[go: up one dir, main page]

JP4262975B2 - Manufacturing method of glass substrate microchip - Google Patents

Manufacturing method of glass substrate microchip Download PDF

Info

Publication number
JP4262975B2
JP4262975B2 JP2002382482A JP2002382482A JP4262975B2 JP 4262975 B2 JP4262975 B2 JP 4262975B2 JP 2002382482 A JP2002382482 A JP 2002382482A JP 2002382482 A JP2002382482 A JP 2002382482A JP 4262975 B2 JP4262975 B2 JP 4262975B2
Authority
JP
Japan
Prior art keywords
glass substrate
microchip
glass
manufacturing
bonded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002382482A
Other languages
Japanese (ja)
Other versions
JP2004210592A (en
Inventor
奈央 青山
きよ子 黒澤
克嘉 蓼沼
圭祐 森島
学 渡慶次
武彦 北森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Microchemical Technology
Original Assignee
Institute of Microchemical Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Microchemical Technology filed Critical Institute of Microchemical Technology
Priority to JP2002382482A priority Critical patent/JP4262975B2/en
Publication of JP2004210592A publication Critical patent/JP2004210592A/en
Application granted granted Critical
Publication of JP4262975B2 publication Critical patent/JP4262975B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B23/00Re-forming shaped glass
    • C03B23/20Uniting glass pieces by fusing without substantial reshaping
    • C03B23/203Uniting glass sheets

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Joining Of Glass To Other Materials (AREA)

Description

【0001】
【発明の属する技術分野】
この出願の発明は、ガラス基板マイクロチップの製造方法に関するものである。
【0002】
【従来の技術】
ガラス等の透明性基板に微細流路(チャンネル)を溝形成してこれを液体や気体の流路とし、微小流路領域での化学反応や分離、混合、さらには分析等の操作を行うようにしたマイクロ流体操作のためのマイクロチップは、分析化学、化学合成、生命化学等の広範な分野で有用なものとして注目されている。そして、実際に、これまでにも、この出願の発明者らによるマイクロチップを用いた研究によって多くの注目すべき成果が得られている。
【0003】
このようなマイクロチップの基板については、化学的に不活性で、しかも高透光性を有することからガラスにより構成されたものが実際的であると考えられている。
【0004】
通常、このガラスを基板とするマイクロチップは、基板の表面部に溝加工して微細流路を形成した後に、2枚のガラス基板を貼り合わせることにより製造されている。たとえば図3に示したように、まず、
1)ガラス基板の表面部にCr(クロム)/Au(金)層を蒸着し、その後フォトレジスト塗布を行い、
2)フォトリソグラフィーを行った後に
3)現像して所定のパターンにマスクを加工し、
4)Au/Cr層のエッチング、
5)ガラスのエッチング
6)AuおよびCr層の除去を行って、
ガラス基板の表面部に、所定パターンの微細流路のための溝を形成する。もちろん、この微細流路には、液溜め部のようなポート部や、合流部、分枝部、試料、試薬等の導入口部や排液、排気のための排出口部等も含まれる。
【0005】
次いで、図4のように、得られたガラス基板、つまり微細流路が表面部に溝加工されたガラス基板(A)に対し、もう一枚のガラス基板(B)が貼り合わされる。この貼り合わせは、通常、1時間程度の昇温時間で約650℃にまで昇温し、この温度に5時間程度保持した後に、約10時間かけて室温にまで徐冷することによって実行されている。
【0006】
そして、この貼り合わせのプロセスは、ガラス基板マイクロチップ製品の歩留まりとチップの品質に大きく影響することから、これまでにも、加熱条件を制御することや表面部の清浄化のためのフッ化水素:HFの併用という工夫もなされてきている(文献1〜3)。
【0007】
しかしながら、以上のとおりのこれまでのガラス基板の貼り合わせプロセスについては、所要時間が、たとえば16時間にも及ぶという長時間のものとなることや、フォトレジストやAu/Cr蒸着膜の残存が接合不良をもたらし歩留りの低下をまねくことから、HFによる処理という、極めて高いガラス表面の清浄化のための処理が必要とされ、量産技術としては大きな問題があった。
【0008】
【文献】
1:Proceeding of μ-TAS '98, 311-314 (1998)
2:Proceeding of Micro Electro Mechanical System '97, pp.299
3:特開平10−338555号公報
【0009】
【発明が解決しようとする課題】
そこで、この出願の発明は、以上のとおりの従来技術の問題点を解消し、ハイスループットで短時間にしかも高い歩留りで、かつ、従来のような高度な表面清浄化のための手段を必要とすることなしに、貼り合わせによってガラス基板マイクロチップを製造することのできる新しい方法を提供することを課題としている。
【課題を解決するための手段】
この出願の発明は、上記の課題を解決するものとして、第1には、少くとも一方のガラス基板の表面部に微細流路が溝形成されている2枚のガラス基板を接合してガラス基板マイクロチップを製造する方法であって、真空度が10 -1 Torr〜10 -4 Torrの減圧環境において、ガラス基板の軟化点以下の加熱温度で、ガラス基板の排出口部に対応する排気トレンチを有する当接板を介してプレス加圧してガラス基板を密着接合することを特徴とするガラス基板マイクロチップの製造方法を提供する。
【0010】
そして、この出願の発明においては、上記方法について、第2には、ガラス基板の軟化点よりも50℃〜100℃低い温度において、1〜100kg/cm2の範囲のプレス加圧力により加熱加圧することを特徴とするガラス基板マイクロチップの製造方法を提供し、第3には、当接板がグラファイトにより構成されたものであることを特徴とするガラス基板マイクロチップの製造方法を、第4には、接合する2枚のガラス基板を一組として、複数組のガラス基板の各々を同時に密着接合することを特徴とするガラス基板マイクロチップの製造方法を提供する。
【0011】
【発明の実施の形態】
この出願の発明は上記のとおりの特徴をもつものであるが、以下にその実施の形態について説明する。
【0012】
この出願の発明では、たとえば図1に例示したように、あらかじめ少くとも一方のガラス基板(A)の表面部に微細流路(C)が溝形成されている2枚のガラス基板(A)(B)を接合するに際し、ガラス基板(A)(B)の軟化点以下の加熱温度で、10-4Torr以上の低真空度の減圧環境下においてプレス(D)により加圧することを特徴としている。
【0013】
この場合、ガラス基板(B)についても、図1の例に限られることなしに微細流路が溝形成されていてもよいことは言うまでもない。また、微細流路(C)については、前記のとおりの従来法のフォトレジストエッチング等によって形成することができ、これら微細流路(C)は、その断面形状や平面配置パターンが適宜であってよい。
【0014】
この出願の発明の上記の接合方法では、ガラス基板の軟化点以下の温度に加熱するが、これは従来の650℃という加熱温度に比べてかなり低い温度となる。それというのも、たとえばパイレックス(登録商標)ガラスの場合の軟化点は約570℃であるが、この出願の発明では、この温度よりも、たとえば50℃〜100℃程度も低い温度を採用することができる。
【0015】
また、この出願の発明の貼り合わせ方法では、10-4Torr以上の低真空度の減圧環境が採用される。たとえば10-1〜10-4Torr、より好ましくは10-3Torr前後の真空度の環境である。このような低真空度の環境下に、軟化点以下の加熱温度で、図1のように、プレス(D)により加圧するが、この場合の加圧度は、上記の真空度や加熱温度の条件によっても相違するが、一般的には1kg/cm2〜100kg/cm2の範囲の圧力が考慮される。好適には5kg/cm2〜50kg/cm2の範囲が例示されることになる。
【0016】
この出願の発明の方法においては、2枚のガラス基板(A)(B)の密着接合は実用的に充分な接合強度をもつものとして実現される。しかも、その接合のためのプロセス時間は、ガラス基板の平面大きさにもよるが、数時間、たとえば1〜3時間で終了することができる。また、さらに特徴的なことは、マイクロチップにおいて欠くことのできない微細流路(C)について、加圧によっても変形や破壊、損傷が一切生じないことである。このことは大変に重要な特徴である。
【0017】
そして当然のことではあるが、この出願の発明の方法においては、従来のようなHF処理等による高度な表面清浄化処理を必要としていないことも強調される。
【0018】
仮に、ガラス基板表面部の一部にAu/Cr蒸着膜が残存しているとしても、良好な密着接合が実現される。もちろん、所望によっては付加的にHF等による処理を行ってもよい。
【0019】
さらにこの出願の発明においては、たとえば図1にも示したように、ガラス基板の排出口部(E)、つまり液体や気体の排出のための開口に対応する排気トレンチ(F)を有する当接板(G)を介在させてプレス(D)により加圧することが有効でもある。この場合の当接板としては、ガラス基板に対するプレス(D)の加圧による損傷の防止や、熱伝導の向上等を目的とするものであってよく、トレンチ(F)は、加熱加圧にともなってガラス基板の微細流路(C)内からの排気を行うために有効である。このような当接板(G)としては、たとえば硬質のグラファイト板等が例示される。もちろん、以上の当接板は使用しなくてもよい。
【0020】
そしてこの出願の発明においては、図1の例に限定されることなしに、接合する2枚のガラス基板を一組として、このものの複数組を同時に接合操作してもよいことは言うまでもない。また、たとえば3枚のガラス基板を一組として、各々の対向表面部において密着接合すること等も可能とされる。
【0021】
そこで、以下に実施例を示し、さらに詳しくこの出願の発明について説明する。もちろん、以下の例によって発明が限定されることはない。
【0022】
【実施例】
図1のように微細流路(C)を形成したパイレックス(登録商標)ガラス製のガラス基板(A)に別のパイレックス(登録商標)ガラス製のガラス基板(B)を接合した。その際の真空度は10−3Torrとし、プレス圧力は6kg/cm2とした。加熱は図2の時間パターンにより行った。すなわち、約15分で500℃に昇温し、この500℃に1時間保持した後に、約15分で降温させ、全体として90分で接合を終了した。
【0023】
なお、ガラス基板(A)の表面に対してはあらかじめHF等による清浄化処理は行っていない。
【0024】
以上の接合によって、約4〜7MPaの接合強度を有するガラス基板マイクロチップが得られている。
【0025】
【発明の効果】
以上詳しく説明したとおり、この出願の発明によって、従来技術の問題点を解消し、ハイスループットで短時間にしかも高い歩留りで、かつ、従来のような高度な表面清浄化のための手段を必要とすることなしに、貼り合わせによりガラス基板マイクロチップを製造することができる。
【図面の簡単な説明】
【図1】この出願の発明の方法を例示した概要断面図である。
【図2】実施例としての加熱温度の時間パターンを示した図である。
【図3】微細流路の形成方法を示した工程断面図である。
【図4】従来の貼り合わせ方法について示した概要断面図である。
[0001]
BACKGROUND OF THE INVENTION
The invention of this application relates to a method for manufacturing a glass substrate microchip.
[0002]
[Prior art]
Form a micro-channel (channel) in a transparent substrate such as glass and use it as a liquid or gas channel, and perform operations such as chemical reaction, separation, mixing, and analysis in the micro-channel region Microchips for microfluidic manipulation that have been used are attracting attention as being useful in a wide range of fields such as analytical chemistry, chemical synthesis, and biochemistry. In fact, many remarkable results have been obtained so far by research using the microchip by the inventors of this application.
[0003]
Such a microchip substrate is considered to be practically composed of glass because it is chemically inert and has high translucency.
[0004]
Usually, a microchip using this glass as a substrate is manufactured by laminating two glass substrates after forming grooves on the surface portion of the substrate to form a fine channel. For example, as shown in FIG.
1) A Cr (chromium) / Au (gold) layer is vapor-deposited on the surface of the glass substrate, and then a photoresist is applied.
2) After performing photolithography, 3) develop and process the mask into a predetermined pattern,
4) Etching of Au / Cr layer,
5) Etching the glass 6) Removing the Au and Cr layers,
Grooves for fine channels having a predetermined pattern are formed on the surface of the glass substrate. Of course, the fine channel includes a port portion such as a liquid reservoir, a confluence portion, a branch portion, an inlet portion for a sample, a reagent and the like, a drain port for discharging and exhausting, and the like.
[0005]
Next, as shown in FIG. 4, another glass substrate (B) is bonded to the obtained glass substrate, that is, the glass substrate (A) in which the fine channel is grooved on the surface portion. This bonding is usually performed by heating up to about 650 ° C. with a heating time of about 1 hour, holding at this temperature for about 5 hours, and then slowly cooling to room temperature over about 10 hours. Yes.
[0006]
This bonding process greatly affects the yield of glass substrate microchip products and the quality of chips, and so far, hydrogen fluoride has been used to control heating conditions and clean surface parts. : The idea of combined use of HF has also been made (References 1 to 3).
[0007]
However, the conventional glass substrate bonding process as described above requires a long time of, for example, 16 hours, and the remaining photoresist or Au / Cr deposited film is bonded. Since it causes defects and leads to a decrease in yield, an extremely high treatment for cleaning the glass surface, which is a treatment with HF, is required, and there has been a big problem as a mass production technique.
[0008]
[Literature]
1: Proceeding of μ-TAS '98, 311-314 (1998)
2: Proceeding of Micro Electro Mechanical System '97, pp.299
3: JP-A-10-338555
[Problems to be solved by the invention]
Therefore, the invention of this application eliminates the problems of the prior art as described above, and requires high-throughput, short-time, high yield, and conventional means for advanced surface cleaning. An object of the present invention is to provide a new method capable of manufacturing a glass substrate microchip by bonding without doing so.
[Means for Solving the Problems]
In order to solve the above problems, the invention of this application is as follows. First, a glass substrate is formed by joining two glass substrates each having a fine channel formed in the surface of at least one glass substrate. A method of manufacturing a microchip, wherein an exhaust trench corresponding to a glass substrate outlet is formed at a heating temperature equal to or lower than a softening point of a glass substrate in a reduced pressure environment having a degree of vacuum of 10 −1 Torr to 10 −4 Torr. There is provided a method for producing a glass substrate microchip, characterized in that a glass substrate is tightly bonded by press-pressing through a contact plate .
[0010]
In the invention of this application, as for the above-mentioned method, secondly, heating and pressurization are performed with a pressing force in the range of 1 to 100 kg / cm 2 at a temperature lower by 50 ° C. to 100 ° C. than the softening point of the glass substrate. It provides a process for producing a glass substrate microchip, characterized in that, in the third, a method of manufacturing a glass substrate microchip which is characterized in that which has been constructed by the abutment plate Gagu Rafaito, 4 The present invention provides a method for manufacturing a glass substrate microchip, wherein two glass substrates to be bonded together are set as a set, and each of a plurality of glass substrates is simultaneously tightly bonded.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
The invention of this application has the features as described above, and an embodiment thereof will be described below.
[0012]
In the invention of this application, for example, as illustrated in FIG. 1, two glass substrates (A) (in which a fine channel (C) is formed in a groove in the surface portion of at least one glass substrate (A) in advance. When bonding B), the glass substrate (A) is heated by a pressure below the softening point of the glass substrate (A), and is pressurized by a press (D) in a reduced-pressure environment at a low vacuum of 10 −4 Torr or more. .
[0013]
In this case, the glass substrate (B) is not limited to the example shown in FIG. Further, the fine channel (C) can be formed by the conventional photoresist etching or the like as described above, and the fine channel (C) has an appropriate cross-sectional shape and plane arrangement pattern. Good.
[0014]
In the joining method of the invention of this application, the glass substrate is heated to a temperature below the softening point of the glass substrate, which is considerably lower than the conventional heating temperature of 650 ° C. This is because, for example, in the case of Pyrex (registered trademark) glass, the softening point is about 570 ° C., but in the invention of this application, a temperature lower than this temperature, for example, about 50 ° C. to 100 ° C. should be adopted. Can do.
[0015]
Further, in the bonding method of the invention of this application, a reduced pressure environment with a low vacuum degree of 10 −4 Torr or more is employed. For example, the environment has a degree of vacuum of about 10 −1 to 10 −4 Torr, more preferably about 10 −3 Torr. In such a low vacuum environment, pressurization is performed by a press (D) as shown in FIG. 1 at a heating temperature equal to or lower than the softening point. In this case, the pressurization degree is the above-described vacuum degree or heating temperature. which varies depending condition, typically a pressure in the range of 1kg / cm 2 ~100kg / cm 2 is considered. Preferably will be a range of 5kg / cm 2 ~50kg / cm 2 is exemplified.
[0016]
In the method of the invention of this application, the close bonding of the two glass substrates (A) and (B) is realized as having practically sufficient bonding strength. Moreover, the process time for the bonding can be completed in several hours, for example, 1 to 3 hours, depending on the plane size of the glass substrate. Further, it is more characteristic that the fine channel (C) that is indispensable in the microchip is not deformed, broken, or damaged even by pressurization. This is a very important feature.
[0017]
Naturally, it is emphasized that the method of the invention of this application does not require a high-level surface cleaning treatment such as a conventional HF treatment.
[0018]
Even if the Au / Cr vapor deposition film remains on a part of the surface portion of the glass substrate, good adhesion bonding is realized. Of course, if desired, processing with HF or the like may be additionally performed.
[0019]
Further, in the invention of this application, for example, as shown in FIG. 1, the abutment having an exhaust opening (E) of the glass substrate, that is, an exhaust trench (F) corresponding to an opening for discharging liquid or gas. It is also effective to press with a press (D) with a plate (G) interposed. In this case, the contact plate may be used for the purpose of preventing damage due to pressurization of the press (D) on the glass substrate, improving heat conduction, and the like. At the same time, it is effective for exhausting from the fine flow path (C) of the glass substrate. An example of such a contact plate (G) is a hard graphite plate. Of course, the above contact plate may not be used.
[0020]
In the invention of this application, it is needless to say that the two glass substrates to be bonded may be set as a set and a plurality of sets may be bonded simultaneously without being limited to the example of FIG. Further, for example, 3 sheets of glass substrates as a pair, like the close contact in each of the opposed surface portion is possible as.
[0021]
Then, an Example is shown below and invention of this application is demonstrated in detail. Of course, the invention is not limited by the following examples.
[0022]
【Example】
As shown in FIG. 1, another Pyrex (registered trademark) glass substrate (B) was joined to the Pyrex (registered trademark) glass substrate (A) in which the fine channel (C) was formed. The degree of vacuum at that time was 10-3 Torr, and the press pressure was 6 kg / cm 2 . Heating was performed according to the time pattern of FIG. That is, the temperature was raised to 500 ° C. in about 15 minutes, held at 500 ° C. for 1 hour, then lowered in temperature in about 15 minutes, and the bonding was completed in 90 minutes as a whole.
[0023]
In addition, the cleaning process by HF etc. is not performed previously with respect to the surface of a glass substrate (A).
[0024]
Through the above bonding, a glass substrate microchip having a bonding strength of about 4 to 7 MPa is obtained.
[0025]
【The invention's effect】
As described above in detail, the invention of the present application eliminates the problems of the prior art, requires high throughput, a short time and a high yield, and requires a conventional means for high-level surface cleaning. Without doing so, the glass substrate microchip can be manufactured by bonding.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view illustrating the method of the invention of this application.
FIG. 2 is a diagram showing a time pattern of heating temperature as an example.
FIG. 3 is a process cross-sectional view illustrating a method of forming a fine channel.
FIG. 4 is a schematic sectional view showing a conventional bonding method.

Claims (4)

少くとも一方のガラス基板の表面部に微細流路が溝形成されている2枚のガラス基板を接合してガラス基板マイクロチップを製造する方法であって、真空度が10-1Torr〜10-4Torrの減圧環境において、ガラス基板の軟化点以下の加熱温度で、ガラス基板の排出口部に対応する排気トレンチを有する当接板を介してプレス加圧してガラス基板を密着接合することを特徴とするガラス基板マイクロチップの製造方法。A method of manufacturing a glass substrate microchip by joining two glass substrates each having a micro-channel formed in a surface portion of at least one glass substrate, the degree of vacuum being 10 −1 Torr to 10 − In a reduced pressure environment of 4 Torr, the glass substrate is closely bonded by press-pressing through a contact plate having an exhaust trench corresponding to the discharge port portion of the glass substrate at a heating temperature below the softening point of the glass substrate. A manufacturing method of a glass substrate microchip. ガラス基板の軟化点よりも50℃〜100℃低い温度において、1〜100kg/cm2の範囲のプレス加圧力により加熱加圧することを特徴とする請求項1のガラス基板マイクロチップの製造方法。 2. The method for producing a glass substrate microchip according to claim 1, wherein heating and pressurization are performed at a temperature lower by 50 to 100 [deg.] C. than the softening point of the glass substrate by a pressurizing force in the range of 1 to 100 kg / cm < 2 >. 当接板がグラファイトにより構成されたものであることを特徴とする請求項1または2のガラス基板マイクロチップの製造方法。Contact plate Gagu Rafaito process according to claim 1 or 2 glass substrate microchip is characterized in that which has been constructed by. 接合する2枚のガラス基板を一組として、複数組のガラス基板を同時に密着接合することを特徴とする請求項1ないし3のいずれかのガラス基板マイクロチップの製造方法。4. The method of manufacturing a glass substrate microchip according to claim 1, wherein two glass substrates to be bonded are set as a set, and a plurality of sets of glass substrates are simultaneously tightly bonded.
JP2002382482A 2002-12-27 2002-12-27 Manufacturing method of glass substrate microchip Expired - Fee Related JP4262975B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002382482A JP4262975B2 (en) 2002-12-27 2002-12-27 Manufacturing method of glass substrate microchip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002382482A JP4262975B2 (en) 2002-12-27 2002-12-27 Manufacturing method of glass substrate microchip

Publications (2)

Publication Number Publication Date
JP2004210592A JP2004210592A (en) 2004-07-29
JP4262975B2 true JP4262975B2 (en) 2009-05-13

Family

ID=32818025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002382482A Expired - Fee Related JP4262975B2 (en) 2002-12-27 2002-12-27 Manufacturing method of glass substrate microchip

Country Status (1)

Country Link
JP (1) JP4262975B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5713273B2 (en) * 2010-03-30 2015-05-07 日本電気硝子株式会社 Joining material and member joining method using the same

Also Published As

Publication number Publication date
JP2004210592A (en) 2004-07-29

Similar Documents

Publication Publication Date Title
US6425972B1 (en) Methods of manufacturing microfabricated substrates
US5882465A (en) Method of manufacturing microfluidic devices
US6769444B2 (en) Microfluidic device and manufacture thereof
JP4656149B2 (en) Flow cell and manufacturing method thereof
US7862000B2 (en) Microfluidic method and structure with an elastomeric gas-permeable gasket
US6131410A (en) Vacuum fusion bonding of glass plates
JP5225796B2 (en) Method for manufacturing a microfluidic component comprising at least one microchannel with embedded nanostructures
US20070160502A1 (en) Microfluidic device and method of fabricating the same
JP2010527293A (en) Method for making a microfluidic device
CA2640752A1 (en) A microfluidic method and structure with an elastomeric gas-permeable gasket
JP4262975B2 (en) Manufacturing method of glass substrate microchip
US6082140A (en) Fusion bonding and alignment fixture
JP2002048752A (en) Flow cell and method for forming polymer film
CN103460336A (en) Micro Devices on Glass
KR100664520B1 (en) Manufacturing Method of Metal Foil / Ceramic Bonding Material and Metal Foil Laminated Ceramic Substrate
CN110560185B (en) Self-sealing micro-nano fluidic chip processing method
Knapkiewicz et al. Anodic bonding of glass-to-glass through magnetron spattered nanometric silicon layer
CN100554198C (en) A kind of quick bonding pressurizing mold of normal temperature that is used for quartzy micro-fluidic chip
CN115397581A (en) Method for metal flow reactor module and module produced
WO1999055630A1 (en) Vacuum pull down method for an enhanced bonding process
JP7570664B2 (en) Microfluidic chip production method
JP2006225197A (en) Method of manufacturing micro-chemical chip
US20180236444A1 (en) Process for producing a buried microfluidic channel with integrated heater
CN120115131A (en) Microchromatographic column with hydrophilic inner surface and preparation method thereof
CN120268471A (en) A packaging method for a microfluidic chip and a microfluidic chip

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080909

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090120

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090210

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4262975

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140220

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees