[go: up one dir, main page]

JP4261039B2 - Wet paint booth circulating water management method - Google Patents

Wet paint booth circulating water management method Download PDF

Info

Publication number
JP4261039B2
JP4261039B2 JP2000272965A JP2000272965A JP4261039B2 JP 4261039 B2 JP4261039 B2 JP 4261039B2 JP 2000272965 A JP2000272965 A JP 2000272965A JP 2000272965 A JP2000272965 A JP 2000272965A JP 4261039 B2 JP4261039 B2 JP 4261039B2
Authority
JP
Japan
Prior art keywords
water
circulating water
cationic
booth
paint
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000272965A
Other languages
Japanese (ja)
Other versions
JP2002079263A (en
Inventor
幸久 小林
浩典 服部
二郎 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Hakuto Co Ltd
Original Assignee
Honda Motor Co Ltd
Hakuto Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd, Hakuto Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2000272965A priority Critical patent/JP4261039B2/en
Publication of JP2002079263A publication Critical patent/JP2002079263A/en
Application granted granted Critical
Publication of JP4261039B2 publication Critical patent/JP4261039B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Details Or Accessories Of Spraying Plant Or Apparatus (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、水性塗料を使用している自動車あるいは家庭電気製品等の塗装工程湿式塗装ブースにおけるブース循環水の管理方法であり、より詳しくは、水に捕集された未塗着水性塗料を凝集、不粘着化し、塗料滓と水との固液分離を円滑に行わせるように未塗着塗料処理薬品の添加量を適正に維持する湿式塗装ブース循環水の管理方法に関するものである。
【0002】
【従来の技術】
自動車あるいは家庭用電気製品等の塗装は、一般に塗装ブース内で塗料を噴霧して行っている。このとき、対象物に塗着しなかった余剰塗料は、未塗着塗料として水に捕集され、分離される。しかし、一部の塗料は分離されず、粘着性粒子あるいは粘着性小塊となってブース水中に浮遊、分散して、循環するので、ブース循環水に予め塗料処理薬品を入れて、粘着性粒子あるいは粘着性小塊を不粘着化させて固液分離を円滑に行わせるようにしている。
【0003】
ところで、昨今の環境問題から空気中あるいは水中に飛散する有機溶剤を削減することが強く要求され、塗装工程では油性塗料に代わって水性塗料が使用されるようになってきた。水性塗料は、塗料樹脂を水に溶解あるいは分散させたものであるので、水に捕集されても水性塗料を単に水希釈した状態で存在しており、従来の油性塗料で行われた不粘着性処理方法では適切に処理できず、ブース循環水に塗料が徐々に蓄積されると、ブース循環水経路内の壁面や装置に粘着物となって付着することとなる。これまでの未塗着塗料の処理は、油性塗料を対象にして検討されてきたが、水性塗料を使用しているブース循環水の処理は、全く別の角度から、検討する必要が生じてきた。
【0004】
水性塗料は、ブース循環水系に入ると、その樹脂成分は、水中にアニオン電荷を帯びて分散するため、適切な除去処置が行われないと徐々に濃縮され、(1)循環水のCOD、BODが高くなり排水処理施設への負荷が増大する、(2)水質悪化により腐敗しやすく、悪臭を発生して作業環境を悪化させる、(3)発泡しやすく、固液分離に障害を生じ、操業上支障を来していた。
【0005】
これら水性塗料に係わる問題を回避する方法として、循環水の一部を抜き出したり、定期的に循環水を入れ替えることが行われていたが、排水処理コストの増大を招来し限界があった。また、硫酸バンド、ポリ塩化アルミニウム、塩化鉄等の無機凝集剤を添加して水性塗料を凝集分離する方法が行われたが、無機系凝集剤では十分な効果が得られないため、添加量が多くなる上に塩類濃度の上昇により装置の腐食が増大すること、さらに無機物フロックの生成によりスラッジ量が増える等の問題を有している。この他、ポリエチレンイミンを有効成分とする処理剤を使用する方法(特開昭61−74607号公報)、カチオン性水溶性有機高分子凝集剤とアニオン性有機高分子凝集剤を添加する方法(特開昭63−42706号公報)が提案され、腐食の低減、無機スラッジ量の減少とそれなりの効果がみられたが、水性塗料の性状によって凝集効果が変わるため、これら凝集剤を適正量注入することには管理上の難しさがあった。
【0006】
【本発明が解決しようとする課題】
本発明の目的は、湿式ブース循環水中の未塗着水性塗料の凝集処理を適切に維持するための凝集性を短時間で評価し、未塗着水性塗料と水の固液分離を容易に、かつ、経済的に行うことができるようにするブース循環水の管理方法を提供することにある。
【0007】
【課題を解決するための手段】
本発明者らは,ブース循環水に捕集された未塗着水性塗料の凝集、沈殿、不粘着化等について鋭意研究を重ねた結果、未塗着水性塗料を含むブース循環水の電荷量を測定、管理することにより、経済的でかつ良好な凝集処理を行なえることを見出し、本発明を完成するに至った。
【0008】
すなわち、請求項1の発明は、水性塗料を使用している湿式塗装ブース循環水の管理方法であり、ブース循環水の電荷量を測定し、その値が−100μeq/リットル〜+1,000μeq/リットル〔ここで、−(マイナス)はアニオン性電荷を、+(プラス)はカチオン性電荷を示す〕になるようにカチオン性凝集剤を連続的あるいは間欠的に添加することを特徴とする。
【0009】
請求項2の発明は、請求項1記載の湿式塗装ブース循環水の管理方法であり、カチオン性凝集剤が、ポリアクリルアミノエチルトリメチルアンモニウムクロライド、アクリルアミド−アクリルアミノエチルトリメチルアンモニウムクロライド共重合体、ジシアンジアミド−ホルムアルデヒド共重合体、ジアリルジメチルアンモニウムクロライド−二酸化硫黄共重合体、ジメチルアミン−エピクロルヒドリン縮合物、ジメチルアミン−エピクロルヒドリン−アンモニア縮合物、ジアリルジメチルアンモニウムクロライド重合体、ジアリルジメチルアンモニウムクロライド−アクリルアミド共重合体及びポリエチレンイミンから選ばれる1種以上であることを特徴とする。
【0010】
【発明の実施の形態】
以下に本発明を詳細に説明する。
湿式塗装ブース循環水の電荷量は、スプレー塗布後に水に捕集された未塗着水性塗料に由来する水溶性電解質成分と水分散性荷電成分及びブース循環水中の懸濁物質、電解質由来の電荷の合算として示される。アニオン電荷には「マイナス(−)」、カチオン電荷には「プラス(+)」を付けると、捕集された未塗着塗料を含むブース水の電荷は、一般にアニオン電荷を持ち、マイナス数十万〜マイナス数千μeq/リットルとなってブース循環水中に分散している。
【0011】
本発明の方法は、水性塗料の未塗着塗料を含むブース循環水の電荷量を測定し、その値が−100μeq/リットル〜+1,000μeq/リットル、好ましくは0μeq/リットル〜+500μeq/リットル、より好ましくは0μeq/リットル〜+100μeq/リットルになるようにカチオン性凝集剤を連続的あるいは間欠的に添加する。
【0012】
ブース循環水の電荷が−100μeq/リットルよりも低いとカチオン性凝集剤が不足で十分な凝集処理を行うことはできず、塗料成分の固液分離や未塗着塗料の除去が困難になり、循環水のCOD、BODが高くなり、腐敗臭の発生や発泡障害を生じることがある。他方、+1,000μeq/リットルを越えるカチオン電荷では、カチオン性凝集剤が過剰添加で、ブース循環水中で凝集した未塗着水性塗料が再分散されて凝集不良を生じ、後工程の凝集未塗着塗料とブース水の固液分離も十分に行えなくなるばかりか、発泡が激しくなるので好ましくはない。
【0013】
本発明の方法においては、未塗着塗料を含むブース循環水をポンプ等で採取し、電荷量を測定し、その値−100μeq/リットル〜+1,000μeq/リットルなるようにする。電荷量が−100μeq/リットルより低い(すなわち、アニオン電荷量が高い)場合には、カチオン性凝集剤が不足であり、水中の未塗着水性塗料が分散状態にあり、逆に、+1,000μeq/リットルより高い(すなわち、カチオン電荷量が高い)場合には、カチオン性凝集剤が過剰で水中の未塗着水性塗料が分散状態にあることを示し、カチオン性凝集剤の添加を停止する、あるいは必要であればアニオン性凝集剤を添加する。
【0014】
本発明で使用するカチオン性凝集剤は、カチオン性の無機物及び有機物であり、対象とする水性塗料の処理程度に応じて、凝集性能とカチオン性を考慮して選択されるものである。
【0015】
カチオン性無機系凝集剤としては、硫酸バンド、ポリ塩化アルミニウム、塩化鉄、ベントナイト、モンモリロナイト、パーライト、雲母、シリカなどの粘土鉱物類のカチオン化変性物などがある。粘土鉱物類のカチオン化変性物は、粘土鉱物をアミン化合物水溶液やカチオン性界面活性剤水溶液に浸漬し、該粘土鉱物に付加させて得られた物である。ここで使用されるアミン化合物には、トリエタノールアミン、ジエチレンヘキサノールアミン、ヘキサメチレンジアミン等の脂肪族アミン、アニリン、パラトルイジン、α―ナフチルアミン等の芳香族アミンがあり、使用するカチオン性界面活性剤には、デシルジメチルアミン塩酸塩、ジヤシアルキルメチルアミン酢酸塩等の脂肪族アミン塩、ヤシアルキルトリメチルアンモニウムクロライド等の脂肪族4級アンモニウム塩、トリメチルベンジルアンモニウムクロライド等のベンザルコニウム塩、メチルピリジニウムクロライド等のピリジニウム塩がある。
【0016】
カチオン性有機系凝集剤としては、天然物系カチオン性有機高分子の水溶性キトサン、カチオン化デンプンがあり、合成系カチオン性有機高分子のポリアクリル酸系4級アンモニウム塩、ポリアクリルアミド系4級アンモニウム塩、ジシアンジアミドとの共重合体、ジアルキルアミン−エピハロヒドリン共重合体及びジアルキルアミン−エピハロヒドリン−アンモニア共重合体、ジアリルジメチルアンモニウムクロライド(以下、DADMACと略す)との共重合体、ポリアルキルアミン類等があり、好ましくはカチオン性水溶性高分子であるポリアクリルアミノエチルトリメチルアンモニウムクロライド、アクリルアミド−アクリルアミノエチルトリメチルアンモニウムクロライド共重合体、ジシアンジアミド−ホルムアルデヒド共重合体、ジアリルジメチルアンモニウムクロライド−二酸化硫黄共重合体、ジメチルアミン−エピクロルヒドリン共重合体及びジメチルアミン−エピクロルヒドリン−アンモニア共重合体、ポリDADMAC、DADMAC−アクリルアミド共重合体及びポリエチレンイミンである。
【0017】
本発明では、これらカチオン性無機系凝集剤の群から、あるいはカチオン性有機系凝集剤の群から、あるいはカチオン性無機系凝集剤とカチオン性有機系凝集剤のそれぞれの群から2種以上のカチオン性凝集剤を組合わせて使用してもよい。また、これらカチオン性凝集剤にメラミン・ホルムアルデヒド樹脂酸コロイド、尿素・メラミン・ホルムアルデヒド樹脂酸コロイド等の酸コロイド、タルク、クレー、ベントナイト、モンモリロナイト等の微細粘土鉱物等と併用しても何ら構わない。
【0018】
ブース循環水の電荷量は、コロイド滴定法、粒子電荷測定法(PCD法)、電気泳動法等の既に公知の方法で測定される。
【0019】
コロイド滴定法〔「コロイド滴定試験法」千手諒一著、3〜6頁、南江堂、1969年刊参照〕は、水中の電解質、コロイド粒子、懸濁物質等の電荷量をアニオン性及びカチオン性水溶性高分子電解質で電荷の中和を行ない、指示薬の色の変化で定量する方法である。例えば、アニオン電荷の測定には、指示薬としてトルイジンブルー(TB)を数滴加えて、カチオン性水溶性電解質水溶液であるメチルグリコールキトサン水溶液(以下、「MGK」と略す)を過剰となる既知量加え、残存したMGKをアニオン性水溶性電解質のポリビニル硫酸カリウム(以下、「PVSK」と略す)水溶液で滴定し、カチオン電荷量を測定する。当初加えたMGK量からカチオン電荷測定値を引き、アニオン電荷を求める。一方、カチオン電荷量の測定は、PVSKで直接、測定して求められる。手分析でも数分の短時間で測定され、市販の自動化分析装置を使用すれば更に短時間で分析される。
【0020】
PCDによる電荷測定は、例えばPCD装置(Muteck社製)と自動滴定装置を組み合わせた市販の測定装置を用いて容易に測定できる。このPCD装置は、円筒状容器の上下に電極を備えたセルとセルの中にセル内径よりわずかに小さい棒状のピストンを入れたものである。セルの中に所定量の試料水を入れ、セルの内径よりわずかに小さい棒状のピストンを浸せきさせ、上下に動かすことで、電荷を持った電解質の移動により電流が発生し、これを電位差として検出し、電位差を0とするまでカチオン性高分子電解質あるいはアニオン性高分子電解質を添加して試料水の電荷量を測定する。この時に使用されるカチオン性高分子電解質としては、一般的にポリジアリルジメチルアンモニウムクロライド水溶液が使われ、アニオン性高分子電解質としては、一般的にポリスチレンスルフォン酸ナトリウム水溶液が使用されている。
【0021】
電気泳動法による測定は、少量の試料水を採取して、ガラス製の円筒状セルに入れ、セル両端に電圧をかけながら、セル内を顕微鏡で観察して電極間を移動する粒子の速度を測定して、電荷量を求める方法である。
【0022】
カチオン性凝集剤の添加場所は、未塗着塗料を含む循環水中に処理剤が充分に分散される箇所であればよく特に限定されるものではないが、通常循環水の流れが良い箇所、例えば、循環ポンプの手前である。
【0023】
添加方法は、特に限定するものではないがカチオン性凝集剤を水溶液にして、ポンプで連続添加、あるいは間欠添加するなど適宜選択される。
【0024】
逆に、万一、カチオン電荷が高くなり過ぎた場合には、カチオン性電荷をアニオン性化合物で中和すればよく、アニオン性化合物としては、ポリ(メタ)アクリル酸ナトリウム、(メタ)アクリルアミド−(メタ)アクリル酸ナトリウム共重合体、タルク、クレー、ベントナイト、コロイダルシリカ等が挙げられる。
【0025】
本発明の方法によりブース循環水中で凝集処理された塗料滓は、浮上分離あるいは遠心分離などにより固液分離が容易となり、更に分離した水は循環して再使用が可能となる。
【0026】
【実施例】
以下、実施例により本発明を更に詳しく説明するが,本発明はこれに限定されるものではない。
【0027】
[処理薬品]
(カチオン性高分子凝集剤)
A−1:ジメチルアミン−エピクロルヒドリン−アンモニア縮合物;
〔平均分子量8万、固形分45%:旭電化工業(株)製〕
A−2:ジアリルジメチルアンモニウムクロライド(DADMAC)重合体;
〔平均分子量:70万、固形分20%、SNF社製、「PRP4520」(商品名)〕
A−3:ポリエチレンイミン;
〔平均分子量:7万、固形分:30%、日本触媒(株)製、「エポミンP−1000」(商品名)〕
A−4:DADMAC−AM(アクリルアミド)共重合体;
DADMAC:AM=30:70(モル比)共重合体
〔平均分子量:100万、固形分8%、SNF社製、「D6030」(商品名)〕
A−5:カチオン化変性ベントナイト;
攪拌機付きベッセルに水390g、ヤシアルキルトリメチルアンモニウムクロライド(日本油脂(株)製「カチオンFB」(商品名))10gを入れて撹拌し均一にした後、、ベントナイト(豊順洋行(株)製「ベントナイト穂高印」(商品名))100gを加えて、撹拌し均一なスラリーとして、カチオン化変性ベントナイトの20%スラリーを得た。
【0028】
(その他)
C−1:メラミン−ホルムアルデヒド樹脂酸コロイド;
メラミン:ホルムアルデヒド=1:2.19(重量比)のメチロール化メラミン100gを1.35%の塩酸水溶液1リットル中に添加、攪拌して調製。
C−2:ベントナイト;
〔豊順洋行(株)製「ベントナイト穂高印」(商品名)〕
【0029】
[試験装置及び試験方法]
図1に示した試験用ブース装置〔保有水量:1、000リットル、循環水量:150リットル/分〕を用いて試験を行った。ブース内に水を循環させ、カチオン性凝集処理剤を循環ポンプ2で所定量連続添加しつつ循環水に向けて自動車用水性上塗塗料〔関西ペイント(株)製、アクリル-ポリエステル-メラミン樹脂系水性塗料〕を40g/分で3時間連続してスプレーした。スプレー開始と共に1時間毎に循環水保有ピット6のブース循環水の電荷をコロイド滴定で測り、ブース循環水の電荷が、−500μeq/リットル〜+1,000μeq/リットルになるように5重量%カチオン性凝集剤水溶液の添加量を調節した。スプレー開始1時間後、及びスプレー終了直後(3時間後)にブース循環水を採取し、濁度、COD、発泡性、凝集性を測定評価した。濁度はJIS K 0101の透過光濁度、CODは100℃における過マンガン酸カリウムによる酸素消費量〔JISK 0101の方法〕、発泡性は循環水の試験装置内のピット壁での液面から蓄積した泡の高さを測定、凝集性は目視判定で凝集物が大きいものを「◎」、凝集物がやや小さいが凝集性は良好なものを「○」、凝集物が細かく凝集不良であるものを「×」とした。この結果を表1に示した。
【0030】
【表1】

Figure 0004261039
【0031】
本発明の方法により、未塗着水性塗料を含む湿式塗装ブース循環水の電荷量を一定値内にコントロールすることによって、該循環水の安定で高い凝集性が得られることがわかる。
【0032】
【発明の効果】
本発明の管理方法により、水性塗料を使用している湿式スプレーブース循環水中に捕集された水性塗料は効率良く凝集され、循環水のCOD、濁度の上昇や発泡性を抑えることができた。この結果、装置の安定した運転が可能となるばかりでなく、排水処理コストや凝集剤や消泡剤のコスト抑制など経済的にも非常に有効である。
【図面の簡単な説明】
【図1】 実施例に用いた試験用ブース装置。
【符号の説明】
1:ブース循環水ピット
2:循環ポンプ
3:ブース循環水配管
4:塗料捕集部
5:塗料用スプレーガン
6:ブース循環水保有ピット
7:薬品注入ポンプ[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a management method for booth circulating water in a wet painting booth in a painting process for automobiles or household electrical appliances using water-based paint, and more specifically, agglomerates uncoated water-based paint collected in water. The present invention relates to a method for managing wet paint booth circulating water in which the amount of uncoated paint processing chemicals is appropriately maintained so that the solid-liquid separation between paint slag and water can be smoothly performed.
[0002]
[Prior art]
The painting of automobiles or household electric appliances is generally performed by spraying paint in a painting booth. At this time, surplus paint that has not been applied to the object is collected in water as uncoated paint and separated. However, some paints are not separated, but sticky particles or sticky lumps are floated, dispersed, and circulated in the booth water. Alternatively, the sticky blob is made non-tacky so that solid-liquid separation can be performed smoothly.
[0003]
By the way, due to recent environmental problems, there is a strong demand to reduce the amount of organic solvent scattered in the air or water, and water-based paints have been used instead of oil-based paints in the painting process. Since the water-based paint is obtained by dissolving or dispersing the paint resin in water, even if it is collected in water, the water-based paint is present in a state where it is simply diluted with water. When the paint is gradually accumulated in the booth circulating water, it cannot be properly treated by the property treatment method, and adheres to the wall surface or device in the booth circulating water path as an adhesive. The treatment of unpainted paints so far has been studied for oil-based paints, but the treatment of booth circulating water using water-based paints has to be studied from a completely different angle. .
[0004]
When the water-based paint enters the booth circulating water system, the resin component is dispersed with an anionic charge in the water, so that it is gradually concentrated unless appropriate removal treatment is performed. (1) COD, BOD of circulating water (2) Prone to spoilage due to deterioration of water quality, generating bad odor and worsening the work environment, (3) Prone to foaming, causing trouble in solid-liquid separation, and operation I was in trouble.
[0005]
As a method for avoiding the problems related to these water-based paints, a part of the circulating water is extracted or the circulating water is periodically replaced. However, there is a limit due to an increase in wastewater treatment cost. In addition, a method of aggregating and separating aqueous paints by adding an inorganic flocculant such as sulfuric acid band, polyaluminum chloride, iron chloride, etc. has been carried out. In addition to the increase in the concentration of salt, there is a problem that the corrosion of the apparatus increases, and further, the amount of sludge increases due to the generation of inorganic flocs. In addition, a method using a treating agent containing polyethyleneimine as an active ingredient (Japanese Patent Laid-Open No. 61-74607), a method of adding a cationic water-soluble organic polymer flocculant and an anionic organic polymer flocculant (special feature) No. 63-42706 has been proposed, and there have been some effects of reducing corrosion and reducing the amount of inorganic sludge. However, since the coagulation effect varies depending on the properties of the water-based paint, an appropriate amount of these coagulants is injected. There were administrative difficulties.
[0006]
[Problems to be solved by the present invention]
The purpose of the present invention is to evaluate the cohesiveness in order to properly maintain the coagulation treatment of the uncoated water-based paint in the wet booth circulating water in a short time, and facilitate solid-liquid separation of the non-coated water-based paint and water, And it is providing the management method of circulating water of a booth which can be performed economically.
[0007]
[Means for Solving the Problems]
As a result of intensive research on aggregation, precipitation, non-adhesion, etc. of the uncoated water-based paint collected in the booth circulating water, the present inventors have determined the charge amount of the booth circulating water containing the uncoated water-based paint. By measuring and managing, it was found that an economical and favorable agglomeration treatment can be performed, and the present invention has been completed.
[0008]
That is, the invention of claim 1 is a management method for wet painting booth circulating water using a water-based paint, and the charge amount of the booth circulating water is measured, and the value is from −100 μeq / liter to +1,000 μeq / liter. A cationic flocculant is added continuously or intermittently so that [wherein,-(minus) indicates an anionic charge and + (plus) indicates a cationic charge].
[0009]
The invention of claim 2 is the wet paint booth circulating water management method according to claim 1, wherein the cationic flocculant is polyacrylaminoethyltrimethylammonium chloride, acrylamide-acrylaminoethyltrimethylammonium chloride copolymer, dicyandiamide -Formaldehyde copolymer, diallyldimethylammonium chloride-sulfur dioxide copolymer, dimethylamine-epichlorohydrin condensate, dimethylamine-epichlorohydrin-ammonia condensate, diallyldimethylammonium chloride polymer, diallyldimethylammonium chloride-acrylamide copolymer and It is at least one selected from polyethyleneimine.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
The present invention is described in detail below.
Wet paint booth circulating water charge is the amount of water-soluble electrolyte component and water-dispersible charge component derived from uncoated water-based paint collected in water after spray coating, suspended substance in booth circulating water, and charge derived from electrolyte It is shown as the sum of When “minus (−)” is added to the anion charge and “plus (+)” is added to the cation charge, the charge of the booth water containing the collected uncoated paint generally has an anion charge and is minus several tens. It is 10,000 to minus several thousand μeq / liter and is dispersed in the booth circulating water.
[0011]
The method of the present invention measures the charge amount of booth circulating water including an unpainted paint of a water-based paint , and the value is from −100 μeq / liter to +1,000 μeq / liter, preferably from 0 μeq / liter to +500 μeq / liter. Preferably, the cationic flocculant is added continuously or intermittently so as to be 0 μeq / liter to +100 μeq / liter.
[0012]
If the amount of charge in the booth circulating water is lower than −100 μeq / liter, the cationic flocculant is insufficient and sufficient coagulation treatment cannot be performed, and it becomes difficult to separate the paint components from solid and liquid and to remove unpainted paint. , COD and BOD of the circulating water are increased, which may cause rot odor and foaming trouble. On the other hand, when the cationic charge amount exceeds +1,000 μeq / liter, the cationic flocculant is excessively added, and the uncoated water-based paint aggregated in the booth circulating water is re-dispersed, resulting in poor aggregation, and the subsequent aggregation uncoated Not only can the solid-liquid separation of the coating material and the booth water not be performed sufficiently, but foaming becomes violent, which is not preferable.
[0013]
In the method of the present invention, the booth circulating water containing a non-application paint collected in the pump or the like, the charge amount was measured, its value is set to be in -100Myueq / l ~ + 1,000μeq / liter. When the charge amount is lower than −100 μeq / liter (ie, the anion charge amount is high), the cationic flocculant is insufficient, and the uncoated water-based paint in water is in a dispersed state, and conversely, +1,000 μeq. > / Liter (i.e., high cationic charge) indicates that the cationic flocculant is excessive and the uncoated waterborne paint in water is in a dispersed state, and the addition of the cationic flocculant is stopped. Alternatively, an anionic flocculant is added if necessary.
[0014]
The cationic flocculant used in the present invention is a cationic inorganic substance or organic substance, and is selected in consideration of the aggregating performance and the cationic property according to the treatment degree of the target aqueous paint.
[0015]
Cationic inorganic flocculants include sulfated bands, polyaluminum chloride, iron chloride, bentonite, montmorillonite, pearlite, mica, cationized modified products of clay minerals such as silica. The cationized modified product of clay minerals is a product obtained by immersing a clay mineral in an amine compound aqueous solution or a cationic surfactant aqueous solution and adding it to the clay mineral. The amine compounds used here include aliphatic amines such as triethanolamine, diethylenehexanolamine and hexamethylenediamine, and aromatic amines such as aniline, paratoluidine, and α-naphthylamine, and the cationic surfactant used. Examples include aliphatic amine salts such as decyldimethylamine hydrochloride and dicoco alkylmethyl amine acetate, aliphatic quaternary ammonium salts such as coco alkyl trimethyl ammonium chloride, benzalkonium salts such as trimethyl benzyl ammonium chloride, methyl pyridinium There are pyridinium salts such as chloride.
[0016]
Cationic organic flocculants include natural product-based cationic organic polymer water-soluble chitosan and cationized starch. Synthetic cationic organic polymer polyacrylic acid-based quaternary ammonium salt, polyacrylamide-based quaternary Ammonium salts, copolymers with dicyandiamide, dialkylamine-epihalohydrin copolymers and dialkylamine-epihalohydrin-ammonia copolymers, copolymers with diallyldimethylammonium chloride (hereinafter abbreviated as DADMAC), polyalkylamines, etc. Polyacrylaminoethyltrimethylammonium chloride, acrylamide-acrylaminoethyltrimethylammonium chloride copolymer, dicyandiamide-formaldehyde copolymer, preferably cationic water-soluble polymer Diallyldimethylammonium chloride - sulfur dioxide copolymers, dimethylamine - epichlorohydrin copolymer and dimethylamine - epichlorohydrin - ammonia copolymer is poly DADMAC, DADMAC-acrylamide copolymer and polyethyleneimine.
[0017]
In the present invention, two or more cations from the group of these cationic inorganic flocculants, from the group of cationic organic flocculants, or from each group of the cationic inorganic flocculant and the cationic organic flocculant A combination of flocculating agents may be used. In addition, these cationic flocculants may be used in combination with acid colloids such as melamine / formaldehyde resin acid colloid, urea / melamine / formaldehyde resin acid colloid, fine clay minerals such as talc, clay, bentonite and montmorillonite.
[0018]
The charge amount of the booth circulating water is measured by a known method such as a colloid titration method, a particle charge measurement method (PCD method), or an electrophoresis method.
[0019]
Colloid titration method ["Colloid titration test method" by Seiichi Chite, 3-6, Nankodo, published in 1969] is used to measure the charge amount of electrolytes, colloidal particles, suspended substances, etc. in water with anionic and cationic water This is a method in which the charge is neutralized with a conductive polymer electrolyte and quantified by the change in color of the indicator. For example, to measure anion charge, add a few drops of toluidine blue (TB) as an indicator, and add an excessive amount of an aqueous methyl glycol chitosan aqueous solution (hereinafter abbreviated as “MGK”), which is a cationic aqueous electrolyte solution. The remaining MGK is titrated with an aqueous polyvinyl potassium sulfate (hereinafter abbreviated as “PVSK”) aqueous solution of an anionic water-soluble electrolyte, and the amount of cationic charge is measured. The anion charge is obtained by subtracting the measured cation charge from the amount of MGK added initially. On the other hand, the measurement of the amount of cationic charge is obtained by directly measuring with PVSK. Even in manual analysis, it is measured in a few minutes, and if a commercially available automated analyzer is used, the analysis is further shortened.
[0020]
The charge amount measurement by PCD can be easily performed by using, for example, a commercially available measuring apparatus that combines a PCD apparatus (manufactured by Muteck) and an automatic titration apparatus. In this PCD device, a cell having electrodes on the upper and lower sides of a cylindrical container and a rod-like piston slightly smaller than the inner diameter of the cell are placed in the cell. Put a predetermined amount of sample water in the cell, immerse a rod-shaped piston slightly smaller than the inner diameter of the cell, and move it up and down to generate an electric current due to the movement of the charged electrolyte and detect this as a potential difference Then, a cationic polymer electrolyte or an anionic polymer electrolyte is added until the potential difference becomes 0, and the charge amount of the sample water is measured. As the cationic polymer electrolyte used at this time, a polydiallyldimethylammonium chloride aqueous solution is generally used, and as the anionic polymer electrolyte, a sodium polystyrene sulfonate aqueous solution is generally used.
[0021]
In the measurement by electrophoresis, a small amount of sample water is collected and placed in a glass cylindrical cell, and the voltage of particles moving between the electrodes is observed by observing the inside of the cell with a microscope while applying voltage to both ends of the cell. This is a method of obtaining the charge amount by measuring.
[0022]
The place where the cationic flocculant is added is not particularly limited as long as the treatment agent is sufficiently dispersed in the circulating water including the unpainted paint. It is in front of the circulation pump.
[0023]
The addition method is not particularly limited, and is appropriately selected such that the cationic flocculant is made into an aqueous solution and is continuously added or intermittently added by a pump.
[0024]
Conversely, if the cationic charge becomes too high, the cationic charge may be neutralized with an anionic compound. Examples of the anionic compound include poly (meth) acrylate sodium, (meth) acrylamide- Examples include (meth) sodium acrylate copolymer, talc, clay, bentonite, colloidal silica, and the like.
[0025]
The paint cake coagulated in the booth circulating water by the method of the present invention can be easily separated into solid and liquid by floating separation or centrifugation, and the separated water can be circulated and reused.
[0026]
【Example】
EXAMPLES Hereinafter, although an Example demonstrates this invention in more detail, this invention is not limited to this.
[0027]
[Processing chemicals]
(Cationic polymer flocculant)
A-1: Dimethylamine-epichlorohydrin-ammonia condensate;
[Average molecular weight 80,000, solid content 45%: manufactured by Asahi Denka Kogyo Co., Ltd.]
A-2: diallyldimethylammonium chloride (DADMAC) polymer;
[Average molecular weight: 700,000, solid content 20%, manufactured by SNF, “PRP4520” (trade name)]
A-3: Polyethyleneimine;
[Average molecular weight: 70,000, solid content: 30%, manufactured by Nippon Shokubai Co., Ltd., “Epomin P-1000” (trade name)]
A-4: DADMAC-AM (acrylamide) copolymer;
DADMAC: AM = 30: 70 (molar ratio) copolymer [average molecular weight: 1 million, solid content 8%, manufactured by SNF, “D6030” (trade name)]
A-5: Cationized modified bentonite;
390 g of water and 10 g of coconut alkyltrimethylammonium chloride (“Cation FB” (trade name) manufactured by Nippon Oil & Fats Co., Ltd.) were stirred and homogenized in a vessel equipped with a stirrer. Bentonite Hotaka ”(trade name) 100 g was added and stirred to obtain a 20% slurry of cationized modified bentonite as a uniform slurry.
[0028]
(Other)
C-1: Melamine-formaldehyde resin acid colloid;
Prepared by adding 100 g of methylolated melamine of melamine: formaldehyde = 1: 2.19 (weight ratio) to 1 liter of 1.35% hydrochloric acid aqueous solution and stirring.
C-2: bentonite;
["Bentonite Hotakain" (product name) manufactured by Toyoshun Yoko Co., Ltd.]
[0029]
[Test equipment and test method]
The test was performed using the test booth apparatus shown in FIG. 1 [retained water volume: 1,000 liters, circulating water volume: 150 liters / min]. Water is circulated in the booth, and a predetermined amount of cationic flocculating agent is continuously added with a circulation pump 2 while water-based topcoat paint for automobiles (manufactured by Kansai Paint Co., Ltd., acrylic-polyester-melamine resin-based aqueous). The paint was sprayed continuously at 40 g / min for 3 hours. The charge amount of the booth circulating water in the circulating water holding pit 6 is measured by colloidal titration every hour with the start of spraying, and 5% by weight so that the charge amount of the booth circulating water is -500 μeq / liter to +1,000 μeq / liter. The amount of cationic flocculant aqueous solution added was adjusted. Booth circulating water was collected 1 hour after the start of spraying and immediately after the end of spraying (after 3 hours), and turbidity, COD, foamability and cohesiveness were measured and evaluated. Turbidity is transmitted light turbidity of JIS K 0101, COD is oxygen consumption by potassium permanganate at 100 ° C. [method of JIS K 0101], and foaming properties are accumulated from the liquid level at the pit wall in the circulating water test equipment. The height of the foam is measured, and the agglomeration is visually judged as “◎” if the agglomerate is large, “○” if the agglomerate is slightly small but good in agglomeration, and the agglomerate is fine and poorly agglomerated Was marked “x”. The results are shown in Table 1.
[0030]
[Table 1]
Figure 0004261039
[0031]
According to the method of the present invention, it is understood that the stable and high cohesiveness of the circulating water can be obtained by controlling the charge amount of the wet coating booth circulating water containing the uncoated water-based paint within a certain value.
[0032]
【The invention's effect】
By the management method of the present invention, the water-based paint collected in the circulating water in the wet spray booth using the water-based paint is efficiently aggregated, and the COD of the circulating water, the increase in turbidity, and the foamability can be suppressed. . As a result, it is possible not only to stably operate the apparatus, but also from the economical viewpoint, such as wastewater treatment costs and cost control of the flocculant and antifoaming agent.
[Brief description of the drawings]
FIG. 1 is a test booth apparatus used in Examples.
[Explanation of symbols]
1: Booth circulating water pit 2: Circulating pump 3: Booth circulating water piping 4: Paint collecting part 5: Paint spray gun 6: Booth circulating water holding pit 7: Chemical injection pump

Claims (2)

水性塗料を使用している湿式塗装ブースにおいて、ブース循環水の電荷量を測定し、その値が−100μeq/リットル〜+1,000μeq/リットル〔ここで、−(マイナス)はアニオン性電荷を、+(プラス)はカチオン性電荷を示す〕になるようにカチオン性凝集剤を連続的あるいは間欠的に添加することを特徴とする湿式塗装ブース循環水の管理方法。In the wet painting booth using water-based paint, the charge amount of the circulating water of the booth is measured, and the value is -100 μeq / liter to +1,000 μeq / liter [where-(minus) is an anionic charge, + A method for controlling circulating water in a wet paint booth , wherein a cationic flocculant is added continuously or intermittently so that (plus) indicates a cationic charge. カチオン性凝集剤が、ポリアクリルアミノエチルトリメチルアンモニウムクロライド、アクリルアミド−アクリルアミノエチルトリメチルアンモニウムクロライド共重合体、ジシアンジアミド−ホルムアルデヒド共重合体、ジアリルジメチルアンモニウムクロライド−二酸化硫黄共重合体、ジメチルアミン−エピクロルヒドリン縮合物、ジメチルアミン−エピクロルヒドリン−アンモニア縮合物、ジアリルジメチルアンモニウムクロライド重合体、ジアリルジメチルアンモニウムクロライド−アクリルアミド共重合体及びポリエチレンイミンから選ばれる1種以上である請求項1記載の湿式塗装ブース循環水の管理方法。  Cationic flocculants are polyacrylaminoethyltrimethylammonium chloride, acrylamide-acrylaminoethyltrimethylammonium chloride copolymer, dicyandiamide-formaldehyde copolymer, diallyldimethylammonium chloride-sulfur dioxide copolymer, dimethylamine-epichlorohydrin condensate. The wet paint booth circulating water management method according to claim 1, which is at least one selected from the group consisting of dimethylamine-epichlorohydrin-ammonia condensate, diallyldimethylammonium chloride polymer, diallyldimethylammonium chloride-acrylamide copolymer and polyethyleneimine. .
JP2000272965A 2000-09-08 2000-09-08 Wet paint booth circulating water management method Expired - Lifetime JP4261039B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000272965A JP4261039B2 (en) 2000-09-08 2000-09-08 Wet paint booth circulating water management method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000272965A JP4261039B2 (en) 2000-09-08 2000-09-08 Wet paint booth circulating water management method

Publications (2)

Publication Number Publication Date
JP2002079263A JP2002079263A (en) 2002-03-19
JP4261039B2 true JP4261039B2 (en) 2009-04-30

Family

ID=18758996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000272965A Expired - Lifetime JP4261039B2 (en) 2000-09-08 2000-09-08 Wet paint booth circulating water management method

Country Status (1)

Country Link
JP (1) JP4261039B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004047433A1 (en) * 2004-09-28 2006-04-13 Baumann, Didda Maria Janina Assembly to prepare aqueous rinsing fluid for paint spray booth employing water-based paints
JP5407706B2 (en) * 2009-09-29 2014-02-05 栗田工業株式会社 Wet paint booth circulating water treatment method
JP5955043B2 (en) * 2012-03-13 2016-07-20 株式会社パーカーコーポレーション Wet paint booth circulating water paint mist treatment agent and wet paint booth circulating water recovery device
JP6102318B2 (en) * 2013-02-18 2017-03-29 栗田工業株式会社 Wet paint booth circulating water treatment method
JP6366957B2 (en) * 2013-07-12 2018-08-01 三菱瓦斯化学株式会社 Wet paint booth circulating water treatment method
CN103951060B (en) * 2014-04-11 2016-05-18 广东紫方环保技术有限公司 A kind of O-phthalic amine Waste Water Treatment and control method thereof
CN105236608A (en) * 2015-08-14 2016-01-13 苏州康博电路科技有限公司 Method for directly applying wastewater to circulating water
JP6738492B2 (en) * 2017-07-04 2020-08-12 オルガノ株式会社 Water treatment method and water treatment device
JP6645536B2 (en) * 2018-05-24 2020-02-14 栗田工業株式会社 Method and control device for controlling chemical injection of circulating water treatment chemical in wet coating booth

Also Published As

Publication number Publication date
JP2002079263A (en) 2002-03-19

Similar Documents

Publication Publication Date Title
JP4717837B2 (en) Booth circulating water treatment method
JP2510812B2 (en) Method for removing paint solids from water-based paint systems using aluminum salts
JP4261039B2 (en) Wet paint booth circulating water management method
JP2747318B2 (en) Aqueous concentrate containing ethylene acrylic acid copolymer and method for coagulating lacquer and organic coating composition
EP0293129B1 (en) Process for detackification of paint spray operation wastes using melamine formaldehyde
JP2006525871A (en) Compositions and methods for paint overspray removal processes
JPH0516915B2 (en)
WO2016013586A1 (en) Treatment method and treatment device for circulating water of wet type coating booth
JP4451249B2 (en) Booth circulating water treatment method
CN102502935A (en) Paint mist coagulant and preparation method thereof
JP6567132B2 (en) Wet paint booth circulating water treatment method
JPH07713A (en) Flocculant composition for water-based paint
JP6120470B2 (en) Wet paint booth circulating water treatment agent and treatment method
JP2011020084A (en) Method of treating wet coating booth circulating water containing aqueous coating material
JP5681828B1 (en) Wet paint booth circulating water treatment method
JPH0665397B2 (en) Improved solids removal method from systems containing water-based paints
HUT68204A (en) Using polyamidoamines in the circulating waters of wet separators
JP4049354B2 (en) Wet paint booth circulating water treatment method
JP4993617B2 (en) Wet paint booth circulating water treatment method
Ntwampe et al. Treatment of Paint Wastewater Using Inorganic Coagulants
JP2015221404A (en) Method for treating coating material waste liquid
JPH08182901A (en) Wet coating booth circulating water treatment agent
JP2676840B2 (en) Painting booth circulating water treatment method
TWI640497B (en) Wet coating room circulating water treatment agent and treatment method
EP0478293A2 (en) Methods for removing solids from solvent-based/water-based paint systems

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090115

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090205

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4261039

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term