[go: up one dir, main page]

JP4266492B2 - Aluminum laminated tube container - Google Patents

Aluminum laminated tube container Download PDF

Info

Publication number
JP4266492B2
JP4266492B2 JP2000133642A JP2000133642A JP4266492B2 JP 4266492 B2 JP4266492 B2 JP 4266492B2 JP 2000133642 A JP2000133642 A JP 2000133642A JP 2000133642 A JP2000133642 A JP 2000133642A JP 4266492 B2 JP4266492 B2 JP 4266492B2
Authority
JP
Japan
Prior art keywords
shoulder
cylindrical body
mold
peripheral edge
tube container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000133642A
Other languages
Japanese (ja)
Other versions
JP2001315809A (en
Inventor
達夫 石川
幸知 柚原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yoshida Industries Co Ltd
Original Assignee
Yoshida Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yoshida Industries Co Ltd filed Critical Yoshida Industries Co Ltd
Priority to JP2000133642A priority Critical patent/JP4266492B2/en
Publication of JP2001315809A publication Critical patent/JP2001315809A/en
Application granted granted Critical
Publication of JP4266492B2 publication Critical patent/JP4266492B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Tubes (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、耐薬品性、ガスバリヤー性、遮光性を備えたアルミ・ラミネートチューブ容器に関し、とりわけ、アルミ・ラミネート素材で形成された筒状体の一端に、抽出口を設けた首部が射出成形されて一体化されるアルミ・ラミネートチューブ容器に関する。
【0002】
【従来の技術】
アルミ・ラミネートチューブ容器は、保形性を備えつつ変形性に優れて絞り出しが容易であることから、ゲル状物質を収容する場合に多く用いられる。この場合、前記アルミ・ラミネートチューブ容器に耐薬品性、ガスバリヤー性、遮光性に優れた素材を用いることにより、これに収納した化粧料や軟膏等の劣化を防止することができる。
【0003】
前記アルミ・ラミネートチューブ容器は、アルミ・ラミネート素材で形成した筒状体の一端に、抽出口が形成される首部が取付けられるとともに、他端は押し潰して熱融着することにより閉止され、該首部の抽出口が着脱自在なキャップで閉止されるのが一般的な構造となっている。
【0004】
図9は従来のアルミ・ラミネートチューブ容器1の首部2の要部拡大図で、該首部2は内容物の抽出口2aと、この抽出口2aと筒状体3の端部周縁部との間を封止する鍔部2bとで構成され、該首部2は射出成形により筒状体3の一端に一体化される。このとき、前記鍔部2bから筒状体3に至る角部が肩部4となる。
【0005】
即ち、前記首部2を射出成形する際には、まず、上端部が首部2の内側形状を成す図外の内型の外周に筒状体3を挿入保持した後、該内型から突出した筒状体3の上端部を、首部2の外側形状を成す外型の周縁部で押圧して円弧状に湾曲(湾曲部R)させ、この状態で内型と外型との間に形成される空間部(キャビティ)に溶融状態の合成樹脂を射出するようになっている。このとき、溶融された合成樹脂は前記湾曲部Rの内側に沿って回り込み、首部2と筒状体3は前記肩部4において一体化され、そして、射出した合成樹脂が硬化した後に内型と外型からチューブ容器1が離型される。
【0006】
【発明が解決しようとする課題】
かかる従来のアルミ・ラミネートチューブ容器1にあっては、肩部4となる鍔部2bの外周縁部は、その先端部5が筒状体3の上端湾曲部Rの内側に沿って除々に薄肉化される先細り状態で、合成樹脂が筒状体3の内周面に沿って湾曲部R下方へと回り込んだ状態になっている。つまり、この鍔部2bの外周縁部の先細り状態の回り込み部分5は、内型と筒状体3との間の空間部分に合成樹脂が垂れ込むことにより形成される。すなわち従来にあっては、前記回り込み部分5では溶融状態の合成樹脂が流動状態にあって、当該回り込み部分5では射出圧力が十分に作用せず、従って圧力にムラが生じている。
【0007】
このため、回り込み部分5近傍では、アルミ・ラミネート素材を外型へ押し付ける圧力が不足したり、圧力を均等にさせることができなくなっていて、溶融熱により柔らかくなったアルミ・ラミネート素材にシワが寄ってしまい、このシワは射出成形された合成樹脂が硬化した後もアルミ・ラミネートチューブ容器1の肩部4に残ってしまい、その商品価値が低下してしまう。
【0008】
そこで、本発明はかかる従来の課題に鑑みて成されたもので、首部を形成すべく射出される合成樹脂がアルミ・ラミネート素材で形成される筒状体と一体化する部分の射出圧力を、この一体化部分全体に亘って十分にかつ均等に作用させることができて、肩部にシワが寄ることを防止できるアルミ・ラミネートチューブ容器を提供することを目的とする。
【0009】
【課題を解決するための手段】
かかる目的を達成するために本発明は、アルミ・ラミネート素材で筒状体を形成し、該筒状体内にその一端を残して密接挿入される内型および該内型の端面を起点に該筒状体の当該一端を肩部として内方へ湾曲させつつ該内型に対向配置される外型とでキャビティを形成し、該キャビティに合成樹脂を射出することにより抽出口を有する首部を上記肩部に一体成形するようにしたアルミ・ラミネートチューブ容器において、上記肩部の起点をなす上記内型端面の外周縁が、上記筒状体の内周面に対して突き当たる平坦面で形成され、上記抽出口と上記肩部との間の距離が、上記筒状体の周方向に変化されるとともに、上記キャビティが、上記抽出口と上記肩部との間の距離に応じて、短い箇所で狭く長い箇所で広く形成されることを特徴とする。
【0010】
この構成によれば、合成樹脂をキャビティに射出することにより筒状体の一端側に首部が成形されるようになっており、この首部は筒状体の一端の肩部に一体化される。このとき、肩部の起点をなす内型端面の外周縁が、筒状体の内周面に対して突き当たる平坦面に形成されていて、キャビティ内に射出された合成樹脂はこれに充満する際に、内型端面の外周縁に形成されている平坦面に堰き止められて当該平坦面が突き当たる筒状体の内周面に向かって、肩部へと流動することになる。従って、内方へ湾曲された肩部に対して射出成形時の射出圧力をむら無く作用させることができ、溶融熱とともに該肩部を押し延ばすようにして、当該肩部にシワが形成されるのが防止される。
【0012】
この構成によれば、合成樹脂をキャビティに射出して首部を成形する際に、抽出口から肩部に至る距離に応じて合成樹脂の圧力を調節することができ、距離が長い箇所では距離の短い箇所に比べて圧力が低くなることを防止して、抽出口から肩部に至る距離が筒状体の周方向に異なる場合であっても、合成樹脂が肩部に到達した時の射出圧力を全周において均等化でき、これによって肩部にシワが形成されるのを防止することができる。
【0013】
【発明の実施の形態】
以下、本発明の実施形態を添付図面を参照して詳細に説明する。図1から図5は本発明のアルミ・ラミネートチューブ容器の一実施形態を示し、図1はアルミ・ラミネートチューブ容器の首部と筒状体とが一体化された半製品の断面図、図2はアルミ・ラミネート素材の拡大断面図、図3は図1中A部の拡大断面図、図4は首部を成型する際の射出成形金型の準備状態を示す断面図、図5は首部を成型する際の射出成形金型への樹脂射出状態を示す断面図である。
【0014】
本実施形態のアルミ・ラミネートチューブ容器10は基本的には、アルミ・ラミネート素材11で筒状体12を形成し、筒状体12内にその一端を残して密接挿入される内型22および内型22の端面を起点に筒状体12の当該一端を肩部Rとして内方へ湾曲させつつ内型22に対向配置される外型23とでキャビティ26を形成し、キャビティ26に合成樹脂を射出することにより抽出口14を有する首部13を肩部Rに一体成形するようにしたアルミ・ラミネートチューブ容器において、肩部Rの起点をなす内型22端面の外周縁が、筒状体12の内周面に対して突き当たる平坦面Fで形成されている。
【0015】
即ち、図1はアルミ・ラミネートチューブ容器10の形成途中を示す半製品の断面図で、アルミ・ラミネート素材11を筒状に形成した筒状体12の上端部12aに首部13を取り付けた状態を示し、同図では筒状体12の下端部12bは開放された状態となっているが、この開放された下端部12bは、内容物を充填した後で押し潰されて熱融着されることにより閉塞される。
【0016】
前記首部13は合成樹脂により形成され、中央部に突出状態で形成される抽出口14と、該抽出口14の下端周縁部に形成される鍔部15とからなり、該鍔部15の外周が前記筒状体12の上端部12a内周に結合される。前記抽出口14の突出部分先端には開口14aが形成されるとともに、その突出部分外周にねじ部14bが形成され、このねじ部14bに図外のキャップが着脱自在に螺着される。
【0017】
上記筒状体12を形成するアルミ・ラミネート素材11は、図2に示すように内方から外方に向かってポリエチレン(PE)層11a、エチレン−メタクリル酸共重合体を用いた接着層11b、アルミニウム(AL)層11c、ポリエチレンテレフタレート(PET)層11d、ポリエチレン(PE)層11eの複層から構成され、耐薬品性、ガスバリヤー性、遮光性に優れた性質を備える。
【0018】
前記筒状体12は、これら複層をもって押出し加工されることによりシームレスとなった筒状に形成されることが望ましいが、これ以外にも矩形状に裁断したアルミ・ラミネート素材11の両側部を熱融着して筒状に形成することもできる。
【0019】
筒状体12は図4、図5に示す射出成形金型20にセットして、該筒状体12に前記首部13が射出成形されるようになっている。即ち、該射出成形金型20は、支持台21に立設された内型22と、該内型22の上端部で昇降する外型23と、該外型23の上側で昇降する溶融樹脂の湯道部材24とを備えており、内型22の上端部は前記首部13の内側形状に沿って形成される。前記外型23の内型22に対向する部分は、首部13の外側形状に沿って形成される。また、前記外型23は、ねじ部14bを成形するためのねじ型25が分離して設けられ、該ねじ型25は左右に2分割されて近接・離反する分割型25a、25bで構成される。
【0020】
従って、上記射出成形金型20を用いて筒状体12に首部13を一体成形するには、まず図4に示したように内型22に筒状体12を挿入して保持させる。このとき、該筒状体12の上端部12aは内型22の外周縁から上方に若干突出された状態にある。次に、図5に示すように外型23を下降して、前記外周縁に対応した内側周縁部23a(図4参照)で前記筒状体12の上端部12aを押圧し、当該上端部12aを内方に向かって円弧状に湾曲させて肩部Rを形成する。また、この状態ではねじ型25の分割型25a、25bは互いに突き合わされた状態にある。
【0021】
そして、前記ねじ型25の中央凹部25cに湯道部材24の下端部を差し込んで、これの射出通路24aから前記内型22と外型23およびねじ型25間のキャビティ26内に、溶融された樹脂を所定の圧力をもって射出する。すると、キャビティ26内は溶融樹脂で充満され、ねじ型25内側に抽出口14が成形されるとともに、外型23の下側に鍔部15が成形される。該鍔部15の外周縁部15aは、図3に示すように前記筒状体12の肩部Rの内側に沿って回り込み、これら鍔部15と筒状体12は肩部Rにおいて一体化される。
【0022】
そして、前記キャビティ26に射出された樹脂が冷却硬化した段階で、ねじ型25の分割型25a、25bを分離しつつ外型23を上昇し、そして、内型22から筒状体12を取り出すことにより、筒状体12に首部13が取り付けられた図1に示した半製品が製作される。
【0023】
ここで、前記鍔部15の外周縁部15aは肩部Rの内側に接触して一体化されるが、図4に示したように該外周縁部15aを成形する上記内型22の外周縁を、筒状体12内周に対して突き当たる平坦面Fに形成して、上記キャビティ26に射出された溶融樹脂を内型22の当該平坦面Fとこれに密接する筒状体12の内周面とで堰き止めるようになっている。そして、図3に示したように鍔部15(首部13)の外周縁部15aの内面15bは平坦となって該筒状体12内周に接合されるようになっている。
【0024】
以上の構成により本実施形態のアルミ・ラミネートチューブ容器10にあっては、溶融された樹脂を内型22と外型23との間のキャビティ26に射出することにより、首部13がアルミ・ラミネート素材11で形成された筒状体12の上端部12aに射出成形されて一体化されるようになっており、キャビティ26に射出される溶融樹脂は、まず首部13の中心部に突出して設けられる抽出口14から鍔部15方向へと流れて、最終的に該鍔部15の外周縁部15aに至るようになっている。
【0025】
そして、該外周縁部15aが接触する筒状体12の上端部、つまり肩部Rには射出される樹脂の溶融熱が作用して、当該部分のアルミ・ラミネート素材11が柔らかくなり、この柔らかくなった状態で射出された樹脂が一体化される。このとき、鍔部15の外周縁部15aが接触される肩部Rの内側には射出圧力が作用し、この射出圧力によって肩部Rは外型23の内面に押圧される。
【0026】
ここで、本実施形態では内型22の端面の外周縁を、筒状体12の内周面に対して突き当たる平坦面Fに形成して、キャビティ26に射出した溶融樹脂を、この平坦面Fとこれに密接する筒状体12の内周面との間で堰き止めることができる。従って、鍔部15の外周縁部15aには筒状体12の接合部分で所定の肉厚を確保して、射出された溶融樹脂を上記肩部Rに接触する外周縁部15aの終端にスムーズに到達させることができる。このため、溶融樹脂の射出圧力を前記肩部Rの湾曲方向全区間Lに亘って等しく作用させることができるので、溶融熱で柔らかくなったアルミ・ラミネート素材11の肩部R全体を均等な射出圧力をもって外型23の内面に押圧できるようになり、該肩部Rにシワが形成されるのを防止する。従って、アルミ・ラミネートチューブ容器10の肩部Rは、全周に亘ってシワのない滑らかな曲面として形成され、その外観性を良好にして商品価値を高めることができる。
【0027】
図6は他の実施形態を示す要部拡大断面図で、上記実施形態と同一構成部分に同一符号を付して重複する説明を省略して述べる。即ち、この実施形態のアルミ・ラミネートチューブ容器10aは、射出成形された鍔部15の外周縁部15aが下方に垂下されるようになっており、その垂下される外周縁部15aの肉厚を肩部Rの湾曲方向全区間Lに亘って等しくし、その先端の下面15cを平坦として筒状体12の内周面に対して直角に接合してある。勿論、図示は省略したが内型の端面の外周縁形状が鍔部15の外周縁部15aに沿って形成されており、下面15cに対応する外周縁が筒状体12の内周面に直角に密接して、射出された溶融樹脂を堰き止めるようになっている。
【0028】
従って、この実施形態にあっても鍔部15の外周縁部15aには筒状体12の接合部分で所定の肉厚を確保して、射出された溶融樹脂を上記肩部Rに接触する外周縁部15aの終端にスムーズに到達させることができ、湾曲方向全区間Lに亘って射出圧力を等しく作用させて、肩部Rにシワが形成されるのを防止することができる。
【0029】
図7、図8は本発明の他の実施形態を示し、上記各実施形態と同一構成部分に同一符号を付して重複する説明を省略して述べる。なお、図7はアルミ・ラミネートチューブ容器の平面図、図8は図7中のB−B線断面図である。
【0030】
この実施形態のアルミ・ラミネートチューブ容器10bは、図7に示すように鍔部15の平面形状が楕円形となって、抽出口14から筒状体12上端部の肩部Rに至る距離が周方向において変化される場合に本発明を適用したものである。
【0031】
即ち、楕円形となる前記鍔部15は、抽出口14から鍔部15の外周縁部15aに至る長軸X方向の距離aが短軸Y方向の距離bより長くなっており、該抽出口14部分から射出される溶融樹脂は、長軸X方向では短軸Y方向に比較して長い距離を移動して肩部Rに至ることになる。このため、該肩部Rに到達するまでの溶融樹脂の流通抵抗が長軸X方向で大きくなり、このことは肩部Rに作用する射出圧力が流通抵抗の小さい短軸Y方向で高くなり、ひいては肩部Rに作用する射出圧力が周方向で変化してしまう。
【0032】
そこで、この実施形態では首部13の抽出口14から肩部Rに至る間のキャビティ26を、それら抽出口14から肩部Rに至る間の距離が短くなるに従って狭くして、抽出口14から肩部Rに至る間の肉厚tを、その間の距離が短くなるに従って薄く形成してある。つまり、この実施形態では長軸X方向の肉厚tをその長さ方向に一様に形成して最も厚くする一方、短軸Y方向の肉厚tを中間部分で所定量絞って最も薄くし、この絞り部分15dによって溶融樹脂の射出圧力を調整して、最終的に肩部Rでの射出圧力が長軸X方向と短軸Y方向で等しくできるようにしている。勿論、これら長軸Xと短軸Yとの間に挟まれる部分は、長軸Xから短軸Yに至るに従って絞り量が漸増するようになっている。これにより、溶融樹脂が肩部Rに至る間の通過抵抗を該肩部Rの全周において略等しくすることができる。従って、本実施形態のように鍔部15を楕円形とした場合にも、溶融樹脂が肩部Rに到達した時の射出圧力を全周において均等化することができる。このため、肩部Rの周方向でシワが寄るのを防止できるため、鍔部15を非円形状としてその意匠効果を向上できることと相俟って、アルミ・ラミネートチューブ容器10bの商品価値を更に高めることができる。
【0033】
勿論、この実施形態にあっても鍔部15の外周縁部15aには、肩部Rの湾曲方向全区間Lに亘って射出圧力を等しく作用させるに十分な肉厚を確保してある。また、この実施形態では前記鍔部15の形状を楕円形にした場合を示したが、これに限ることなくその他の非円形状にあっても本発明を適用することができる。
【0034】
【発明の効果】
以上説明したように本発明のアルミ・ラミネートチューブ容器にあっては、肩部の起点をなす内型端面の外周縁を、筒状体の内周面に対して突き当たる平坦面に形成していて、キャビティ内に射出された合成樹脂がこれに充満する際に、内型端面の外周縁に形成されている平坦面に堰き止められて当該平坦面が突き当たる筒状体の内周面に向かって、肩部へと流動することができ、内方へ湾曲された肩部に対して射出成形時の射出圧力をむら無く作用させることができて、溶融熱とともに該肩部を押し延ばすようにして、当該肩部にシワが形成されることを防止できる。
【0035】
また、合成樹脂をキャビティに射出して首部を成形する際に、抽出口から肩部に至る距離に応じて合成樹脂の圧力を調節することができ、距離が長い箇所では距離の短い箇所に比べて圧力が低くなることを防止して、抽出口から肩部に至る距離が筒状体の周方向に異なる場合であっても、合成樹脂が肩部に到達した時の射出圧力を全周において均等化でき、これによって肩部にシワが形成されるのを防止することができる。
【図面の簡単な説明】
【図1】本発明の一実施形態を示すアルミ・ラミネートチューブ容器の首部と筒状体とが一体化された半製品の断面図である。
【図2】本発明の一実施形態を示すアルミ・ラミネート素材の拡大断面図である。
【図3】本発明の一実施形態を示す図1中A部の拡大断面図である。
【図4】本発明の一実施形態を示す首部を成型する際の射出成形金型の準備状態の断面図である。
【図5】本発明の一実施形態を示す首部を成型する際の射出成形金型への樹脂射出状態の断面図である。
【図6】本発明の他の実施形態を示す要部拡大断面図である。
【図7】本発明の他の実施形態を示すアルミ・ラミネートチューブ容器の平面図である。
【図8】本発明の他の実施形態を示す図7中のB−B線断面図である。
【図9】従来のアルミ・ラミネートチューブ容器の要部拡大断面図である。
【符号の説明】
10、10a、10b アルミ・ラミネートチューブ容器
11 アルミ・ラミネート素材
12 筒状体
13 首部
14 抽出口
15 鍔部
20 射出成形金型
22 内型
23 外型
26 キャビティ
F 内型の外周縁の平坦面
R 肩部
L 湾曲方向全区間
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an aluminum laminate tube container having chemical resistance, gas barrier properties, and light shielding properties, and in particular, a neck portion provided with an extraction port at one end of a cylindrical body formed of an aluminum laminate material is injection molded. The present invention relates to an aluminum laminated tube container integrated.
[0002]
[Prior art]
Aluminum laminate tube containers are often used for accommodating gel-like substances because they have shape retention and are excellent in deformability and easy to squeeze out. In this case, by using a material excellent in chemical resistance, gas barrier property and light shielding property for the aluminum laminate tube container, it is possible to prevent deterioration of cosmetics and ointments stored therein.
[0003]
The aluminum-laminated tube container has a neck portion formed with an extraction port attached to one end of a cylindrical body formed of an aluminum-laminated material, and the other end is closed by being crushed and heat-sealed, In general, the neck extraction port is closed with a detachable cap.
[0004]
FIG. 9 is an enlarged view of the main part of the neck 2 of the conventional aluminum laminate tube container 1. The neck 2 is located between the content extraction port 2 a and the peripheral edge of the extraction port 2 a and the end of the cylindrical body 3. The neck 2 is integrated with one end of the cylindrical body 3 by injection molding. At this time, a corner portion from the flange portion 2 b to the cylindrical body 3 becomes the shoulder portion 4.
[0005]
That is, when the neck portion 2 is injection-molded, first, after the cylindrical body 3 is inserted and held on the outer periphery of the inner mold (not shown) whose upper end portion is the inner shape of the neck portion 2, the cylinder protruding from the inner mold The upper end of the body 3 is pressed by the outer periphery of the outer shape of the neck 2 to bend in an arc shape (curved portion R), and in this state, it is formed between the inner die and the outer die. A molten synthetic resin is injected into the space (cavity). At this time, the melted synthetic resin wraps around the inside of the curved portion R, the neck portion 2 and the cylindrical body 3 are integrated in the shoulder portion 4, and the injected synthetic resin is cured and the inner mold The tube container 1 is released from the outer mold.
[0006]
[Problems to be solved by the invention]
In such a conventional aluminum laminate tube container 1, the outer peripheral edge portion of the flange portion 2 b that becomes the shoulder portion 4 is gradually thinned along the inner side of the upper end curved portion R of the cylindrical body 3. In a tapered state, the synthetic resin is in a state where it wraps around the curved portion R along the inner peripheral surface of the cylindrical body 3. That is, the taper-around wrap portion 5 of the outer peripheral edge portion of the flange portion 2 b is formed by the synthetic resin dripping into the space portion between the inner mold and the cylindrical body 3. That is, conventionally, the molten synthetic resin is in a fluid state in the wraparound portion 5, and the injection pressure does not sufficiently act in the wraparound portion 5, and thus the pressure is uneven.
[0007]
For this reason, in the vicinity of the wraparound portion 5, the pressure to press the aluminum laminate material against the outer mold is insufficient or the pressure cannot be made uniform, and the aluminum laminate material softened by the heat of fusion wrinkles. Thus, the wrinkles remain on the shoulder 4 of the aluminum laminate tube container 1 even after the injection-molded synthetic resin is cured, and the commercial value thereof is lowered.
[0008]
Therefore, the present invention has been made in view of such conventional problems, and the injection pressure of the portion where the synthetic resin injected to form the neck is integrated with the cylindrical body formed of the aluminum laminate material, It is an object of the present invention to provide an aluminum laminate tube container that can be sufficiently and evenly applied over the entire integrated portion and can prevent wrinkles on the shoulder portion.
[0009]
[Means for Solving the Problems]
In order to achieve such an object, the present invention provides an inner mold that is formed of an aluminum laminate material and is closely inserted into the cylindrical body, leaving one end thereof, and an end face of the inner mold as a starting point. A cavity is formed with an outer mold that is arranged in opposition to the inner mold while curving inwardly with the one end of the body as a shoulder, and a neck portion having an extraction port is formed by injecting synthetic resin into the cavity. In the aluminum laminate tube container that is integrally formed with the part, the outer peripheral edge of the inner mold end surface that forms the starting point of the shoulder is formed as a flat surface that abuts against the inner peripheral surface of the cylindrical body , The distance between the extraction port and the shoulder is changed in the circumferential direction of the cylindrical body, and the cavity is narrow at a short portion according to the distance between the extraction port and the shoulder. It is characterized in that it is wider at the long portion .
[0010]
According to this configuration, the neck portion is formed on one end side of the cylindrical body by injecting the synthetic resin into the cavity, and this neck portion is integrated with the shoulder portion at one end of the cylindrical body. At this time, the outer peripheral edge of the inner mold end surface that forms the starting point of the shoulder is formed on a flat surface that abuts against the inner peripheral surface of the cylindrical body, and the synthetic resin injected into the cavity fills this In addition, it is dammed to the flat surface formed on the outer peripheral edge of the inner mold end surface, and flows toward the shoulder portion toward the inner peripheral surface of the cylindrical body against which the flat surface abuts. Therefore, the injection pressure at the time of injection molding can be applied evenly to the shoulder curved inward, and wrinkles are formed in the shoulder so as to push the shoulder together with the heat of fusion. Is prevented.
[0012]
According to this configuration, when the synthetic resin is injected into the cavity and the neck portion is molded, the pressure of the synthetic resin can be adjusted according to the distance from the extraction port to the shoulder portion. The injection pressure when the synthetic resin reaches the shoulder, even if the distance from the extraction port to the shoulder is different in the circumferential direction of the cylindrical body, preventing the pressure from becoming lower than the short part. Can be equalized over the entire circumference, thereby preventing wrinkles from forming on the shoulder.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. 1 to 5 show an embodiment of the aluminum laminated tube container of the present invention, FIG. 1 is a sectional view of a semi-finished product in which the neck and the cylindrical body of the aluminum laminated tube container are integrated, and FIG. Fig. 3 is an enlarged cross-sectional view of part A in Fig. 1, Fig. 4 is a cross-sectional view showing a preparation state of an injection mold when molding the neck, and Fig. 5 is molding the neck. It is sectional drawing which shows the resin injection state to the injection mold at the time.
[0014]
The aluminum laminated tube container 10 of the present embodiment basically includes an inner mold 22 and an inner die 22 that are formed by forming a cylindrical body 12 from an aluminum laminated material 11 and are closely inserted into the cylindrical body 12 leaving one end thereof. A cavity 26 is formed by an outer mold 23 facing the inner mold 22 while curving inward with the one end of the cylindrical body 12 as a shoulder R from the end surface of the mold 22, and synthetic resin is formed in the cavity 26. In the aluminum laminated tube container in which the neck portion 13 having the extraction port 14 is integrally formed with the shoulder portion R by injection, the outer peripheral edge of the end surface of the inner mold 22 forming the starting point of the shoulder portion R is the cylindrical body 12. It is formed by a flat surface F that abuts against the inner peripheral surface.
[0015]
That is, FIG. 1 is a cross-sectional view of a semi-finished product showing the formation of an aluminum laminate tube container 10, and shows a state in which a neck portion 13 is attached to an upper end portion 12 a of a cylindrical body 12 in which an aluminum laminate material 11 is formed into a cylindrical shape. In the figure, the lower end 12b of the cylindrical body 12 is in an open state, but this open lower end 12b is crushed and heat-sealed after filling the contents. It is blocked by.
[0016]
The neck portion 13 is formed of a synthetic resin, and includes an extraction port 14 formed in a protruding state at the center portion, and a flange portion 15 formed at the lower peripheral edge of the extraction port 14, and the outer periphery of the flange portion 15 is The cylindrical body 12 is coupled to the inner periphery of the upper end portion 12a. An opening 14a is formed at the tip of the protruding portion of the extraction port 14, and a screw portion 14b is formed on the outer periphery of the protruding portion. A cap (not shown) is detachably screwed onto the screw portion 14b.
[0017]
As shown in FIG. 2, the aluminum laminate material 11 forming the cylindrical body 12 includes a polyethylene (PE) layer 11a from the inside toward the outside, an adhesive layer 11b using an ethylene-methacrylic acid copolymer, It is composed of a multilayer of an aluminum (AL) layer 11c, a polyethylene terephthalate (PET) layer 11d, and a polyethylene (PE) layer 11e, and has excellent chemical resistance, gas barrier properties, and light shielding properties.
[0018]
The cylindrical body 12 is preferably formed into a seamless cylindrical shape by extruding with these multiple layers, but in addition to this, both sides of the aluminum laminate material 11 cut into a rectangular shape are formed. It can also be formed in a cylindrical shape by heat fusion.
[0019]
The cylindrical body 12 is set in an injection mold 20 shown in FIGS. 4 and 5, and the neck portion 13 is injection-molded on the cylindrical body 12. That is, the injection mold 20 includes an inner mold 22 erected on a support base 21, an outer mold 23 that moves up and down at the upper end of the inner mold 22, and a molten resin that moves up and down above the outer mold 23. The runner member 24 is provided, and the upper end portion of the inner mold 22 is formed along the inner shape of the neck portion 13. A portion of the outer mold 23 facing the inner mold 22 is formed along the outer shape of the neck 13. The outer die 23 is provided with a separate screw die 25 for forming the screw portion 14b, and the screw die 25 is divided into left and right parts and divided parts 25a and 25b that are close to and away from each other. .
[0020]
Therefore, in order to integrally form the neck 13 on the cylindrical body 12 using the injection mold 20, the cylindrical body 12 is first inserted and held in the inner mold 22 as shown in FIG. At this time, the upper end portion 12 a of the cylindrical body 12 is slightly protruded upward from the outer peripheral edge of the inner mold 22. Next, as shown in FIG. 5, the outer mold 23 is lowered, and the upper end 12a of the cylindrical body 12 is pressed by the inner peripheral edge 23a (see FIG. 4) corresponding to the outer peripheral edge. Is curved in an arc toward the inside to form a shoulder R. Further, in this state, the split dies 25a and 25b of the screw die 25 are in a state of being abutted with each other.
[0021]
Then, the lower end portion of the runner member 24 is inserted into the central recess 25c of the screw mold 25 and melted into the cavity 26 between the inner mold 22, the outer mold 23 and the screw mold 25 from the injection passage 24a. Resin is injected at a predetermined pressure. Then, the cavity 26 is filled with the molten resin, the extraction port 14 is formed inside the screw mold 25, and the flange portion 15 is formed below the outer mold 23. As shown in FIG. 3, the outer peripheral edge portion 15 a of the flange portion 15 wraps around the inside of the shoulder portion R of the cylindrical body 12, and the flange portion 15 and the cylindrical body 12 are integrated at the shoulder portion R. The
[0022]
Then, when the resin injected into the cavity 26 is cooled and hardened, the outer mold 23 is raised while separating the split molds 25 a and 25 b of the screw mold 25, and the cylindrical body 12 is taken out from the inner mold 22. Thus, the semi-finished product shown in FIG. 1 in which the neck portion 13 is attached to the cylindrical body 12 is manufactured.
[0023]
Here, the outer peripheral edge portion 15a of the flange portion 15 contacts and is integrated with the inner side of the shoulder portion R, but as shown in FIG. 4, the outer peripheral edge portion of the inner mold 22 for forming the outer peripheral edge portion 15a. Is formed on the flat surface F that abuts against the inner periphery of the cylindrical body 12, and the molten resin injected into the cavity 26 is in contact with the flat surface F of the inner mold 22 and the inner periphery of the cylindrical body 12. It is designed to dam up the surface. As shown in FIG. 3, the inner surface 15 b of the outer peripheral edge portion 15 a of the collar portion 15 (neck portion 13) is flat and joined to the inner periphery of the cylindrical body 12.
[0024]
In the aluminum laminate tube container 10 of this embodiment having the above configuration, the neck 13 is made of an aluminum laminate material by injecting molten resin into the cavity 26 between the inner mold 22 and the outer mold 23. The molten resin injected into the cavity 26 is first extracted from the central portion of the neck 13 so as to be integrated with the upper end portion 12a of the cylindrical body 12 formed in FIG. It flows from the opening 14 toward the flange 15 and finally reaches the outer peripheral edge 15a of the flange 15.
[0025]
The heat of the injected resin acts on the upper end portion of the cylindrical body 12 with which the outer peripheral edge portion 15a contacts, that is, the shoulder portion R, so that the aluminum laminate material 11 in the portion becomes soft, and this soft The injected resin is integrated. At this time, an injection pressure acts on the inner side of the shoulder portion R with which the outer peripheral edge portion 15a of the collar portion 15 is contacted, and the shoulder portion R is pressed against the inner surface of the outer mold 23 by this injection pressure.
[0026]
Here, in the present embodiment, the outer peripheral edge of the end surface of the inner mold 22 is formed on the flat surface F that abuts against the inner peripheral surface of the cylindrical body 12, and the molten resin injected into the cavity 26 is the flat surface F. And the inner peripheral surface of the cylindrical body 12 in close contact therewith can be dammed up. Accordingly, a predetermined thickness is secured at the outer peripheral edge portion 15a of the flange portion 15 at the joint portion of the cylindrical body 12, and the injected molten resin is smoothly placed at the end of the outer peripheral edge portion 15a contacting the shoulder R. Can be reached. For this reason, since the injection pressure of the molten resin can be made to act equally over the entire section L in the bending direction of the shoulder R, the entire shoulder R of the aluminum laminate material 11 softened by the heat of fusion is uniformly injected. It becomes possible to press against the inner surface of the outer mold 23 with pressure, and the formation of wrinkles on the shoulder R is prevented. Therefore, the shoulder R of the aluminum laminated tube container 10 is formed as a smooth curved surface without wrinkles over the entire circumference, and the appearance value can be improved to increase the commercial value.
[0027]
FIG. 6 is an enlarged cross-sectional view of a main part showing another embodiment, in which the same components as those in the above embodiment are denoted by the same reference numerals and redundant description is omitted. That is, in the aluminum laminated tube container 10a of this embodiment, the outer peripheral edge portion 15a of the injection-molded collar portion 15 is suspended downward, and the thickness of the outer peripheral edge portion 15a to be suspended is reduced. It is made equal over the entire bending direction section L of the shoulder R, and the lower surface 15c at the tip thereof is made flat and joined to the inner peripheral surface of the cylindrical body 12 at a right angle. Of course, although not shown, the outer peripheral edge shape of the end face of the inner mold is formed along the outer peripheral edge portion 15a of the flange portion 15, and the outer peripheral edge corresponding to the lower surface 15c is perpendicular to the inner peripheral surface of the cylindrical body 12. In close contact with the molten resin, the injected molten resin is blocked.
[0028]
Therefore, even in this embodiment, the outer peripheral edge portion 15a of the flange portion 15 has a predetermined thickness at the joint portion of the cylindrical body 12, and the injected molten resin is in contact with the shoulder portion R. The end of the peripheral edge portion 15a can be smoothly reached, and the injection pressure can be applied equally over the entire section L in the bending direction to prevent the shoulder portion R from being wrinkled.
[0029]
7 and 8 show other embodiments of the present invention, and the same components as those of the above-described embodiments are denoted by the same reference numerals and redundant description is omitted. 7 is a plan view of the aluminum-laminated tube container, and FIG. 8 is a cross-sectional view taken along the line BB in FIG.
[0030]
In the aluminum laminated tube container 10b of this embodiment, as shown in FIG. 7, the planar shape of the flange portion 15 is elliptical, and the distance from the extraction port 14 to the shoulder portion R of the upper end portion of the cylindrical body 12 is a circumference. The present invention is applied when the direction is changed.
[0031]
That is, the ellipse flange 15 has a long axis X direction distance a from the extraction port 14 to the outer peripheral edge portion 15a of the flange portion 15 longer than a short axis Y direction distance b. The molten resin injected from the 14 portion travels a longer distance in the major axis X direction than the minor axis Y direction and reaches the shoulder R. For this reason, the flow resistance of the molten resin until reaching the shoulder R is increased in the major axis X direction, which means that the injection pressure acting on the shoulder R is increased in the minor axis Y direction where the flow resistance is small, As a result, the injection pressure acting on the shoulder R changes in the circumferential direction.
[0032]
Therefore, in this embodiment, the cavity 26 between the extraction port 14 of the neck 13 and the shoulder R is made narrower as the distance from the extraction port 14 to the shoulder R becomes shorter, and from the extraction port 14 to the shoulder. The thickness t between the portions R is formed thinner as the distance between them becomes shorter. That is, in this embodiment, the thickness t in the major axis X direction is uniformly formed in the length direction to be the thickest, while the thickness t in the minor axis Y direction is reduced by a predetermined amount at the middle portion to be the smallest. The injection pressure of the molten resin is adjusted by the throttle portion 15d so that the injection pressure at the shoulder R can finally be made equal in the major axis X direction and the minor axis Y direction. Of course, in the portion sandwiched between the major axis X and the minor axis Y, the aperture amount gradually increases from the major axis X to the minor axis Y. Thereby, the passage resistance while the molten resin reaches the shoulder R can be made substantially equal over the entire circumference of the shoulder R. Accordingly, even when the flange portion 15 is elliptical as in the present embodiment, the injection pressure when the molten resin reaches the shoulder portion R can be equalized over the entire circumference. For this reason, since wrinkles can be prevented from approaching in the circumferential direction of the shoulder portion R, the product value of the aluminum laminated tube container 10b is further increased in combination with the ability to improve the design effect by making the collar portion 15 non-circular. Can be increased.
[0033]
Of course, even in this embodiment, the outer peripheral edge portion 15a of the collar portion 15 has a sufficient thickness to cause the injection pressure to act equally over the entire section L in the bending direction of the shoulder portion R. Moreover, although the case where the shape of the said collar part 15 was made into the ellipse was shown in this embodiment, this invention is applicable even if it has other non-circular shapes, without being restricted to this.
[0034]
【The invention's effect】
As described above, in the aluminum laminated tube container of the present invention, the outer peripheral edge of the inner mold end surface that forms the starting point of the shoulder is formed on a flat surface that abuts against the inner peripheral surface of the cylindrical body. When the synthetic resin injected into the cavity fills up, it is dammed to the flat surface formed on the outer peripheral edge of the inner mold end surface, and toward the inner peripheral surface of the cylindrical body against which the flat surface abuts. It is possible to flow to the shoulder part, to make the injection pressure at the time of injection molding work uniformly on the shoulder part curved inward, and to stretch the shoulder part together with the heat of fusion. , Wrinkles can be prevented from forming on the shoulder.
[0035]
In addition, when the synthetic resin is injected into the cavity and the neck is molded, the pressure of the synthetic resin can be adjusted according to the distance from the extraction port to the shoulder. Even if the distance from the extraction port to the shoulder is different in the circumferential direction of the cylindrical body, the injection pressure when the synthetic resin reaches the shoulder is reduced over the entire circumference. It is possible to equalize, thereby preventing wrinkles from forming on the shoulder.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a semi-finished product in which a neck and a tubular body of an aluminum laminate tube container showing an embodiment of the present invention are integrated.
FIG. 2 is an enlarged cross-sectional view of an aluminum laminate material showing an embodiment of the present invention.
FIG. 3 is an enlarged cross-sectional view of a portion A in FIG. 1 showing an embodiment of the present invention.
FIG. 4 is a cross-sectional view of a preparation state of an injection mold when a neck portion is molded according to an embodiment of the present invention.
FIG. 5 is a cross-sectional view of a state where a resin is injected into an injection mold when a neck portion is molded according to an embodiment of the present invention.
FIG. 6 is an enlarged cross-sectional view of a main part showing another embodiment of the present invention.
FIG. 7 is a plan view of an aluminum laminated tube container showing another embodiment of the present invention.
8 is a cross-sectional view taken along the line BB in FIG. 7 showing another embodiment of the present invention.
FIG. 9 is an enlarged cross-sectional view of a main part of a conventional aluminum-laminated tube container.
[Explanation of symbols]
10, 10a, 10b Aluminum / Laminate Tube Container 11 Aluminum / Laminate Material 12 Tubular Body 13 Neck 14 Extraction Port 15 Gutter 20 Injection Mold 22 Inner Mold 23 Outer Mold 26 Cavity F Flat Surface R at the Outer Periphery of the Inner Mold Shoulder L All curve direction

Claims (1)

アルミ・ラミネート素材で筒状体を形成し、該筒状体内にその一端を残して密接挿入される内型および該内型の端面を起点に該筒状体の当該一端を肩部として内方へ湾曲させつつ該内型に対向配置される外型とでキャビティを形成し、該キャビティに合成樹脂を射出することにより抽出口を有する首部を上記肩部に一体成形するようにしたアルミ・ラミネートチューブ容器において、
上記肩部の起点をなす上記内型端面の外周縁が、上記筒状体の内周面に対して突き当たる平坦面で形成され
上記抽出口と上記肩部との間の距離が、上記筒状体の周方向に変化されるとともに、上記キャビティが、上記抽出口と上記肩部との間の距離に応じて、短い箇所で狭く長い箇所で広く形成されることを特徴とするアルミ・ラミネートチューブ容器。
A cylindrical body is formed of an aluminum laminate material. The inner mold is closely inserted into the cylindrical body while leaving one end thereof, and the end of the cylindrical body starts from the end face of the inner mold as the shoulder. An aluminum laminate in which a cavity is formed with an outer mold that is arranged to face the inner mold while being curved, and a neck portion having an extraction port is integrally formed with the shoulder portion by injecting a synthetic resin into the cavity In tube containers,
The outer peripheral edge of the inner mold end surface forming the starting point of the shoulder is formed as a flat surface that abuts against the inner peripheral surface of the cylindrical body ,
The distance between the extraction port and the shoulder is changed in the circumferential direction of the cylindrical body, and the cavity is at a short place according to the distance between the extraction port and the shoulder. An aluminum laminate tube container that is widely formed in narrow and long locations .
JP2000133642A 2000-05-02 2000-05-02 Aluminum laminated tube container Expired - Fee Related JP4266492B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000133642A JP4266492B2 (en) 2000-05-02 2000-05-02 Aluminum laminated tube container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000133642A JP4266492B2 (en) 2000-05-02 2000-05-02 Aluminum laminated tube container

Publications (2)

Publication Number Publication Date
JP2001315809A JP2001315809A (en) 2001-11-13
JP4266492B2 true JP4266492B2 (en) 2009-05-20

Family

ID=18642091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000133642A Expired - Fee Related JP4266492B2 (en) 2000-05-02 2000-05-02 Aluminum laminated tube container

Country Status (1)

Country Link
JP (1) JP4266492B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5103439B2 (en) * 2009-05-18 2012-12-19 日精樹脂工業株式会社 Mold for tubular container
CN110281472A (en) * 2019-07-26 2019-09-27 江苏黑锋航空科技有限公司 A kind of novel toothpaste packaging injection mold
WO2022269727A1 (en) * 2021-06-21 2022-12-29 株式会社エイエムジー Fluid container

Also Published As

Publication number Publication date
JP2001315809A (en) 2001-11-13

Similar Documents

Publication Publication Date Title
KR100194500B1 (en) Container sealer with plastic cell and plastic liner
US4345692A (en) Closure cap for a container
JP4037578B2 (en) Laminated bottle manufacturing method and laminated peeling container manufacturing apparatus
US11427368B2 (en) Manufacturing method for double walled container
JP6112385B2 (en) Blow molded container and manufacturing method thereof
CN107207114B (en) Double container
KR102590903B1 (en) Delamination container
JP5400150B2 (en) Method and apparatus for producing a packaging container by injection molding
JP6980348B2 (en) Manufacturing method of synthetic resin container, preform, and synthetic resin container
JP4266492B2 (en) Aluminum laminated tube container
RU2429966C2 (en) Procedure and device for die cast of part of packing container
CN1972845A (en) In-mold label container with rib and method of manufacturing the same
JP5992294B2 (en) Blow molding container
US4496513A (en) Tubular container molding method and apparatus
CN108290670B (en) The molding container of extrusion blow
JP6638211B2 (en) Plug with check valve and container having the plug
JP3907186B2 (en) Blow molding container and molding method thereof
JP4268311B2 (en) Cap-integrated blow tube container
JP4678664B2 (en) Small capacity container with twist-off port
JP6553363B2 (en) Double container
JP3635977B2 (en) Two-layered preform for stretch blow molding
JP4028110B2 (en) Tube container forming method
JP6651416B2 (en) Double container
KR102750587B1 (en) Tube container and manufacturing method thereof
JP4478404B2 (en) Tube container

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040928

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070425

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080902

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081021

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090203

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090217

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140227

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees