[go: up one dir, main page]

JP4272329B2 - Package for storing semiconductor elements - Google Patents

Package for storing semiconductor elements Download PDF

Info

Publication number
JP4272329B2
JP4272329B2 JP2000072962A JP2000072962A JP4272329B2 JP 4272329 B2 JP4272329 B2 JP 4272329B2 JP 2000072962 A JP2000072962 A JP 2000072962A JP 2000072962 A JP2000072962 A JP 2000072962A JP 4272329 B2 JP4272329 B2 JP 4272329B2
Authority
JP
Japan
Prior art keywords
layer
alloy
frame
semiconductor element
metal layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000072962A
Other languages
Japanese (ja)
Other versions
JP2001267441A (en
Inventor
利良 中島
清孝 横井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2000072962A priority Critical patent/JP4272329B2/en
Publication of JP2001267441A publication Critical patent/JP2001267441A/en
Application granted granted Critical
Publication of JP4272329B2 publication Critical patent/JP4272329B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3733Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon having a heterogeneous or anisotropic structure, e.g. powder or fibres in a matrix, wire mesh, porous structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3735Laminates or multilayers, e.g. direct bond copper ceramic substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、マイクロ波通信分野およびミリ波通信分野等で用いられ、高周波帯域で作動するガリウム砒素(GaAs)等の化合物半導体等から成る各種半導体素子を収容するための半導体素子収納用パッケージに関する。
【0002】
【従来の技術】
従来のマイクロ波通信分野またはミリ波通信分野等で用いられ高周波帯域で作動する各種半導体素子を収容するための半導体素子収納用パッケージ(以下、半導体パッケージという)を図5に示す。
【0003】
この図5において、21,24はそれぞれ金属材料から成り容器本体を構成する基体と側壁用の枠体、25はセラミックスから成り基体21上に接合され高周波信号を入出力する入出力端子、26は蓋体、28は半導体素子を示す。これら基体21、枠体24、入出力端子25、蓋体26とで、半導体素子28を半導体パッケージ内部に収容する。
【0004】
また、このような半導体パッケージは、一般に半導体素子28が載置される載置部21aを有する基体21と、基体21上面の外周部に載置部21aを囲繞するように接合される枠体24および接合面に金属層が設けられた入出力端子25とが、銀ロウ等のロウ材で接合される。さらに、蓋体26と枠体24上面とが、蓋体26と枠体24上面にそれぞれ設けられた金属層を介して金(Au)−錫(Sn)合金半田等の低融点ロウ材で接合される。
【0005】
基体21は、銅(Cu)−タングステン(W)合金等の比較的高い熱伝導性を有する金属材料から成り半導体素子28作動時に発する熱を吸収し放散するための放熱板として機能するとともに、半導体素子28を支持する支持部材として機能する。
【0006】
また、枠体24は、基体21に熱膨張係数が近似する鉄(Fe)−ニッケル(Ni)−コバルト(Co)合金等の金属材料から成るとともに、入出力端子25を嵌着するための貫通孔または切欠部から成る取付部24aが形成されており、入出力端子25の上面,下面にそれぞれ設けられた金属層を介して銀ロウ等のロウ材で接合される。
【0007】
また、この入出力端子25は、基体21,枠体24に熱膨張係数が近似するアルミナ(Al23)セラミックス等のセラミックスから成るとともに、半導体パッケージの内外を電気的に導通するためにモリブデン(Mo)−マンガン(Mn)等から成る金属ペーストを焼結したメタライズ層25aが被着されている。
【0008】
また、このメタライズ層25aには、外部電気回路との高周波信号の入出力を行なうために導電性を有する鉄(Fe)−ニッケル(Ni)−コバルト(Co)合金等の金属材料から成るリード端子27が銀ロウ等のロウ材で接合されるとともに、半導体素子28と電気的に接続するためのボンディングワイヤ29が接合される。
【0009】
なお、この半導体素子28は、載置部21aに錫(Sn)−鉛(Pb)半田等の低融点半田を介して接合され、作動時にはこの低融点半田を介して基体21に伝熱される。
【0010】
しかる後、枠体24の上面を、Fe−Ni−Co合金等の金属材料またはAl23セラミックス等のセラミックスから成る蓋体26により、金(Au)−錫(Sn)合金半田等の低融点ロウ材で接合することによって、半導体パッケージ内部に半導体素子28を気密に収容しその作動性を良好なものとする。
【0011】
このように、基体21、枠体24、入出力端子25、蓋体26とで、半導体素子28を半導体パッケージ内部に収容するとともに、ボンディングワイヤ29とリード端子27と外部電気回路とを電気的に接続することによって、半導体素子28が高周波信号によって作動する半導体装置となる。
【0012】
【発明が解決しようとする課題】
しかしながら、近年、半導体素子28は高密度化、高集積化が急激に進み、これによって半導体素子28の作動時に発する熱量が従来に比し極めて大きなものとなっている。そのため、この半導体素子28を従来の半導体パッケージに収容し、半導体装置となした場合、半導体素子28の作動時に発する熱を放散するCu−W合金等から成る基体21の熱伝導率が、およそ200W/mK程度と比較的高くても、近年の半導体素子28が発する多量の熱を十分に伝達することができない。その結果、半導体素子28は発する熱によって高温となり熱破壊を起こしたり、熱による特性劣化を引き起こし誤作動が生じる等の問題点を有していた。
【0013】
上記問題点を解決するために、本出願人は、図3,図4に示すように、放熱板12として、この上面から下面にかけて熱伝導率が300W/mK以上である部材、即ち厚さ方向に配向した炭素繊維を炭素で結合した一方向性複合材料12aの上下両面に、各50μm以下の厚みを有するCr−Fe合金層12b−1,Cu層12b−2,Fe−Ni層またはFe−Ni−Co層12b−3の3層構造を有する金属層12bを拡散接合したものを使用し、さらに、この放熱板12側部の気孔を塞ぎ耐外圧性を強化するため、Fe−Ni−Co合金またはFe−Ni合金から成る枠状金属基体11の穴部11bに放熱板12を銀ロウ等のロウ材で挿着するといったものを提案した(特願平10−327216号)。
【0014】
しかしながら、図3,図4の構成では、厚み方向の熱伝導は非常に優れているが、幅方向(横方向)の熱伝導即ち金属層12bの横方向への熱伝導は、金属層12bの組成とその厚みが150μm以下である点とから非常に低い。そのため、穴部11bに熱伝導性に優れる銀ロウを介して挿着しても、発する熱は銀ロウまで十分に伝熱しない。そのため、半導体素子18は、その作動時に発する熱が非常に高く、厚み方向のみの熱伝導では十分でない場合、高温となり熱破壊を起こしたり熱による特性劣化を引き起こし誤作動が生じる等の問題点があった。
【0015】
また、Fe−Ni−Co合金またはFe−Ni合金から成る枠状金属基体11は強磁性体であるため、その上面に接合されている入出力端子15に高周波信号が伝送される際、インダクタンス成分が発生する。そのため、高周波信号の伝送特性が損なわれてしまうという問題点があった。
【0016】
また、枠状金属基体11の穴部11bに、放熱板12側部に被着したNiメッキを介して銀ロウ等のロウ材で挿着した際においても、Niメッキは強磁性体であるため高周波信号が伝送されると、インダクタンス成分が発生する。そのため、高周波信号の伝送特性が損なわれてしまうという問題点を有していた。
【0017】
従って、本発明は上記問題点に鑑み完成されたもので、その目的は、半導体素子が作動時に発する熱を外部に効率良く放散させて半導体素子を常に適温とし、さらに半導体素子を入出力する高周波特性を良好なものとすることにより、半導体素子を長期間にわたり正常、且つ安定に作動させることができる半導体パッケージを提供することにある。
【0018】
【課題を解決するための手段】
本発明の半導体パッケージは、上面に半導体素子を載置する載置部を有する放熱板と、Cu−W合金,Fe−Ni合金またはFe−Ni−Co合金から成り、かつ前記放熱板上面に前記載置部を囲繞するように取着され側部に貫通孔または切欠部から成る取付部を有する枠体と、前記取付部に取着された入出力端子とを具備する半導体素子収納用パッケージにおいて、前記放熱板は、Fe−Ni合金またはFe−Ni−Co合金から成る枠状部と、該枠状部の開口に嵌着され、厚さ方向に配向した炭素繊維を炭素で結合した一方向性複合材料から成る主放熱部とから構成され、かつ前記放熱板の上下面には前記放熱板側からFe−Cr合金層,Cu層,Mo層およびCu層から成る金属層が積層され、前記放熱板の露出表面および前記金属層の表面にCuメッキ層が被着されて成ることを特徴とする。
【0019】
また本発明において、好ましくは、前記放熱板と前記金属層との界面および前記金属層内の各層は、拡散接合により接合されて成ることを特徴とする。
【0020】
本発明によれば、上面に半導体素子が載置される放熱板は、上面側から下面側にかけての熱伝導率が300W/mK以上である部材、即ち厚さ方向に配向した炭素繊維を炭素(C)で結合した一方向性複合材料から成る主放熱部と、主放熱部の側部が貫通孔にCとFeとの相互拡散による接合によって嵌着され、Fe−Ni−Co合金,Fe−Ni合金のFeを含有する金属材料から成る枠状部とから成る。
【0021】
そして、Cを有する主放熱部の上下面とFe−Cr合金層中のFeとを相互拡散接合させるとともに、Feを含有する枠状部中のFeとFe−Cr合金層中の微量成分であるCとを相互に拡散させることによって、枠状部と主放熱部とを接合させ、これにより主放熱部が露出している上下面の気孔を塞ぎ半導体素子の気密性を保持する機能を有し、且つ幅方向の熱伝導性を向上させる機能を有する金属層と、幅方向のさらなる熱伝導性の向上を行うとともに強磁性体であり、Feを含有する枠状部の側部を非磁性体、即ち磁化率の小さい常磁性体または反磁性体に替えることによって高周波信号の伝送特性を向上させ、枠状部および金属層の表面に被着されるCuメッキ層と、から構成される。
【0022】
上記構成により、高周波信号の入出力によって半導体素子が作動時に発した熱は、厚さ方向(半導体素子が放熱板に低融点半田を介して接合されている面からそのまま垂直下方に伝熱する経路)と幅方向(金属層やCuメッキ層の表面方向から放熱板の側面を伝って伝熱する経路)の2経路で、下面側に伝熱され大気中に効率良く放散される。また、強磁性体であるNiメッキ層を介さずに、枠状部と主放熱部とを接合するとともに、非磁性体であるCuメッキ層が放熱板の表面に被着されているため、高周波信号の入出力によるインダクタンス成分の発生を十分に抑止できる。その結果、半導体素子は作動時に発する熱を外部に効率良く放散させ常に適温となるとともに、半導体素子を入出力する高周波特性が良好となるため、半導体素子を長期間にわたり正常且つ安定に作動させ得る。
【0023】
また、本発明は、枠状部および主放熱部の上下面に拡散接合された金属層(Fe−Cr合金層,Cu層,Mo層,Cu層の4層構造)のそれぞれの厚さを調整することによって、その熱膨張係数を枠状部の熱膨張係数に近似させることができる。即ち、枠状部と金属層との間の残留熱応力を非常に小さくでき接合を強固なものとできる。一方、主放熱部の幅方向の弾性率が10GPa以下と非常に軟質であるため、それと金属層が接合された際に発生する熱応力を十分に吸収緩和できる。従って、枠状部,主放熱部の上下面に厚みを調整して拡散接合された金属層は、それらの接合を強固なものとでき、その結果、半導体素子を載置する載置部は常に平坦となり、半導体素子が作動時に発する熱を外部に効率良く放散させることができる。
【0024】
さらに、本発明の放熱板は、主に、比重がアルミニウム(Al)とほぼ同じ程度に極めて小さい主放熱部と、Cu−W合金等に比し比重が小さいFe−Ni−Co合金等の金属材料から成る枠状部とから構成されるため、その重量は極めて小さいものであり、そのため、半導体パッケージ内部に半導体素子を収容して半導体装置となした場合、半導体装置の重量も極めて小さいものとなって、近年の小型化、軽量化が進む電子装置への実装も可能となる。
【0025】
【発明の実施の形態】
本発明の半導体パッケージについて以下に詳細に説明する。図1は本発明の半導体パッケージの一実施形態を示す断面図であり、図2は図1の放熱板の部分拡大断面図である。これらの図において、1は放熱板、2は入出力端子、3は枠体、5は蓋体、6は半導体素子である。これらの放熱板1、入出力端子2、枠体3および蓋体5とで、半導体素子6を収容するための容器が構成される。
【0026】
放熱板1は、Fe−Ni−Co合金,Fe−Ni合金のFeを含有する枠状部1aと、厚さ方向に配向した炭素繊維を炭素で結合した主放熱部1bと、これら枠状部1a,主放熱部1bの上下面両面に接合した金属層1cと、この金属層1cの表面および枠状部1aの露出表面に被着されるCuメッキ層1dとから構成されている。さらに、その上面に半導体素子6を載置する載置部1’を有しており、半導体素子6の作動時に発する熱を外部に効率良く放散させるとともに、高周波信号の入出力時におけるインダクタンス成分の発生を有効に抑止する機能を有する。
【0027】
この放熱板1の枠状部1aは、略中央部に貫通孔(開口)1a−1が形成されたFe−Ni−Co合金,Fe−Ni合金から成る金属材料の表面が、金属層1cとCuメッキ層1dとで被覆されており、半導体パッケージ内外に高周波信号を入出力させた際に放熱板1にインダクタンス成分が発生するのを有効に抑止する機能を有するとともに、半導体パッケージをアルミニウム(Al)等から成るヒートシンク,実装基板等にネジ止めする場合、放熱板1の外側周縁部に設けられたネジ穴(図示せず)にトルクをかけてネジを締めても、この枠状部1aが弾性を有することから、クラック等の発生による破損を有効に防止でき、所謂破損防止板としても機能する。
【0028】
この枠状部1aは、そのインゴットに圧延加工や打ち抜き加工等の従来周知の金属加工を施すことによって、主放熱部1bが嵌着される貫通孔1bを有する形状、所謂枠状に製作される。
【0029】
また、枠状部1aの貫通孔1a−1に嵌着される主放熱部1bは、厚さ方向に配向した炭素繊維を炭素で結合して成り、その側部が貫通孔1a−1の内周面に接触するように高温で圧入し嵌め合わせる。これにより、主放熱部1b中の炭素(C)と枠状部1a中のFeとが拡散反応を起こし、強固に接合されることとなる。
【0030】
なお、この主放熱部1bは、例えば一方向に配向した炭素繊維の束を、固体のピッチあるいはコークス等の微粉末に分散させたフェノール樹脂等の熱硬化性樹脂の溶液中に含浸させ、次にこれを乾燥させて一方向に炭素繊維が配向している複数枚のシートを形成するとともに、各々のシートを炭素繊維の方向が同一となるようにして複数枚積層する。次に、積層された複数枚のシートに所定の圧力を加えるとともに加熱して熱硬化性樹脂部分を硬化させ、最後にこれを不活性雰囲気中高温で焼成し、フェノール樹脂とピッチあるいはコークスの微粉末を炭化させ(炭素を形成する)、この炭素で各々の炭素繊維を結合させることによって製作される。
【0031】
また、枠状部1aと貫通孔1a−1に嵌着された主放熱部1bとの上下面には、Fe−Cr合金層1c−1,Cu層1c−2,Mo層1c−3,Cu層1c−4の4層構造を有する金属層1cが拡散接合によって積層され、被着されており、それぞれの厚さを調整することによって、枠状部1aの熱膨張係数(およそ10×10-6〜13×10-6/℃)に近似させる。即ち、枠状部1aは、主放熱部1bの弾性率よりも大きく、かつ主放熱部1bの幅方向の弾性率は10GPa以下と非常に軟質であり残留熱応力を十分に吸収緩和できるため、金属層1cの熱膨張係数を枠状部1aの熱膨張係数に近似させておくと、枠状部1a,主放熱部1bと金属層1cとの間で発生する残留熱応力を非常に小さくでき、それらの接合を強固なものとできる点で好適である。
【0032】
さらに、主放熱部1bの上下面に被着される金属層1cは、主放熱部1bが軟質といえども、それらの熱膨張係数の相違によって、上下面にわずかに残留熱応力が発生するが、その各々の残留熱応力は、金属層1cの主放熱部1bへの被着位置が相対していることから互いに相殺される。そのため、主放熱部1bと金属層1cとの接合は強固なものとなる。
【0033】
従って、Cuメッキ層1dを除く放熱板1の部位、即ち、枠状部1aとその貫通孔1a−1に嵌着される主放熱部1bとそれらの上下面に被着される金属層1cとから成る部位の幅方向の熱膨張係数は、枠状部1aの熱膨張係数に近似することとなるため、例えその部位の表面にCuメッキ層1dを被着しても、入出力端子2を銀ロウ等のロウ材で接合した際、その接合は強固なものとなる。
【0034】
また、金属層1cの熱膨張係数の調整は、Fe−Cr合金層1c−1,Cu層1c−2,Mo層1c−3,Cu層1c−4のそれぞれの厚さ、特に主放熱部1bの熱膨張係数、弾性率のような特性の影響を直接的に受けにくい表層側(Mo層1c−3,Cu層1c−4)の厚さを調整するのが良い。
【0035】
例えば、その熱膨張係数が約10×10-6〜13×10-6/℃であるFe−Ni−Co合金,Fe−Ni合金から成る枠状部1aに近似させるためには、最表層でかつ熱膨張係数の大きなCu層1c−4の厚さを最も厚くし、Mo層1c−3の厚さをCu層1c−4の厚さよりも比較的薄くする。さらにFe−Cr合金層1c−1とCu層1c−2との厚さは、Mo層1c−3の厚さよりもさらに薄くする。具体的には、Cu層1c−4の厚さを20〜50μm程度、Mo層1c−3の厚さを10〜20μm程度、Fe−Cr合金層1c−1とCu層1c−2との厚さをそれぞれ5〜10μm程度とするのが好ましい。各層について、上記厚さの範囲を外れると、各層形成用の各箔の熱膨張差による熱歪が大きくなり、密着性が損なわれる傾向にある。
【0036】
また、Fe−Cr合金層1c−1とCu層1c−2について、厚さが5μm未満では、箔の厚さのばらつきが大きくなり拡散接合する際に接合性が劣化し易くなる。
【0037】
なお、金属層1cは、枠状部1aとその貫通孔1a−1に嵌着された主放熱部1b、即ち放熱板1の上下両面に拡散接合させることにより被着される。つまり、放熱板1の上下両面と金属層1cとの界面および金属層1c内の各層は、拡散接合により接合される。具体的には、枠状部1aと主放熱部1bとの上下両面に、それぞれの厚さが50μm以下でかつ枠状部1aの熱膨張係数に近似させるように厚さ調整された、Fe−Cr合金層1c−1用のFe−Cr合金箔,Cu層1c−2用のCu箔,Mo層1c−3用のMo箔,Cu層1c−3用のCu箔を、順次載置して積層させる。次に、これを真空ホットプレスで5MPaの圧力をかけつつ1200℃の温度で1時間加熱することによって行なわれる。
【0038】
また、金属層1cが拡散接合される主放熱部1bの厚さは0.2〜5mm程度が良く、0.2mm未満の場合、金属層1cの厚みに比し薄すぎることによって、その熱膨張係数は金属層1cの熱膨張係数の影響を大きく受ける。即ち、主放熱部1bの熱膨張係数は、その幅方向、厚さ方向ともに金属層1cの影響を受けて大きくなる。これを適度なものとするためには、金属層1cの各々の厚さを5μm未満と非常に薄くする必要があり、現状ではそのように薄い箔はボイド等の欠陥が発生して生産するのが非常に困難である。一方、5mmを超える場合、厚すぎるために小型化、軽量化が要求される半導体パッケージの市場要求から大きくはずれ、実用性が失われてしまう。従って、主放熱部1bの厚さは0.2〜5mm程度が良い。
【0039】
また、枠状部1aとFe−Cr合金層1c−1との拡散接合は、枠状部1a中のFeとFe−Cr合金層1c−1中の微量成分であるCとが相互に拡散することによって強固に接合される。一方、主放熱部1bとFe−Cr合金層1c−1との拡散接合は、主放熱部1b中のCとFe−Cr合金層1c−1中のFeとが相互に拡散することによって強固に接合される。
【0040】
また、Fe−Cr合金層1c−1は、金属層1cを枠状部1a,主放熱部1cに強固に接合させる密着層であり、Cu層1c−2は、Fe−Cr合金層1c−1とMo層1c−3とを強固に接合させるとともに両者の相互拡散を有効に防止する拡散防止層であり、Mo層1c−3とCu層1c−4は、Fe−Cr合金層1c−1およびCu層1c−2と相まって、その厚さを調整することによって、枠状部1aの熱膨張率に近似させる熱膨張率調整層である。
【0041】
なお、最表層のCu層1c−4は、その一部が半導体素子6を載置する載置部1’であり、また熱伝導性に優れた特性であることから、半導体素子6が発する熱を効率良く、金属層1cが被着された枠状部1a,主放熱部1bの上面を伝熱させる機能を有するとともに、その表面にCuメッキ層1dを非常に容易に被着させることができる。
【0042】
また、このCuメッキ層1dを被着された放熱板1は、Cuメッキ層1dの熱伝導性の高さから、半導体素子6が発する熱をさらに効率良く外部に放散でき、また、Cuメッキ層1dは反磁性体であることから、半導体パッケージ内外を伝送する高周波信号によって、枠状部1aにインダクタンス成分が発生することを有効に防止できる。即ち、Cuメッキ層1dは、伝熱効果を高めるとともに、インダクタンス成分の発生を有効に防止する機能を有しており、その結果、半導体素子6の熱による破損,特性劣化を有効に防止でき、さらには半導体素子6の高周波信号による作動性を良好なものとできる。
【0043】
また、このような放熱板1は主に、比重がAlとほぼ同じ程度に極めて小さい主放熱部1bと、Cu−W合金等に比し比重が小さいFe−Ni−Co合金,Fe−Ni合金のFeを含有する枠状部1aとから成るため、それらの重量が極めて小さい。そのため、半導体パッケージとなした場合、その重量を極めて小さくできる。
【0044】
この放熱板1の上面には、放熱板1に熱膨張係数が近似するアルミナ(Al23)セラミックス等から成るセラミックスから成り、高周波信号を入出力する入出力端子2が、枠体3の貫通孔または切欠部からなる取付部3aに、Mo−Mn等から成る金属ペーストを焼結したメタライズ層とその表面に被着したNiメッキ層とを介して銀ロウ等のロウ材で接合される。
【0045】
また、この入出力端子2には、半導体パッケージ内外を導出するように、Mo−Mn等から成る金属ペーストを焼結したメタライズ層2aが被着されているとともに、この入出力端子2上面にも枠体3との接合用のメタライズ層とその表面に被着されたNiメッキ層とが形成されている。
【0046】
このメタライズ層2aの表面には、耐蝕性に優れかつロウ材との濡れ性に優れる金属、具体的には、厚さ0.5〜9μmのNi層をメッキ法により被着させておくと、リード端子4との銀ロウ等のロウ材による接合を可能とし、また、このNi層の表面にさらに厚さ0.5〜9μmのAu層をメッキ法により被着させることによって、半導体素子6と電気的に接続させるためのボンディングワイヤ7を接合できる。
【0047】
このリード端子4は、外部電気回路との高周波信号の入出力を行なうために導電性を有するFe−Ni−Co合金等の金属材料から成り、その金属材料のインゴットに圧延加工法や打ち抜き加工法等、従来周知の金属加工法を施すことによって所定の形状に形成される。
【0048】
枠体3は、Cu−W合金,Fe−Ni−Co合金,Fe−Ni合金の金属材料から成り、入出力端子2にその熱膨張係数が近似したものを用いることによって、ロウ付け後の残留熱応力を小さいものとし、その結果、それらの接合を強固なものとできる。また、この枠体3は、半導体パッケージ内外に高周波信号を入出力させた際に発生する電磁場を遮蔽する所謂電磁遮蔽板(シールド板)としても機能する。
【0049】
上記の金属材料から成る枠体3は、そのインゴットに圧延加工や打ち抜き加工等の従来周知の金属加工を施すことによって所定の形状に製作される。また、その表面に耐蝕性に優れかつロウ材との濡れ性に優れる金属、具体的には、厚さ0.5〜9μmのNi層をメッキ法により被着させておくと、入出力端子2の上面との銀ロウ等のロウ材による接合をより強固なものとできる。
【0050】
なお、枠体3の上面即ち蓋体5に接合される面は、Au−Sn合金半田等の低融点ロウ材で接合されるため、その低融点ロウ材との濡れに優れる接合面としておく必要があることから、上述のNi層の表面にさらに厚さ0.5〜9μmのAu層を被着させておくと良い。
【0051】
このような枠体3の上面には、熱膨張係数の整合の点で好ましいFe−Ni−Co合金等の金属材料、またはアルミナセラミックス等のセラミックスから成る蓋体5が、Au−Sn合金半田等の低融点ロウ材を介して接合される。
【0052】
かくして、半導体素子6は、半導体パッケージ内部に気密に封止され、また半導体装置となされた後に作動時に発する熱が効率良く大気中に放散されるとともにインダクタンス成分の発生を有効に防止できるため、誤作動等の問題を全く発生させない。
【0053】
このように、本発明の半導体パッケージは、上面に半導体素子6が載置される載置部1’を有する放熱板1は、上面側から下面側にかけての熱伝導率が300W/mK以上である部材、即ち、厚さ方向に配向した炭素繊維を炭素で結合した主放熱部1bと、その側部を貫通孔1a−1にCとFeとの相互拡散による拡散接合によって嵌着させるためのFe−Ni−Co合金,Fe−Ni合金のFeを含有する金属から成る枠状部1aとから構成される。
【0054】
さらに、Cを有する主放熱部1b上下面とFe−Cr合金層1c−1中のFeとを相互拡散接合させ、枠状部1a中のFeとFe−Cr合金層1c−1中の微量成分であるCとを相互に拡散接合させることにより、主放熱部1bが露出している上下面の気孔を塞ぎ半導体素子6の気密性を保持する機能を有し、且つ幅方向の熱伝導性を向上させる金属層1cと、幅方向のさらなる熱伝導性の向上を行うとともに強磁性体でありFeを含有する枠状部1aの側部を非磁性体(磁化率の小さい常磁性体や反磁性体)に替えることにより高周波信号の伝送特性を向上させ、枠状部1a,金属層1cの表面に被着されるCuメッキ層1dと、から構成される。
【0055】
この構成により、高周波信号の入出力によって半導体素子6が作動時に発した熱は、厚さ方向、即ち半導体素子6が放熱板1に低融点半田を介して接合されている面からそのまま垂直下方に伝熱する経路と、幅方向、即ち金属層1cやCuメッキ層1dの表面方向から放熱板1の側面を伝熱する経路との2経路で、下面側に伝熱され大気中に効率良く放散される。
【0056】
また、強磁性体であるNiメッキ層を介さずに、枠状部1aと主放熱部1bとを接合するとともに、反磁性体であるCuメッキ層1dが放熱板1の表層に被着されているため、高周波信号の入出力によるインダクタンス成分の発生を十分に抑止できる。その結果、半導体素子6は作動時に発する熱を外部に効率良く放散させ常に適温となるとともに、半導体素子6を入出力する高周波特性が良好なものとなるため、半導体素子6を長期間にわたり正常且つ安定に作動させることができる。
【0057】
また、本発明によれば、枠状部1a,主放熱部1bの上下面に拡散接合された金属層1c、即ちFe−Cr合金層1c−1,Cu層1c−2,Mo層1c−3,Cu層1c−4の4層のそれぞれの厚さを調整することにより、枠状部1aの熱膨張係数に近似させることができる。即ち、枠状部1aと金属層1cとの間の残留熱応力を非常に小さくでき接合を強固なものとできる。一方、主放熱部1bの幅方向の弾性率が10GPa以下と非常に軟質であるため、それと金属層1cが接合された際に発生する熱応力を十分に吸収緩和できる。従って、枠状部1a,主放熱部1bの上下面に厚みを調整して拡散接合された金属層1cは、それらの接合を強固なものとでき、その結果、半導体素子6を載置する載置部1’は常に平坦となり、半導体素子6が作動時に発する熱を外部に効率良く放散させることができる。
【0058】
さらに本発明によれば、放熱板1は主に、比重がアルミニウムとほぼ同じ程度に極めて小さい主放熱部1bと、Cu−W合金等に比し比重が小さいFe−Ni−Co合金のFeを含有する枠状部1aから成るため、その重量が極めて小さいものであり、そのため、半導体パッケージ内部に半導体素子6を収容して半導体装置となした場合、半導体装置の重量も極めて小さいものとなって、近年の小型化、軽量化が進む電子装置への実装も可能となる。
【0059】
かくして、本発明の半導体パッケージは、放熱板1の載置部1’上に半導体素子6をSn−Pb半田等の低融点半田を介して載置固定するとともに、半導体素子6の各電極をボンディングワイヤ7を介してメタライズ層2aに接続させ、しかる後、枠体3の上面に蓋体5をAu−Sn合金半田等の低融点ロウ材を介して接合させ、放熱板1、入出力端子2、枠体3および蓋体5とから成る容器内部に半導体素子6を収納することによって、製品としての半導体装置となる。
【0060】
なお、本発明は上記実施形態に限定されず、本発明の要旨を逸脱しない範囲内において種々の変更を行なうことは何等支障ない。
【0061】
例えば、半導体素子6が発する熱をそのまま垂直下方に伝熱するための主放熱部1bは、その上面の面積が半導体素子6の下面の面積に比し50%以上、金属層1cやCuメッキ層1dを介して接触していれば良く、放熱効果が損なわれることはない。一方、それが50%未満の場合、放熱効果は、従来のCu−W合金並みか、またはそれ以下となる。従って、主放熱部1bの上面の面積が、半導体素子6の下面の面積に比し50%以上、金属層1cやCuメッキ層1dを介して接触していれば、本発明の効果を発現し得る。
【0062】
【発明の効果】
本発明は、上面に半導体素子が載置される放熱板が、上面側から下面側にかけての熱伝導率が300W/mK以上である部材、即ち厚さ方向に配向した炭素繊維を炭素で結合した主放熱部と、主放熱部の側部を貫通孔に相互拡散による接合によって嵌着させた枠状部と、枠状部の熱膨張係数に近似するように、枠状部,主放熱部の上下面に積層被着された金属層と、これら枠状部の露出表面および金属層の表面に被着したCuメッキ層とから構成されていることにより、半導体素子の気密性を保持でき、半導体素子の高周波信号による作動時に発生する熱を、厚さ方向と幅方向との2経路で効率良く放散できる。また、インダクタンス成分の発生を有効に防止できる。さらには、非常に軽量であるため、近年の小型軽量化が進む電子装置への実装も可能となる。
【図面の簡単な説明】
【図1】本発明の半導体パッケージの一実施形態を示す断面図である。
【図2】図1の放熱板の部分拡大断面図である。
【図3】従来の半導体パッケージの断面図である。
【図4】図3の放熱板の部分拡大断面図である。
【図5】従来の半導体パッケージの断面図である。
【符号の説明】
1:放熱板
1’:載置部
1a:枠状部
1a−1:貫通孔
1b:主放熱部
1c:金属層
1c−1:鉄−クロム合金層
1c−2:銅層
1c−3:モリブデン層
1c−4:銅層
1d:銅メッキ層
2:入出力端子
3:枠体
3a:取付部
6:半導体素子
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a semiconductor element housing package for housing various semiconductor elements made of a compound semiconductor such as gallium arsenide (GaAs) which is used in a microwave communication field, a millimeter wave communication field, and the like and operates in a high frequency band.
[0002]
[Prior art]
FIG. 5 shows a semiconductor element housing package (hereinafter referred to as a semiconductor package) for housing various semiconductor elements that are used in the conventional microwave communication field or millimeter wave communication field and operate in a high frequency band.
[0003]
In FIG. 5, 21 and 24 are each made of a metal material and a base body and a side wall frame constituting the container body, 25 is made of ceramics and joined to the base body 21 to input / output high frequency signals, and 26 A lid body 28 indicates a semiconductor element. With the base body 21, the frame body 24, the input / output terminal 25, and the lid body 26, the semiconductor element 28 is accommodated inside the semiconductor package.
[0004]
Such a semiconductor package generally includes a base body 21 having a mounting portion 21a on which a semiconductor element 28 is mounted, and a frame body 24 that is joined to an outer peripheral portion of the upper surface of the base body 21 so as to surround the mounting portion 21a. The input / output terminal 25 having a metal layer on the bonding surface is bonded with a brazing material such as silver brazing. Further, the lid body 26 and the upper surface of the frame body 24 are joined by a low melting point brazing material such as gold (Au) -tin (Sn) alloy solder through metal layers provided on the upper surface of the lid body 26 and the frame body 24, respectively. Is done.
[0005]
The base 21 is made of a metal material having a relatively high thermal conductivity such as a copper (Cu) -tungsten (W) alloy and functions as a heat sink for absorbing and radiating heat generated when the semiconductor element 28 is operated. It functions as a support member that supports the element 28.
[0006]
The frame body 24 is made of a metal material such as an iron (Fe) -nickel (Ni) -cobalt (Co) alloy whose thermal expansion coefficient approximates that of the base body 21, and penetrates for fitting the input / output terminal 25. A mounting portion 24a composed of a hole or a notch is formed, and is joined with a brazing material such as silver brazing through metal layers provided on the upper and lower surfaces of the input / output terminal 25, respectively.
[0007]
The input / output terminal 25 is made of alumina (Al 2 O Three ) A metallized layer 25a made of a ceramic such as ceramics and sintered with a metal paste made of molybdenum (Mo) -manganese (Mn) or the like is applied to electrically connect the inside and outside of the semiconductor package.
[0008]
The metallized layer 25a has a lead terminal made of a metal material such as an iron (Fe) -nickel (Ni) -cobalt (Co) alloy having conductivity in order to input / output a high frequency signal to / from an external electric circuit. 27 is joined with a brazing material such as silver brazing, and a bonding wire 29 for electrical connection with the semiconductor element 28 is joined.
[0009]
The semiconductor element 28 is joined to the mounting portion 21a via a low melting point solder such as tin (Sn) -lead (Pb) solder and is transferred to the base 21 via the low melting point solder during operation.
[0010]
Thereafter, the upper surface of the frame body 24 is made of a metal material such as Fe-Ni-Co alloy or Al. 2 O Three The semiconductor element 28 is hermetically accommodated inside the semiconductor package by bonding with a low melting point brazing material such as gold (Au) -tin (Sn) alloy solder by the lid body 26 made of ceramics such as ceramics. It shall be good.
[0011]
As described above, the base 21, the frame body 24, the input / output terminal 25, and the lid body 26 accommodate the semiconductor element 28 in the semiconductor package, and electrically connect the bonding wire 29, the lead terminal 27, and the external electric circuit. By connecting, the semiconductor element 28 is a semiconductor device that operates by a high-frequency signal.
[0012]
[Problems to be solved by the invention]
However, in recent years, the semiconductor element 28 has rapidly increased in density and integration, and as a result, the amount of heat generated during operation of the semiconductor element 28 has become extremely large as compared with the conventional case. Therefore, when the semiconductor element 28 is accommodated in a conventional semiconductor package to form a semiconductor device, the base 21 made of a Cu—W alloy or the like that dissipates heat generated when the semiconductor element 28 is operated has a thermal conductivity of about 200 W. Even if it is relatively high at about / mK, a large amount of heat generated by the recent semiconductor element 28 cannot be sufficiently transferred. As a result, the semiconductor element 28 has a problem that it becomes a high temperature due to the generated heat and causes thermal destruction, or malfunction due to deterioration of characteristics due to heat.
[0013]
In order to solve the above-mentioned problems, the present applicant, as shown in FIGS. 3 and 4,, as the heat sink 12, is a member having a thermal conductivity of 300 W / mK or more from the upper surface to the lower surface, that is, in the thickness direction. Cr-Fe alloy layer 12b-1, Cu layer 12b-2, Fe-Ni layer or Fe- having a thickness of 50 μm or less on both upper and lower surfaces of unidirectional composite material 12a obtained by bonding carbon fibers oriented in the direction of carbon. In order to use a diffusion-bonded metal layer 12b having a three-layer structure of Ni-Co layer 12b-3, and further to close the pores on the side of the heat sink 12 to enhance external pressure resistance, Fe-Ni-Co A method has been proposed in which a heat sink 12 is inserted into a hole 11b of a frame-shaped metal base 11 made of an alloy or Fe-Ni alloy with a brazing material such as silver brazing (Japanese Patent Application No. 10-327216).
[0014]
However, although the heat conduction in the thickness direction is very excellent in the configurations of FIGS. 3 and 4, the heat conduction in the width direction (lateral direction), that is, the heat conduction in the lateral direction of the metal layer 12b is It is very low because of its composition and its thickness of 150 μm or less. For this reason, even if the hole 11b is inserted through a silver solder having excellent thermal conductivity, the generated heat does not sufficiently transfer to the silver solder. Therefore, when the semiconductor element 18 generates very high heat during its operation and heat conduction only in the thickness direction is not sufficient, the semiconductor element 18 has a problem that it becomes high temperature and causes thermal breakdown or deterioration of characteristics due to heat, resulting in malfunction. there were.
[0015]
Further, since the frame-shaped metal base 11 made of Fe-Ni-Co alloy or Fe-Ni alloy is a ferromagnetic body, when a high frequency signal is transmitted to the input / output terminal 15 joined to the upper surface thereof, an inductance component is used. Will occur. Therefore, there is a problem that the transmission characteristics of the high frequency signal are impaired.
[0016]
Further, even when the Ni-plating is inserted into the hole 11b of the frame-shaped metal base 11 with a brazing material such as silver brazing through the Ni plating deposited on the side of the heat sink 12, the Ni plating is a ferromagnetic material. When a high frequency signal is transmitted, an inductance component is generated. Therefore, there has been a problem that the transmission characteristics of high-frequency signals are impaired.
[0017]
Accordingly, the present invention has been completed in view of the above-mentioned problems, and its purpose is to efficiently dissipate heat generated during operation of the semiconductor element to the outside so that the semiconductor element is always at an appropriate temperature, and further, a high frequency that inputs and outputs the semiconductor element. An object of the present invention is to provide a semiconductor package capable of operating a semiconductor element normally and stably over a long period of time by having good characteristics.
[0018]
[Means for Solving the Problems]
The semiconductor package of the present invention comprises a heat sink having a mounting portion for mounting a semiconductor element on the upper surface, a Cu-W alloy, an Fe-Ni alloy, or an Fe-Ni-Co alloy, and is disposed on the upper surface of the heat sink. In a package for housing a semiconductor element, comprising a frame body having a mounting portion formed of a through-hole or a notch portion on a side portion thereof so as to surround the description portion, and an input / output terminal attached to the mounting portion. The heat radiating plate is a unidirectional structure in which a frame-shaped portion made of an Fe-Ni alloy or an Fe-Ni-Co alloy and carbon fibers that are fitted in openings in the frame-shaped portion and oriented in the thickness direction are bonded with carbon. A metal layer composed of a Fe-Cr alloy layer, a Cu layer, a Mo layer and a Cu layer is laminated on the upper and lower surfaces of the heat dissipation plate from the heat dissipation plate side. Exposed surface of heat sink and metal layer Cu plating layer, characterized in that formed by deposition on the surface.
[0019]
In the present invention, preferably, the interface between the heat dissipation plate and the metal layer and each layer in the metal layer are joined by diffusion bonding.
[0020]
According to the present invention, the heat sink on which the semiconductor element is mounted on the upper surface is made of carbon (or carbon (or carbon fiber)) oriented members having a thermal conductivity of 300 W / mK or more from the upper surface side to the lower surface side, that is, carbon fibers oriented in the thickness direction. The main heat radiating portion made of the unidirectional composite material joined in C) and the side portions of the main heat radiating portion are fitted into the through-holes by bonding due to mutual diffusion of C and Fe, and Fe—Ni—Co alloy, Fe— And a frame-like portion made of a metal material containing Fe of Ni alloy.
[0021]
The upper and lower surfaces of the main heat radiating part having C and Fe in the Fe—Cr alloy layer are subjected to mutual diffusion bonding, and the Fe in the frame-like part containing Fe is a trace component in the Fe—Cr alloy layer. By diffusing C with each other, the frame-shaped portion and the main heat radiating portion are joined to each other, thereby closing the pores on the upper and lower surfaces where the main heat radiating portion is exposed and maintaining the airtightness of the semiconductor element. And a metal layer having a function of improving the thermal conductivity in the width direction, and further improving the thermal conductivity in the width direction and being a ferromagnetic material, the side portion of the frame-like portion containing Fe being a non-magnetic material That is, it is composed of a Cu-plated layer deposited on the surface of the frame-shaped portion and the metal layer by improving the transmission characteristics of the high-frequency signal by changing to a paramagnetic material or diamagnetic material having a low magnetic susceptibility.
[0022]
With the above configuration, the heat generated when the semiconductor element is activated by the input / output of the high frequency signal is transferred in the thickness direction (the path in which the semiconductor element is directly transferred downward from the surface where the semiconductor element is joined to the heat sink via the low melting point solder. ) And the width direction (the path of heat transfer from the surface direction of the metal layer or the Cu plating layer through the side surface of the heat sink), the heat is transferred to the lower surface side and efficiently dissipated into the atmosphere. In addition, the frame-shaped portion and the main heat radiating portion are joined without using the Ni plating layer that is a ferromagnetic material, and the Cu plating layer that is a non-magnetic material is attached to the surface of the heat radiating plate, so that high frequency Generation of an inductance component due to signal input / output can be sufficiently suppressed. As a result, the semiconductor element can efficiently dissipate the heat generated during operation to the outside and always have an appropriate temperature, and the high frequency characteristics for inputting and outputting the semiconductor element can be improved, so that the semiconductor element can be operated normally and stably over a long period of time. .
[0023]
Further, the present invention adjusts the thickness of each of the metal layers (four-layer structure of Fe—Cr alloy layer, Cu layer, Mo layer, Cu layer) diffusion-bonded to the upper and lower surfaces of the frame-shaped portion and the main heat radiating portion. By doing so, the thermal expansion coefficient can be approximated to the thermal expansion coefficient of the frame-like portion. That is, the residual thermal stress between the frame-like portion and the metal layer can be made extremely small, and the bonding can be strengthened. On the other hand, since the elastic modulus in the width direction of the main heat radiating portion is 10 GPa or less and is very soft, the thermal stress generated when the metal layer and the metal layer are joined can be sufficiently absorbed and relaxed. Therefore, the metal layer that is diffusion-bonded by adjusting the thickness on the upper and lower surfaces of the frame-shaped part and the main heat radiating part can strengthen the bonding, and as a result, the mounting part on which the semiconductor element is mounted is always It becomes flat and can efficiently dissipate the heat generated when the semiconductor element operates.
[0024]
Furthermore, the heat sink of the present invention is mainly composed of a main heat radiating portion having a specific gravity almost as small as that of aluminum (Al) and a metal such as an Fe-Ni-Co alloy having a specific gravity smaller than that of a Cu-W alloy or the like. Since it is composed of a frame-shaped portion made of material, its weight is extremely small. Therefore, when a semiconductor device is accommodated in a semiconductor package to form a semiconductor device, the weight of the semiconductor device is also extremely small. Thus, it can be mounted on an electronic device that has been reduced in size and weight in recent years.
[0025]
DETAILED DESCRIPTION OF THE INVENTION
The semiconductor package of the present invention will be described in detail below. FIG. 1 is a cross-sectional view showing an embodiment of a semiconductor package of the present invention, and FIG. 2 is a partially enlarged cross-sectional view of the heat sink of FIG. In these figures, 1 is a heat sink, 2 is an input / output terminal, 3 is a frame, 5 is a lid, and 6 is a semiconductor element. The heat radiating plate 1, the input / output terminal 2, the frame body 3 and the lid body 5 constitute a container for housing the semiconductor element 6.
[0026]
The heat radiating plate 1 includes an Fe-Ni-Co alloy, a frame-like portion 1a containing Fe of an Fe-Ni alloy, a main heat-radiating portion 1b obtained by bonding carbon fibers oriented in the thickness direction with carbon, and these frame-like portions. 1a, a metal layer 1c bonded to both upper and lower surfaces of the main heat radiating portion 1b, and a Cu plating layer 1d deposited on the surface of the metal layer 1c and the exposed surface of the frame-like portion 1a. Furthermore, it has a mounting portion 1 ′ for mounting the semiconductor element 6 on its upper surface, and efficiently dissipates the heat generated when the semiconductor element 6 is operated to the outside. Has a function to effectively suppress the occurrence.
[0027]
The frame-like portion 1a of the heat radiating plate 1 has a surface of a metal material made of an Fe—Ni—Co alloy or Fe—Ni alloy having a through hole (opening) 1a-1 in a substantially central portion, and the metal layer 1c. It is covered with a Cu plating layer 1d, and has a function of effectively suppressing the generation of an inductance component in the heat sink 1 when a high frequency signal is input / output to / from the semiconductor package, and the semiconductor package is made of aluminum (Al ), Etc., when the screws are tightened by applying torque to the screw holes (not shown) provided in the outer peripheral edge of the heat radiating plate 1, Since it has elasticity, it is possible to effectively prevent breakage due to occurrence of cracks and the like, and it also functions as a so-called breakage prevention plate.
[0028]
The frame-like portion 1a is manufactured in a so-called frame shape having a through-hole 1b into which the main heat radiating portion 1b is fitted by subjecting the ingot to conventionally known metal processing such as rolling or punching. .
[0029]
Moreover, the main heat radiating portion 1b fitted into the through hole 1a-1 of the frame-like portion 1a is formed by bonding carbon fibers oriented in the thickness direction with carbon, and the side portion thereof is inside the through hole 1a-1. Press fit and fit at high temperature to contact the peripheral surface. Thereby, the carbon (C) in the main heat radiating part 1b and the Fe in the frame-like part 1a cause a diffusion reaction and are firmly joined.
[0030]
The main heat radiating portion 1b is impregnated with a solution of a thermosetting resin such as a phenol resin dispersed in a fine powder such as solid pitch or coke, for example, in one direction. This is dried to form a plurality of sheets in which the carbon fibers are oriented in one direction, and a plurality of sheets are laminated so that the directions of the carbon fibers are the same. Next, a predetermined pressure is applied to the laminated sheets and heated to cure the thermosetting resin portion. Finally, the thermosetting resin portion is baked at a high temperature in an inert atmosphere, and the phenol resin and fine pitch or coke are finely baked. It is made by carbonizing the powder (forming carbon) and bonding each carbon fiber with this carbon.
[0031]
In addition, the Fe-Cr alloy layer 1c-1, Cu layer 1c-2, Mo layer 1c-3, Cu are formed on the upper and lower surfaces of the frame-like portion 1a and the main heat radiating portion 1b fitted in the through hole 1a-1. A metal layer 1c having a four-layer structure of layers 1c-4 is laminated and deposited by diffusion bonding, and the coefficient of thermal expansion (approximately 10 × 10 × 10) of the frame-like portion 1a is adjusted by adjusting each thickness. -6 ~ 13x10 -6 / ° C). That is, the frame-shaped portion 1a is larger than the elastic modulus of the main heat radiating portion 1b, and the elastic modulus in the width direction of the main heat radiating portion 1b is 10 GPa or less, and can sufficiently absorb and relax the residual thermal stress. If the thermal expansion coefficient of the metal layer 1c is approximated to the thermal expansion coefficient of the frame-like part 1a, the residual thermal stress generated between the frame-like part 1a, the main heat radiating part 1b and the metal layer 1c can be made very small. It is preferable in that the bonding can be made strong.
[0032]
Further, the metal layer 1c deposited on the upper and lower surfaces of the main heat radiating portion 1b generates a slight residual thermal stress on the upper and lower surfaces due to the difference in their thermal expansion coefficients even though the main heat radiating portion 1b is soft. The residual thermal stresses cancel each other because the positions where the metal layer 1c is attached to the main heat radiating portion 1b are opposed to each other. Therefore, the junction between the main heat radiating portion 1b and the metal layer 1c is strong.
[0033]
Therefore, the part of the heat sink 1 excluding the Cu plating layer 1d, that is, the main heat dissipating part 1b fitted into the frame-like part 1a and its through hole 1a-1, and the metal layer 1c attached to the upper and lower surfaces thereof. The coefficient of thermal expansion in the width direction of the part made of is similar to the coefficient of thermal expansion of the frame-like portion 1a. Therefore, even if the Cu plating layer 1d is deposited on the surface of the part, the input / output terminal 2 is not connected. When joining with a brazing material such as silver brazing, the joining becomes strong.
[0034]
The thermal expansion coefficient of the metal layer 1c is adjusted by adjusting the thicknesses of the Fe—Cr alloy layer 1c-1, the Cu layer 1c-2, the Mo layer 1c-3, and the Cu layer 1c-4, particularly the main heat radiating portion 1b. It is preferable to adjust the thickness of the surface layer side (Mo layer 1c-3, Cu layer 1c-4) that is not directly affected by the characteristics such as the thermal expansion coefficient and the elastic modulus.
[0035]
For example, the coefficient of thermal expansion is about 10 × 10 -6 ~ 13x10 -6 In order to approximate the frame portion 1a made of Fe-Ni-Co alloy or Fe-Ni alloy at / ° C, the thickness of the outermost layer and the Cu layer 1c-4 having a large thermal expansion coefficient is maximized, The thickness of the Mo layer 1c-3 is made relatively thinner than the thickness of the Cu layer 1c-4. Furthermore, the thickness of the Fe—Cr alloy layer 1c-1 and the Cu layer 1c-2 is made thinner than the thickness of the Mo layer 1c-3. Specifically, the thickness of the Cu layer 1c-4 is about 20 to 50 μm, the thickness of the Mo layer 1c-3 is about 10 to 20 μm, and the thickness of the Fe—Cr alloy layer 1c-1 and the Cu layer 1c-2. The thickness is preferably about 5 to 10 μm. When each layer is out of the above thickness range, thermal strain due to a difference in thermal expansion of each foil for forming each layer is increased, and the adhesion tends to be impaired.
[0036]
In addition, when the thickness of the Fe—Cr alloy layer 1c-1 and the Cu layer 1c-2 is less than 5 μm, the variation in the thickness of the foil becomes large, and the bondability is liable to deteriorate during diffusion bonding.
[0037]
The metal layer 1c is attached by diffusion bonding to the upper and lower surfaces of the main heat dissipating part 1b fitted to the frame-like part 1a and its through hole 1a-1, that is, the heat dissipating plate 1. That is, the interface between the upper and lower surfaces of the heat sink 1 and the metal layer 1c and each layer in the metal layer 1c are joined by diffusion bonding. Specifically, the thickness of each of the upper and lower surfaces of the frame-like portion 1a and the main heat radiating portion 1b is 50 μm or less and the thickness is adjusted to approximate the thermal expansion coefficient of the frame-like portion 1a. Fe-Cr alloy foil for Cr alloy layer 1c-1, Cu foil for Cu layer 1c-2, Mo foil for Mo layer 1c-3, Cu foil for Cu layer 1c-3 were placed in order. Laminate. Next, this is performed by heating at a temperature of 1200 ° C. for 1 hour while applying a pressure of 5 MPa with a vacuum hot press.
[0038]
Moreover, the thickness of the main heat radiating portion 1b to which the metal layer 1c is diffusion bonded is preferably about 0.2 to 5 mm, and if it is less than 0.2 mm, the thermal expansion is caused by being too thin compared to the thickness of the metal layer 1c. The coefficient is greatly affected by the thermal expansion coefficient of the metal layer 1c. That is, the thermal expansion coefficient of the main heat radiating portion 1b is increased under the influence of the metal layer 1c in both the width direction and the thickness direction. In order to make this appropriate, it is necessary to make the thickness of each metal layer 1c as very thin as less than 5 μm. At present, such a thin foil is produced with defects such as voids. Is very difficult. On the other hand, if it exceeds 5 mm, it is too thick, so that it is far from the market demand for semiconductor packages that are required to be reduced in size and weight, and practicality is lost. Therefore, the thickness of the main heat radiating portion 1b is preferably about 0.2 to 5 mm.
[0039]
In addition, in diffusion bonding between the frame-shaped portion 1a and the Fe—Cr alloy layer 1c-1, Fe in the frame-shaped portion 1a and C, which is a trace component in the Fe—Cr alloy layer 1c-1, diffuse to each other. It joins firmly. On the other hand, the diffusion bonding between the main heat radiating portion 1b and the Fe—Cr alloy layer 1c-1 is strengthened by the mutual diffusion of C in the main heat radiating portion 1b and Fe in the Fe—Cr alloy layer 1c-1. Be joined.
[0040]
The Fe—Cr alloy layer 1c-1 is an adhesion layer that firmly bonds the metal layer 1c to the frame-like portion 1a and the main heat radiating portion 1c, and the Cu layer 1c-2 is an Fe—Cr alloy layer 1c-1. And Mo layer 1c-3 are firmly bonded to each other and effectively prevent mutual diffusion of the two. Mo layer 1c-3 and Cu layer 1c-4 are formed of Fe-Cr alloy layer 1c-1 and Mo layer 1c-3. It is a thermal expansion coefficient adjusting layer that approximates the thermal expansion coefficient of the frame-like portion 1a by adjusting the thickness in combination with the Cu layer 1c-2.
[0041]
The outermost Cu layer 1c-4 is a part 1 'on which the semiconductor element 6 is placed, and has excellent thermal conductivity. Therefore, the heat generated by the semiconductor element 6 Can be efficiently applied to the upper surface of the frame-like portion 1a and the main heat dissipating portion 1b to which the metal layer 1c is applied, and the Cu plating layer 1d can be very easily attached to the surface. .
[0042]
Further, the heat sink 1 coated with the Cu plating layer 1d can dissipate the heat generated by the semiconductor element 6 to the outside more efficiently due to the high thermal conductivity of the Cu plating layer 1d. Since 1d is a diamagnetic material, it is possible to effectively prevent an inductance component from being generated in the frame-shaped portion 1a due to a high-frequency signal transmitted inside and outside the semiconductor package. That is, the Cu plating layer 1d has a function of enhancing the heat transfer effect and effectively preventing the generation of an inductance component. As a result, it is possible to effectively prevent the semiconductor element 6 from being damaged or deteriorated by heat, Furthermore, the operability of the semiconductor element 6 by the high frequency signal can be improved.
[0043]
Further, such a heat radiating plate 1 is mainly composed of a main heat radiating portion 1b having a specific gravity almost as small as Al, and a Fe—Ni—Co alloy or Fe—Ni alloy having a specific gravity smaller than that of a Cu—W alloy or the like. Since the frame-like portion 1a contains Fe, the weight thereof is extremely small. Therefore, when it becomes a semiconductor package, the weight can be made very small.
[0044]
On the upper surface of the heat radiating plate 1, alumina (Al 2 O Three ) Metallized by ceramics made of ceramics, etc. The input / output terminal 2 for inputting / outputting high-frequency signals is obtained by sintering a metal paste made of Mo-Mn or the like to the mounting part 3a made of a through hole or a notch in the frame 3. It joins with brazing materials, such as silver brazing, through the layer and the Ni plating layer deposited on the surface.
[0045]
The input / output terminal 2 is covered with a metallized layer 2a obtained by sintering a metal paste made of Mo-Mn or the like so as to lead out the inside and outside of the semiconductor package. A metallized layer for bonding to the frame 3 and a Ni plating layer deposited on the surface thereof are formed.
[0046]
On the surface of the metallized layer 2a, a metal excellent in corrosion resistance and wettability with a brazing material, specifically, a Ni layer having a thickness of 0.5 to 9 μm is applied by plating. The lead element 4 can be joined with a brazing material such as silver brazing, and an Au layer having a thickness of 0.5 to 9 μm is further deposited on the surface of the Ni layer by a plating method. A bonding wire 7 for electrical connection can be joined.
[0047]
The lead terminal 4 is made of a metal material such as an Fe-Ni-Co alloy having conductivity in order to input / output a high-frequency signal to / from an external electric circuit, and a rolling method or a punching method is applied to the ingot of the metal material. Etc., by applying a conventionally known metal processing method.
[0048]
The frame 3 is made of a metal material such as a Cu—W alloy, Fe—Ni—Co alloy, or Fe—Ni alloy. The thermal stress can be made small, and as a result, the joining can be made strong. The frame 3 also functions as a so-called electromagnetic shielding plate (shielding plate) that shields an electromagnetic field generated when a high-frequency signal is input / output to / from the semiconductor package.
[0049]
The frame 3 made of the above metal material is manufactured in a predetermined shape by subjecting the ingot to conventional metal processing such as rolling or punching. Further, when a metal having excellent corrosion resistance and wettability with the brazing material, specifically, a Ni layer having a thickness of 0.5 to 9 μm is deposited on the surface by plating, the input / output terminal 2 It is possible to further strengthen the bonding with the upper surface of the copper alloy using a brazing material such as silver brazing.
[0050]
The upper surface of the frame 3, that is, the surface to be bonded to the lid 5 is bonded with a low melting point brazing material such as Au—Sn alloy solder, and therefore needs to be a bonding surface excellent in wetting with the low melting point brazing material. Therefore, it is preferable that an Au layer having a thickness of 0.5 to 9 μm is further deposited on the surface of the Ni layer.
[0051]
On the upper surface of the frame 3, a lid 5 made of a metal material such as Fe—Ni—Co alloy or ceramics such as alumina ceramic, which is preferable in terms of matching of thermal expansion coefficients, is Au—Sn alloy solder or the like. These are joined via a low melting point brazing material.
[0052]
Thus, the semiconductor element 6 is hermetically sealed inside the semiconductor package, and heat generated during operation after being formed into a semiconductor device can be efficiently dissipated into the atmosphere and the generation of inductance components can be effectively prevented. Does not cause any problems such as operation.
[0053]
Thus, in the semiconductor package of the present invention, the heat dissipation plate 1 having the mounting portion 1 ′ on which the semiconductor element 6 is mounted has a thermal conductivity of 300 W / mK or more from the upper surface side to the lower surface side. A member, that is, a main heat radiating portion 1b in which carbon fibers oriented in the thickness direction are bonded with carbon, and a side portion thereof is fitted into the through hole 1a-1 by diffusion bonding by mutual diffusion of C and Fe. -It is comprised from the frame-shaped part 1a which consists of a metal containing Fe of Ni-Co alloy and Fe-Ni alloy.
[0054]
Further, the upper and lower surfaces of the main heat radiating part 1b having C and Fe in the Fe—Cr alloy layer 1c-1 are subjected to mutual diffusion bonding, and Fe in the frame-like part 1a and a trace component in the Fe—Cr alloy layer 1c-1 C, which is a diffusion bonding member, has a function of blocking the upper and lower surface pores where the main heat radiating portion 1b is exposed and maintaining the hermeticity of the semiconductor element 6 and has a thermal conductivity in the width direction. The metal layer 1c to be improved and the thermal conductivity in the width direction are further improved, and the side portion of the frame-like portion 1a which is a ferromagnetic body and contains Fe is made of a nonmagnetic material (a paramagnetic material or a diamagnetic material having a low magnetic susceptibility). It is composed of a frame-shaped portion 1a and a Cu plating layer 1d deposited on the surface of the metal layer 1c.
[0055]
With this configuration, the heat generated when the semiconductor element 6 is activated by the input / output of a high-frequency signal is directly below the thickness direction, that is, from the surface where the semiconductor element 6 is joined to the heat sink 1 via the low melting point solder. The heat transfer path and the path that transfers heat from the width direction, that is, the surface direction of the metal layer 1c or the Cu plating layer 1d, to the side surface of the heat sink 1 are transferred to the lower surface and efficiently dissipated in the atmosphere. Is done.
[0056]
Further, the frame-like portion 1a and the main heat radiating portion 1b are joined without the Ni plating layer being a ferromagnetic material, and the Cu plating layer 1d being a diamagnetic material is deposited on the surface layer of the heat radiating plate 1. Therefore, generation of an inductance component due to input / output of a high frequency signal can be sufficiently suppressed. As a result, the semiconductor element 6 efficiently dissipates the heat generated during operation to the outside and is always at an appropriate temperature, and the high frequency characteristics for inputting and outputting the semiconductor element 6 are good. It can be operated stably.
[0057]
Further, according to the present invention, the metal layer 1c diffusion-bonded to the upper and lower surfaces of the frame-like portion 1a and the main heat radiating portion 1b, that is, the Fe—Cr alloy layer 1c-1, the Cu layer 1c-2, and the Mo layer 1c-3. By adjusting the thickness of each of the four layers of the Cu layer 1c-4, the thermal expansion coefficient of the frame-like portion 1a can be approximated. That is, the residual thermal stress between the frame-like portion 1a and the metal layer 1c can be made extremely small and the bonding can be made strong. On the other hand, since the elastic modulus in the width direction of the main heat radiating portion 1b is very soft as 10 GPa or less, the thermal stress generated when the metal layer 1c is joined to the metal layer 1c can be sufficiently absorbed and relaxed. Therefore, the metal layer 1c diffusion-bonded by adjusting the thickness on the upper and lower surfaces of the frame-shaped portion 1a and the main heat radiating portion 1b can strengthen the bonding, and as a result, the semiconductor element 6 is placed thereon. The placement portion 1 ′ is always flat, and heat generated when the semiconductor element 6 operates can be efficiently dissipated to the outside.
[0058]
Furthermore, according to the present invention, the heat radiating plate 1 mainly includes a main heat radiating portion 1b whose specific gravity is as small as that of aluminum, and Fe of a Fe—Ni—Co alloy whose specific gravity is smaller than that of a Cu—W alloy or the like. Since the frame portion 1a is contained, the weight thereof is extremely small. Therefore, when the semiconductor element 6 is accommodated in the semiconductor package to form a semiconductor device, the weight of the semiconductor device is extremely small. In addition, it can be mounted on an electronic device that is becoming smaller and lighter in recent years.
[0059]
Thus, in the semiconductor package of the present invention, the semiconductor element 6 is placed and fixed on the placement portion 1 ′ of the heat sink 1 via the low melting point solder such as Sn—Pb solder, and each electrode of the semiconductor element 6 is bonded. After connecting to the metallized layer 2a via the wire 7, the lid 5 is joined to the upper surface of the frame 3 via a low melting point solder such as Au-Sn alloy solder, and the heat sink 1 and the input / output terminal 2 The semiconductor device 6 is housed in the container composed of the frame 3 and the lid 5 to provide a semiconductor device as a product.
[0060]
It should be noted that the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the scope of the present invention.
[0061]
For example, the main heat radiating portion 1b for transferring the heat generated by the semiconductor element 6 as it is vertically downward is 50% or more of the area of the upper surface compared to the area of the lower surface of the semiconductor element 6, and the metal layer 1c or Cu plating layer. It is only necessary to be in contact through 1d, and the heat dissipation effect is not impaired. On the other hand, when it is less than 50%, the heat dissipation effect is the same as or lower than that of the conventional Cu—W alloy. Therefore, if the area of the upper surface of the main heat radiating portion 1b is 50% or more of the area of the lower surface of the semiconductor element 6 and is in contact via the metal layer 1c or the Cu plating layer 1d, the effect of the present invention is exhibited. obtain.
[0062]
【The invention's effect】
In the present invention, the heat sink on which the semiconductor element is placed on the upper surface is a member having a thermal conductivity of 300 W / mK or more from the upper surface side to the lower surface side, that is, carbon fibers oriented in the thickness direction are bonded with carbon. The main heat radiating part, the frame-like part in which the side part of the main heat radiating part is fitted into the through hole by mutual diffusion, and the frame-like part and the main heat-radiating part so as to approximate the thermal expansion coefficient of the frame-like part By comprising a metal layer laminated on the upper and lower surfaces and an exposed surface of these frame-like portions and a Cu plating layer deposited on the surface of the metal layer, the airtightness of the semiconductor element can be maintained, and the semiconductor Heat generated when the element is operated by a high-frequency signal can be efficiently dissipated through two paths in the thickness direction and the width direction. In addition, the generation of inductance components can be effectively prevented. Furthermore, since it is very lightweight, it can be mounted on an electronic device that is becoming smaller and lighter in recent years.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an embodiment of a semiconductor package of the present invention.
2 is a partially enlarged cross-sectional view of the heat dissipation plate of FIG. 1;
FIG. 3 is a cross-sectional view of a conventional semiconductor package.
4 is a partially enlarged cross-sectional view of the heat dissipation plate of FIG. 3;
FIG. 5 is a cross-sectional view of a conventional semiconductor package.
[Explanation of symbols]
1: Heat sink
1 ': Placement part
1a: Frame-shaped part
1a-1: Through hole
1b: Main heat radiation part
1c: Metal layer
1c-1: Iron-chromium alloy layer
1c-2: Copper layer
1c-3: Molybdenum layer
1c-4: Copper layer
1d: Copper plating layer
2: I / O terminal
3: Frame
3a: Mounting part
6: Semiconductor element

Claims (2)

上面に半導体素子を載置する載置部を有する放熱板と、Cu−W合金,Fe−Ni合金またはFe−Ni−Co合金から成り、かつ前記放熱板上面に前記載置部を囲繞するように取着され側部に貫通孔または切欠部から成る取付部を有する枠体と、前記取付部に取着された入出力端子とを具備する半導体素子収納用パッケージにおいて、前記放熱板は、Fe−Ni合金またはFe−Ni−Co合金から成る枠状部と、該枠状部の開口に嵌着され、厚さ方向に配向した炭素繊維を炭素で結合した一方向性複合材料から成る主放熱部とから構成され、かつ前記放熱板の上下面には前記放熱板側からFe−Cr合金層,Cu層,Mo層およびCu層から成る金属層が積層され、前記放熱板の露出表面および前記金属層の表面にCuメッキ層が被着されて成ることを特徴とする半導体素子収納用パッケージ。A heat sink having a mounting portion for mounting a semiconductor element on the upper surface, and a Cu—W alloy, Fe—Ni alloy, or Fe—Ni—Co alloy, and surrounding the mounting portion on the heat sink upper surface. In the package for housing a semiconductor element, comprising: a frame body having a mounting portion formed of a through hole or a notch portion on a side portion; and an input / output terminal attached to the mounting portion. A main heat dissipation composed of a unidirectional composite material in which a carbon fiber that is fitted in an opening of the frame-like part and oriented in the thickness direction is bonded with carbon; a frame-like part made of a Ni alloy or a Fe-Ni-Co alloy And a metal layer composed of an Fe—Cr alloy layer, a Cu layer, a Mo layer, and a Cu layer is laminated on the upper and lower surfaces of the heat sink from the heat sink side, and the exposed surface of the heat sink and the Cu plating layer is deposited on the surface of the metal layer Package for housing semiconductor chip, characterized by comprising Te. 前記放熱板と前記金属層との界面および前記金属層内の各層は、拡散接合により接合されて成ることを特徴とする請求項1記載の半導体素子収納用パッケージ。2. The package for housing a semiconductor element according to claim 1, wherein an interface between the heat sink and the metal layer and each layer in the metal layer are joined by diffusion bonding.
JP2000072962A 2000-03-15 2000-03-15 Package for storing semiconductor elements Expired - Fee Related JP4272329B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000072962A JP4272329B2 (en) 2000-03-15 2000-03-15 Package for storing semiconductor elements

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000072962A JP4272329B2 (en) 2000-03-15 2000-03-15 Package for storing semiconductor elements

Publications (2)

Publication Number Publication Date
JP2001267441A JP2001267441A (en) 2001-09-28
JP4272329B2 true JP4272329B2 (en) 2009-06-03

Family

ID=18591292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000072962A Expired - Fee Related JP4272329B2 (en) 2000-03-15 2000-03-15 Package for storing semiconductor elements

Country Status (1)

Country Link
JP (1) JP4272329B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4147171B2 (en) * 2003-10-23 2008-09-10 松下電器産業株式会社 Solid-state imaging device and manufacturing method thereof
US9390999B2 (en) 2005-03-23 2016-07-12 Noriaki Kawamura Metal substrate/metal impregnated carbon composite material structure and method for manufacturing said structure
JP4558012B2 (en) 2007-07-05 2010-10-06 株式会社東芝 Semiconductor package heat dissipation plate and semiconductor device
US8085531B2 (en) * 2009-07-14 2011-12-27 Specialty Minerals (Michigan) Inc. Anisotropic thermal conduction element and manufacturing method
US20140057127A1 (en) * 2012-08-22 2014-02-27 Infineon Technologies Ag Method for processing at least one carbon fiber, method for fabricating a carbon copper composite, and carbon copper composite
US11152279B2 (en) * 2018-03-26 2021-10-19 Raytheon Company Monolithic microwave integrated circuit (MMIC) cooling structure
US10785863B2 (en) 2018-04-09 2020-09-22 Raytheon Company Circuit support and cooling structure
WO2020056165A1 (en) 2018-09-14 2020-03-19 Raytheon Company Module base with integrated thermal spreader and heat sink for thermal and structural management of high-performance integrated circuits or other devices
US11032947B1 (en) 2020-02-17 2021-06-08 Raytheon Company Tailored coldplate geometries for forming multiple coefficient of thermal expansion (CTE) zones

Also Published As

Publication number Publication date
JP2001267441A (en) 2001-09-28

Similar Documents

Publication Publication Date Title
JP2004200346A (en) Package for housing semiconductor element, method of manufacturing the same, and semiconductor device
KR100783458B1 (en) Semiconductor device and manufacturing method thereof
JP2004146413A (en) Semiconductor element storage package and semiconductor device
JP4610414B2 (en) Electronic component storage package, electronic device, and electronic device mounting structure
JP4272329B2 (en) Package for storing semiconductor elements
JP4412072B2 (en) Electronic component mounting method, semiconductor module, and semiconductor device
JP2001313345A (en) Package for storing semiconductor elements
JP4336016B2 (en) Package for storing semiconductor elements
JP3659336B2 (en) Package for storing semiconductor elements
JP4272330B2 (en) Package for storing semiconductor elements
JP2002231850A (en) Wiring board for semiconductor element storage
JP3810276B2 (en) Optical semiconductor element storage package
JP4454164B2 (en) Package for storing semiconductor elements
JP2000183253A (en) Package for storing semiconductor elements
JP3554304B2 (en) Semiconductor element storage package and semiconductor device
JP2001339021A (en) Package for storing semiconductor elements
JP2003046042A (en) Semiconductor element storage package and semiconductor device
JP2003229521A (en) Semiconductor module and manufacturing method thereof
JP2003069127A (en) Optical semiconductor element storage package and optical semiconductor device
JP3659304B2 (en) Package for storing semiconductor elements
JP2009170758A (en) Package for storing high heat radiation type electronic component package for storing high heat radiation type electronic component
JP2023071204A (en) package
JPH0465544B2 (en)
JP2002252299A (en) Package for housing semiconductor element and semiconductor device
JP2003133467A (en) Semiconductor element storage package and semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090123

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090203

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090227

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130306

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130306

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140306

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees