[go: up one dir, main page]

JP4259977B2 - Three-dimensional viaduct structure and its construction method - Google Patents

Three-dimensional viaduct structure and its construction method Download PDF

Info

Publication number
JP4259977B2
JP4259977B2 JP2003357317A JP2003357317A JP4259977B2 JP 4259977 B2 JP4259977 B2 JP 4259977B2 JP 2003357317 A JP2003357317 A JP 2003357317A JP 2003357317 A JP2003357317 A JP 2003357317A JP 4259977 B2 JP4259977 B2 JP 4259977B2
Authority
JP
Japan
Prior art keywords
pier
arch
bridge
bridge axis
dimensional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003357317A
Other languages
Japanese (ja)
Other versions
JP2005120719A (en
Inventor
均 浅野
弘明 朝倉
裕介 海野
敬一 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toda Corp
Original Assignee
Toda Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toda Corp filed Critical Toda Corp
Priority to JP2003357317A priority Critical patent/JP4259977B2/en
Publication of JP2005120719A publication Critical patent/JP2005120719A/en
Application granted granted Critical
Publication of JP4259977B2 publication Critical patent/JP4259977B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Bridges Or Land Bridges (AREA)

Description

本発明は、立体高架橋構造及びその施工方法に関し、特に、プレキャストコンクリート部材を用いた立体高架橋構造及びその施工方法に関する。   The present invention relates to a three-dimensional viaduct structure and a construction method thereof, and more particularly, to a three-dimensional viaduct structure using a precast concrete member and a construction method thereof.

一般に、連続立体高架橋は、経済性などの理由から柱、梁、床版より構成される標準化された3または4径間の立体ラーメン構造を場所打ちコンクリートにより構築している。   In general, the continuous three-dimensional viaduct is constructed by cast-in-place concrete with a three- or four-diameter standard rigid frame structure composed of columns, beams and floor slabs for reasons such as economy.

しかし、近年では、景観配慮の面から曲線的な形状特性を採用する場合が増え、施工の煩雑さや工費の増大を招く要因となっている。   However, in recent years, the case of adopting curvilinear shape characteristics has been increased from the viewpoint of landscape consideration, and this has become a factor that causes the complexity of construction and the increase in construction costs.

その解決策の1つとして、特許文献1に示すようなプレハブ化が提案されている。
特開平11−13015号公報
As one of the solutions, prefabrication as shown in Patent Document 1 has been proposed.
JP-A-11-13015

しかし、前述の特許文献1に示すような提案では、プレキャストコンクリート製のものは地中梁と柱部材のみで、桁部材と跳ね出し部床板はハーフプレキャスト製となっており、後打ちコンクリートにより上半床を形成しなければならず、大幅な施工の省力化や工期短縮は期待できない。   However, in the proposal as shown in the above-mentioned Patent Document 1, the precast concrete is made only of underground beams and column members, and the girder member and the protruding part floor board are made of half precast, and the upper part is made of post-cast concrete. A half-floor must be formed, and significant labor savings and shortening of the construction period cannot be expected.

また、柱部材上に桁部材を橋架した場合に、柱部材が倒れないように柱部材の根元における固定を確実にしなければならず、しかも、柱部材と桁部材との接合は後打ちコンクリートで行うため、施工手間となる。   In addition, when the girder member is bridged on the column member, the column member must be securely fixed at the base so that the column member does not fall down. This is a construction effort.

さらに、柱部材の根元の固定を確実にしてしまうと、桁部材と柱部材の接合位置誤差調整が困難となり、桁部材のプレキャストコンクリート化を妨げる一因ともなっている。   Furthermore, if the base of the column member is fixed securely, it becomes difficult to adjust the joining position error between the beam member and the column member, which is one factor that hinders the precast concrete of the beam member.

本発明の目的は、橋脚を仮固定した状態で、上部施工ができ、継手も簡略化でき、梁の接合位置誤差矯正も容易にできて、施工の省力化、工期短縮を可能にした立体高架橋構造及びその施工方法を提供することにある。   The purpose of the present invention is a three-dimensional viaduct that can be used for the upper construction, the joints can be simplified, the joint position error of the beam can be easily corrected, the labor can be saved, and the construction period can be shortened with the pier temporarily fixed. The object is to provide a structure and its construction method.

前記目的を達成するため、本発明の立体高架橋構造は、地盤または基礎上に立設された橋脚と、前記橋脚上に橋軸方向に架設支持される縦梁と、前記縦梁に前記橋軸と交差方向に架設される横梁と、前記横梁上に構築されるスラブとを有する立体高架橋構造において、
少なくとも前記橋脚及び前記縦梁は、プレキャストコンクリート製とされ、
前記縦梁は、前記橋脚への取付部と、前記取付部から両側に延びるアーチ頂部で半割にされた一対の半割アーチ部とを有する半割アーチ梁とされていることを特徴とする。
In order to achieve the above object, a three-dimensional viaduct structure according to the present invention includes a bridge pier that is erected on the ground or a foundation, a vertical beam that is laid and supported on the bridge pier in the direction of the bridge axis, and the bridge shaft that is supported by the vertical beam. In a three-dimensional viaduct structure having a cross beam constructed in a crossing direction and a slab constructed on the cross beam,
At least the pier and the longitudinal beam are made of precast concrete,
The longitudinal beam is a half arch beam having an attachment portion to the pier and a pair of half arch portions divided in half by arch tops extending from the attachment portion to both sides. .

本発明によれば、少なくとも橋脚及び縦梁をプレキャストコンクリート製とし、縦梁は、橋脚への取付部と、取付部から両側に延びるアーチ頂部で半割にされた一対の半割アーチ部とを有する半割アーチ梁とすることで、縦梁を橋脚上に組み付けた状態で、縦梁が橋脚に対して倒れる方向への荷重をかけることがなく、橋脚はバランスよく自立できる状態となるため、橋脚の根元の取り付けを簡略にした仮固定状態で上部の施工を行うことができ、しかも、縦梁同士の連結は、曲げ荷重が比較的小さくなるアーチ頂部位置で連結するため、継手を簡略化することができ、しかも、縦梁同士の接合位置誤差は、橋脚の根元が仮固定状態であるため、容易に調整を行うことができ、施工の簡略化、工期短縮を可能にすることができる。   According to the present invention, at least the bridge pier and the vertical beam are made of precast concrete, and the vertical beam includes an attachment portion to the pier and a pair of half arch portions divided in half by arch tops extending from the attachment portion to both sides. By having a half arch beam with the vertical beam assembled on the pier, it does not apply a load in the direction in which the vertical beam collapses against the pier, and the pier can stand in a well-balanced state, Construction of the upper part can be performed in a temporarily fixed state with simplified installation of the pier base, and the connection between the vertical beams is connected at the arch top position where the bending load is relatively small, simplifying the joint In addition, the joining position error between the longitudinal beams can be easily adjusted since the base of the pier is in a temporarily fixed state, and the construction can be simplified and the construction period can be shortened. .

本発明においては、前記橋脚は、橋軸方向で幅狭、橋軸と交差方向で幅広に形成されたものとすることができる。   In the present invention, the bridge pier may be formed narrow in the bridge axis direction and wide in the crossing direction with the bridge axis.

このような構成とすることにより、橋脚間の空間を広げ、高架橋直下の空間を駐車場等に活用する場合、薄壁構造となるため従来の柱構造に比べ利用効率を向上させることができる。   By adopting such a configuration, when the space between the piers is widened and the space directly under the viaduct is used for a parking lot or the like, the use efficiency can be improved compared to the conventional column structure because of the thin wall structure.

また、橋脚は橋軸と交差方向で幅広に形成されているため、橋軸と直交方向の耐荷重性能を向上させることができる。   Moreover, since the bridge pier is formed wide in the direction intersecting the bridge axis, the load bearing performance in the direction orthogonal to the bridge axis can be improved.

本発明の立体高架橋構造の施工方法は、プレキャストコンクリート製の橋脚を地盤または基礎上に設置して仮固定する工程と、
前記橋脚への取付部から両側に延びるアーチ頂部で半割にされた一対の半割アーチ部とを有するプレキャストコンクリート製の半割アーチ梁の前記取付部を前記橋脚上に設置して橋脚と連結し、隣接する半割アーチ梁の端部同士を連結して前記橋脚上に橋軸方向に縦梁を架設支持する工程と、
前記縦梁に前記橋軸と交差方向に横梁を架設し、前記横梁上にスラブを構築する工程と、
前記スラブを構築後、地盤を掘削してコンクリートを打設して地中梁を構築し、前記橋脚を固定する工程と、
を含むことを特徴とする。
The construction method of the three-dimensional viaduct structure of the present invention includes a step of temporarily installing and fixing a pier made of precast concrete on the ground or foundation,
The mounting portion of the pre-cast concrete half arch beam having a pair of half arch portions halved at the top of the arch extending on both sides from the mounting portion to the pier is installed on the pier and connected to the pier And connecting the ends of the adjacent halved arch beams to support the vertical beam in the bridge axis direction on the pier,
Constructing a horizontal beam on the vertical beam in a direction crossing the bridge axis, and building a slab on the horizontal beam;
After building the slab, excavating the ground and placing concrete to build the underground beam, fixing the pier,
It is characterized by including.

本発明によれば、プレキャストコンクリート製の橋脚を地盤または基礎上に設置して仮固定した後、橋脚への取付部から両側に延びるアーチ頂部で半割にされた一対の半割アーチ部とを有するプレキャストコンクリート製の半割アーチ梁の取付部を橋脚上に設置して橋脚と連結することで、橋脚を仮固定した状態でも、半割アーチ梁が橋脚に倒れる方向の荷重をかけることがなく、橋脚はバランスよく独立して立設した状態とすることができる。   According to the present invention, after a precast concrete pier is installed and temporarily fixed on the ground or foundation, a pair of halved arch portions that are halved at the top of the arch extending from the attachment portion to the pier on both sides. By installing the precast concrete half arch beam mounting part on the pier and connecting it to the pier, even if the pier is temporarily fixed, there is no load in the direction in which the half arch beam falls on the pier The bridge pier can be set up in an independent and well-balanced state.

この場合、半割アーチ梁は一対の半割アーチ部がアーチ頂部で連結される状態となり、曲げ荷重が比較的小さくなる位置での連結を行うことができ、半割アーチ梁の端部同士の連結を簡略な継手にて行うことができる。   In this case, the half arch beam is in a state where the pair of half arch portions are connected at the top of the arch, and can be connected at a position where the bending load is relatively small. Connection can be performed with a simple joint.

この状態で横梁及びスラブを構築し、スラブ構築後、地盤を掘削してコンクリートを打設し、地中梁を構築し橋脚と一体化させる。   In this state, cross beams and slabs are built. After the slabs are built, the ground is excavated and concrete is laid, and underground beams are built and integrated with the piers.

橋脚の仮固定状態で、上部施工を構築し、その後地中梁を構築する方法により、施工の省力化、工期短縮を可能にすることができる。   By constructing the upper construction with the pier temporarily fixed, and then constructing the underground beam, it is possible to save labor and shorten the construction period.

また、半割アーチ梁同士の連結は、橋脚の仮固定状態で行うことができるので、半割アーチ梁の接合位置誤差を容易に調整することができる。   Moreover, since the half arch beams can be connected to each other while the piers are temporarily fixed, the joining position error of the half arch beams can be easily adjusted.

以下、本発明の実施の形態について、図面を参照して詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1〜図8は、本発明の一実施の形態に係る立体高架橋構造を示す図である。   1-8 is a figure which shows the three-dimensional hyperbridge structure which concerns on one embodiment of this invention.

図1は、本実施の形態に係る立体高架橋構造を示す全体概略斜視図である。   FIG. 1 is an overall schematic perspective view showing a three-dimensional viaduct structure according to the present embodiment.

この立体高架橋構造10は、例えば鉄道立体高架橋として用いられるもので、基礎杭12と、地中梁14と、橋脚16と、縦梁である半割アーチ梁18と、横梁20と、スラブ22と、遮音壁24とを有している。   This three-dimensional viaduct structure 10 is used as, for example, a railway three-dimensional viaduct, and includes a foundation pile 12, an underground beam 14, a bridge pier 16, a half arch beam 18 that is a vertical beam, a horizontal beam 20, and a slab 22. And a sound insulation wall 24.

基礎杭12は、図3及び図4にも示すように、橋脚16の立設位置に橋軸方向と直交する方向に一対ずつ橋軸方向に沿って所定間隔で設けられるようになっている。   As shown in FIGS. 3 and 4, the foundation piles 12 are provided at predetermined positions along the bridge axis direction in pairs in the direction perpendicular to the bridge axis direction at the standing position of the pier 16.

また、この基礎杭12は、地盤条件に応じて合理的な工法及び杭種を選定して構築し、特に硬質地盤上に橋脚を立設する場合には省略することができる。   The foundation pile 12 is constructed by selecting a reasonable construction method and pile type according to the ground conditions, and can be omitted particularly when the pier is erected on the hard ground.

地中梁14は、橋脚16の立設位置で橋軸方向に沿って形成される一対の縦地中梁26と、図4、図5に示されるように、一対の橋脚16の立設位置で、橋軸方向と直交する方向で形成される複数の横地中梁28とを有している。   The underground beam 14 includes a pair of vertical underground beams 26 formed along the bridge axis direction at the standing position of the pier 16, and the standing position of the pair of pier 16 as shown in FIGS. 4 and 5. And a plurality of lateral underground beams 28 formed in a direction orthogonal to the bridge axis direction.

また、縦地中梁26の一部が、橋脚16の立設時に先行して形成されて基礎杭12と連結され、上部施工終了後残りの縦地中梁26及び横地中梁28が形成されて橋脚16と一体化されるようになっている。   Further, a part of the vertical underground beam 26 is formed in advance when the pier 16 is erected and connected to the foundation pile 12, and the remaining vertical underground beam 26 and the horizontal underground beam 28 are formed after the completion of the upper construction. And integrated with the pier 16.

この地中梁14は、場所打ちコンクリートの打設によって構築されるようになっている。   The underground beam 14 is constructed by placing cast-in-place concrete.

橋脚16は、プレキャストコンクリート製のもので、橋軸方向で幅W1が幅狭、橋軸と交差方向で幅W2が幅広に形成されている。   The pier 16 is made of precast concrete and has a width W1 narrow in the bridge axis direction and a width W2 wide in the direction intersecting the bridge axis.

このように、橋脚16の橋軸方向での幅W1が幅狭とされることで、橋脚16間を駐車場として用いる場合に、その空間を有効に利用することができる。   Thus, when the width W1 in the bridge axis direction of the pier 16 is made narrow, when using the space between the piers 16 as a parking lot, the space can be used effectively.

また、橋軸と交差方向の幅W2を幅広とすることで、橋軸と交差方向での耐荷重性能を高め、地震時の荷重に十分に耐えるようにすることができる。   Further, by making the width W2 in the direction intersecting the bridge axis wide, it is possible to enhance the load bearing performance in the direction intersecting the bridge axis and sufficiently withstand the load during an earthquake.

また、橋脚16は、下端に幅広の脚部30を有し、この脚部30が図6に示すように、アンカーボルト32を介して地中梁14に固定されるようになっている。   The bridge pier 16 has a wide leg 30 at the lower end, and the leg 30 is fixed to the underground beam 14 via an anchor bolt 32 as shown in FIG.

また、橋脚16の上端には、半割アーチ梁18を取り付け支持するための支持部34が上方に向けて広がった状態で形成されている。   Further, a support portion 34 for attaching and supporting the half arch beam 18 is formed at the upper end of the pier 16 in a state of spreading upward.

半割アーチ梁18は、プレキャストコンクリート製のもので、図2にも示すように、橋脚16への取付部36と、この取付部36から橋軸方向両側に延びるアーチ頂部で半割にされた一対の半割アーチ部38とを有している。   The half arch beam 18 is made of precast concrete, and as shown in FIG. 2, the half arch beam 18 is halved by an attachment portion 36 to the pier 16 and an arch top portion extending from the attachment portion 36 to both sides in the bridge axis direction. A pair of half arch portions 38.

取付部36は、橋脚16の支持部34の上面にほぼ相応した形状となっており、図3及び図7に示すように、橋脚16の支持部34に対しPC鋼棒40を介して連結、固定されるようになっている。   The mounting portion 36 has a shape substantially corresponding to the upper surface of the support portion 34 of the pier 16, and is connected to the support portion 34 of the pier 16 via a PC steel rod 40 as shown in FIGS. 3 and 7. It is supposed to be fixed.

一対の半割アーチ部38は、橋脚16の幅W2に相応した幅とされ、それぞれの端部が隣接して設けられた半割アーチ部38の端部とアーチ頂部位置でPC鋼棒42を介して連結、固定されるようになっている。   The pair of half arch portions 38 has a width corresponding to the width W2 of the pier 16 and the PC steel rod 42 is placed at the end of the half arch portion 38 provided adjacent to each end and the top of the arch. It is connected and fixed via.

また、各半割アーチ部38の中間位置上面には、横梁20を支持するための梁受台44が上方に突出した状態で形成されている。   Further, a beam receiving base 44 for supporting the cross beam 20 is formed on the upper surface of the intermediate position of each half arch portion 38 so as to protrude upward.

また、この半割アーチ梁18は、橋脚16上に取り付けられた状態で、ほぼY字状に形成されることとなり、橋脚16を立設した状態で、左右のバランスが取れた状態となり、橋脚16が自立できる状態となるため、橋脚16の脚部30における固定状態は、仮固定の状態でも上部施工が可能となる。   In addition, the half arch beam 18 is formed in a substantially Y shape when mounted on the pier 16, and the left and right balance is achieved when the pier 16 is erected. Since 16 becomes a state which can become independent, upper construction is possible even if the fixed state in the leg part 30 of the bridge pier 16 is a temporarily fixed state.

さらに、隣接する半割アーチ部38の端部同士の連結は、曲げ荷重が比較的小さくなるアーチ頂部で行われるため、その継手であるPC鋼棒42を簡略化することができる。   Furthermore, since the end portions of the adjacent half arch portions 38 are connected to each other at the arch top portion where the bending load is relatively small, the PC steel rod 42 that is the joint can be simplified.

また、この半割アーチ梁18が、組み立て状態でアーチ状の縦梁を構成するため景観にすぐれたものとすることができる。   In addition, since the half arch beam 18 forms an arch-shaped vertical beam in an assembled state, it can be excellent in scenery.

横梁20は、橋軸方向と交差する方向で隣り合う半割アーチ梁18の梁受台44上に掛けわたされ、図5及び図8に示すように、PC鋼棒46を介して半割アーチ梁18に連結、固定されるようになっている。   The horizontal beam 20 is hung on the beam receiving base 44 of the adjacent half arch beam 18 in a direction crossing the bridge axis direction, and as shown in FIGS. It is connected and fixed to the beam 18.

なお、この横梁20の下面48は、図2及び図5に示すように、アーチ状に形成された状態となっており、景観上良好な状態となっている。   In addition, as shown in FIG.2 and FIG.5, the lower surface 48 of this cross beam 20 is in the state formed in the arch shape, and has become a favorable state on a landscape.

スラブ22は、プレキャストコンクリート製のもので、その両端には、図8に示すように、ループ鉄筋60を張り出しておき、横梁20上に設置した後、場所打ちコンクリートである間詰コンクリート54により隣接するスラブ22と横梁20との一体化を図るようにしており、橋軸交差方向のスラブ22同士は、PC鋼棒による連結を行うようになっている。   The slab 22 is made of precast concrete. As shown in FIG. 8, the loop slabs 60 are overhanged at both ends and installed on the cross beam 20 and then adjoined by the space concrete 54 which is cast-in-place concrete. The slab 22 and the cross beam 20 are integrated with each other, and the slabs 22 in the crossing direction of the bridge axis are connected by a PC steel rod.

このスラブ22は、薄型のプレキャストコンクリート版の上に、場所打ちコンクリートを打設することによって形成してもよい。   The slab 22 may be formed by placing cast-in-place concrete on a thin precast concrete plate.

遮音壁24は、スラブ22の両側部に橋軸方向に沿って取り付けられるようになっている。   The sound insulation wall 24 is attached to both sides of the slab 22 along the bridge axis direction.

次に、このような立体高架橋構造の施工方法について図9〜図13に基づいて説明する。   Next, a construction method of such a three-dimensional viaduct structure will be described with reference to FIGS.

まず、図9(1)に示すように、橋脚16を立設する位置で、複数本、例えば4本の基礎杭12を構築し、この基礎杭12を橋軸方向で一体化するように現場打ちコンクリートを打設して2本の縦地中梁26を構築する。   First, as shown in FIG. 9 (1), at the position where the pier 16 is erected, a plurality of, for example, four foundation piles 12 are constructed, and the foundation piles 12 are integrated in the bridge axis direction. The cast-in-place concrete is laid to construct two vertical underground beams 26.

この縦地中梁26は、同図(2)に示すように、縦地中梁の一部が構築されるもので、幅狭な状態とされている。   As shown in FIG. 2B, the vertical underground beam 26 is a part of the vertical underground beam and is in a narrow state.

次に、図10に示すように、各基礎杭12上に位置する縦地中梁26上にそれぞれ橋脚16を設置し、橋脚16の脚部30と縦地中梁26とを連結する。   Next, as shown in FIG. 10, the pier 16 is installed on each longitudinal underground beam 26 located on each foundation pile 12, and the leg portion 30 of the pier 16 and the longitudinal underground beam 26 are connected.

この場合、縦地中梁26と橋脚16との連結は、仮固定状態となっている。   In this case, the connection between the longitudinal underground beam 26 and the pier 16 is temporarily fixed.

次に、図11に示すように、立設した橋脚16の支持部34上に半割アーチ梁18の取付部36を載置し、半割アーチ梁18の取付部36と橋脚16の支持部34とを連結、固定するとともに、橋軸方向で隣接する半割アーチ梁18の半割アーチ部38の端部同士を連結固定して橋脚16上に橋軸方向にアーチ状の縦梁を架設、支持させる。   Next, as shown in FIG. 11, the mounting portion 36 of the half arch beam 18 is placed on the support portion 34 of the standing pier 16, and the mounting portion 36 of the half arch beam 18 and the support portion of the pier 16 are mounted. 34 are connected and fixed, and the ends of the half arch portions 38 of the adjacent half arch beams 18 in the bridge axis direction are connected and fixed, and an arched vertical beam is installed on the bridge pier 16 in the bridge axis direction. , Support.

この場合、半割アーチ梁18は、橋脚の上部両側にバランス良く突出した状態となっているため、橋脚16に倒れる方向の荷重がかかることがなく、脚部30を仮固定の状態のままで上部施工を行うことができ、しかも、半割アーチ梁18同士の連結位置調整も、脚部30の仮固定の状態で容易に行うことができ、さらには、半割アーチ梁18同士の連結は、アーチ頂部で行われ、荷重レベルの小さい連結位置となるため、半割アーチ梁18同士の継手構造を簡略化することができる。   In this case, since the half arch beam 18 projects in a balanced manner on both sides of the upper part of the pier, no load is applied to the pier 16 so that the leg 30 is temporarily fixed. The upper construction can be performed, and the connection position adjustment between the half arch beams 18 can be easily performed with the legs 30 temporarily fixed. Further, the connection between the half arch beams 18 can be performed. Since the connection is performed at the top of the arch and has a low load level, the joint structure between the half arch beams 18 can be simplified.

次いで、図12(1)及び(2)に示すように、各半割アーチ梁18の梁受台44上に横梁20を設置し、半割アーチ梁18と横梁20とを連結固定して半割アーチ梁18同士を横梁20にて橋軸方向と直交する方向で連結する。   Next, as shown in FIGS. 12A and 12B, the horizontal beam 20 is installed on the beam receiving base 44 of each half arch beam 18, and the half arch beam 18 and the horizontal beam 20 are connected and fixed to each other. The split arch beams 18 are connected to each other by a cross beam 20 in a direction orthogonal to the bridge axis direction.

次いで、横梁20上にスラブ22を設置してスラブ22同士を連結するとともに、スラブ22の両側部に遮音壁24を取り付ける。   Next, the slabs 22 are installed on the cross beams 20 to connect the slabs 22 to each other, and sound insulation walls 24 are attached to both sides of the slabs 22.

この状態で、地上部の施工が終了し、次に、図13(1)及び(2)に示すように、縦地中梁26の残りの部分及び横地中梁28部分の地盤を掘削し、場所打ちコンクリートの打設によって縦地中梁26及び横地中梁28を構築して、地中梁14と橋脚16の脚部30とを一体化し埋め戻しを行うことで1スパンの立体高架橋構造10部分の施工が完了することとなる。   In this state, the construction of the ground part is finished, and then, as shown in FIGS. 13 (1) and (2), the remaining part of the vertical underground beam 26 and the ground of the horizontal underground beam 28 part are excavated, The vertical underground beam 26 and the horizontal underground beam 28 are constructed by placing cast-in-place concrete, and the underground beam 14 and the leg portion 30 of the bridge pier 16 are integrated and backfilled, whereby a one-span three-dimensional viaduct structure 10 is formed. The construction of the part will be completed.

この1スパンの地上部の構築中に、次のスパンの基礎杭12及び縦地中梁26の構築を行い、最初のスパンの地中梁構築中に次のスパンの地上部の構築を行えば、施工の省力化及び工期の短縮化ができ、急速施工を可能とすることができる。   During the construction of the ground part of the first span, the foundation pile 12 and the vertical underground beam 26 of the next span are constructed, and the ground part of the next span is constructed during the construction of the underground beam of the first span. The construction can be labor-saving and the construction period can be shortened, enabling rapid construction.

図14〜図17は、本発明の他の実施の形態に係る立体高架橋構造を示す図である。   14 to 17 are views showing a three-dimensional hyperbridge structure according to another embodiment of the present invention.

この実施の形態では、図14に示すように、立体高架橋が例えば右側から左側にかけて所定角度θ1で下降傾斜する状態で、かつ、図15(2)に示すように、所定曲率半径Rをもって平面的に湾曲する状態となっている。   In this embodiment, as shown in FIG. 14, the three-dimensional viaduct is, for example, in a state of being inclined downward at a predetermined angle θ1 from the right side to the left side, and with a predetermined radius of curvature R as shown in FIG. It is in a state of curving.

この場合、図16に示すように、半割アーチ梁18の一方、例えば右側の半割アーチ部38を所定高さの高さ補充部50だけずらしたプレキャスト部材を製造することで、左側の半割アーチ部38に対し右側の半割アーチ部38の高さを高くして立体高架橋の勾配に対応するようにしている。   In this case, as shown in FIG. 16, by manufacturing a precast member in which one of the half arch beams 18, for example, the right half arch portion 38 is shifted by a height supplement portion 50 having a predetermined height, the left half arch beam 18 is manufactured. The height of the right half arch part 38 is made higher than the split arch part 38 so as to correspond to the gradient of the three-dimensional viaduct.

また、スラブ22の下降傾斜に伴って、例えば、横梁20の上面と右側のスラブ22の下面との間に隙間52が生じることとなるが、スラブ22の橋軸方向の連結を行う間詰コンクリート54によってこの隙間52を埋めることで、立体高架橋の勾配に対応するようにしている。   Further, with the downward inclination of the slab 22, for example, a gap 52 is generated between the upper surface of the cross beam 20 and the lower surface of the right slab 22, but the slab 22 is connected to the slab 22 in the bridge axis direction. By filling this gap 52 with 54, it corresponds to the gradient of the three-dimensional viaduct.

さらに、立体高架橋の湾曲に対しては、図15(1)に示すように、湾曲する外側のスラブ22に対し内側に位置するスラブ22の長さを順次短くしていくことで対応するようにしている。   Further, as shown in FIG. 15 (1), the bending of the three-dimensional viaduct is dealt with by sequentially shortening the length of the inner slab 22 with respect to the outer slab 22 that is curved. ing.

このように、立体高架橋の縦断勾配及び湾曲に対し容易に対応し得るようになっている。   Thus, it is possible to easily cope with the longitudinal gradient and curvature of the three-dimensional viaduct.

図18には、本発明の他の実施の形態に係る立体高架橋構造を示す図である。   FIG. 18 is a diagram showing a three-dimensional hyperbridge structure according to another embodiment of the present invention.

この実施の形態では、立体高架橋構造10の両側に車道56を形成するもので、橋軸と直交する方向の2つの橋脚16を隣り合わせて配置し、半割アーチ梁18上に設けられる横梁58を橋脚16より張り出す形状とし、その上にスラブ22を支持させることで、車道56を確保し得るようにしている。   In this embodiment, the roadway 56 is formed on both sides of the three-dimensional viaduct structure 10, and two bridge piers 16 in a direction perpendicular to the bridge axis are arranged next to each other, and a lateral beam 58 provided on the half arch beam 18 is provided. The roadway 56 can be secured by forming a shape projecting from the pier 16 and supporting the slab 22 thereon.

本発明は、前記実施の形態に限定されるものではなく、本発明の要旨の範囲内において種々の形態に変形可能である。   The present invention is not limited to the above-described embodiment, and can be modified into various forms within the scope of the gist of the present invention.

例えば、前記本実施の形態では、地上構造物をすべてプレキャストコンクリート製としたが、この例に限らず、スラブ及び横梁をハーフプレキャストコンクリート製とし、場所打ちコンクリートにて連結するようにすることも可能である。   For example, in the present embodiment, all the ground structures are made of precast concrete. However, the present invention is not limited to this example, and the slab and the cross beam can be made of half precast concrete and can be connected by cast-in-place concrete. It is.

また、前記実施の形態では、鉄道立体高架橋構造について説明したが、この例に限らず、例えば道路立体高架橋に応用することも可能である。   Moreover, in the said embodiment, although the railway solid viaduct structure was demonstrated, it is not restricted to this example, For example, it is also possible to apply to a road solid viaduct.

本発明の一実施の形態に係る立体高架橋構造を示す全体概略斜視図である。1 is an overall schematic perspective view showing a three-dimensional viaduct structure according to an embodiment of the present invention. 図1の地上構造物の状態を示す分解斜視図である。It is a disassembled perspective view which shows the state of the ground structure of FIG. 図1の立体高架橋構造の側面図である。It is a side view of the three-dimensional hyperbridge structure of FIG. 図3の平面図で、右半分は基礎杭及び地中梁の状態を示す図である。In the top view of FIG. 3, the right half is a figure which shows the state of a foundation pile and an underground beam. 図3及び図4の立体高架橋構造の正面図である。It is a front view of the three-dimensional viaduct structure of FIG.3 and FIG.4. 図3における橋脚と地中梁との連結状態を示す拡大断面図である。It is an expanded sectional view which shows the connection state of the bridge pier and underground beam in FIG. 半割アーチ梁と橋脚との連結及び隣接する半割アーチ梁同士の連結状態を示す部分拡大図である。It is the elements on larger scale which show the connection state of a half arch beam and a bridge pier, and the connection state of adjacent half arch beams. 半割アーチ梁、横梁及びスラブとの連結状態を示す部分拡大断面図である。It is a partial expanded sectional view which shows the connection state with a half arch beam, a cross beam, and a slab. (1)は、基礎杭及び縦地中梁を構築する状態を示す断面図で、(2)は、その平面図である。(1) is sectional drawing which shows the state which builds a foundation pile and a vertical underground beam, (2) is the top view. 図9の状態から橋脚を立設する状態を示す側面図である。FIG. 10 is a side view showing a state where the pier is erected from the state of FIG. 9. 図10の状態から橋脚上に半割アーチ梁を取り付けた状態を示す側面図である。It is a side view which shows the state which attached the half arch beam on the pier from the state of FIG. (1)は、図11の状態から半割アーチ梁上に横梁、スラブ及び遮音壁を取り付けた状態を示す側面図で、(2)は、その正面図である。(1) is the side view which shows the state which attached the cross beam, the slab, and the sound insulation wall on the half arch beam from the state of FIG. 11, (2) is the front view. (1)は、図12の状態から、地中梁を構築して橋脚と一体化させる状態を示す側面図で、(2)はその正面図で、(3)は地中梁の平面図である。(1) is a side view showing a state where the underground beam is constructed and integrated with the pier from the state of FIG. 12, (2) is a front view thereof, and (3) is a plan view of the underground beam. is there. 本発明の他の実施の形態に係る勾配を有する立体高架橋構造を示す側面図である。It is a side view which shows the three-dimensional hyperbridge structure which has the gradient which concerns on other embodiment of this invention. (1)は、平面上で湾曲する状態の立体高架橋構造を示す図14の平面図、(2)は(1)の曲率状態を示す概略平面図である。(1) is a plan view of FIG. 14 showing a three-dimensional viaduct structure in a curved state on a plane, and (2) is a schematic plan view showing a curvature state of (1). 図14及び図15の立体高架橋構造に用いる半割アーチ梁を示す側面図である。It is a side view which shows the half arch beam used for the solid viaduct structure of FIG.14 and FIG.15. 図14及び図15の立体高架橋構造における横梁とスラブの関係を示す部分拡大断面図である。It is a partial expanded sectional view which shows the relationship between a cross beam and a slab in the solid viaduct structure of FIG.14 and FIG.15. 本発明のさらに他の実施の形態に係る立体高架橋構造を示す正面図である。It is a front view which shows the three-dimensional hyperbridge structure which concerns on other embodiment of this invention.

符号の説明Explanation of symbols

10 立体高架橋構造
12 基礎杭
14 地中梁
16 橋脚
18 半割アーチ梁
20、58 横梁
22 スラブ
26 縦地中梁
28 横地中梁
36 取付部
38 半割アーチ部
DESCRIPTION OF SYMBOLS 10 Three-dimensional viaduct structure 12 Foundation pile 14 Underground beam 16 Bridge pier 18 Half arch beam 20, 58 Horizontal beam 22 Slab 26 Vertical underground beam 28 Horizontal underground beam 36 Mounting part 38 Half arch part

Claims (3)

地盤あるいは基礎上に立設された橋脚と、前記橋脚上に橋軸方向に架設支持される縦梁と、前記縦梁に前記橋軸と交差方向に架設される横梁と、前記横梁上に構築されるスラブとを有する立体高架橋構造において、
少なくとも前記橋脚及び前記縦梁は、プレキャストコンクリート製とされ、
前記縦梁は、前記橋脚への取付部と、前記取付部から両側に延びるアーチ頂部で半割にされた一対の半割アーチ部とを有する半割アーチ梁とされていることを特徴とする立体高架橋構造。
Constructed on a bridge pier that is erected on the ground or foundation, a vertical beam that is installed and supported on the bridge pier in the direction of the bridge axis, a horizontal beam that is installed on the vertical beam in a direction crossing the bridge axis, and In the three-dimensional viaduct structure having a slab to be
At least the pier and the longitudinal beam are made of precast concrete,
The longitudinal beam is a half arch beam having an attachment portion to the pier and a pair of half arch portions divided in half by arch tops extending from the attachment portion to both sides. Three-dimensional hyperbridge structure.
請求項1において、
前記橋脚は、橋軸方向で幅狭、橋軸と交差方向で幅広に形成されていることを特徴とする立体高架橋構造。
In claim 1,
The three-dimensional viaduct structure is characterized in that the bridge pier is formed narrow in the bridge axis direction and wide in the crossing direction with the bridge axis.
プレキャストコンクリート製の橋脚を地盤あるいは基礎上に設置して仮固定する工程と、
前記橋脚への取付部から両側に延びるアーチ頂部で半割にされた一対の半割アーチ部とを有するプレキャストコンクリート製の半割アーチ梁の前記取付部を前記橋脚上に設置して橋脚と連結し、隣接する半割アーチ梁の端部同士を連結して前記橋脚上に橋軸方向に縦梁を架設支持する工程と、
前記縦梁に前記橋軸と交差方向に横梁を架設し、前記横梁上にスラブを構築する工程と、
前記スラブを構築後、地盤を掘削してコンクリートを打設して地中梁を構築し、前記橋脚を固定する工程と、
を含むことを特徴とする立体高架橋構造の施工方法。
A process of installing and temporarily fixing a precast concrete pier on the ground or foundation;
The mounting portion of the pre-cast concrete half arch beam having a pair of half arch portions halved at the top of the arch extending on both sides from the mounting portion to the pier is installed on the pier and connected to the pier And connecting the ends of the adjacent halved arch beams to support the vertical beam in the bridge axis direction on the pier,
Constructing a horizontal beam on the vertical beam in a direction crossing the bridge axis, and building a slab on the horizontal beam;
After building the slab, excavating the ground and placing concrete to build the underground beam, fixing the pier,
The construction method of the three-dimensional viaduct structure characterized by including.
JP2003357317A 2003-10-17 2003-10-17 Three-dimensional viaduct structure and its construction method Expired - Lifetime JP4259977B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003357317A JP4259977B2 (en) 2003-10-17 2003-10-17 Three-dimensional viaduct structure and its construction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003357317A JP4259977B2 (en) 2003-10-17 2003-10-17 Three-dimensional viaduct structure and its construction method

Publications (2)

Publication Number Publication Date
JP2005120719A JP2005120719A (en) 2005-05-12
JP4259977B2 true JP4259977B2 (en) 2009-04-30

Family

ID=34614239

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003357317A Expired - Lifetime JP4259977B2 (en) 2003-10-17 2003-10-17 Three-dimensional viaduct structure and its construction method

Country Status (1)

Country Link
JP (1) JP4259977B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110904833A (en) * 2019-12-11 2020-03-24 刘士英 Spacing bearing structure of bridge

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4526990B2 (en) * 2005-03-28 2010-08-18 石川島建材工業株式会社 Viaduct
JP4680803B2 (en) * 2006-03-07 2011-05-11 戸田建設株式会社 Construction method of three-dimensional viaduct structure
JP2007291801A (en) * 2006-04-27 2007-11-08 Fujita Corp Elevated road structure and its construction method
JP5713747B2 (en) * 2010-03-24 2015-05-07 戸田建設株式会社 Three-dimensional viaduct structure and its construction method
CN102864745B (en) * 2012-09-07 2016-01-20 中铁十二局集团有限公司 The girder pre-stressed pipeline three-dimensional locating device of PC
JP6251096B2 (en) * 2014-03-20 2017-12-20 公益財団法人鉄道総合技術研究所 Construction method of structure with super-continuous foundation
CN108374338B (en) * 2018-04-04 2023-08-29 中铁第四勘察设计院集团有限公司 Cable-stayed bridge or suspension bridge tower without lower cross beam
CN110107311A (en) * 2019-04-28 2019-08-09 北京万兴建筑集团有限公司 One kind entering tunneling piping lane tunnel portal reinforcement means from slope
CN110130203B (en) * 2019-05-30 2024-05-03 中铁第四勘察设计院集团有限公司 Upper-bearing arch-rigid frame continuous beam combined bridge and construction method
CN110258298B (en) * 2019-06-06 2024-07-16 中铁第四勘察设计院集团有限公司 Bridge-loading pier for urban rail transit cable
CN113322796A (en) * 2021-06-09 2021-08-31 中铁第四勘察设计院集团有限公司 Cantilever type pier and construction method
KR102738155B1 (en) * 2023-11-27 2024-12-04 주식회사 디에스글로벌이씨엠 Pedestrian bridge using multi-stage steel column, tower structure using same amd constructing method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110904833A (en) * 2019-12-11 2020-03-24 刘士英 Spacing bearing structure of bridge
CN110904833B (en) * 2019-12-11 2022-02-08 姜丽萍 Spacing bearing structure of bridge

Also Published As

Publication number Publication date
JP2005120719A (en) 2005-05-12

Similar Documents

Publication Publication Date Title
JP4680803B2 (en) Construction method of three-dimensional viaduct structure
JP5713747B2 (en) Three-dimensional viaduct structure and its construction method
JP4259977B2 (en) Three-dimensional viaduct structure and its construction method
KR101638093B1 (en) Rahmen using hinge type pc wall and method for constructing the same
JP2006104747A (en) Joint structure and joining method of pedestal
JP2001336117A (en) Cross-section precast segment method
JP2007077630A (en) Continuous girder using precast main-girder segment, and its erection method
KR102181805B1 (en) Precast concrete abutment/pier block unit for jointless bridge and Construction method of jointless bridge using thereof
JPH11247109A (en) Constructing method of rigid-framed elevated bridge
JP3671344B2 (en) Joint structure between foundation pile and column base and its construction method
JP3841493B2 (en) Construction method of viaduct using PCa concrete member
KR101293646B1 (en) Bridge construction method using arch support connection member
KR20100045740A (en) Support assembly for precast half depth cantilever deck, constructing method of such cantilever deck, bridge using such assembly and constructing method for such bridge
KR20070013680A (en) Reverse casting method to use the temporary structure supported by brackets as a workbench
JP2003328320A (en) Construction method of precast column head and bridge pier column head
JP6849491B2 (en) Exposed column base structure of steel columns and its construction method
JP4780618B2 (en) Seismic reinforcement structure for viaduct
JP2003160944A (en) Construction method for precast concrete reservoir
JP2006316495A (en) Foundation structure of bridge pier and its construction method
JPH10140521A (en) Hanging floor slab bridge using outside cable and construction method thereof
JP6917720B2 (en) How to build a composite suspended structure
JP4282507B2 (en) Lightweight embankment structure and widening method for lighter embankment structure using the same
JP6529241B2 (en) Building foundation structure and construction method of building foundation structure
KR102479370B1 (en) Hybrid Composite Girder and Bridge Construction Method Using Thereof
KR102490025B1 (en) Floor frame support system for flat slab in top-down method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061010

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090128

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090203

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4259977

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150220

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term