condenser 3 and the evaporator 5. The medium that has flowed into the medium control device 500 is controlled to be in a state of low energy loss as described above, changes to a low-temperature and low-pressure wet steam state, and is sent to the evaporator 5 in the evaporator 5. It changes into low-temperature and low-pressure steam through heat exchange with outside air and water. Thereafter, the flow is again sent to the compressor 2 through the flow path switching valve 400, and the same cycle is repeated. When the condenser 3 is installed outdoors and the evaporator 5 is installed indoors and cooling operation is performed, the medium can efficiently cool indoor air by the evaporator 5 as described above. On the other hand, when the heating operation is performed by the above apparatus, the flow path is switched by the flow path switching valve 400, the medium flowing out from the compressor 2 is caused to flow into the evaporator 5, and the medium flowing out from the evaporator 5 is removed. One of the flow path switching valves 400 is switched to flow to the medium control apparatus 500, and the flow path switching valve 400 installed on the downstream side of the medium control apparatus 500 is switched for the medium that exits from the medium control apparatus 500. By sending it to the condenser 3, an efficient heating operation can be performed. According to the above apparatus, the air conditioning operation can be performed without changing the flow direction of the medium flowing in the pipe by simply switching the flow path switching valve.
[0034]
FIG. 13 is a system diagram of the apparatus according to the eighth embodiment, and a four-way valve is used as the flow path switching valve 400. In the figure, (a) shows a cooling operation, and (b) shows a heating operation. The apparatus shown in FIG. 13 operates in the same manner as the apparatus shown in FIG. 12 by switching the four-way valve, and can easily operate efficiently.
[0035]
As described above, according to the configuration of the present invention, it is possible to perform an efficient operation with little energy loss, and there is no need for expensive incidental equipment and repair of switching, and an evaporator and a condenser pair in one device and one system. Therefore, it is possible to realize a refrigeration apparatus that is compact, lightweight, inexpensive, and capable of switching between cooling and heating. In the above-described example, the case where the condenser 3 and the evaporator 5 are installed one by one has been described. However, the same effect can be obtained when a plurality of condensers 3 and evaporators 5 are installed indoors and outdoors.
[0036]
【The invention's effect】
The refrigeration apparatus according to the present invention is configured as described above, and in any case, the pressure of the medium flowing out of the condenser, which has been a problem in the past, without using expensive and high-precision equipment. Loss can be reduced, and cooling capacity and cooling efficiency can be improved.
Therefore, according to the configuration of the present invention, it is possible to easily perform a cycle operation with high cooling efficiency and a large cooling capacity, and it is possible to provide a high-performance refrigeration apparatus that is small, light, and inexpensive.
[Brief description of the drawings]
FIG. 1 is a system diagram of a refrigeration apparatus in an example showing Embodiments 1 and 2 of the present invention.
FIG. 2 is a pressure-enthalpy diagram showing the operation of the refrigeration apparatus of the present invention. FIG. 3 is an example showing Embodiment 3 of the present invention, and is a system diagram of the refrigeration apparatus. FIG. 5 is an example showing Embodiment 4 of the present invention and a system diagram of the refrigeration apparatus. FIG. 6 is an example showing Embodiment 5 of the present invention and is a system diagram of the refrigeration apparatus. FIG. 7 is an enlarged view of a medium control means portion in an example showing Embodiment 6 of the present invention.
FIG. 8 is an enlarged view of a medium control means portion in an example showing Embodiment 6 of the present invention.
FIG. 9 is an enlarged view of a medium control means portion in an example showing Embodiment 6 of the present invention.
FIG. 10 is a system diagram of a refrigeration apparatus in an example showing Embodiment 7 of the present invention.
FIG. 11 is a system diagram of a refrigeration apparatus in an example showing Embodiment 7 of the present invention.
FIG. 12 is a system diagram of a refrigeration apparatus in an example showing an eighth embodiment of the present invention.
FIG. 13 is a system diagram of a refrigeration apparatus in an example showing an eighth embodiment of the present invention.
FIG. 14 is a system diagram showing a conventional refrigeration apparatus.
FIG. 15 is a pressure-enthalpy diagram showing the operation of a conventional refrigeration apparatus.
[Explanation of symbols]
1. 1. refrigeration equipment, 2. compressor, Condenser 4. 4. flow control means; Evaporator, 6. Piping 7. Gas-liquid separator, 10. 10. Ejector Casing 12. Nozzle, 13. Low pressure chamber, 14. Merge room 15. Diffuser, 16. Bypass piping,
17. A flow control valve, 18. Heat exchanger, 33. Supercooling measurement means 36. Second evaporator, 41. Casing, 42. Disc,
43. Valve seat, 44. Valve drive device, 45. Inflow pipe,
50. Taper outlet tube, 100. Temperature measuring device,
101. Pressure measuring device, 102. Saturation temperature calculation means,
103. 200. supercooling degree calculating means; Medium control means,
201. Driving means, 202. Merging means, 203. Boosting means,
301. Main flow path, 302. Bypass flow path,
303. Pressure reducing means, 304. Cooling means, 305. Junction,
400. Flow path switching valve, 500. Media control device

Claims (7)

圧縮、凝縮器、蒸発器、これらを順次接続するメイン流路、
上記凝縮器から流出する媒体メイン流路から分岐するバイパス流路
上記バイパス流路に設けられ、上記バイパス流路の媒体を減圧する減圧手段
上記凝縮器と上記蒸発器との間に設置され、上記メイン流路の媒体を加速し上記バイパス流路の媒体を引き込む駆動手段上記バイパス流路の媒体とメイン流路の媒体を合流させる合流手段と合流した媒体を昇圧させる昇圧手段とを有する媒体制御手段、
および上記バイパス流路に設置された第2の蒸発器を備えたことを特徴とする冷凍装置。
Compressor, a condenser, an evaporator, a main flow path for them sequentially connected,
Bypass passage that branches the medium flowing out of the condenser from the main channel,
Provided in the bypass passage, pressure reducing means for reducing the medium of the bypass passage,
It is installed between the condenser and the evaporator, to merge the medium of the main flow passage medium and the main flow path accelerates the media drive means and the bypass flow passage to draw the medium of the bypass flow path Medium control means having a joining means and a boosting means for boosting the joined medium;
And a refrigeration apparatus comprising a second evaporator installed in the bypass flow path .
上記第2の蒸発器は、上記減圧手段の下流に配置され、
上記バイパス流路を流れる媒体は、上記減圧手段、第2の蒸発器と順に流れた後に上記駆動手段に引き込まれることを特徴とする請求項1に記載の冷凍装置。
The second evaporator is disposed downstream of the decompression means,
2. The refrigeration apparatus according to claim 1, wherein the medium flowing through the bypass channel is drawn into the driving unit after flowing in the order of the decompression unit and the second evaporator .
上記第2の蒸発器は、上記メイン流路の蒸発器で冷却された水または空気と上記バイパス流路の媒体とを熱交換することを特徴とする請求項1または2に記載の冷凍装置。 The refrigeration apparatus according to claim 1 or 2 , wherein the second evaporator exchanges heat between water or air cooled by the evaporator of the main flow path and the medium of the bypass flow path . 上記駆動手段は、上記メイン流路の媒体を加速するノズルと上記バイパス流路の媒体を引き込む低圧室とを有し、
上記昇圧手段は、ディフューザであることを特徴とする請求項1〜3のいずれか1項に記載の冷凍装置。
The drive means has a nozzle for accelerating the medium of the main flow path and a low pressure chamber for drawing the medium of the bypass flow path,
The refrigeration apparatus according to any one of claims 1 to 3 , wherein the boosting means is a diffuser .
上記媒体制御手段は、先細末広ノズルであることを特徴とする請求項1〜3のいずれか1項に記載の冷凍装置。 The refrigeration apparatus according to any one of claims 1 to 3, wherein the medium control means is a tapered narrow nozzle . 上記媒体制御手段は、隘路を持つオリフィスであることを特徴とする請求項1〜3のいずれか1項に記載の冷凍装置。 The refrigeration apparatus according to any one of claims 1 to 3, wherein the medium control means is an orifice having a bottleneck . 上記媒体制御手段は、弁体、弁座および上記弁体を駆動して上記弁体と上記弁座との隙間の面積を調整することにより媒体の流量を制御する弁駆動装置を有することを特徴とする請求項1〜3のいずれか1項に記載の冷凍装置。 The medium control means includes a valve drive device that controls the flow rate of the medium by driving the valve body, the valve seat, and the valve body to adjust an area of a gap between the valve body and the valve seat. The refrigeration apparatus according to any one of claims 1 to 3 .
JP34281899A 1999-12-02 1999-12-02 Refrigeration equipment Expired - Lifetime JP4277397B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34281899A JP4277397B2 (en) 1999-12-02 1999-12-02 Refrigeration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34281899A JP4277397B2 (en) 1999-12-02 1999-12-02 Refrigeration equipment

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008202850A Division JP4697487B2 (en) 2008-08-06 2008-08-06 Refrigeration equipment

Publications (2)

Publication Number Publication Date
JP2001153473A JP2001153473A (en) 2001-06-08
JP4277397B2 true JP4277397B2 (en) 2009-06-10

Family

ID=18356733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34281899A Expired - Lifetime JP4277397B2 (en) 1999-12-02 1999-12-02 Refrigeration equipment

Country Status (1)

Country Link
JP (1) JP4277397B2 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4635705B2 (en) * 2004-09-22 2011-02-23 株式会社デンソー Ejector refrigeration cycle
JP4984453B2 (en) 2004-09-22 2012-07-25 株式会社デンソー Ejector refrigeration cycle
JP4595607B2 (en) * 2005-03-18 2010-12-08 株式会社デンソー Refrigeration cycle using ejector
JP4725223B2 (en) * 2005-05-24 2011-07-13 株式会社デンソー Ejector type cycle
US7779647B2 (en) 2005-05-24 2010-08-24 Denso Corporation Ejector and ejector cycle device
JP4595717B2 (en) * 2005-05-24 2010-12-08 株式会社デンソー Vapor compression refrigeration cycle using ejector
JP5217121B2 (en) * 2005-06-30 2013-06-19 株式会社デンソー Ejector refrigeration cycle
DE102006062834B4 (en) 2005-06-30 2016-07-14 Denso Corporation ejector cycle
JP4556791B2 (en) * 2005-07-15 2010-10-06 株式会社デンソー Ejector refrigeration cycle
JP4631721B2 (en) * 2005-08-04 2011-02-16 株式会社デンソー Vapor compression refrigeration cycle
JP4609230B2 (en) * 2005-08-04 2011-01-12 株式会社デンソー Ejector type cycle
JP2007051812A (en) * 2005-08-17 2007-03-01 Denso Corp Ejector type refrigerating cycle
JP4704167B2 (en) * 2005-09-16 2011-06-15 東芝キヤリア株式会社 Refrigeration cycle equipment
JP4737001B2 (en) * 2006-01-13 2011-07-27 株式会社デンソー Ejector refrigeration cycle
JP4539571B2 (en) * 2006-01-26 2010-09-08 株式会社デンソー Vapor compression cycle
JP4971877B2 (en) * 2006-08-28 2012-07-11 カルソニックカンセイ株式会社 Refrigeration cycle
JP4832458B2 (en) * 2008-03-13 2011-12-07 株式会社デンソー Vapor compression refrigeration cycle
JP2019138577A (en) * 2018-02-13 2019-08-22 株式会社デンソー Refrigeration cycle device

Also Published As

Publication number Publication date
JP2001153473A (en) 2001-06-08

Similar Documents

Publication Publication Date Title
JP4277397B2 (en) Refrigeration equipment
JP4254217B2 (en) Ejector cycle
US9612047B2 (en) Refrigeration cycle apparatus and refrigerant circulation method
US6923016B2 (en) Refrigeration cycle apparatus
EP2596303B1 (en) High efficiency ejector cycle
US7823401B2 (en) Refrigerant cycle device
JP4604909B2 (en) Ejector type cycle
AU2001286333B2 (en) Method and arrangement for defrosting a vapor compression system
US9759462B2 (en) High efficiency ejector cycle
JP2010133606A (en) Ejector type refrigerating cycle
US20230106363A1 (en) Systems and Methods for Implementing Ejector Refrigeration Cycles with Cascaded Evaporation Stages
JP5359231B2 (en) Ejector refrigeration cycle
JP4930214B2 (en) Refrigeration cycle equipment
JPH07120076A (en) Air conditioner
KR101161381B1 (en) Refrigerant cycle apparatus
JPH04320762A (en) Freezing cycle
JP2019158308A (en) Refrigeration cycle device
JP5018944B2 (en) Refrigeration equipment
JP4697487B2 (en) Refrigeration equipment
JP2522361B2 (en) Air conditioner
JP2010038456A (en) Vapor compression refrigeration cycle
JP2014190562A (en) Refrigeration cycle and cooling device
JP2008261512A (en) Ejector type refrigerating cycle
JP2001241797A (en) Refrigerating cycle
JPH08313072A (en) Refrigeration equipment

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040630

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051011

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080617

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080806

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090217

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090302

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4277397

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140319

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term