JP4277275B2 - Ceramic multilayer substrate and high frequency electronic components - Google Patents
Ceramic multilayer substrate and high frequency electronic components Download PDFInfo
- Publication number
- JP4277275B2 JP4277275B2 JP2004014727A JP2004014727A JP4277275B2 JP 4277275 B2 JP4277275 B2 JP 4277275B2 JP 2004014727 A JP2004014727 A JP 2004014727A JP 2004014727 A JP2004014727 A JP 2004014727A JP 4277275 B2 JP4277275 B2 JP 4277275B2
- Authority
- JP
- Japan
- Prior art keywords
- layer
- ceramic
- multilayer substrate
- terminal electrode
- base layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000000919 ceramic Substances 0.000 title claims description 140
- 239000000758 substrate Substances 0.000 title claims description 93
- 239000004020 conductor Substances 0.000 claims description 24
- 238000007772 electroless plating Methods 0.000 claims description 5
- 229910018104 Ni-P Inorganic materials 0.000 claims description 4
- 229910018536 Ni—P Inorganic materials 0.000 claims description 4
- 239000000843 powder Substances 0.000 description 12
- 229910010293 ceramic material Inorganic materials 0.000 description 11
- 239000003989 dielectric material Substances 0.000 description 10
- 239000000463 material Substances 0.000 description 10
- 229910052751 metal Inorganic materials 0.000 description 9
- 239000002184 metal Substances 0.000 description 9
- 239000004065 semiconductor Substances 0.000 description 8
- 239000003990 capacitor Substances 0.000 description 6
- 239000010949 copper Substances 0.000 description 6
- 239000011521 glass Substances 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- 239000002002 slurry Substances 0.000 description 6
- 238000011156 evaluation Methods 0.000 description 5
- 238000010304 firing Methods 0.000 description 5
- 238000007747 plating Methods 0.000 description 5
- 229910052709 silver Inorganic materials 0.000 description 5
- 238000009864 tensile test Methods 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 238000010295 mobile communication Methods 0.000 description 4
- 238000005245 sintering Methods 0.000 description 4
- 229910000679 solder Inorganic materials 0.000 description 4
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 3
- 229910010413 TiO 2 Inorganic materials 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 230000020169 heat generation Effects 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 239000004332 silver Substances 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 229910015902 Bi 2 O 3 Inorganic materials 0.000 description 2
- GOJCZVPJCKEBQV-UHFFFAOYSA-N Butyl phthalyl butylglycolate Chemical compound CCCCOC(=O)COC(=O)C1=CC=CC=C1C(=O)OCCCC GOJCZVPJCKEBQV-UHFFFAOYSA-N 0.000 description 2
- NIQCNGHVCWTJSM-UHFFFAOYSA-N Dimethyl phthalate Chemical compound COC(=O)C1=CC=CC=C1C(=O)OC NIQCNGHVCWTJSM-UHFFFAOYSA-N 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 239000005388 borosilicate glass Substances 0.000 description 2
- 238000002788 crimping Methods 0.000 description 2
- 230000005496 eutectics Effects 0.000 description 2
- 230000002706 hydrostatic effect Effects 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 230000002452 interceptive effect Effects 0.000 description 2
- 229910000833 kovar Inorganic materials 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000004014 plasticizer Substances 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 description 2
- 238000007650 screen-printing Methods 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- QPLDLSVMHZLSFG-UHFFFAOYSA-N CuO Inorganic materials [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- 239000001856 Ethyl cellulose Substances 0.000 description 1
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 238000005219 brazing Methods 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000000280 densification Methods 0.000 description 1
- JXTHNDFMNIQAHM-UHFFFAOYSA-N dichloroacetic acid Chemical compound OC(=O)C(Cl)Cl JXTHNDFMNIQAHM-UHFFFAOYSA-N 0.000 description 1
- 238000004512 die casting Methods 0.000 description 1
- FBSAITBEAPNWJG-UHFFFAOYSA-N dimethyl phthalate Natural products CC(=O)OC1=CC=CC=C1OC(C)=O FBSAITBEAPNWJG-UHFFFAOYSA-N 0.000 description 1
- 229960001826 dimethylphthalate Drugs 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000007606 doctor blade method Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 235000019325 ethyl cellulose Nutrition 0.000 description 1
- 229920001249 ethyl cellulose Polymers 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 238000009766 low-temperature sintering Methods 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 239000011268 mixed slurry Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- -1 polyethylene terephthalate Polymers 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/0002—Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
Landscapes
- Production Of Multi-Layered Print Wiring Board (AREA)
- Structures For Mounting Electric Components On Printed Circuit Boards (AREA)
- Manufacturing Of Printed Wiring (AREA)
Description
本発明はセラミック積層基板と、これを用いた面実装タイプの高周波電子部品に関し、特にセラミック積層基板に形成される端子電極の構造に関するものである。 The present invention relates to a ceramic multilayer substrate and a surface mount type high frequency electronic component using the same, and more particularly to a structure of a terminal electrode formed on the ceramic multilayer substrate.
プラスチックやセラミックスなどからなる基板の表面に、FET、ダイオード等の半導体素子や、抵抗素子、キャパシタンス素子、インダクタンス素子などの電子部品を搭載した高周波スイッチ、VCO、増幅器等々の高周波電子部品が知られている。この様な基板は、半導体素子や電子部品の機械的応力からの保護、電気的特性の向上、熱的な保護が要求される。
近年、半導体素子の動作時発熱が大きくなって来ているが、この発熱は半導体素子自身及び、他の電子部品の動作に影響を及ぼす。このため前記発熱を効率的に放熱することが回路基板の重要な要求特性の一つとなっている。そこで回路基板材料として放熱性、電気的特性、信頼性等に優れた機能材料であるAl2 O3 などのセラミックスが多用されている。
High-frequency electronic components such as high-frequency switches, VCOs, amplifiers, etc., in which electronic components such as semiconductor elements such as FETs and diodes, resistance elements, capacitance elements, and inductance elements are mounted on the surface of a substrate made of plastic or ceramics, are known. Yes. Such a substrate is required to protect semiconductor elements and electronic components from mechanical stress, to improve electrical characteristics, and to be thermally protected.
In recent years, heat generation during operation of a semiconductor element has increased, and this heat generation affects the operation of the semiconductor element itself and other electronic components. For this reason, it is one of the important required characteristics of the circuit board to efficiently dissipate the heat. Therefore, ceramics such as Al 2 O 3 which is a functional material excellent in heat dissipation, electrical characteristics, reliability, and the like are frequently used as circuit board materials.
一方、携帯電話などの移動体通信分野においては、構成回路部品を小型化する要求が強く、現在ではキャパシタンス素子、インダクタンス素子などをLTCC(low temperature co−fireable ceramics used)技術により、セラミック体に内蔵させたLCフィルタ等が広く用いられる様になってきている。
このようなLTCC技術による回路部品は、例えば1000℃以下で焼結可能な低温焼結セラミックス材料と、これと同時焼成可能な導体ペーストを用いて構成される。例えば、ドクターブレード等によりキャリアフィルムに塗こう形成(キャスティング)したセラミックスグリーンシートを用い、これを所望形状に切断した前記グリーンシートに、キャパシタンス素子やインダクタンス素子を構成する所望の回路パターン(電極パターン)をAgやCuなどの導体ペーストで形成し、さらに孔開け装置によりグリーンシートの上下を貫通するビアホールを形成する。次いで、各グリーンシートに形成したビアホールに、AgやCuなどの金属を主成分とする導体ペーストを印刷充填し、そして前記グリーンシートを必要枚数重ね、積層、圧着し、その後、必要な寸法に切断し、グリーンシートと導体ペーストとの同時焼成を行う事によって得られる。
On the other hand, in the mobile communication field such as mobile phones, there is a strong demand for downsizing component circuit components, and at present, capacitance elements, inductance elements, and the like are built into ceramic bodies by LTCC (low temperature co-fireable ceramics used) technology. LC filters and the like that have been used are becoming widely used.
The circuit component by such LTCC technology is comprised using the low-temperature-sintering ceramic material which can be sintered at 1000 degrees C or less, and the conductor paste which can be fired simultaneously with this, for example. For example, a ceramic green sheet formed (casted) on a carrier film by a doctor blade or the like is used, and a desired circuit pattern (electrode pattern) constituting a capacitance element or an inductance element is formed on the green sheet cut into a desired shape. Is formed of a conductive paste such as Ag or Cu, and a via hole penetrating the top and bottom of the green sheet is formed by a punching device. Next, via holes formed in each green sheet are filled with a conductive paste mainly composed of a metal such as Ag or Cu, and the necessary number of the green sheets are stacked, stacked, and pressed, and then cut to the required dimensions. In addition, the green sheet and the conductive paste are obtained by simultaneous firing.
最近、このようなLTCC技術を前記基板に採用し、キャパシタンス素子、インダクタンス素子の少なくとも一部を電極パターンにより積層内蔵するとともに、キャビティーを形成して、このキャビティーにベアチップ状態の半導体素子を実装することが行われている。さらに移動体通信機器の小型化、高性能化に対する要求の高まりとともに、様々な回路機能が盛り込まれるように成り、携帯電話の高周波回路部を構成するアンテナスイッチ、フィルタ、方向性結合器、高周波増幅器などを前記基板に複合一体化することも提案されている。
以下、LTCC技術を用いて構成した基板をセラミック積層基板と呼ぶ。
Recently, such LTCC technology has been adopted for the substrate, and at least a part of the capacitance element and inductance element are stacked and built in an electrode pattern, and a cavity is formed, and a semiconductor element in a bare chip state is mounted in the cavity. To be done. In addition, with the increasing demand for miniaturization and high performance of mobile communication devices, various circuit functions have been incorporated, and antenna switches, filters, directional couplers, and high frequency amplifiers that constitute high frequency circuit sections of mobile phones. It has also been proposed to integrate the above and the like into the substrate.
Hereinafter, a substrate configured using LTCC technology is referred to as a ceramic laminated substrate.
このようなセラミック積層基板を用いる高周波電子部品にあっては、セラミック積層基板の表面に様々な機能をもつ端子電極、例えばプリント基板などの回路基板とはんだ接続され、半導体素子への駆動電圧を供給する端子電極、高周波信号が入力及び/又は出力する端子電極、接地電極等々の複数の端子電極が、スクリーン印刷や電極転写などの方法で形成される。
前記のように移動体通信機器の小型化、高性能化にともない、高周波電子部品も小型化が強く求められている。このためセラミック積層基板に、限られた外形寸法の中で様々な機能の端子電極を配置せねばならず、その結果、前記端子電極の形成面積を小さくせざるを得ない。
In a high-frequency electronic component using such a ceramic multilayer substrate, the surface of the ceramic multilayer substrate is solder-connected to a terminal electrode having various functions, for example, a circuit substrate such as a printed circuit board, and supplies a driving voltage to a semiconductor element. A plurality of terminal electrodes such as a terminal electrode for receiving, a terminal electrode for inputting and / or outputting a high-frequency signal, and a ground electrode are formed by a method such as screen printing or electrode transfer.
As described above, with miniaturization and high performance of mobile communication devices, high frequency electronic components are also strongly required to be miniaturized. For this reason, terminal electrodes having various functions must be arranged on the ceramic laminated substrate within limited external dimensions, and as a result, the formation area of the terminal electrodes must be reduced.
携帯電話においては、時として利用者が落下等の事象を生じさせることがあることから、高周波電子部品の端子電極も耐外的衝撃性に優れたものが求められている。また、高周波電子部品を回路基板に実装した後、前記回路基板に撓みやねじりを加えるような外力が加わり端子電極に応力が作用する場合がある。このような場合、端子電極の形成面積が小さくなるに従い、前記端子電極とセラミック積層基板との密着強度は自ずと不十分となりやすくなるため、端子電極が回路基板との実装面で剥離が生じる場合があった。 In a mobile phone, since a user sometimes causes an event such as a drop, a terminal electrode of a high-frequency electronic component is also required to have excellent external impact resistance. In addition, after the high frequency electronic component is mounted on the circuit board, an external force that applies bending or twisting to the circuit board is applied, and stress may act on the terminal electrode. In such a case, as the formation area of the terminal electrode becomes smaller, the adhesion strength between the terminal electrode and the ceramic laminated substrate tends to become insufficient naturally, so that the terminal electrode may peel off on the mounting surface with the circuit board. there were.
また、セラミック積層基板に用いられるセラミック材料の20℃〜500℃熱膨張係数5.0〜10×10−6/℃、端子電極の熱膨張係数は18〜21×10−6/℃であり、セラミック材料とエポキシ樹脂、ガラス−エポキシ系複合材料等からなる回路基板の熱膨張係数(12〜75×10−6/℃)及びはんだの熱膨張係数(24×10−6/℃)と大きく相違する。このためセラミック積層基板と端子電極との界面には応力が内在することとなる。密着強度が劣る場合には、セラミック積層基板に搭載した半導体素子の動作時発熱や、環境温度の変化による熱膨張により、セラミック積層基板、回路基板及びこれらを接合するはんだに繰り返し応力が作用し、セラミック積層基板から端子電極が剥離してしまう場合があり、このような場合には、高周波電子部品が要求される機能を発揮出来ないばかりか、携帯電話そのものの通話を不能としてしまう。 Moreover, the thermal expansion coefficient of the ceramic material used for the ceramic multilayer substrate is 20 ° C. to 500 ° C. 5.0 to 10 × 10 −6 / ° C., and the thermal expansion coefficient of the terminal electrode is 18 to 21 × 10 −6 / ° C. There is a great difference between the thermal expansion coefficient (12 to 75 × 10 −6 / ° C.) of the circuit board made of ceramic material, epoxy resin, glass-epoxy composite material, etc. and the thermal expansion coefficient of solder (24 × 10 −6 / ° C.). To do. For this reason, stress is inherent in the interface between the ceramic laminated substrate and the terminal electrode. When the adhesion strength is inferior, due to heat generation during operation of the semiconductor element mounted on the ceramic multilayer substrate and thermal expansion due to changes in environmental temperature, repeated stress acts on the ceramic multilayer substrate, the circuit substrate and the solder joining them, In some cases, the terminal electrode may be peeled off from the ceramic multilayer substrate. In such a case, not only the function required by the high-frequency electronic component cannot be exhibited, but the mobile phone itself cannot be used.
また他の問題として、密着強度が確保される場合であっても、前記回路基板に撓みやねじりが生じた場合に、セラミック積層基板の隅部が回路基板と接触・干渉し、セラミック積層基板の隅部から近傍の端子電極の間にクラック・割れなどが生じることもあった。 As another problem, even when the adhesion strength is ensured, when the circuit board is bent or twisted, the corners of the ceramic multilayer board contact and interfere with the circuit board, and In some cases, cracks, cracks, etc. occurred between the corners and nearby terminal electrodes.
特許文献1には、上記の問題点の内の幾つかを改善する方法が提案されている。金属リードがろう付けされるメタライズパッド(端子電極)を形成したセラミック積層基板を製作する際に、端子電極となる金属ペーストパターン60aの外周部を含むセラミックグリーンシート全面にセラミックの泥漿物から成る絶縁ペーストを印刷塗布しておき、焼結一体化して、図7に示す断面図のように前記端子電極の外周部をセラミック層15で覆い、金属リードと端子電極とのろう付け強度不足、不均一を解消し、セラミックとの熱膨張差からセラミックに割れが生じるのを防ぐことが提案されている。
特許文献1のように、端子電極の周囲をセラミック層で被覆することで、端子電極とセラミックとの密着強度を向上させることは可能であるが、端子電極の形成面積の小面積化による密着強度の低下を補うには不十分であった。また、回路基板との接続は金属リードを介して行うことから、外的衝撃の影響や、セラミック積層基板の隅部が回路基板との干渉については何等考慮されていない。
そこで本発明では、セラミック積層基板および、これを用いた高周波電子部品において、セラミック多層基板の表面に形成される端子電極とセラミック積層基板との密着強度を向上させることを第1の目的とし、さらにセラミック積層基板の隅部と回路基板との干渉による割れ等の欠陥の発生を抑制することを第2の目的とする。
As in Patent Document 1, it is possible to improve the adhesion strength between the terminal electrode and the ceramic by covering the periphery of the terminal electrode with a ceramic layer, but the adhesion strength by reducing the area of the terminal electrode is reduced. It was not enough to compensate for the decline. Further, since the connection with the circuit board is made through the metal lead, no consideration is given to the influence of external impact and the interference of the corners of the ceramic multilayer board with the circuit board.
Therefore, in the present invention, in the ceramic multilayer substrate and the high-frequency electronic component using the same, the first object is to improve the adhesion strength between the terminal electrode formed on the surface of the ceramic multilayer substrate and the ceramic multilayer substrate. The second object is to suppress the occurrence of defects such as cracks due to interference between the corners of the ceramic multilayer substrate and the circuit board.
第1の発明は、複数のセラミックス層と電極パターンを備えたセラミック積層基板において、 前記セラミック積層基板の裏面には、その外周から内側に所定の間隔をもって形成された端子電極を備え、 前記端子電極は、セラミックス層に印刷形成され下部が前記セラミックス層に埋設された電極パターンからなる下地層と、その外縁部の少なくとも一部を被覆する絶縁層と、前記下地層と前記絶縁層に重ねて印刷形成された電極パターンからなる上部層を有し、絶縁層が被覆された下地層の外縁部は、他の部位よりも深く、かつ前記セラミック層に対して傾斜して埋設され、もって上部層と下地層とで絶縁層を挟持したことを特徴とするセラミック積層基板である。 1st invention is a ceramic laminated substrate provided with the several ceramic layer and electrode pattern, The back surface of the said ceramic laminated substrate is equipped with the terminal electrode formed with the predetermined space | interval from the outer periphery to the inner side, The said terminal electrode Is printed on the ceramic layer, and the lower layer is composed of an electrode pattern in which the lower part is embedded in the ceramic layer, an insulating layer covering at least a part of the outer edge, and the upper layer and the insulating layer are overlaid. The outer edge portion of the underlying layer having the upper layer formed of the formed electrode pattern and covered with the insulating layer is deeper than other portions and embedded in an inclined manner with respect to the ceramic layer, A ceramic multilayer substrate having an insulating layer sandwiched between a base layer.
本発明においては、下地層の厚みが5〜20μmで、上部層の厚みが15〜30μmであり、上部層の厚みが下地層の厚みよりも厚くして、端子電極をセラミック積層基板の表面に対して、10μm以上突出させるのが好ましい。また、絶縁層が被覆された下地層の外縁部を、他の部位よりも深く、かつ前記セラミック層に対して傾斜して埋設するのが好ましい。前記上部層の表面に無電界めっきで形成される導体層を形成し、前記導体層の外縁部が前記絶縁層の一部を覆い、前記導体層をNi−P層、Au層とするのも好ましい。更に、セラミック積層基板の表面に延出するビアホールを前記下地層と接続し、前記ビアホールが略円錐形状に形成されることで、さらに密着強度を向上させることが出来好ましい。 In the present invention, the thickness of the base layer is 5 to 20 μm, the thickness of the upper layer is 15 to 30 μm, the thickness of the upper layer is larger than the thickness of the base layer, and the terminal electrode is placed on the surface of the ceramic laminated substrate. On the other hand, it is preferable to protrude 10 μm or more. Moreover, it is preferable that the outer edge portion of the base layer covered with the insulating layer is buried deeper than other portions and inclined with respect to the ceramic layer. A conductor layer formed by electroless plating is formed on the surface of the upper layer, an outer edge portion of the conductor layer covers a part of the insulating layer, and the conductor layer is a Ni-P layer or an Au layer. preferable. Furthermore, it is preferable that a via hole extending to the surface of the ceramic laminated substrate is connected to the base layer and the via hole is formed in a substantially conical shape, whereby the adhesion strength can be further improved.
第2に発明は、第1の発明のセラミック積層基板において、セラミック積層基板の内部に形成された他の電極パターンでインダクタンス素子及び/又はキャパシタンス素子を形成し、ビアホールを介して前記端子電極と接続した高周波電子部品である。 According to a second aspect of the present invention, in the ceramic multilayer substrate of the first invention, an inductance element and / or a capacitance element is formed with another electrode pattern formed inside the ceramic multilayer substrate, and connected to the terminal electrode via a via hole. High-frequency electronic components.
本発明によれば、外表面に端子電極を有するセラミック積層基板において、端子電極を下地層と上部層で構成し、前記下地層の外縁部を被覆する絶縁層を、前記下地層と前記上部層とで挟持することにより、端子電極とセラミックとの密着強度を向上させることが出来る。また、前記端子電極を前記セラミック積層基板の表面に対して突出させることにより、セラミック積層基板の表面と回路基板までの距離(バッギング高さ)を確保することが出来る。前記セラミック積層基板が回路基板に実装された後、前記回路基板に撓みやねじりが生じた場合でも、セラミック積層基板の隅部が実装基板と接触・干渉することを防ぎ、ひいては前記干渉によって生じるセラミック積層基板のクラック・割れなどを生じることを低減することが出来る。 According to the present invention, in the ceramic laminated substrate having the terminal electrode on the outer surface, the terminal electrode is composed of the base layer and the upper layer, and the insulating layer covering the outer edge portion of the base layer is formed of the base layer and the upper layer. The adhesion strength between the terminal electrode and the ceramic can be improved. Further, by projecting the terminal electrode with respect to the surface of the ceramic multilayer substrate, a distance (bagging height) between the surface of the ceramic multilayer substrate and the circuit substrate can be ensured. Even when the circuit board is bent or twisted after the ceramic multilayer board is mounted on the circuit board, the corners of the ceramic multilayer board are prevented from contacting / interfering with the mounting board, and thus the ceramic generated by the interference. It is possible to reduce the occurrence of cracks and cracks in the laminated substrate.
本発明に係る高周波電子部品の一例を斜視図として図2に示す。また裏面の平面図を図3に示す。
この高周波電子部品1は高周波スイッチであって、セラミック積層基板12に形成された実装電極55にコンデンサ、抵抗、ダイオード等の電子部品51が搭載され、前記電子部品51を金属ケース(図示せず)で覆ったり、樹脂封止している。
セラミック積層基板12は、焼成により多層一体化された複数のセラミックス層と、電極パターンを主構成とするものであり、チップインダクタやチップコンデンサ、チップ抵抗などの電子部品51を実装するための実装電極55(図2中ハッチングして図示)と、裏面側の主面に形成され、回路基板とろう付けされる裏面電極310と、セラミック層に形成されたコンデンサ素子やインダクタンス素子、グランド電極を構成する内部導体パターンや、これらを接続する接続線路、ビアホールが設けられている。さらに、回路基板との接合強度を確保するために、前記コンデンサ素子や前記インダクタンス素子等と電気的に接続しないが、回路基板との固着接続を行うダミー電極315を形成する場合もある。
上記のように高周波電子部品においては様々な電極を有するが、本発明においては、積層基板12の主面に形成され、回路基板との電気的な接続を担う裏面電極310、ダミー電極315を端子電極として定義する。
An example of the high-frequency electronic component according to the present invention is shown as a perspective view in FIG. A plan view of the back surface is shown in FIG.
The high-frequency electronic component 1 is a high-frequency switch, and an
The
As described above, the high-frequency electronic component has various electrodes. In the present invention, the
図1(a)、(b)に端子電極部の拡大平面図及び、その断面図に示す。前記絶縁層15は、セラミック積層基板12の主面(回路基板側)に電極パターンで形成された下地層60aの縁部を覆うように、かつ、下地層60aの一部が露出するように被覆形成される。前記下地層60aの形状は特に規定はされないが、もっぱら平面視で略円形状や、略方形状などに形成される。セラミック層との接触面積を増やすためには、下地層を略方形状とするのが好ましい。
また絶縁層15から露出する部分(図中破線で示す)も上部層60bとの接触面積を大きく得られることから、略方形状とするのが好ましく、上部層60bと積層基板内に形成された配線パターンやインダクタンス素子やキャパシタンス素子等の回路素子との電気的接続、また上部層と下地層との間の接続強度を損なわないようにし、前記下地層60aがビアホールと接続する場合では、少なくとも前記絶縁層15に覆われていない露出部の面積を、前記下地層と接続するビアホールの面積よりも大きくなるように設定するのが好ましい。
1A and 1B are an enlarged plan view and a cross-sectional view of the terminal electrode portion. The insulating
Further, the portion exposed from the insulating layer 15 (shown by a broken line in the drawing) is preferably formed in a substantially rectangular shape because it can obtain a large contact area with the
下地層60aの上部には、前記絶縁層15の一部を被覆するように上部層60bを形成し、前記上部層と前記下地層とで前記絶縁層を挟持する。前記絶縁層は下地層の外縁部全周に設けているが、図6(a)(b)のように、応力集中する部位に選択して設けることも出来る。また、下地層の一部を除き、ほぼセラミック積層基板の主面全体を覆うように絶縁層を形成しても良い。
下地層60を覆う絶縁層15の覆い幅W1(下地層60aの外縁部から絶縁層15の内縁部の距離)は20μm以上とするのが好ましく、また外縁部からの覆い幅を少なくとも20μm以上とするのが好ましく、さらに覆い幅は40μm〜100μmとすると密着強度を向上することが出来好ましい。前記覆い幅の上限は下地層の外形面積によって規定されるが、上部層60bと積層基板内に形成された回路素子との電気的接続、また上部層と下地層との間の接続強度を損なわないように設定する。
また、前記絶縁層15を覆う上部層60bの覆い幅W2(上部層60bの外縁部から絶縁層15の内縁部の距離)は、少なくとも20μm以上とするのが好ましく、さらに40μm〜100μmとすると密着強度を向上することが出来好ましい。
本発明においては、下地層の厚みを5〜20μmとし、上部層の厚みを15〜30μmとし、前記上部層の厚みを前記下地層の厚みよりも厚く形成するのが好ましい。また絶縁層の厚みは5μm以上、好ましくは10〜30μmである。
An
The covering width W1 of the insulating
Further, the covering width W2 of the
In the present invention, it is preferable that the thickness of the base layer is 5 to 20 μm, the thickness of the upper layer is 15 to 30 μm, and the thickness of the upper layer is larger than the thickness of the base layer. The insulating layer has a thickness of 5 μm or more, preferably 10 to 30 μm.
また、本発明においては図4(b)に示すように前記下地層の外縁部を、前記セラミック層に対して傾斜して埋設することで、端子電極60に外力が作用するとき、下地層60aの外縁部に作用する外力を低減できるので、下地層60aの外縁部を起点として端子電極が剥離するのを防ぐことが出来、セラミック層と下地層60aとの界面部分での強度を向上することが出来るので好ましい。
Further, in the present invention, as shown in FIG. 4B, the outer edge portion of the underlayer is embedded so as to be inclined with respect to the ceramic layer, so that when an external force acts on the terminal electrode 60, the
さらに上部層60bの全体と絶縁層15の一部を覆うように、めっき層からなる導体層(図示せず)が形成される。導体層が絶縁層15の縁部を覆う幅は、導体層65の厚みで調整するが、1μm以上とするのが好ましい。
Further, a conductor layer (not shown) made of a plating layer is formed so as to cover the entire
この絶縁層15は、セラミック積層基板12を主として構成しホウ珪酸ガラスを含む誘電体粉末を樹脂(エチルセルロース)、可塑剤(ジメチルフタレート)、溶剤(BCA、エタノール、ブタノール)とともに所定量混合してペースト化した誘電体ペーストを焼結したものや、ホウ珪酸ガラスにAl2O3、MgO、TiO2の少なくとも一つをフィラーとして含みペースト化したものを焼結したてなるものである。なお前記誘電体粉末はセラミック積層基板を構成するセラミック層との一体焼結性を向上させるため、Biを添加、含有するものであるのが好ましい。この絶縁層15の色調をセラミック層と異なるものとする場合には、前記誘電体ペーストに、Fe、Cu、Co、Ni、Cr等の金属の少なくとも1種含有する着色ガラス粉を0.5〜5重量%程度添加すれば良い。
絶縁層15を構成するペーストにガラスを含有させることで、下地層60a、上部層60bとの界面に析出するガラスによるアンカー効果により、挟持部での密着強度を向上させることが出来る。
This insulating
By including glass in the paste constituting the insulating
以下セラミック積層基板の製造方法について、詳細に説明する。
まず、低温焼成セラミック材料と適量の有機バインダや有機溶剤とを共に混合し、これをキャリアフィルム上にドクターブレート法によってキャスティングして、セラミックグリーンシートを成形する。前記キャリアフィルムは、例えばポリエステル、ポリエチレンテレフタレートで出来ており、熱的安定性、機械的強度にすぐれており、柔らかいセラミックグリーンシートを保持するのに適している。前記本実例では低温焼成セラミック材料として、Al−Si−Ba−O系誘電体材料を用いた。セラミックグリーンシートの厚さは、セラミック積層基板内にコンデンサ素子が形成される場合にはセラミック層厚さで10〜25μmとし、他の層には100〜150μmのものを用いた。なお、セラミック層厚さは適宜設定されるものであり、前記厚さに限定されるものではないが、好ましくは10〜150μmの範囲で選択する。
Hereinafter, the manufacturing method of a ceramic laminated substrate is demonstrated in detail.
First, a low-temperature fired ceramic material and an appropriate amount of an organic binder or organic solvent are mixed together, and this is cast on a carrier film by a doctor blade method to form a ceramic green sheet. The carrier film is made of, for example, polyester or polyethylene terephthalate, has excellent thermal stability and mechanical strength, and is suitable for holding a soft ceramic green sheet. In the present example, an Al—Si—Ba—O-based dielectric material is used as the low-temperature fired ceramic material. When the capacitor element is formed in the ceramic laminated substrate, the ceramic green sheet has a ceramic layer thickness of 10 to 25 μm, and the other layers have a thickness of 100 to 150 μm. The thickness of the ceramic layer is appropriately set and is not limited to the above thickness, but is preferably selected in the range of 10 to 150 μm.
他の低温焼成セラミック材料としては、例えば低誘電率(比誘電率5〜10)のAl−Mg−Si−Gd−O系誘電体材料、Mg−Si−Ba−La−B−O系誘電体材料、Al−Si−Sr−O系誘電体材料、Al−Si−Ba−O系誘電体材料、高誘電率(比誘電率50以上)のBi−Ca−Nb−O系誘電体材料等様々な材料が開発されている。セラミック積層基板には、これらの低温焼成セラミック材料を単独で使用する場合もあるし、インダクタンス素子、コンデンサ素子を構成するセラミック層に応じて低誘電率の材料、高誘電率の材料の選択的に用いる場合もある。 Other low-temperature fired ceramic materials include, for example, an Al—Mg—Si—Gd—O based dielectric material having a low dielectric constant (relative dielectric constant 5 to 10), and an Mg—Si—Ba—La—B—O based dielectric material. Materials, Al-Si-Sr-O-based dielectric materials, Al-Si-Ba-O-based dielectric materials, Bi-Ca-Nb-O-based dielectric materials with high dielectric constant (relative permittivity of 50 or more), etc. Materials have been developed. In some cases, these low-temperature fired ceramic materials may be used alone for the ceramic multilayer substrate, or a low-dielectric constant material or a high-dielectric-constant material can be selectively used according to the ceramic layers constituting the inductance element and the capacitor element. Sometimes used.
次に、キャスティングされたセラミックグリーンシートをキャリアフィルムごと切断し、その一部のセラミックグリーンシートにビアホールを形成する。ビアホールは、セラミックグリーンシート側からCO2レーザを照射して、照射面側の孔径がセラミック層としたときに0.05mm〜0.3mmとなる、円筒又は略円錐形状を有するビアホールを形成する。前記ビアホールは、積層配置、実装配置される回路素子間、セラミック積層基板底部に形成される端子電極との接続に利用される。 Next, the cast ceramic green sheet is cut together with the carrier film, and a via hole is formed in a part of the ceramic green sheet. The via hole forms a via hole having a cylindrical shape or a substantially conical shape that is irradiated with a CO 2 laser from the ceramic green sheet side and has a hole diameter on the irradiated surface side of 0.05 mm to 0.3 mm. The via hole is used for connection to a laminated electrode, a circuit element to be mounted, and a terminal electrode formed on the bottom of the ceramic laminated substrate.
次に、セラミックグリーンシートに形成されたビアホールに導体ペーストを埋込む。導体ペーストとしては銀,銅等が用いられ、メタルマスク又はメッシュマスクによるスクリーン印刷によってビアホール部に埋込まれる。 Next, a conductor paste is embedded in the via hole formed in the ceramic green sheet. Silver, copper, or the like is used as the conductive paste, and is buried in the via hole portion by screen printing using a metal mask or a mesh mask.
次に、セラミックグリーンシートの表面にインダクタンス素子やキャパシタンス素子を構成する回路パターン、インダクタンス素子やキャパシタンス素子等を接続する接続電極を形成する。信号配線、及び電源配線の導体パターンを形成する導体ペースト材はビアホール部と同じものを用いても良いし、異なるものを用いても良い。なお、導体パターンの形成と前記ビアホールへの導体ペーストの充填を同時に行ってもよい。 Next, a circuit pattern constituting an inductance element and a capacitance element, and a connection electrode for connecting the inductance element and the capacitance element are formed on the surface of the ceramic green sheet. The conductor paste material for forming the conductor pattern of the signal wiring and the power supply wiring may be the same as or different from the via hole portion. The formation of the conductor pattern and the filling of the conductor paste into the via hole may be performed simultaneously.
以上の様にして、キャリアフィルムを付けたままセラミックグリーンシートを作成した。そして、これを積層用金型に配置するが、前記金型の下側金型には吸着孔が形成されており、これにより最下層となるセラミックグリーンシートをキャリアフィルムが付いたまま、かつキャリアフィルムを積層治具側として吸着固定する。 As described above, a ceramic green sheet was prepared with the carrier film attached. Then, this is placed in a laminating mold, and a suction hole is formed in the lower mold of the mold, so that the ceramic green sheet as the lowermost layer is attached to the carrier film with the carrier film attached. Adsorb and fix the film as the lamination jig side.
そして、キャリアフィルムを付けたままセラミックグリーンシートを、セラミックグリーンシートが相対向するようにして積層し、熱圧着させ、キャリアフィルムをとり除く。これを数次繰り返し仮圧着体とした。
この仮圧着体の主面に導体ペーストを用いて電極パターンを印刷形成し、端子電極60を構成する下地層60aを形成した。このとき、前記下地層60aは圧着体の表面上に盛り上がるように形成されている(図4(a))。さらに、セラミックグリーンシートに用いたものと同じ低温焼成セラミック材料粉末をペースト化した誘電体ペーストを用いて、下地層60の縁部に絶縁層15を印刷形成した(図4(b))。この仮圧着体70を金型に配置し、前記圧着体の両主面に一対の金属板を配置し、これをCIP(静水圧等方プレス装置)により本圧着した。この時の圧着体表面に形成された放熱用電極や端子電極は図4(c)に示すように圧着体に押込まれ、実質的に平坦に形成される。
さらに導体ペーストを用いて、絶縁層15の一部を覆うように電極パターンを印刷形成し、端子電極60を構成する上部層60bを形成してセラミックグリーンシート積層体とした(図4(d))。前記導体層は同一の導体ペーストを用いても良いし、一方のペーストをガラスを含有させたものとしたり、下地層、上部層を構成する金属材料を、例えば下地層をCu、上部層をAgとするなど、異ならせることも可能である。
Then, with the carrier film attached, the ceramic green sheets are laminated so that the ceramic green sheets face each other, thermocompression-bonded, and the carrier film is removed. This was repeated several times as a temporary press-bonded body.
An electrode pattern was printed and formed on the main surface of the temporary pressure-bonded body using a conductive paste, and a
Further, an electrode pattern was printed and formed using conductor paste so as to cover a part of the insulating
このセラミックグリーンシート積層体に分割溝を鋼刃で刻設形成した後、セッタ等の焼成治具上に配置して大気中900℃で焼成した。なお導体ペーストとしてAgを用いる場合には、焼成時に水蒸気を含まない乾燥空気を用いるのが好ましい。水蒸気を含む場合には、Agの緻密化が進まず、密着強度が著しく低下する場合がある。また導体ペーストとしてCuを用いる場合には、所定のガス雰囲気中(還元雰囲気、例えばN2、Arガス)で焼成する。そして、この上部層60bに、無電界めっき処理(Ni−Pめっき、Auめっき)を行い導体層を形成した。
以上のような工程を経て、下地層の外縁部の少なくとも一部とセラミック層を前記絶縁層で被覆するとともに、前記絶縁層の少なくとも一部を前記上部層で被覆して、前記上部層と前記下地層とで前記絶縁層を挟持するとともに、前記端子電極の下地層60aの縁部が埋め込まれ、かつ前記端子電極60が主面に対して実質的に突出したセラミック積層基板を得た。
After dividing and forming a dividing groove with a steel blade in this ceramic green sheet laminate, it was placed on a firing jig such as a setter and fired at 900 ° C. in the atmosphere. In addition, when using Ag as a conductor paste, it is preferable to use the dry air which does not contain water vapor | steam at the time of baking. When water vapor is contained, the densification of Ag does not proceed and the adhesion strength may be significantly reduced. When Cu is used as the conductor paste, it is fired in a predetermined gas atmosphere (reducing atmosphere such as N 2 or Ar gas). Then, the
Through the above steps, at least a part of the outer edge of the underlayer and the ceramic layer are covered with the insulating layer, and at least a part of the insulating layer is covered with the upper layer, and the upper layer and the A ceramic multilayer substrate was obtained in which the insulating layer was sandwiched between the base layer, the edge of the
他の態様として、図5に示す端子電極構造がある。この端子電極は、図1のものと同様に、下地層60a、上部層50bを備え、絶縁層15を挟持するものであるが、前記下地層60aの縁部は、セラミック層に埋め込まない構成を有する。このような端子電極構造は、例えば以下の手順で作製することが出来る。
まず、CIP(静水圧等方プレス装置)により本圧着された圧着体の主面に導体ペーストを用いて電極パターンを印刷形成し、端子電極60を構成する下地層60aを形成する。そして、セラミックグリーンシートに用いたものと同じ低温焼成セラミック材料粉末をペースト化した誘電体ペーストを用いて、下地層60の縁部に絶縁層15を印刷形成する。 さらに導体ペーストを用いて、絶縁層15の一部を覆うように電極パターンを印刷形成し、端子電極60を構成する上部層60bを形成してセラミックグリーンシート積層体とする。これを大気中900℃で焼成し、上部層60bに無電界めっきを行い、導体層を形成した。 以上のような工程を経て、他の態様のセラミック積層基板を得ることが出来る。
As another embodiment, there is a terminal electrode structure shown in FIG. 1, the terminal electrode includes a
First, an electrode pattern is printed and formed on the main surface of the pressure-bonded body, which is finally pressure-bonded by a CIP (hydrostatic pressure isotropic press apparatus), to form a
なお、図4(c)のように形成した積層体の両主面に、低温焼成セラミック材料の焼結温度よりも焼結温度の高い無機組成物(例えばアルミナ)で構成された拘束層を配置して焼結しても良い。この拘束層により平面方向の収縮を拘束することで高い寸法精度のセラミック積層基板とすることが出来る。なお前記拘束層は、グリーンシートやペーストにより形成することが出来、圧着や、印刷などにより積層体と一体化する。 In addition, a constraining layer made of an inorganic composition (for example, alumina) whose sintering temperature is higher than the sintering temperature of the low-temperature fired ceramic material is disposed on both main surfaces of the laminate formed as shown in FIG. And may be sintered. By constraining the shrinkage in the planar direction by this constraining layer, a ceramic laminated substrate with high dimensional accuracy can be obtained. The constraining layer can be formed of a green sheet or paste, and is integrated with the laminate by pressure bonding or printing.
セラミック積層基板の構成する低温焼成セラミック材料として、重量%でAl2O3:50、SiO2:36、SrO:10、TiO2:4、Bi2O3:2.5、Na2O:2、K2O:0.5、CuO:0.3、Mn3O40.5に換算される誘電体材料を使用した。
前記、組成の材料を作製するため、Al2O3、SiO2、TiO2、Bi2O3、CuO、Mn3O4およびSrCO3、Na2CO3、K2CO3の原料粉を秤量し、純水と一緒に、ボールミルで混合し、混合スラリーを得た。前記スラリーにPVAをスラリー重量に対して1wt%添加した後、スプレードライヤーにて乾燥し、平均粒径が約0.1mmの顆粒状の乾燥粉を得た。前記顆粒粉を、連続炉にて最高温度800℃にて仮焼して、目的とする組成である仮焼粉を得た。
次に、仮焼粉を、エタノール中に分散させてボールミルで平均粒径1.2μmまで粉砕し、更に、シート成形用のバインダーであるPVB(ポリビニルブチラール)を仮焼粉重量に対して12wt%、および可塑剤であるBPBG(ブチルフタリルブチルグリコレート)7.5wt%を添加し、同一のボールミルにて、溶解・分散を行い、シート成形用のスラリーを得た。前記スラリーを減圧下で、脱泡および一部の溶剤の蒸発を行い、約10000mPa・sの粘度になるように調整した。粘度調整後、ドクターブレードにて、シート成形を行い、乾燥後約100μmの厚さのセラミックグリーンシートを得た。後工程のハンドリングのため、所定の大きさに裁断した。
As a low-temperature fired ceramic material constituting the ceramic laminated substrate, Al 2 O 3 : 50, SiO 2 : 36, SrO: 10, TiO 2 : 4, Bi 2 O 3 : 2.5, Na 2 O: 2 by weight%. , K 2 O: 0.5, CuO: 0.3, and a dielectric material converted to Mn 3 O 4 0.5 were used.
In order to produce the material having the above composition, raw material powders of Al 2 O 3 , SiO 2 , TiO 2 , Bi 2 O 3 , CuO, Mn 3 O 4 and SrCO 3 , Na 2 CO 3 , K 2 CO 3 are weighed. And mixed with a pure water with a ball mill to obtain a mixed slurry. After adding 1 wt% of PVA to the slurry with respect to the weight of the slurry, the slurry was dried with a spray dryer to obtain a granular dry powder having an average particle size of about 0.1 mm. The granulated powder was calcined at a maximum temperature of 800 ° C. in a continuous furnace to obtain a calcined powder having a target composition.
Next, the calcined powder is dispersed in ethanol and pulverized with a ball mill to an average particle size of 1.2 μm. Further, PVB (polyvinyl butyral), which is a binder for sheet molding, is 12 wt% based on the weight of the calcined powder. , And 7.5 wt% of BPBG (butylphthalyl butyl glycolate) as a plasticizer were added, and dissolution and dispersion were performed in the same ball mill to obtain a sheet forming slurry. The slurry was defoamed and part of the solvent was evaporated under reduced pressure to adjust the viscosity to about 10,000 mPa · s. After adjusting the viscosity, the sheet was formed with a doctor blade, and after drying, a ceramic green sheet having a thickness of about 100 μm was obtained. It cut | judged to the predetermined | prescribed magnitude | size for the handling of a post process.
以下の製造工程は、前記した製造工程と実質的に同じとしているので、その説明を省く。なお、端子電極の下地層を形成する導体ペーストは銀ペーストを用いており、主成分の銀に対して、0.2wt%の白金が添加されているものである。これを焼結後の寸法で、外形が0.6mm×0.6mmとなるように印刷形成している。そして、その下地層の一部を露出させて絶縁層で覆った。前記絶縁層は、前記したセラミック積層基板の誘電体材料Al、Si、Sr、Na、K、Tiの酸化物を混合し、800℃で仮焼して、粉砕したセラミック粉末に溶剤、有機ビヒクル等を混合してペースト状にしたものを用いている。さらに下地層と同一の導体ペーストで上部層を形成した。そして仮焼温度よりも高い温度で本焼結し、その後に、前記絶縁層から露出する下地層に無電解めっきにてNi−PめっきおよびAuめっきを施し、図1に示した端子電極構造を有するセラミック積層基板を作製した(実施例1)。なお、下地層、上部層、絶縁層の焼成後の厚みは、それぞれ10μm、30μm、20μmであり、覆い幅W1,W2はそれぞれ60μmであり、端子電極の突出高さhは、導体層を含めて40μmであった。 Since the following manufacturing process is substantially the same as the above-described manufacturing process, the description thereof is omitted. The conductive paste for forming the base layer of the terminal electrode uses a silver paste, and 0.2 wt% platinum is added to the main component silver. This is the size after sintering, and is printed and formed so that the outer shape becomes 0.6 mm × 0.6 mm. Then, a part of the base layer was exposed and covered with an insulating layer. The insulating layer is made by mixing oxides of the dielectric materials Al, Si, Sr, Na, K, and Ti of the ceramic laminated substrate described above, calcined at 800 ° C., and pulverized ceramic powder with a solvent, an organic vehicle, etc. Is used to make a paste. Furthermore, the upper layer was formed with the same conductive paste as the underlayer. Then, main sintering is performed at a temperature higher than the calcining temperature, and thereafter, the base layer exposed from the insulating layer is subjected to Ni-P plating and Au plating by electroless plating, and the terminal electrode structure shown in FIG. 1 is obtained. A laminated ceramic substrate was prepared (Example 1). The thicknesses of the base layer, the upper layer, and the insulating layer after firing are 10 μm, 30 μm, and 20 μm, respectively, the covering widths W1 and W2 are 60 μm, respectively, and the protruding height h of the terminal electrode includes the conductor layer. 40 μm.
他の実施例として、図5の端子構造を有するセラミック積層基板を作製した(実施例2)。本実施例で用いた誘電体材料、導体ペースト材料は実施例と同一であり、下地層、上部層、絶縁層の平面視形状、製造工程も前記したものと同じであるのでその説明を省く。
なお下地層、上部層、絶縁層の焼成後の厚みは、それぞれ10μm、35μm、20μmであり、覆い幅W1,W2はそれぞれ60μmであり、端子電極の突出高さhは、導体層を含めて45μmであった。
As another example, a ceramic laminated substrate having the terminal structure of FIG. 5 was produced (Example 2). The dielectric material and conductive paste material used in this example are the same as those in the example, and the shape of the base layer, the upper layer, and the insulating layer in plan view and the manufacturing process are also the same as described above, so that the description thereof is omitted.
The thicknesses of the base layer, the upper layer, and the insulating layer after firing are 10 μm, 35 μm, and 20 μm, respectively, the covering widths W1 and W2 are 60 μm, respectively, and the protruding height h of the terminal electrode includes the conductor layer. It was 45 μm.
比較例として、図7の端子構造を有するセラミック積層基板を作製した。この端子電極は、上部層を有さず、下地層の表面に導電層が形成されている点で、実施例のものと異なる。ここで用いた誘電体材料、導体ペースト材料は実施例と同一であり、下地層、絶縁層の平面視形状、製造工程も前記したものと同じであるのでその説明を省く。
なお下地層、絶縁層の焼成後の厚みは、それぞれ10μm、20μmであり、覆い幅W1は60μmであり、端子電極の突出高さhは、導体層を含めて18μmであった。
なお、実施例1、2及び比較例においては、各端子電極の略中央部でφ0.1mmのビアホールと接続する構造となっている。
As a comparative example, a ceramic laminated substrate having the terminal structure of FIG. 7 was produced. This terminal electrode is different from that of the example in that it does not have an upper layer and a conductive layer is formed on the surface of the base layer. The dielectric material and the conductive paste material used here are the same as those in the example, and the shape of the base layer and the insulating layer in plan view and the manufacturing process are also the same as those described above, so the description thereof will be omitted.
In addition, the thickness after baking of a base layer and an insulating layer was 10 micrometers and 20 micrometers, respectively, the covering width W1 was 60 micrometers, and the protrusion height h of the terminal electrode was 18 micrometers including the conductor layer.
In Examples 1 and 2 and the comparative example, each terminal electrode is connected to a via hole having a diameter of 0.1 mm at a substantially central portion.
このように形成したセラミック積層基板を用いて、以下の落下試験と端子電極引張試験を各20個づつ行った。試験結果を表1と図8に示す。 Using the ceramic laminated substrate thus formed, the following drop test and 20 terminal electrode tensile tests were performed. The test results are shown in Table 1 and FIG.
(落下試験)
前記セラミック積層基板に半導体素子や電子部品を実装し、さらにケースを取り付けた高周波電子部品を所定の評価基板に共晶はんだではんだ接続し、前記評価基板をアルミダイキャストで構成された試験治具内にねじ止め固定して、1.8mmの高さからコンクリート板に自由落下させる。これを100回繰り返して、高周波部品の評価基板との接合状況や、セラミック積層基板に実装された回路素子の接合状況を拡大鏡で目視評価するともに、ミリオーム計を用いて端子電極と評価基板との間の導通評価を行った。
(Drop test)
A test jig in which a semiconductor element or an electronic component is mounted on the ceramic multilayer substrate, and a high-frequency electronic component with a case attached is solder-connected to a predetermined evaluation substrate with eutectic solder, and the evaluation substrate is configured by aluminum die casting It is screwed and fixed inside, and is allowed to fall freely to a concrete plate from a height of 1.8 mm. This is repeated 100 times, and the state of bonding of the high-frequency component to the evaluation board and the state of bonding of the circuit elements mounted on the ceramic multilayer board are visually evaluated with a magnifying glass, and the terminal electrode and the evaluation board are Conductivity evaluation was performed.
(端子電極引張試験)
電子部品等を実装しない状態のセラミック積層基板の端子電極に共晶はんだで、φ0.5mm×20mmのコバールピンを接続し、これを固定治具に配置し、前記固定治具を引張試験器(島津製作所製オートグラフ 型式AG−1)にねじ止め固定し、前記コバールピンを引張側の固定部材に固定し、ロードセル100N、引張速度0.5mm/minで引張試験を行った。
(Terminal electrode tensile test)
Connected to the terminal electrode of the ceramic multilayer substrate with no electronic parts, etc., using eutectic solder, a φ0.5mm × 20mm Kovar pin is placed on a fixing jig, and the fixing jig is connected to a tensile tester (Shimadzu). It was screwed and fixed to an autograph model AG-1 manufactured by Seisakusho, the Kovar pin was fixed to a fixing member on the tension side, and a tensile test was performed at a load cell of 100 N and a tensile speed of 0.5 mm / min.
表1において、落下試験後、拡大鏡で端子電極を観察したところ、比較例のものでは複数の端子電極に剥離が認められた。また剥離のない端子電極について導通確認したところ、50%程度の端子電極において抵抗値が増加した。
また引張試験では、本発明のものでは従来のものと比較し、図8に示すように端子強度がおよそ2〜3倍となった。さらに、引張試験後の試料について電極剥離のモードを分類したところ、従来例のものでは、もっぱら下地層とセラミック層との界面での剥離していたい、本発明の実施例1においては、セラミック層部分での破壊であり、端子電極とセラミックとが強固に接続していることがわかった。また、実施例2のものでは、セラミック層部分での破壊と下地層とセラミック層との界面で剥離の2つのモードが存在していた。下地層とセラミック層との界面で剥離する場合であっても、挟持部での密着強度を向上していることで、従来のものより優れた密着強度が得られた。
また本発明においては、端子電極を10μm以上を突き出したことで、前記セラミック積層基板が回路基板に実装された後、前記回路基板に撓みやねじりが生じた場合でも、セラミック積層基板の隅部が実装基板と接触・干渉することを防ぎ、ひいては前記干渉によって生じるセラミック積層基板のクラック・割れなどを生じることを低減することが出来る。
さらに本発明のセラミックセ積層基板では、端子電極の上部層は基板主面に対して、実質的に突き出ているので、基板の隅部が実装基板と接触・干渉することを防ぎ、セラミック積層基板のクラック・割れなどを生じることを低減することが出来た。
In Table 1, when the terminal electrode was observed with a magnifying glass after the drop test, peeling was observed on the plurality of terminal electrodes in the comparative example. Further, when the conductivity of the terminal electrode without peeling was confirmed, the resistance value increased in about 50% of the terminal electrodes.
In the tensile test, the terminal strength of the present invention was about 2 to 3 times that of the conventional one as shown in FIG. Further, when the electrode peeling mode was classified for the sample after the tensile test, in the conventional example, it is desired to peel only at the interface between the base layer and the ceramic layer. In Example 1 of the present invention, the ceramic layer portion It was found that the terminal electrode and the ceramic were firmly connected. In Example 2, there were two modes of destruction at the ceramic layer portion and separation at the interface between the underlayer and the ceramic layer. Even in the case of peeling at the interface between the base layer and the ceramic layer, the adhesive strength superior to the conventional one was obtained by improving the adhesive strength at the sandwiching portion.
Further, in the present invention, even when the ceramic laminated substrate is bent or twisted after the ceramic laminated substrate is mounted on the circuit board by protruding the terminal electrode by 10 μm or more, the corners of the ceramic laminated substrate are formed. It is possible to prevent contact / interference with the mounting substrate, and to reduce the occurrence of cracks and the like of the ceramic multilayer substrate caused by the interference.
Furthermore, in the ceramic cell multilayer substrate of the present invention, since the upper layer of the terminal electrode substantially protrudes from the main surface of the substrate, the corner of the substrate is prevented from contacting / interfering with the mounting substrate. It was possible to reduce the occurrence of cracks.
本発明によれば、端子電極とセラミックとの密着強度を向上させることで、端子電極に作用する様々な応力による端子電極の剥離を防ぎ、かつセラミック積層基板の隅部が実装基板と接触・干渉によるクラック・割れなどを減じる端子電極構造を提供することが出来る。また本発明のセラミック積層基板によれば、耐衝撃性に優れた面実装型の高周波電子部品を提供することが出来、ひいては、携帯電話などの移動体通信機器の信頼性を向上するものである。 According to the present invention, by improving the adhesion strength between the terminal electrode and the ceramic, the terminal electrode is prevented from being peeled off due to various stresses acting on the terminal electrode, and the corner of the ceramic multilayer substrate is in contact with and interference with the mounting substrate. Thus, it is possible to provide a terminal electrode structure that reduces cracks and cracks caused by the above. Further, according to the ceramic laminated substrate of the present invention, it is possible to provide a surface mount type high frequency electronic component having excellent impact resistance, and consequently improve the reliability of a mobile communication device such as a mobile phone. .
1 高周波電子部品
12 セラミック積層基板
15 絶縁層
18 ビアホール
60 端子電極
60a 下地層
60b 上部層
70 セラミック層
DESCRIPTION OF SYMBOLS 1 High frequency
Claims (5)
前記セラミック積層基板の裏面には、その外周から内側に所定の間隔をもって形成された端子電極を備え、
前記端子電極は、セラミックス層に印刷形成され下部が前記セラミックス層に埋設された電極パターンからなる下地層と、その外縁部の少なくとも一部を被覆する絶縁層と、前記下地層と前記絶縁層に重ねて印刷形成された電極パターンからなる上部層を有し、絶縁層が被覆された下地層の外縁部は、他の部位よりも深く、かつ前記セラミック層に対して傾斜して埋設され、
もって上部層と下地層とで絶縁層を挟持したことを特徴とするセラミック積層基板。 In a ceramic laminated substrate provided with a plurality of ceramic layers and electrode patterns,
The back surface of the ceramic multilayer substrate is provided with terminal electrodes formed at a predetermined interval from the outer periphery to the inner side,
The terminal electrode is printed on a ceramic layer and has a base layer composed of an electrode pattern in which a lower part is embedded in the ceramic layer, an insulating layer covering at least a part of the outer edge, and the base layer and the insulating layer. It has an upper layer composed of an electrode pattern printed and printed in an overlapping manner, and the outer edge portion of the base layer coated with the insulating layer is deeper than the other part and embedded in an inclined manner with respect to the ceramic layer,
Thus, a ceramic laminated substrate characterized in that an insulating layer is sandwiched between an upper layer and a base layer .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004014727A JP4277275B2 (en) | 2004-01-22 | 2004-01-22 | Ceramic multilayer substrate and high frequency electronic components |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004014727A JP4277275B2 (en) | 2004-01-22 | 2004-01-22 | Ceramic multilayer substrate and high frequency electronic components |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005209881A JP2005209881A (en) | 2005-08-04 |
JP4277275B2 true JP4277275B2 (en) | 2009-06-10 |
Family
ID=34900429
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004014727A Expired - Fee Related JP4277275B2 (en) | 2004-01-22 | 2004-01-22 | Ceramic multilayer substrate and high frequency electronic components |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4277275B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103974536A (en) * | 2013-01-24 | 2014-08-06 | 株式会社村田制作所 | Ceramic multilayer component |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4826253B2 (en) * | 2005-12-30 | 2011-11-30 | 株式会社村田製作所 | Method for manufacturing ceramic multilayer substrate and ceramic multilayer substrate |
JP4926789B2 (en) * | 2007-03-31 | 2012-05-09 | 株式会社住友金属エレクトロデバイス | Multilayer wiring board for mounting light emitting device and method for manufacturing the same |
JP5109801B2 (en) * | 2008-05-20 | 2012-12-26 | 株式会社村田製作所 | Ceramic wiring board |
JP5977180B2 (en) * | 2012-03-05 | 2016-08-24 | 京セラ株式会社 | Wiring board |
JP6026898B2 (en) * | 2013-01-25 | 2016-11-16 | 京セラ株式会社 | Ceramic wiring board |
JP5981389B2 (en) * | 2013-05-28 | 2016-08-31 | 京セラ株式会社 | Wiring board |
JP6753423B2 (en) * | 2018-01-11 | 2020-09-09 | 株式会社村田製作所 | Multilayer coil parts |
WO2019146658A1 (en) * | 2018-01-24 | 2019-08-01 | 京セラ株式会社 | Wiring board, electronic device, and electronic module |
JP2020061410A (en) * | 2018-10-05 | 2020-04-16 | 株式会社村田製作所 | Multilayer electronic component |
JP6919641B2 (en) * | 2018-10-05 | 2021-08-18 | 株式会社村田製作所 | Laminated electronic components |
JP7131628B2 (en) * | 2018-11-08 | 2022-09-06 | 株式会社村田製作所 | ceramic electronic components |
WO2022059455A1 (en) * | 2020-09-17 | 2022-03-24 | 株式会社村田製作所 | Electronic component |
JP7535005B2 (en) | 2021-03-31 | 2024-08-15 | Tdk株式会社 | Multilayer Electronic Components |
WO2023195449A1 (en) * | 2022-04-04 | 2023-10-12 | 株式会社村田製作所 | Electronic component |
WO2024150556A1 (en) * | 2023-01-10 | 2024-07-18 | 株式会社村田製作所 | Electronic component |
WO2024202697A1 (en) * | 2023-03-28 | 2024-10-03 | 株式会社村田製作所 | Electronic component |
WO2024202648A1 (en) * | 2023-03-28 | 2024-10-03 | 株式会社村田製作所 | Electronic component |
-
2004
- 2004-01-22 JP JP2004014727A patent/JP4277275B2/en not_active Expired - Fee Related
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103974536A (en) * | 2013-01-24 | 2014-08-06 | 株式会社村田制作所 | Ceramic multilayer component |
TWI496175B (en) * | 2013-01-24 | 2015-08-11 | Murata Manufacturing Co | Ceramic multilayer component |
US9236845B2 (en) | 2013-01-24 | 2016-01-12 | Murata Manufacturing Co., Ltd. | Ceramic multilayer component |
CN103974536B (en) * | 2013-01-24 | 2017-05-24 | 株式会社村田制作所 | Ceramic multilayer component |
Also Published As
Publication number | Publication date |
---|---|
JP2005209881A (en) | 2005-08-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4277275B2 (en) | Ceramic multilayer substrate and high frequency electronic components | |
JP4404139B2 (en) | Multilayer substrate, electronic device, and method of manufacturing multilayer substrate | |
KR100352780B1 (en) | Multi-layer ceramic substrate and method for producing the same | |
US7649252B2 (en) | Ceramic multilayer substrate | |
JP2004056112A (en) | Circuit component, unit packaged with circuit component, module containing circuit component, and method of manufacturing the same | |
JP6128209B2 (en) | MULTILAYER WIRING BOARD, MANUFACTURING METHOD THEREOF, AND PROBE CARD BOARD | |
JP2005026312A (en) | High-frequency electronic part and its mounting method | |
JP4565383B2 (en) | Multilayer ceramic substrate with cavity and method for manufacturing the same | |
JP4114148B2 (en) | Ceramic multilayer substrate and high frequency electronic components | |
KR20090051627A (en) | Multilayer Ceramic Substrate and Manufacturing Method Thereof | |
JP5207854B2 (en) | Component built-in ceramic substrate and manufacturing method thereof | |
JP2006108483A (en) | Multilayered ceramic board having cavity and its manufacturing method | |
JP4134693B2 (en) | Manufacturing method of ceramic laminated substrate | |
JP4765330B2 (en) | MULTILAYER WIRING BOARD HAVING MULTILAYER ELECTRONIC COMPONENT AND METHOD FOR PRODUCING MULTILAYER WIRING BOARD | |
JP4077625B2 (en) | Low temperature fired porcelain composition and method for producing low temperature fired porcelain | |
JP4826253B2 (en) | Method for manufacturing ceramic multilayer substrate and ceramic multilayer substrate | |
JP4535801B2 (en) | Ceramic wiring board | |
JP2004247699A (en) | Wiring board | |
JP4986500B2 (en) | Laminated substrate, electronic device and manufacturing method thereof. | |
JP2009147160A (en) | Manufacturing method of multilayer ceramic substrate, multilayer ceramic substrate, and electronic component using the same | |
JP2007173651A (en) | Multilayer ceramic capacitor, multilayer wiring board with built-in capacitor, and multilayer electronic device | |
JPH1155058A (en) | Layered ceramic composite part | |
KR100899647B1 (en) | Ceramic Substrate and Manufacturing Method Thereof | |
JP2006041241A (en) | Ceramic wiring board | |
JPH10215074A (en) | Ceramic multilayer substrate and its manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20061212 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080822 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080829 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20081020 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090213 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090226 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120319 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4277275 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120319 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130319 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140319 Year of fee payment: 5 |
|
LAPS | Cancellation because of no payment of annual fees |