[go: up one dir, main page]

JP4265321B2 - surge absorber - Google Patents

surge absorber Download PDF

Info

Publication number
JP4265321B2
JP4265321B2 JP2003198666A JP2003198666A JP4265321B2 JP 4265321 B2 JP4265321 B2 JP 4265321B2 JP 2003198666 A JP2003198666 A JP 2003198666A JP 2003198666 A JP2003198666 A JP 2003198666A JP 4265321 B2 JP4265321 B2 JP 4265321B2
Authority
JP
Japan
Prior art keywords
surge absorber
terminal electrode
insulating
insulating member
electrode member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003198666A
Other languages
Japanese (ja)
Other versions
JP2005038667A (en
Inventor
美紀 足立
剛 尾木
康弘 社藤
卓 栗原
稔晃 植田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2003198666A priority Critical patent/JP4265321B2/en
Publication of JP2005038667A publication Critical patent/JP2005038667A/en
Application granted granted Critical
Publication of JP4265321B2 publication Critical patent/JP4265321B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Thermistors And Varistors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、サージから様々な機器を保護し、事故を未然に防ぐのに使用するサージアブソーバに関する。
【0002】
【従来の技術】
電話機、ファクシミリ、モデム等の通信機器用の電子機器が通信線との接続する部分、電源線、アンテナ或いはCRT駆動回路等、雷サージや静電気等の異常電流(サージ電流)や異常電圧(サージ電圧)による電撃を受けやすい部分には、異常電圧によって電子機器やこの機器を搭載するプリント基板の熱的損傷又は発火等による破壊を防止するために、サージアブソーバが接続されている。
【0003】
従来、例えばマイクロギャップを有するサージ吸収素子を用いたサージアブソーバが提案されている。このサージアブソーバは、導電性被膜で被覆した円柱状のセラミックス部材の周面に、いわゆるマイクロギャップが形成され、セラミックス部材の両端に一対のキャップ電極を有するサージ吸収素子が封止ガスと共にガラス管内に収容され、円筒状のガラス管の両端にリード線を有する封止電極が高温加熱で封止された放電型サージアブソーバである(例えば、特許文献1参照)。
【0004】
近年、機器の小型化に伴いこのような放電型サージアブソーバにおいても、表面実装化が進んでいる。上記サージアブソーバに適応した例としては、面実装型(メルフ型)として、封止電極にリード線がなく、実装するときは封止電極と基板側とを半田付けで接続して固定するものがある。
【0005】
【特許文献1】
特開2002−110311号公報 (第3−4頁、第1図)
【0006】
【発明が解決しようとする課題】
しかしながら、上記従来のサージアブソーバには、以下の課題が残されている。すなわち、通信線や電源線等をはじめとする高サージ耐量を必要とする用途に対し、更に十分に対応可能な特性が要望されており、また、面実装型は実装時にガラス管が破損する可能性があるために、上記サージアブソーバで用いられていたガラス管をセラミックス管にすることが考えられている。
【0007】
従来のガラス管を用いたサージアブソーバでは、ガラス管内に円柱状セラミックスを入れてガラス管の両端に封止電極を配した状態で高温炉でガラス管を溶融させて封止電極に密着固定する封止工程を有している。
この封止から冷却工程では、ガラス管が円柱状セラミックスとの熱膨張係数差により圧縮方向の残留応力を発生させるために、封止電極と円柱状セラミックスの導電性被膜とが十分なオーミックコンタクトを得ることができている。しかしながら、ガラス管の代わりにセラミックス管を用いた場合、セラミックス管と円柱状セラミックスとの熱膨張係数差が上述と比較して小さいために封止から冷却工程で発生する残留応力は小さく、封止電極と円柱状セラミックスの導電性被膜とのオーミックコンタクトが十分に得られないことがあり、放電開始電圧等の電気特性が安定しないという不都合が生じてしまう。
【0008】
本発明は、前述の課題に鑑みてなされたもので、放電開始電圧等の電気特性が安定であるサージアブソーバを提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明は、前記課題を解決するために以下の構成を採用した。すなわち、本発明に係るサージアブソーバは、周面に中央の放電ギャップを介して導電性被膜が分割形成された柱状の絶縁性部材と、該絶縁性部材の両端に対向配置され前記導電性被膜に接触する一対の端子電極部材と、セラミックス材料で形成され前記一対の端子電極部材を両端に配して前記絶縁性部材を内部に、封止ガスと共に封止する絶縁性管とを備えたサージアブソーバであって、前記端子電極部材が、前記絶縁性管の端面とロウ材で接着される周縁部と、径方向内側面で前記絶縁性部材を支持する支持凹部とを備え、該支持凹部に前記絶縁性部材を圧入又は嵌合させることによって前記支持凹部と前記導電性被膜との間の接触面が形成されていると共に、前記端子電極部材のビッカース硬さHvが、100<Hv<200を満足することを特徴とする。
【0010】
この発明によれば、支持凹部に絶縁性部材を圧入又は嵌合させることにより支持凹部と導電性被膜との間に円周上の帯状接触面が形成されることで、接触面の増大と確実な接触により十分なオーミックコンタクトを得ることができ、サージアブソーバの放電開始電圧等の電気特性が安定する。
また、端子電極部材が好適な硬度を有しているため、圧入させた際の絶縁性部材の破損や組立時の絶縁性部材と端子電極部材との接触不良を防止すると共に、一方の端子電極部材に絶縁性部材の入り込み過ぎにより他方の端子電極部材と絶縁性部材との接触不良を抑制することができる。
【0011】
また、本発明に係るサージアブソーバは、前記端子電極部材及び前記絶縁性管の常温付近における平均熱膨張係数差の絶対値δ(1/℃)が、δ<10×10−6を満足することが好ましい。
ロウ付けから冷却工程で、端子電極部材と絶縁性管との熱膨張係数の差から絶縁性管と端子電極部材との接合部分に大きな残留応力が発生してしまい、絶縁性管の破損や封止不良による気密性不良が生じるおそれがある。
この発明によれば、端子電極部材と絶縁性管との熱膨張係数の平均値の差が好適であるため、ロウ付けから冷却工程で熱膨張係数の差による残留応力の発生を抑制し、絶縁性管の破損や封止不良による気密不良を防止することができる。
【0012】
また、本発明に係るサージアブソーバは、前記端子電極部材が、Fe(鉄)、Ni(ニッケル)及びCo(コバルト)の合金であるコバール(KOVAR:登録商標)によって形成されていることが好ましい。
また、本発明に係るサージアブソーバは、前記端子電極部材が、焼鈍処理を施したコバールであることが好ましい。
この発明によれば、焼鈍処理を施すことにより通常のコバールよりも硬度が低く、上記条件を満足する端子電極部材とすることができる。
【0013】
また、本発明に係るサージアブソーバは、前記導電性被膜と前記支持凹部とが、前記絶縁性部材よりも硬度の低い金属部材を介して接触していることが好ましい。
この発明によれば、絶縁性部材と支持凹部とが絶縁性部材よりも硬度の低い金属部材を介して接触しているので、絶縁性部材を圧入又は嵌合させた際に、低硬度金属部材が絶縁性部材と支持凹部とを両面に密着してより良好な接触面が形成できる。
【0014】
【発明の実施の形態】
以下、本発明に係るサージアブソーバの第1の実施形態を、図1から図3を参照しながら説明する。
本実施形態によるサージアブソーバ1は、図1に示されるように、いわゆるマイクロギャップを使用した放電型サージアブソーバであって、周面に中央の放電ギャップ2を介して導電性被膜3が分割形成された円柱状セラミックス(絶縁性部材)4と、この円柱状セラミックス4の両端に対向配置され、円柱状セラミックス4を圧入することにより導電性被膜3に接触する一対の端子電極部材5と、これら一対の端子電極部材5を両端に配して、円柱状セラミックス4を内部に所望の電気特性を得るために組成等を調整された、例えば、Ar(アルゴン)等の封止ガス6と共に封止する筒型セラミックス(絶縁性管)7とを備えている。
【0015】
円柱状セラミックス4は、ムライト焼結体等のセラミックス材料からなり、表面に導電性被膜3として物理蒸着(PVD)法、化学蒸着(CVD)法等の薄膜形成技術によるTiN(窒化チタン)等の薄膜が形成されている。
放電ギャップ2は、レーザカット、ダイシング、エッチング等の加工によって0.01から1.5mmの幅で1から100本形成されるが、本実施形態では、70μmのものを1本形成している。
【0016】
一対の端子電極部材5は、Fe(鉄)、Ni(ニッケル)及びCo(コバルト)の合金であるコバールで構成されており、水素雰囲気中にて30分間900℃で加熱する焼鈍処理が施されている。
この一対の端子電極部材5は、図2に示されるように、それぞれ筒型セラミックス7の端面とロウ材8で接着される縦横比が1以下とされた長方形状の周縁部5Aと、筒型セラミックス7の内側且つ軸方向に突出すると共に円柱状セラミックス4を支持する突出支持部(支持凹部)9とを備え、突出支持部9に囲まれて円柱状セラミックス4の端部に対向する位置には中央領域5Bが形成されている。突出支持部9は、径方向内側面と円柱状セラミックス4の端部とを圧入又は嵌合させやすいように、径方向内側面がわずかにテーパ形状を有することが望ましい。また、突出支持部9の先端の互いに対向する面が主放電面とされている。
一対の突出支持部9は、内周面で円柱状セラミックス4を突出支持部9に圧入又は嵌合させることによって接触面10を形成し、導電性被膜3との十分なオーミックコンタクトを得ている。
【0017】
筒型セラミックス7は、例えばAl(アルミナ)等の絶縁性セラミックスからなり、断面長方形を有し、両端面外形が周縁部5Aの外周寸法とほぼ一致している。
このような構成において、端子電極部材5及び筒型セラミックス7の平均熱膨張係数差の絶対値δと、端子電極部材5のビッカース硬さHvとは、δ<10×10−6、100<Hv<200の両条件を同時に満足するように形成されている。
【0018】
次に、以上の構成からなる本実施形態のサージアブソーバ1の製造方法について説明する。
まず、一対の端子電極部材5に対し、例えば、水素雰囲気中にて30分間900℃で加熱する焼鈍処理を施した後、抜き打ち加工によって所望の形状に一体成形する。
【0019】
続いて、筒型セラミックス7の両端面に、ロウ材8とのぬれ性を向上させるために、例えば、モリブデン(Mo)−タングステン(W)層とNi層とを各1層ずつ備えるメタライズ層を形成する。
そして、一方の端子電極部材5の中央領域5B上に、円柱状セラミックス4を突出支持部9に圧入又は嵌合させることによって円柱状セラミックス4を載置して径方向内側面と円柱状セラミックス4の端面とを接触させる。このときに、接触面10が形成される。また、周縁部5Aと筒型セラミックス7の端面との間にロウ材8を挟んだ状態で、筒型セラミックス7を他方の端子電極部材5の周縁部5A上に載置する。
さらに円柱状セラミックス4の上方が中央領域5Bと対向するように端子電極部材5を載置して径方向内側面と端子電極部材5とを接触させる。そして、周縁部5Aと筒型セラミックス7の端面との間にロウ材8を挟んだ状態とする。
【0020】
上述のように仮組した状態で十分に真空引き後封止ガス雰囲気としてロウ材8が溶融するまで過熱し、ロウ材8の溶融により円柱状セラミックス4を封止し、その後急速に冷却を行い、サージアブソーバ1が製造される。
このようにして製造したサージアブソーバ1を、例えば、図3に示すように、プリント基板等の基板B上に筒型セラミックス7の一側面である実装面7Aを基板B上に載置し、基板Bと一対の端子電極部材5の外面とを半田Sによって接着固定して使用する。
【0021】
上記の構成によれば、円柱状セラミックス4を突出支持部9に圧入又は嵌合させることにより導電性被膜3と突出支持部9との間で帯状の接触面10が形成され、良好なオーミックコンタクトが得られることで、サージアブソーバ1の放電開始電圧等の電気特性が安定する。また、端子電極部材5が焼鈍処理を施したコバールとなっていることで、端子電極部材5のビッカース硬さHvと端子電極部材5及び筒型セラミックス7の平均熱膨張係数差の絶対値δとが好適な値となる。したがって、圧入又は嵌合させた際の円柱状セラミックス4の破損や組立時の接触不良を防止し、一方の端子電極部材5に導電性被膜3の入り過ぎによる接触不良を抑制することができる。また、ロウ付けから冷却工程で、端子電極部材5と筒型セラミックス7との熱膨張係数の差による残留応力の発生を抑制し、筒型セラミックス7の破損や封止不良による機密不良を防止できる。
【0022】
次に、第2の実施形態について、図4を参照しながら説明する。
なお、ここで説明する実施形態はその基本的構成が上述した第1の実施形態と同様であり、上述の第1の実施形態に別の要素を付加したものである。したがって、図4においては、図1と同一構成要素に同一符号をし、この説明を省略する。
【0023】
第2の実施形態と第1の実施形態との異なる点は、第1の実施形態では円柱状セラミックス4が直接突出支持部9に圧入又は嵌合された構成であるのに対して、第2の実施形態におけるサージアブソーバ20は、円柱状セラミックス4が椀状に形成された一対のキャップ電極(金属部材)21を介して突出支持部9に圧入されているとした点である。
一対のキャップ電極21は、円柱状セラミックス4よりも硬度の低い、例えばステンレス等の金属からなり、外周部が端子電極部材5の突出支持部9の先端よりも軸方向内方に延びて断面略U字状に形成され、主放電面とされている。
【0024】
次に、以上の構成からなる本実施形態のサージアブソーバ20の製造方法について説明する。
まず、一対の端子電極部材5に対し焼鈍処理を施した後、抜き打ち加工によって一体成形する。
その後、一対のキャップ電極21を円柱状セラミックス4の両端に係合させ、第1の実施形態と同様の方法でサージアブソーバ20を製造する。
【0025】
上記の構成によれば、円柱状セラミックス4よりも硬度の低く、塑性変形できるキャップ電極21が設けられていることによって、キャップ電極21が円柱状セラミックス4と突出支持部9とを両面に密着してより良好な接触面が形成できる。
【0026】
なお、本発明は上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
例えば、より絶縁性部材の破損や過度の圧入による接触不良を防止するため、ビッカース硬さHvは、140<Hv<180を満足することが好ましい。
また、より残留応力を低減するため、平均熱膨張係数差の絶対値δは、δ<8×10−6を満足することが好ましい。
【0027】
また、導電性被膜は、Ag、Ag/Pd合金、SnO、Al、Ni、Cu、Ti、Ta、W、SiC、BaAl、C、Ag/Pt合金、TiO、TiC、TiCN等でもよい。
また、筒型セラミックス両端面のメタライズ層は、Ag、Cu、Auでもよく、また、メタライズ層を用いず活性金属ロウ材だけで封止してもよい。
また、封止ガスは、所望の電気特性を売るために組成等を調整された、例えば、大気(空気)でもよく、Ar、N、Ne、He、Xe、H、SF、CF、C、C、CO等、及びこれらの混合ガスでもよい。
【0028】
【発明の効果】
以上説明したように、本発明のサージアブソーバによれば、接触面積の増大と確実な接触により導電性被膜と支持凹部との良好なオーミックコンタクトを得ることができる。したがって、放電開始電圧等の電気特性を長期にわたって安定させることができる。
【図面の簡単な説明】
【図1】 本発明に係る第1の実施形態におけるサージアブソーバを示す軸方向断面図である。
【図2】 本発明に係る第1の実施形態における端子電極部材を示すもので、(a)は平面図であり、(b)は(a)におけるX−X線矢視断面図である。
【図3】 本発明に係る第1の実施形態におけるサージアブソーバを基板上に実装したときの断面図である。
【図4】 本発明に係る第2の実施形態におけるサージアブソーバを示す軸方向断面図である。
【符号の説明】
1、20 サージアブソーバ
2 放電ギャップ
3 導電性被膜
4 円柱状セラミックス(絶縁性部材)
5 端子電極部材
5A 周縁部
6 封止ガス
7 筒型セラミックス(絶縁性管)
8 ロウ材
9 突出支持部(支持凹部)
10 接触面
21 キャップ電極(金属部材)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a surge absorber used to protect various devices from surges and prevent accidents.
[0002]
[Prior art]
Abnormal current (surge current) and abnormal voltage (surge voltage) such as lightning surge, static electricity, etc., such as the part where electronic devices for communication equipment such as telephones, facsimiles, modems, etc. are connected to communication lines, power lines, antennas or CRT drive circuits. The surge absorber is connected to the portion that is easily subjected to electric shock due to the electrical shock in order to prevent the electronic device and the printed circuit board on which the device is mounted from being damaged due to thermal damage or fire.
[0003]
Conventionally, for example, a surge absorber using a surge absorbing element having a micro gap has been proposed. In this surge absorber, a so-called microgap is formed on the peripheral surface of a cylindrical ceramic member coated with a conductive film, and a surge absorbing element having a pair of cap electrodes at both ends of the ceramic member is placed in a glass tube together with a sealing gas. It is a discharge type surge absorber in which sealed electrodes having lead wires at both ends of a cylindrical glass tube are sealed by high-temperature heating (see, for example, Patent Document 1).
[0004]
In recent years, with the miniaturization of equipment, surface-mounting is also progressing in such a discharge type surge absorber. As an example applicable to the surge absorber, there is a surface mount type (Melph type) that has no lead wire on the sealing electrode, and when mounting, the sealing electrode and the substrate side are connected and fixed by soldering. is there.
[0005]
[Patent Document 1]
JP 2002-110311 A (page 3-4, FIG. 1)
[0006]
[Problems to be solved by the invention]
However, the following problems remain in the conventional surge absorber. In other words, for applications that require high surge resistance, such as communication lines and power lines, there is a demand for characteristics that can be used more fully, and the surface mount type can break the glass tube during mounting. Therefore, it has been considered that the glass tube used in the surge absorber is a ceramic tube.
[0007]
In a conventional surge absorber using a glass tube, a cylindrical ceramic is put in the glass tube, and sealing electrodes are arranged on both ends of the glass tube, and the glass tube is melted in a high-temperature furnace and fixed tightly to the sealing electrode. It has a stop process.
In this cooling process from sealing, since the glass tube generates residual stress in the compression direction due to the difference in thermal expansion coefficient with the cylindrical ceramic, the ohmic contact between the sealing electrode and the cylindrical ceramic conductive film is sufficient. Have been able to get. However, when a ceramic tube is used instead of a glass tube, the difference in thermal expansion coefficient between the ceramic tube and the columnar ceramic is small compared to the above, so that the residual stress generated in the cooling process from sealing is small. Insufficient ohmic contact between the electrode and the cylindrical ceramic conductive film may not be obtained, resulting in inconvenience that electrical characteristics such as a discharge start voltage are not stable.
[0008]
The present invention has been made in view of the above-described problems, and an object thereof is to provide a surge absorber having stable electrical characteristics such as a discharge start voltage.
[0009]
[Means for Solving the Problems]
The present invention employs the following configuration in order to solve the above problems. That is, the surge absorber according to the present invention includes a columnar insulating member in which a conductive film is divided and formed on a peripheral surface through a central discharge gap, and opposed to both ends of the insulating member. A surge absorber comprising a pair of terminal electrode members that are in contact with each other, and an insulating tube that is formed of a ceramic material and that has the pair of terminal electrode members disposed at both ends and seals the insulating member together with a sealing gas The terminal electrode member includes a peripheral edge bonded to the end surface of the insulating tube with a brazing material, and a support concave portion that supports the insulating member on a radially inner side surface. A contact surface between the support recess and the conductive film is formed by press-fitting or fitting an insulating member, and a Vickers hardness Hv of the terminal electrode member satisfies 100 <Hv <200. You It is characterized in.
[0010]
According to the present invention, a belt-like contact surface on the circumference is formed between the support recess and the conductive coating by press-fitting or fitting an insulating member into the support recess, thereby increasing the contact surface and ensuring the contact surface. With this contact, a sufficient ohmic contact can be obtained, and the electrical characteristics such as the discharge start voltage of the surge absorber are stabilized.
In addition, since the terminal electrode member has a suitable hardness, it is possible to prevent damage to the insulating member when press-fitted and contact failure between the insulating member and the terminal electrode member during assembly, and one terminal electrode A contact failure between the other terminal electrode member and the insulating member can be suppressed due to excessive penetration of the insulating member into the member.
[0011]
In the surge absorber according to the present invention, the absolute value δ (1 / ° C.) of the difference in average thermal expansion coefficient of the terminal electrode member and the insulating tube around room temperature satisfies δ <10 × 10 −6. Is preferred.
During the brazing and cooling process, a large residual stress is generated at the joint between the insulating tube and the terminal electrode member due to the difference in thermal expansion coefficient between the terminal electrode member and the insulating tube, and the insulating tube is damaged or sealed. There is a risk of poor airtightness due to poor stoppage.
According to the present invention, since the difference in the average value of the thermal expansion coefficient between the terminal electrode member and the insulating tube is suitable, the generation of residual stress due to the difference in the thermal expansion coefficient is suppressed in the cooling process from brazing, and the It is possible to prevent airtight defects due to breakage of the sex tube and poor sealing.
[0012]
In the surge absorber according to the present invention, it is preferable that the terminal electrode member is made of Kovar (KOVAR), which is an alloy of Fe (iron), Ni (nickel), and Co (cobalt).
In the surge absorber according to the present invention, the terminal electrode member is preferably Kovar subjected to an annealing treatment.
According to the present invention, by performing the annealing treatment, it is possible to obtain a terminal electrode member having a hardness lower than that of ordinary Kovar and satisfying the above conditions.
[0013]
In the surge absorber according to the present invention, it is preferable that the conductive coating and the support recess are in contact with each other through a metal member having a hardness lower than that of the insulating member.
According to this invention, since the insulating member and the support recess are in contact with each other through the metal member having a lower hardness than the insulating member, the low hardness metal member is pressed when the insulating member is press-fitted or fitted. However, it is possible to form a better contact surface by closely attaching the insulating member and the support recess to both surfaces.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a first embodiment of a surge absorber according to the present invention will be described with reference to FIGS. 1 to 3.
As shown in FIG. 1, the surge absorber 1 according to the present embodiment is a discharge type surge absorber using a so-called microgap, and a conductive coating 3 is dividedly formed on a peripheral surface via a central discharge gap 2. The cylindrical ceramics (insulating member) 4, a pair of terminal electrode members 5 that are disposed opposite to both ends of the cylindrical ceramics 4 and are in contact with the conductive coating 3 by press-fitting the cylindrical ceramics 4, and the pair The terminal electrode member 5 is disposed at both ends, and the cylindrical ceramic 4 is sealed together with a sealing gas 6 such as Ar (argon) whose composition is adjusted in order to obtain desired electrical characteristics. A cylindrical ceramic (insulating tube) 7 is provided.
[0015]
The cylindrical ceramic 4 is made of a ceramic material such as a mullite sintered body, and has a conductive coating 3 on the surface thereof, such as TiN (titanium nitride) by a thin film forming technique such as physical vapor deposition (PVD) method or chemical vapor deposition (CVD) method. A thin film is formed.
1 to 100 discharge gaps 2 having a width of 0.01 to 1.5 mm are formed by processing such as laser cutting, dicing, and etching. In the present embodiment, one discharge gap 2 is formed with a thickness of 70 μm.
[0016]
The pair of terminal electrode members 5 is made of Kovar, which is an alloy of Fe (iron), Ni (nickel), and Co (cobalt), and is subjected to an annealing process of heating at 900 ° C. for 30 minutes in a hydrogen atmosphere. ing.
As shown in FIG. 2, the pair of terminal electrode members 5 includes a rectangular peripheral portion 5 </ b> A having an aspect ratio of 1 or less bonded to an end surface of the cylindrical ceramic 7 and a brazing material 8, and a cylindrical shape. A protruding support part (supporting recess) 9 that protrudes in the axial direction in the ceramic 7 and supports the cylindrical ceramics 4 is provided, and is surrounded by the protruding support part 9 so as to face the end of the cylindrical ceramics 4. A central region 5B is formed. It is desirable for the protruding support portion 9 to have a slightly tapered shape on the radially inner side surface so that the radially inner side surface and the end of the cylindrical ceramic 4 can be easily press-fitted or fitted. Moreover, the mutually opposing surface of the front-end | tip of the protrusion support part 9 is made into the main discharge surface.
The pair of projecting support portions 9 form a contact surface 10 by press-fitting or fitting the cylindrical ceramics 4 to the projecting support portion 9 on the inner peripheral surface, thereby obtaining sufficient ohmic contact with the conductive coating 3. .
[0017]
Cylindrical ceramic 7 is composed of, for example, Al 2 O 3 (alumina) or the like of the insulating ceramic has a rectangular cross section, both end faces outline is substantially equal to the outer peripheral dimensions of the peripheral portion 5A.
In such a configuration, the absolute value δ of the difference in average thermal expansion coefficient between the terminal electrode member 5 and the cylindrical ceramic 7 and the Vickers hardness Hv of the terminal electrode member 5 are δ <10 × 10 −6 , 100 <Hv. It is formed to satisfy both <200 conditions simultaneously.
[0018]
Next, a method for manufacturing the surge absorber 1 of the present embodiment having the above configuration will be described.
First, the pair of terminal electrode members 5 are subjected to an annealing process of heating at 900 ° C. for 30 minutes in a hydrogen atmosphere, for example, and then integrally formed into a desired shape by punching.
[0019]
Subsequently, in order to improve the wettability with the brazing material 8 on both end faces of the cylindrical ceramic 7, for example, metallized layers each including one molybdenum (Mo) -tungsten (W) layer and one Ni layer are provided. Form.
Then, the cylindrical ceramic 4 is placed on the central region 5B of the one terminal electrode member 5 by press-fitting or fitting the cylindrical ceramic 4 into the projecting support portion 9, so that the radially inner side surface and the cylindrical ceramic 4 are placed. Make contact with the end face. At this time, the contact surface 10 is formed. The cylindrical ceramic 7 is placed on the peripheral edge 5 </ b> A of the other terminal electrode member 5 with the brazing material 8 sandwiched between the peripheral edge 5 </ b> A and the end surface of the cylindrical ceramic 7.
Further, the terminal electrode member 5 is placed so that the upper side of the columnar ceramic 4 faces the central region 5B, and the radially inner side surface and the terminal electrode member 5 are brought into contact with each other. Then, the brazing material 8 is sandwiched between the peripheral portion 5 </ b> A and the end surface of the cylindrical ceramic 7.
[0020]
In the temporarily assembled state as described above, after sufficiently evacuating, it is heated as a sealing gas atmosphere until the brazing material 8 is melted, the cylindrical ceramics 4 are sealed by melting the brazing material 8, and then cooled rapidly. The surge absorber 1 is manufactured.
For example, as shown in FIG. 3, the surge absorber 1 manufactured in this way is mounted on a substrate B having a mounting surface 7 </ b> A which is one side surface of the cylindrical ceramic 7 on a substrate B such as a printed circuit board. B and the outer surfaces of the pair of terminal electrode members 5 are used by being bonded and fixed with solder S.
[0021]
According to the above configuration, the strip-shaped contact surface 10 is formed between the conductive coating 3 and the projecting support portion 9 by press-fitting or fitting the cylindrical ceramics 4 into the projecting support portion 9, and a good ohmic contact As a result, electrical characteristics such as the discharge start voltage of the surge absorber 1 are stabilized. Further, since the terminal electrode member 5 is made of an annealed Kovar, the Vickers hardness Hv of the terminal electrode member 5 and the absolute value δ of the average thermal expansion coefficient difference between the terminal electrode member 5 and the cylindrical ceramic 7 are Is a suitable value. Accordingly, it is possible to prevent damage to the cylindrical ceramics 4 during press-fitting or fitting and contact failure during assembly, and to suppress contact failure due to excessive entry of the conductive coating 3 into one terminal electrode member 5. Further, in the cooling process from brazing, the occurrence of residual stress due to the difference in thermal expansion coefficient between the terminal electrode member 5 and the cylindrical ceramic 7 can be suppressed, and the confidentiality failure due to breakage of the cylindrical ceramic 7 or defective sealing can be prevented. .
[0022]
Next, a second embodiment will be described with reference to FIG.
The basic configuration of the embodiment described here is the same as that of the first embodiment described above, and another element is added to the first embodiment described above. Therefore, in FIG. 4, the same components as those in FIG.
[0023]
The difference between the second embodiment and the first embodiment is that, in the first embodiment, the cylindrical ceramic 4 is directly press-fitted or fitted into the protruding support portion 9, whereas the second embodiment is different from the second embodiment. The surge absorber 20 in this embodiment is that the cylindrical ceramic 4 is press-fitted into the protruding support portion 9 via a pair of cap electrodes (metal members) 21 formed in a bowl shape.
The pair of cap electrodes 21 is made of a metal having a lower hardness than the cylindrical ceramic 4, such as stainless steel, and has an outer peripheral portion extending inward in the axial direction from the tip of the protruding support portion 9 of the terminal electrode member 5. It is formed in a U shape and serves as a main discharge surface.
[0024]
Next, a method for manufacturing the surge absorber 20 of the present embodiment having the above configuration will be described.
First, after the annealing treatment is performed on the pair of terminal electrode members 5, they are integrally formed by punching.
Thereafter, the pair of cap electrodes 21 are engaged with both ends of the cylindrical ceramic 4, and the surge absorber 20 is manufactured by the same method as in the first embodiment.
[0025]
According to the above configuration, since the cap electrode 21 having a lower hardness than the cylindrical ceramic 4 and capable of plastic deformation is provided, the cap electrode 21 closely attaches the cylindrical ceramic 4 and the protruding support portion 9 to both surfaces. Better contact surface can be formed.
[0026]
In addition, this invention is not limited to the said embodiment, A various change can be added in the range which does not deviate from the meaning of this invention.
For example, the Vickers hardness Hv preferably satisfies 140 <Hv <180 in order to prevent contact failure due to breakage of the insulating member or excessive press-fitting.
In order to further reduce the residual stress, the absolute value δ of the difference in average thermal expansion coefficient preferably satisfies δ <8 × 10 −6 .
[0027]
The conductive film may be Ag, Ag / Pd alloy, SnO 2 , Al, Ni, Cu, Ti, Ta, W, SiC, BaAl, C, Ag / Pt alloy, TiO, TiC, TiCN, or the like.
Further, the metallized layers on both end faces of the cylindrical ceramic may be Ag, Cu, Au, or may be sealed only with an active metal brazing material without using the metallized layer.
The sealing gas may be, for example, the atmosphere (air) whose composition is adjusted to sell desired electrical characteristics, such as Ar, N 2 , Ne, He, Xe, H 2 , SF 6 , CF 4. , C 2 F 6 , C 3 F 8 , CO 2 or the like, and a mixed gas thereof may be used.
[0028]
【The invention's effect】
As described above, according to the surge absorber of the present invention, it is possible to obtain a good ohmic contact between the conductive coating and the support recess by an increase in the contact area and reliable contact. Therefore, electrical characteristics such as the discharge start voltage can be stabilized over a long period of time.
[Brief description of the drawings]
FIG. 1 is an axial sectional view showing a surge absorber according to a first embodiment of the present invention.
FIGS. 2A and 2B show a terminal electrode member according to a first embodiment of the present invention, in which FIG. 2A is a plan view and FIG. 2B is a cross-sectional view taken along line XX in FIG.
FIG. 3 is a cross-sectional view when the surge absorber according to the first embodiment of the present invention is mounted on a substrate.
FIG. 4 is an axial sectional view showing a surge absorber according to a second embodiment of the present invention.
[Explanation of symbols]
1, 20 Surge absorber 2 Discharge gap 3 Conductive coating 4 Cylindrical ceramics (insulating member)
5 Terminal electrode member 5A Peripheral part 6 Sealing gas 7 Cylindrical ceramics (insulating tube)
8 Brazing material 9 Protruding support (support recess)
10 Contact surface 21 Cap electrode (metal member)

Claims (5)

周面に中央の放電ギャップを介して導電性被膜が分割形成された柱状の絶縁性部材と、該絶縁性部材の両端に対向配置され前記導電性被膜に接触する一対の端子電極部材と、セラミックス材料で形成され前記一対の端子電極部材を両端に配して前記絶縁性部材を内部に、封止ガスと共に封止する絶縁性管とを備えたサージアブソーバであって、
前記端子電極部材が、前記絶縁性管の端面とロウ材で接着される周縁部と、
径方向内側面で前記絶縁性部材を支持する支持凹部とを備え、
該支持凹部に前記絶縁性部材を圧入又は嵌合させることによって前記支持凹部と前記導電性被膜との間の接触面が形成されていると共に、
前記端子電極部材のビッカース硬さHvが、100<Hv<200を満足することを特徴とするサージアブソーバ。
A columnar insulating member having a conductive film divided and formed on the peripheral surface through a central discharge gap, a pair of terminal electrode members disposed opposite to both ends of the insulating member and in contact with the conductive film, and ceramics A surge absorber comprising an insulating tube that is formed of a material and is arranged at both ends with the pair of terminal electrode members disposed therein and sealing the insulating member together with a sealing gas,
The terminal electrode member is bonded to the end surface of the insulating tube with a brazing material;
A support recess for supporting the insulating member on the radially inner side surface,
A contact surface between the support recess and the conductive coating is formed by press-fitting or fitting the insulating member into the support recess,
A surge absorber characterized in that a Vickers hardness Hv of the terminal electrode member satisfies 100 <Hv <200.
請求項1に記載のサージアブソーバにおいて、
前記端子電極部材及び前記絶縁性管の常温付近における平均熱膨張係数差の絶対値δ(1/℃)が、δ<10×10−6を満足することを特徴とするサージアブソーバ。
The surge absorber according to claim 1,
The surge absorber, wherein an absolute value δ (1 / ° C.) of an average coefficient of thermal expansion difference between the terminal electrode member and the insulating tube near room temperature satisfies δ <10 × 10 −6 .
請求項1又は2に記載のサージアブソーバにおいて、
前記端子電極部材が、Fe(鉄)、Ni(ニッケル)及びCo(コバルト)を備える合金によって形成されていることを特徴とするサージアブソーバ。
The surge absorber according to claim 1 or 2,
A surge absorber, wherein the terminal electrode member is made of an alloy including Fe (iron), Ni (nickel), and Co (cobalt).
請求項1から3のいずれかに記載のサージアブソーバにおいて、
前記端子電極部材が、焼鈍処理を施したコバール(登録商標)であることを特徴とするサージアブソーバ。
The surge absorber according to any one of claims 1 to 3,
A surge absorber, wherein the terminal electrode member is Kovar (registered trademark) subjected to an annealing treatment.
請求項1から4のいずれかに記載のサージアブソーバにおいて、
前記導電性被膜と前記支持凹部とが、前記絶縁性部材よりも硬度の低い金属部材を介して接触していることを特徴とするサージアブソーバ。
The surge absorber according to any one of claims 1 to 4,
The surge absorber, wherein the conductive coating and the support recess are in contact with each other through a metal member having a hardness lower than that of the insulating member.
JP2003198666A 2003-07-17 2003-07-17 surge absorber Expired - Fee Related JP4265321B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003198666A JP4265321B2 (en) 2003-07-17 2003-07-17 surge absorber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003198666A JP4265321B2 (en) 2003-07-17 2003-07-17 surge absorber

Publications (2)

Publication Number Publication Date
JP2005038667A JP2005038667A (en) 2005-02-10
JP4265321B2 true JP4265321B2 (en) 2009-05-20

Family

ID=34208385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003198666A Expired - Fee Related JP4265321B2 (en) 2003-07-17 2003-07-17 surge absorber

Country Status (1)

Country Link
JP (1) JP4265321B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007188754A (en) * 2006-01-13 2007-07-26 Mitsubishi Materials Corp Process of manufacturing surge absorber

Also Published As

Publication number Publication date
JP2005038667A (en) 2005-02-10

Similar Documents

Publication Publication Date Title
US7570473B2 (en) Surge absorber
US7937825B2 (en) Method of forming a surge protector
US20070285866A1 (en) Surge Absorber and Production Method Therefor
JP4265321B2 (en) surge absorber
JP2007317541A (en) Surge suppressor
JP2006032090A (en) Surge absorber
JP4544255B2 (en) Electronic component enclosure
JP2006049064A (en) Surge absorber
JP3601320B2 (en) surge absorber
JP4407287B2 (en) surge absorber
JP4363180B2 (en) surge absorber
JP2006286251A (en) Surge absorber
JP4265319B2 (en) Chip-type surge absorber and manufacturing method thereof
JP4123981B2 (en) Chip-type surge absorber and manufacturing method thereof
JP3969098B2 (en) surge absorber
JP2007188754A (en) Process of manufacturing surge absorber
JP2005078968A (en) Surge absorber
JP2006049065A (en) Surge absorber
JP4123977B2 (en) Chip-type surge absorber and manufacturing method thereof
JP4265320B2 (en) Chip-type surge absorber and manufacturing method thereof
JP4349107B2 (en) Chip-type surge absorber and manufacturing method thereof
JP4930053B2 (en) surge absorber
JP2007329123A (en) Surge absorber and its manufacturing method
KR100199694B1 (en) Surge absorber
JP2910006B2 (en) surge absorber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060331

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090127

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090209

R150 Certificate of patent or registration of utility model

Ref document number: 4265321

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140227

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees