[go: up one dir, main page]

JP4257480B2 - Polymer compound, chemically amplified resist material, and pattern forming method - Google Patents

Polymer compound, chemically amplified resist material, and pattern forming method Download PDF

Info

Publication number
JP4257480B2
JP4257480B2 JP2000272782A JP2000272782A JP4257480B2 JP 4257480 B2 JP4257480 B2 JP 4257480B2 JP 2000272782 A JP2000272782 A JP 2000272782A JP 2000272782 A JP2000272782 A JP 2000272782A JP 4257480 B2 JP4257480 B2 JP 4257480B2
Authority
JP
Japan
Prior art keywords
group
carbon atoms
resist material
bis
tert
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000272782A
Other languages
Japanese (ja)
Other versions
JP2001163945A (en
Inventor
畠山  潤
淳 渡辺
裕次 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2000272782A priority Critical patent/JP4257480B2/en
Publication of JP2001163945A publication Critical patent/JP2001163945A/en
Application granted granted Critical
Publication of JP4257480B2 publication Critical patent/JP4257480B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Materials For Photolithography (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Phenolic Resins Or Amino Resins (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、微細加工技術に適した化学増幅レジスト材料のベースポリマーとして有用な高分子化合物(フッ素化されたノボラック樹脂)並びに化学増幅レジスト材料及びこれを用いたパターン形成方法に関する。
【0002】
【従来の技術及び発明が解決しようとする課題】
LSIの高集積化と高速度化に伴い、パターンルールの微細化が急速に進んでいる。微細化が急速に進歩した背景には、投影レンズの高NA化、レジスト材料の性能向上、短波長化が挙げられる。特にi線(365nm)からKrF(248nm)への短波長化は大きな変革をもたらし、0.18ミクロンルールのデバイスの量産も可能となってきている。レジスト材料の高解像度化、高感度化に対して、酸を触媒とした化学増幅ポジ型レジスト材料(特公平2−27660号、特開昭63−27829号公報等に記載)は、優れた特徴を有するもので、遠紫外線リソグラフィーに特に主流なレジスト材料となった。
【0003】
KrFエキシマレーザー用レジスト材料は、一般的に0.3ミクロンプロセスに使われ始め、0.25ミクロンルールを経て、現在0.18ミクロンルールの量産化への適用、更に0.15ミクロンルールの検討も始まっており、微細化の勢いはますます加速されている。KrFからArF(193nm)への波長の短波長化は、デザインルールの微細化を0.13μm以下にすることが期待されるが、従来用いられてきたノボラックやポリビニルフェノール系の樹脂が193nm付近に非常に強い吸収を持つため、レジスト用のベース樹脂として用いることができない。かかる点から、透明性と、必要なドライエッチング耐性の確保のため、アクリル系やシクロオレフィン系の脂環族系の樹脂が検討された(特開平9−73173号、特開平10−10739号、特開平9−230595号、WO97/33198号公報)が、更に0.10μm以下の微細化が期待できるF2(157nm)に関しては、透明性の確保がますます困難になり、アクリル系では全く光を透過せず、シクロオレフィン系においてもカルボニル結合を持つものは強い吸収を持つことがわかった。
【0004】
本発明は上記事情に鑑みなされたもので、300nm以下、特にF2(157nm)、Kr2(146nm)、KrAr(134nm)、Ar2(126nm)などの真空紫外光における透過率に優れた化学増幅レジスト材料のベースポリマーとして有用な新規高分子化合物並びにこれを含む化学増幅レジスト材料及びこのレジスト材料を用いたパターン形成方法を提供することを目的とする。
【0005】
【課題を解決するための手段及び発明の実施の形態】
本発明者は、上記目的を達成するため鋭意検討を行った結果、下記一般式(1)で示される繰り返し単位を含むフッ素化されたノボラック樹脂をベースとする樹脂を用いることによって、透明性とアルカリ可溶性を確保したレジスト材料が得られることを知見した。
【0006】
【化2】

Figure 0004257480
(式中、R1は水素原子、又は炭素数1〜20の直鎖状、分岐状もしくは環状のアルキル基又はフッ素化されたアルキル基である。R2、下記式(2),(3)で示される基、下記式(4)で示される炭素数4〜40の三級アルキル基、及び炭素数4〜20のオキソアルキル基から選ばれる酸不安定基であり、0≦p<4、0≦q<4、0≦r<4、0<s<4、0<t<4、1≦q+r<4、2≦p+q+r+s≦4、2≦p+q+r+t≦4の範囲である。m,nは0<m<1、0<n<1の範囲であり、m+n=1である。)
【化16】
Figure 0004257480
(式(2)中、R 6 は炭素数4〜20の三級アルキル基、各アルキル基がそれぞれ炭素数1〜6のトリアルキルシリル基、炭素数4〜20のオキソアルキル基又は上記一般式(3)で示される基を示す。aは0〜6の整数である。
式(3)中、R 7 ,R 8 は水素原子又は炭素数1〜18の直鎖状、分岐状又は環状のアルキル基を示す。R 9 は炭素数1〜18の酸素原子等のヘテロ原子を有してもよい1価の炭化水素基を示す。R 7 とR 8 、R 7 とR 9 、R 8 とR 9 とは環を形成してもよく、環を形成する場合にはR 7 ,R 8 ,R 9 はそれぞれ炭素数1〜18の直鎖状又は分岐状のアルキレン基を示す。
式(4)中、R 10 ,R 11 ,R 12 は炭素数1〜20の直鎖状、分岐状もしくは環状の1価炭化水素基であり、酸素、硫黄、窒素、フッ素などのヘテロ原子を含んでもよく、R 10 とR 11 、R 10 とR 12 、R 11 とR 12 とは互いに結合して環を形成してもよい。)
【0007】
即ち、本発明者の検討によると、ノボラック及びポリビニルフェノールにおいては160nm付近に吸収が低下し、若干透過率が向上するが、実用的レベルにはほど遠く、カルボニル、炭素炭素間の2重結合を低減することが透過率確保のための必要条件であることが判明した。しかしながら、アクリルに対してフェノールは、エッチング耐性や、アルカリ可溶性及び基板との密着性において優れた特性を示し、更にハロゲン置換、その中でも特にフッ素置換されたものが透過率向上効果があり、実用的に近い透過率を得ることができることを知見したものである。
【0008】
従って、本発明は、下記高分子化合物、化学増幅レジスト材料及びパターン形成方法を提供する。
請求項1:
上記一般式(1)で示される繰り返し単位を含む高分子化合物。
請求項2:
上記一般式(1)で示される繰り返し単位を有する高分子化合物を含むことを特徴とするレジスト材料。
請求項3:
(A)請求項1記載の高分子化合物、
(B)有機溶剤、
(C)酸発生剤
を含有することを特徴とする化学増幅ポジ型レジスト材料。
請求項4:
(A)請求項1記載の高分子化合物、
(B)有機溶剤、
(C)酸発生剤、
(D)架橋剤
を含有することを特徴とする化学増幅ネガ型レジスト材料。
請求項5:
更に、塩基性化合物を含有する請求項3又は4記載のレジスト材料。
請求項6:
更に、溶解阻止剤を含有する請求項3,4又は5記載のレジスト材料。
請求項7:
(1)請求項2乃至6のいずれか1項に記載のレジスト材料を基板上に塗布する工程と、
(2)次いで加熱処理後、フォトマスクを介して波長300nm以下の高エネルギー線もしくは電子線で露光する工程と、
(3)必要に応じて加熱処理した後、現像液を用いて現像する工程と
を含むことを特徴とするパターン形成方法。
請求項8:
高エネルギー線が、ArF(193nm)、F 2 (157nm)、Kr 2 (146nm)、KrAr(134nm)、Ar 2 (126nm)から選ばれるものである請求項7記載のパターン形成方法。
【0009】
以下、本発明につき更に詳しく説明する。
本発明の高分子化合物は、下記一般式(1)で示される繰り返し単位を有するフッ素化されたノボラック樹脂である。
【0010】
【化3】
Figure 0004257480
【0011】
1は水素原子、又は炭素数1〜20の直鎖状、分岐状もしくは環状のアルキル基又はフッ素化されたアルキル基である。
【0012】
この場合、R1の炭素数1〜20の直鎖状、分岐状もしくは環状のアルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基、n−ブチル基、sec−ブチル基、tert−ブチル基、シクロペンチル基、シクロヘキシル基、2−エチルヘキシル基、n−オクチル基等を例示でき、特に炭素数1〜12、とりわけ炭素数1〜10のものが好ましい。なお、フッ素化されたアルキル基は、上記アルキル基の水素原子の一部又は全部がフッ素原子で置換されたものであり、トリフルオロメチル基、2,2,2−トリフルオロエチル基、3,3,3−トリフルオロプロピル基、1,1,2,3,3,3−ヘキサフルオロプロピル基などが挙げられる。
【0013】
また、R2は酸不安定基であり、酸不安定基としては、種々選定されるが、特に下記式(2),(3)で示される基、下記式(4)で示される炭素数4〜40の三級アルキル基、炭素数1〜6のトリアルキルシリル基、炭素数4〜20のオキソアルキル基等であることが好ましい。
【0014】
【化4】
Figure 0004257480
式(2)において、R6は炭素数4〜20、好ましくは4〜15の三級アルキル基、各アルキル基がそれぞれ炭素数1〜6のトリアルキルシリル基、炭素数4〜20のオキソアルキル基又は上記一般式(3)で示される基を示し、三級アルキル基として具体的には、tert−ブチル基、tert−アミル基、1,1−ジエチルプロピル基、1−エチルシクロペンチル基、1−ブチルシクロペンチル基、1−エチルシクロヘキシル基、1−ブチルシクロヘキシル基、1−エチル−2−シクロペンテニル基、1−エチル−2−シクロヘキセニル基、2−メチル−2−アダマンチル基等が挙げられ、トリアルキルシリル基として具体的には、トリメチルシリル基、トリエチルシリル基、ジメチル−tert−ブチルシリル基等が挙げられ、オキソアルキル基として具体的には、3−オキソシクロヘキシル基、4−メチル−2−オキソオキサン−4−イル基、5−メチル−2−オキソオキソラン−5−イル基等が挙げられる。aは0〜6の整数である。
【0015】
式(3)において、R7,R8は水素原子又は炭素数1〜18、好ましくは1〜10の直鎖状、分岐状又は環状のアルキル基を示し、具体的にはメチル基、エチル基、プロピル基、イソプロピル基、n−ブチル基、sec−ブチル基、tert−ブチル基、シクロペンチル基、シクロヘキシル基、2−エチルヘキシル基、n−オクチル基等を例示できる。R9は炭素数1〜18、好ましくは1〜10の酸素原子等のヘテロ原子を有してもよい1価の炭化水素基を示し、直鎖状、分岐状、環状のアルキル基、これらの水素原子の一部が水酸基、アルコキシ基、オキソ基、アミノ基、アルキルアミノ基等に置換されたものを挙げることができ、具体的には下記の置換アルキル基等が例示できる。
【0016】
【化5】
Figure 0004257480
【0017】
7とR8、R7とR9、R8とR9とは環を形成してもよく、環を形成する場合にはR7,R8,R9はそれぞれ炭素数1〜18、好ましくは1〜10の直鎖状又は分岐状のアルキレン基を示す。
【0018】
上記式(2)の酸不安定基としては、具体的にはtert−ブトキシカルボニル基、tert−ブトキシカルボニルメチル基、tert−アミロキシカルボニル基、tert−アミロキシカルボニルメチル基、1,1−ジエチルプロピルオキシカルボニル基、1,1−ジエチルプロピルオキシカルボニルメチル基、1−エチルシクロペンチルオキシカルボニル基、1−エチルシクロペンチルオキシカルボニルメチル基、1−エチル−2−シクロペンテニルオキシカルボニル基、1−エチル−2−シクロペンテニルオキシカルボニルメチル基、1−エトキシエトキシカルボニルメチル基、2−テトラヒドロピラニルオキシカルボニルメチル基、2−テトラヒドロフラニルオキシカルボニルメチル基等が例示できる。
【0019】
上記式(3)で示される酸不安定基のうち直鎖状又は分岐状のものとしては、具体的には下記の基が例示できる。
【0020】
【化6】
Figure 0004257480
【0021】
上記式(3)で示される酸不安定基のうち環状のものとしては、具体的にはテトラヒドロフラン−2−イル基、2−メチルテトラヒドロフラン−2−イル基、テトラヒドロピラン−2−イル基、2−メチルテトラヒドロピラン−2−イル基等が例示できる。式(3)としては、エトキシエチル基、ブトキシエチル基、エトキシプロピル基が好ましい。
【0022】
次に、式(4)においてR10,R11,R12は炭素数1〜20の直鎖状、分岐状もしくは環状のアルキル基等の1価炭化水素基であり、酸素、硫黄、窒素、フッ素などのヘテロ原子を含んでもよく、R10とR11、R10とR12、R11とR12とは互いに結合して環を形成してもよい。
【0023】
式(4)に示される三級アルキル基としては、tert−ブチル基、トリエチルカルビル基、1−エチルノルボニル基、1−メチルシクロヘキシル基、1−エチルシクロペンチル基、2−(2−メチル)アダマンチル基、2−(2−エチル)アダマンチル基、tert−アミル基等を挙げることができる。
【0024】
また、三級アルキル基としては、下記に示す式(4−1)〜(4−16)を具体的に挙げることもできる。
【0025】
【化7】
Figure 0004257480
【0026】
ここで、R13,R14は炭素数1〜6の直鎖状、分岐状又は環状のアルキル基を示し、具体的にはメチル基、エチル基、プロピル基、イソプロピル基、n−ブチル基、sec−ブチル基、n−ペンチル基、n−ヘキシル基、シクロプロピル基、シクロプロピルメチル基等を例示できる。R15は水素原子、炭素数1〜6のヘテロ原子を含んでもよい1価炭化水素基、又は炭素数1〜6のヘテロ原子を介してもよいアルキル基等の1価炭化水素基を示す。ヘテロ原子としては、酸素原子、硫黄原子、窒素原子を挙げることができ、−OH,−OR(Rは炭素数1〜20、特に1〜16のアルキル基、以下同じ),−O−,−S−,−S(=O)−,−NH2,−NHR,−NR2,−NH−,−NR−として含有又は介在することができる。
【0027】
16としては、水素原子、又は炭素数1〜20、特に1〜16のアルキル基、ヒドロキシアルキル基、アルコキシアルキル基、アルコキシ基又はアルコキシアルキル基などを挙げることができ、これらは直鎖状、分岐状、環状のいずれでもよい。具体的には、メチル基、ヒドロキシメチル基、エチル基、ヒドロキシエチル基、プロピル基、イソプロピル基、n−ブチル基、sec−ブチル基、n−ペンチル基、n−ヘキシル基、メトキシ基、メトキシメトキシ基、エトキシ基、tert−ブトキシ基等を例示できる。
【0028】
また、R2の酸不安定基として用いられる各アルキル基がそれぞれ炭素数1〜6のトリアルキルシリル基としてはトリメチルシリル基、トリエチルシリル基、tert−ブチルジメチルシリル基等が挙げられる。
【0029】
炭素数4〜20のオキソアルキル基としては、3−オキソシクロヘキシル基、下記式で示される基が挙げられる。
【0030】
【化8】
Figure 0004257480
【0031】
また、式(1)において、0≦p<4、0≦q<4、0≦r<4、0<s<4、0<t<4、1≦q+r<4、2≦p+q+r+s≦4、2≦p+q+r+t≦4の整数であり、フッ素原子を少なくとも各単位に1個含む。また、m,nは0<m<1、0<n<1の範囲であり、m+n=1である。
【0032】
本発明の高分子化合物は、上記単位を有するものであるが、更に他の共重合単位を含んでいてもよい。
この場合、他の単位をAで表すと、本発明のノボラック樹脂は下記式で示される繰り返し単位を有し、この式において0≦a<1、m+n+a=1である。
【0033】
【化9】
Figure 0004257480
【0034】
本発明の高分子化合物は、重量平均分子量が1,000〜1,000,000、特に2,000〜100,000であることが好ましい。
【0035】
上記高分子化合物を製造する場合、フッ素化されたフェノール或いはクレゾールなどのフッ素化されたヒドロキシ芳香族化合物とアルデヒド類とを酸触媒下に加熱し、付加縮合して合成することができる。
【0036】
ここで、フッ素化された芳香族化合物としては、2−フルオロフェノール、3−フルオロフェノール、4−フルオロフェノール、2−フルオロ−5−メチルフェノール、4−フルオロ−2−メチルフェノール、4−フルオロ−3−メチルフェノール、2−フルオロ−5−(トリフルオロメチル)フェノール、2,3−ジフルオロフェノール、2,4−ジフルオロフェノール、2,5−ジフルオロフェノール、2,6−ジフルオロフェノール、3,4−ジフルオロフェノール,3,5−ジフルオロフェノール、2,3,4−トリフルオロフェノール、2,3,6−トリフルオロフェノール、2,4,5−トリフルオロフェノール、2,4,6−トリフルオロフェノール、3−フルオロカテコール、テトラフルオロカテコール、3−(トリフルオロメトキシ)フェノール、4−(トリフルオロメトキシ)フェノール、2,3,5,6−テトラフルオロフェノール、ペンタフルオロフェノール、3,5−ビス(トリフルオロメチル)フェノール、4,4’−(ヘキサフルオロイソプロピリデン)ジフェノール、3,3’−ジフルオロ[(1,1’−ジフェニル)−4,4’−ジオール]、3,3’,5,5’−テトラフルオロ[(1,1’−ジフェニル)−4,4’−ジオール]、4,4’−[(4−フルオロフェニル)メチレン]ビスフェノール、4,4’−メチレンビス[2−フルオロフェノール]、2,2’−メチレンビス[4−フルオロフェノール]、4,4’−イソプロピリデンビス[2−フルオロフェノール]、シクロヘキシリデンビス[2−フルオロフェノール]、4,4’−(フェニルメチレン)ビス[2−フルオロフェノール]、4,4’−(9Hフルオレン−9−イリデン)ビス[2−フルオロフェノール]、4,4’−(ジフェニルメチレン)ビス[2−フルオロフェノール]、4,4’−[(4−フルオロフェニル)メチレン]ビス[2−フルオロフェノール]、4,4’−メチレンビス[2,6−ジフルオロフェノール]、4,4’−(フェニルメチレン)ビス[2,6−ジフルオロフェノール]、4,4’−(ジフェニルメチレン)ビス[2,6−ジフルオロフェノール]、4,4’−(4−フルオロフェニル)メチレンビス[2,6−ジフルオロフェノール]、2,6−ビス[(2−ヒドロキシ−5−フルオロフェニル)メチル]−4−フルオロフェノール、2,6−ビス[(4−ヒドロキシ−3−フルオロフェニル)メチル]−4−フルオロフェノール、2,4−ビス[(3−フルオロ−4−ヒドロキシフェニル)メチル]−6−メチルフェノール、4,4’−[1−[4−[1−(4−ヒドロキシ−3−フルオロフェニル)−1−メチルエチル]フェニル]エチリデン]ビスフェノールなどが挙げられる。これらヒドロキシ芳香族化合物は、単独で又は併用して使用することができる。
【0037】
また、アルデヒド類としては、例えばホルムアルデヒド、パラホルムアルデヒド、アセトアルデヒド、プロピルアルデヒド、ベンズアルデヒド、フェニルアセトアルデヒド、α−フェニルプロピルアルデヒド、β−フェニルプロピルアルデヒド、o−クロロベンズアルデヒド、m−クロロベンズアルデヒド、p−クロロベンズアルデヒド、o−メチルベンズアルデヒド、m−メチルベンズアルデヒド、p−メチルベンズアルデヒド、p−エチルベンズアルデヒド、p−n−ブチルベンズアルデヒドなどを挙げることができる。
アルデヒド類は、フッ素化ヒドロキシ芳香族1モルに対して、通常0.7〜3モル、好ましくは1〜2モルの割合で使用される。
【0038】
酸触媒としては、塩酸、硝酸、硫酸などの無機酸、ギ酸、蓚酸、酢酸などの有機酸及びこれらの金属塩などが使用される。
これらの酸触媒の使用量は、フッ素化ヒドロキシ芳香族化合物及びアルデヒド類の合計1モルに対して0〜0.5モルが好ましい。縮合反応においては、水或いは均一系にするための親水性溶媒、具体的にはメタノール、エタノール、プロパノール、ブタノールなどのアルコール類、テトラヒドロフラン、ジオキサン等の環状エーテルなどを使用することができる。
【0039】
縮合反応の温度は、適宜調整することができるが、通常10〜200℃、好ましくは50〜150℃である。
【0040】
ノボラック樹脂は、通常重合後の分子量分布が広く、狭分散、或いはタンデム型にすることによって解像性が向上することが報告されており(Proc. SPIE Vol.1466 p132、1991)、分子量分布を狭分散化することは特に問題ではない。分別する方法としては、樹脂を良溶媒に溶解させて、貧溶媒を添加或いは貧溶媒中に添加して晶出することによって分別する方法、メタノールやアルカリ水で洗浄することによって分別する方法などがあるが、特にこれらの方法に限定することはない。
【0041】
本発明のフッ素化ノボラック樹脂は、水素添加反応によって、更に透過率を上げることもできる。
また、R2の酸不安定基の導入は、常法に従って行うことができる。
【0042】
本発明の高分子化合物は、レジスト材料、特に化学増幅型のレジスト材料として使用することができる。
【0043】
従って、本発明は、
[I](A)上記高分子化合物、
(B)有機溶剤、
(C)酸発生剤
を含有することを特徴とする化学増幅ポジ型レジスト材料、及び、
[II](A)上記高分子化合物、
(B)有機溶剤、
(C)酸発生剤、
(D)架橋剤
を含有することを特徴とする化学増幅ネガ型レジスト材料
を提供する。
【0044】
この場合、これらレジスト材料に、更に
(E)塩基性化合物、
(F)溶解阻止剤
を配合してもよい。
【0045】
ここで、本発明で使用される(B)成分の有機溶剤としては、酸発生剤、ベース樹脂(本発明の高分子化合物)、溶解阻止剤等が溶解可能な有機溶媒であればいずれでもよい。このような有機溶剤としては、例えばシクロヘキサノン、メチル−2−n−アミルケトン等のケトン類、3−メトキシブタノール、3−メチル−3−メトキシブタノール、1−メトキシ−2−プロパノール、1−エトキシ−2−プロパノール等のアルコール類、プロピレングリコールモノメチルエーテル、エチレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、エチレングリコールモノエチルエーテル、プロピレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル等のエーテル類、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、乳酸エチル、ピルビン酸エチル、酢酸ブチル、3−メトキシプロピオン酸メチル、3−エトキシプロピオン酸エチル、酢酸tert−ブチル、プロピオン酸tert−ブチル、プロピレングリコール−モノ−tert−ブチルエーテルアセテート等のエステル類が挙げられ、これらの1種を単独で又は2種以上を混合して使用することができるが、これらに限定されるものではない。本発明では、これらの有機溶剤の中でもレジスト成分中の酸発生剤の溶解性が最も優れているジエチレングリコールジメチルエーテルや1−エトキシ−2−プロパノール、乳酸エチルの他、安全溶剤であるプロピレングリコールモノメチルエーテルアセテート及びそれらの混合溶剤が好ましく使用される。
【0046】
なお、有機溶剤の使用量は、ベース樹脂100重量部に対して200〜5,000重量部、特に400〜3,000重量部である。
【0047】
(C)成分の酸発生剤としては、下記一般式(11)のオニウム塩、式(12)のジアゾメタン誘導体、式(13)のグリオキシム誘導体、β−ケトスルホン誘導体、ジスルホン誘導体、ニトロベンジルスルホネート誘導体、スルホン酸エステル誘導体、イミド−イルスルホネート誘導体等が挙げられる。
【0048】
(R30b+- (11)
(但し、R30は炭素数1〜12の直鎖状、分岐状又は環状のアルキル基、炭素数6〜12のアリール基又は炭素数7〜12のアラルキル基を表し、M+はヨードニウム、スルホニウムを表し、K-は非求核性対向イオンを表し、bは2又は3である。)
【0049】
30のアルキル基としてはメチル基、エチル基、プロピル基、ブチル基、シクロヘキシル基、2−オキソシクロヘキシル基、ノルボルニル基、アダマンチル基等が挙げられる。アリール基としてはフェニル基、p−メトキシフェニル基、m−メトキシフェニル基、o−メトキシフェニル基、エトキシフェニル基、p−tert−ブトキシフェニル基、m−tert−ブトキシフェニル基等のアルコキシフェニル基、2−メチルフェニル基、3−メチルフェニル基、4−メチルフェニル基、エチルフェニル基、4−tert−ブチルフェニル基、4−ブチルフェニル基、ジメチルフェニル基等のアルキルフェニル基が挙げられる。アラルキル基としてはベンジル基、フェネチル基等が挙げられる。K-の非求核性対向イオンとしては塩化物イオン、臭化物イオン等のハライドイオン、トリフレート、1,1,1−トリフルオロエタンスルホネート、ノナフルオロブタンスルホネート等のフルオロアルキルスルホネート、トシレート、ベンゼンスルホネート、4−フルオロベンゼンスルホネート、1,2,3,4,5−ペンタフルオロベンゼンスルホネート等のアリールスルホネート、メシレート、ブタンスルホネート等のアルキルスルホネートが挙げられる。
【0050】
【化10】
Figure 0004257480
(但し、R31,R32は炭素数1〜12の直鎖状、分岐状又は環状のアルキル基又はハロゲン化アルキル基、炭素数6〜12のアリール基、又はハロゲン化アリール基又は炭素数7〜12のアラルキル基を表す。)
【0051】
31,R32のアルキル基としてはメチル基、エチル基、プロピル基、ブチル基、アミル基、シクロペンチル基、シクロヘキシル基、ノルボルニル基、アダマンチル基等が挙げられる。ハロゲン化アルキル基としてはトリフルオロメチル基、1,1,1−トリフルオロエチル基、1,1,1−トリクロロエチル基、ノナフルオロブチル基等が挙げられる。アリール基としてはフェニル基、p−メトキシフェニル基、m−メトキシフェニル基、o−メトキシフェニル基、エトキシフェニル基、p−tert−ブトキシフェニル基、m−tert−ブトキシフェニル基等のアルコキシフェニル基、2−メチルフェニル基、3−メチルフェニル基、4−メチルフェニル基、エチルフェニル基、4−tert−ブチルフェニル基、4−ブチルフェニル基、ジメチルフェニル基等のアルキルフェニル基が挙げられる。ハロゲン化アリール基としてはフルオロベンゼン基、クロロベンゼン基、1,2,3,4,5−ペンタフルオロベンゼン基等が挙げられる。アラルキル基としてはベンジル基、フェネチル基等が挙げられる。
【0052】
【化11】
Figure 0004257480
(但し、R33,R34,R35は炭素数1〜12の直鎖状、分岐状又は環状のアルキル基又はハロゲン化アルキル基、炭素数6〜12のアリール基又はハロゲン化アリール基又は炭素数7〜12のアラルキル基を表す。また、R34,R35は互いに結合して環状構造を形成してもよく、環状構造を形成する場合、R34,R35はそれぞれ炭素数1〜6の直鎖状又は分岐状のアルキレン基を表す。)
【0053】
33,R34,R35のアルキル基、ハロゲン化アルキル基、アリール基、ハロゲン化アリール基、アラルキル基としては、R31,R32で説明したものと同様の基が挙げられる。なお、R34,R35のアルキレン基としてはメチレン基、エチレン基、プロピレン基、ブチレン基、ヘキシレン基等が挙げられる。
【0054】
具体的には、例えばトリフルオロメタンスルホン酸ジフェニルヨードニウム、トリフルオロメタンスルホン酸(p−tert−ブトキシフェニル)フェニルヨードニウム、p−トルエンスルホン酸ジフェニルヨードニウム、p−トルエンスルホン酸(p−tert−ブトキシフェニル)フェニルヨードニウム、トリフルオロメタンスルホン酸トリフェニルスルホニウム、トリフルオロメタンスルホン酸(p−tert−ブトキシフェニル)ジフェニルスルホニウム、トリフルオロメタンスルホン酸ビス(p−tert−ブトキシフェニル)フェニルスルホニウム、トリフルオロメタンスルホン酸トリス(p−tert−ブトキシフェニル)スルホニウム、p−トルエンスルホン酸トリフェニルスルホニウム、p−トルエンスルホン酸(p−tert−ブトキシフェニル)ジフェニルスルホニウム、p−トルエンスルホン酸ビス(p−tert−ブトキシフェニル)フェニルスルホニウム、p−トルエンスルホン酸トリス(p−tert−ブトキシフェニル)スルホニウム、ノナフルオロブタンスルホン酸トリフェニルスルホニウム、ブタンスルホン酸トリフェニルスルホニウム、トリフルオロメタンスルホン酸トリメチルスルホニウム、p−トルエンスルホン酸トリメチルスルホニウム、トリフルオロメタンスルホン酸シクロヘキシルメチル(2−オキソシクロヘキシル)スルホニウム、p−トルエンスルホン酸シクロヘキシルメチル(2−オキソシクロヘキシル)スルホニウム、トリフルオロメタンスルホン酸ジメチルフェニルスルホニウム、p−トルエンスルホン酸ジメチルフェニルスルホニウム、トリフルオロメタンスルホン酸ジシクロヘキシルフェニルスルホニウム、p−トルエンスルホン酸ジシクロヘキシルフェニルスルホニウム等のオニウム塩、ビス(ベンゼンスルホニル)ジアゾメタン、ビス(p−トルエンスルホニル)ジアゾメタン、ビス(キシレンスルホニル)ジアゾメタン、ビス(シクロヘキシルスルホニル)ジアゾメタン、ビス(シクロペンチルスルホニル)ジアゾメタン、ビス(n−ブチルスルホニル)ジアゾメタン、ビス(イソブチルスルホニル)ジアゾメタン、ビス(sec−ブチルスルホニル)ジアゾメタン、ビス(n−プロピルスルホニル)ジアゾメタン、ビス(イソプロピルスルホニル)ジアゾメタン、ビス(tert−ブチルスルホニル)ジアゾメタン、ビス(n−アミルスルホニル)ジアゾメタン、ビス(イソアミルスルホニル)ジアゾメタン、ビス(sec−アミルスルホニル)ジアゾメタン、ビス(tert−アミルスルホニル)ジアゾメタン、1−シクロヘキシルスルホニル−1−(tert−ブチルスルホニル)ジアゾメタン、1−シクロヘキシルスルホニル−1−(tert−アミルスルホニル)ジアゾメタン、1−tert−アミルスルホニル−1−(tert−ブチルスルホニル)ジアゾメタン等のジアゾメタン誘導体、ビス−o−(p−トルエンスルホニル)−α−ジメチルグリオキシム、ビス−o−(p−トルエンスルホニル)−α−ジフェニルグリオキシム、ビス−o−(p−トルエンスルホニル)−α−ジシクロヘキシルグリオキシム、ビス−o−(p−トルエンスルホニル)−2,3−ペンタンジオングリオキシム、ビス−o−(p−トルエンスルホニル)−2−メチル−3,4−ペンタンジオングリオキシム、ビス−o−(n−ブタンスルホニル)−α−ジメチルグリオキシム、ビス−o−(n−ブタンスルホニル)−α−ジフェニルグリオキシム、ビス−o−(n−ブタンスルホニル)−α−ジシクロヘキシルグリオキシム、ビス−o−(n−ブタンスルホニル)−2,3−ペンタンジオングリオキシム、ビス−o−(n−ブタンスルホニル)−2−メチル−3,4−ペンタンジオングリオキシム、ビス−o−(メタンスルホニル)−α−ジメチルグリオキシム、ビス−o−(トリフルオロメタンスルホニル)−α−ジメチルグリオキシム、ビス−o−(1,1,1−トリフルオロエタンスルホニル)−α−ジメチルグリオキシム、ビス−o−(tert−ブタンスルホニル)−α−ジメチルグリオキシム、ビス−o−(パーフルオロオクタンスルホニル)−α−ジメチルグリオキシム、ビス−o−(シクロヘキサンスルホニル)−α−ジメチルグリオキシム、ビス−o−(ベンゼンスルホニル)−α−ジメチルグリオキシム、ビス−o−(p−フルオロベンゼンスルホニル)−α−ジメチルグリオキシム、ビス−o−(p−tert−ブチルベンゼンスルホニル)−α−ジメチルグリオキシム、ビス−o−(キシレンスルホニル)−α−ジメチルグリオキシム、ビス−o−(カンファースルホニル)−α−ジメチルグリオキシム等のグリオキシム誘導体、2−シクロヘキシルカルボニル−2−(p−トルエンスルホニル)プロパン、2−イソプロピルカルボニル−2−(p−トルエンスルホニル)プロパン等のβ−ケトスルホン誘導体、ジフェニルジスルホン、ジシクロヘキシルジスルホン等のジスルホン誘導体、p−トルエンスルホン酸2,6−ジニトロベンジル、p−トルエンスルホン酸2,4−ジニトロベンジル等のニトロベンジルスルホネート誘導体、1,2,3−トリス(メタンスルホニルオキシ)ベンゼン、1,2,3−トリス(トリフルオロメタンスルホニルオキシ)ベンゼン、1,2,3−トリス(p−トルエンスルホニルオキシ)ベンゼン等のスルホン酸エステル誘導体、フタルイミド−イル−トリフレート、フタルイミド−イル−トシレート、5−ノルボルネン−2,3−ジカルボキシイミド−イル−トリフレート、5−ノルボルネン−2,3−ジカルボキシイミド−イル−トシレート、5−ノルボルネン−2,3−ジカルボキシイミド−イル−n−ブチルスルホネート等のイミド−イル−スルホネート誘導体等が挙げられるが、トリフルオロメタンスルホン酸トリフェニルスルホニウム、トリフルオロメタンスルホン酸(p−tert−ブトキシフェニル)ジフェニルスルホニウム、トリフルオロメタンスルホン酸トリス(p−tert−ブトキシフェニル)スルホニウム、p−トルエンスルホン酸トリフェニルスルホニウム、p−トルエンスルホン酸(p−tert−ブトキシフェニル)ジフェニルスルホニウム、p−トルエンスルホン酸トリス(p−tert−ブトキシフェニル)スルホニウム等のオニウム塩、ビス(ベンゼンスルホニル)ジアゾメタン、ビス(p−トルエンスルホニル)ジアゾメタン、ビス(シクロヘキシルスルホニル)ジアゾメタン、ビス(n−ブチルスルホニル)ジアゾメタン、ビス(イソブチルスルホニル)ジアゾメタン、ビス(sec−ブチルスルホニル)ジアゾメタン、ビス(n−プロピルスルホニル)ジアゾメタン、ビス(イソプロピルスルホニル)ジアゾメタン、ビス(tert−ブチルスルホニル)ジアゾメタン等のジアゾメタン誘導体、ビス−o−(p−トルエンスルホニル)−α−ジメチルグリオキシム、ビス−o−(n−ブタンスルホニル)−α−ジメチルグリオキシム等のグリオキシム誘導体が好ましく用いられる。なお、上記酸発生剤は1種を単独で又は2種以上を組み合わせて用いることができる。オニウム塩は矩形性向上効果に優れ、ジアゾメタン誘導体及びグリオキシム誘導体は定在波低減効果に優れるが、両者を組み合わせることにより、プロファイルの微調整を行うことが可能である。
【0055】
酸発生剤の配合量は、全ベース樹脂100重量部に対して0.2〜15重量部、特に0.5〜8重量部とすることが好ましく、0.2重量部に満たないと露光時の酸発生量が少なく、感度及び解像力が劣る場合があり、15重量部を超えるとレジストの透過率が低下し、解像力が劣る場合がある。
【0056】
(E)成分の塩基性化合物は、酸発生剤より発生する酸がレジスト膜中に拡散する際の拡散速度を抑制することができる化合物が適しており、このような塩基性化合物の配合により、レジスト膜中での酸の拡散速度が抑制されて解像度が向上し、露光後の感度変化を抑制したり、基板や環境依存性を少なくし、露光余裕度やパターンプロファイル等を向上することができる(特開平5−232706号、同5−249683号、同5−158239号、同5−249662号、同5−257282号、同5−289322号、同5−289340号公報等記載)。
【0057】
このような塩基性化合物としては、第一級、第二級、第三級の脂肪族アミン類、混成アミン類、芳香族アミン類、複素環アミン類、カルボキシ基を有する含窒素化合物、スルホニル基を有する含窒素化合物、ヒドロキシ基を有する含窒素化合物、ヒドロキシフェニル基を有する含窒素化合物、アルコール性含窒素化合物、アミド誘導体、イミド誘導体等が挙げられるが、特に脂肪族アミンが好適に用いられる。
【0058】
具体的には、第一級の脂肪族アミン類として、アンモニア、メチルアミン、エチルアミン、n−プロピルアミン、イソプロピルアミン、n−ブチルアミン、イソブチルアミン、sec−ブチルアミン、tert−ブチルアミン、ペンチルアミン、tert−アミルアミン、シクロペンチルアミン、ヘキシルアミン、シクロヘキシルアミン、ヘプチルアミン、オクチルアミン、ノニルアミン、デシルアミン、ドデシルアミン、セチルアミン、メチレンジアミン、エチレンジアミン、テトラエチレンペンタミン等が例示され、第二級の脂肪族アミン類として、ジメチルアミン、ジエチルアミン、ジ−n−プロピルアミン、ジイソプロピルアミン、ジ−n−ブチルアミン、ジイソブチルアミン、ジ−sec−ブチルアミン、ジペンチルアミン、ジシクロペンチルアミン、ジヘキシルアミン、ジシクロヘキシルアミン、ジヘプチルアミン、ジオクチルアミン、ジノニルアミン、ジデシルアミン、ジドデシルアミン、ジセチルアミン、N,N−ジメチルメチレンジアミン、N,N−ジメチルエチレンジアミン、N,N−ジメチルテトラエチレンペンタミン等が例示され、第三級の脂肪族アミン類として、トリメチルアミン、トリエチルアミン、トリ−n−プロピルアミン、トリイソプロピルアミン、トリ−n−ブチルアミン、トリイソブチルアミン、トリ−sec−ブチルアミン、トリペンチルアミン、トリシクロペンチルアミン、トリヘキシルアミン、トリシクロヘキシルアミン、トリヘプチルアミン、トリオクチルアミン、トリノニルアミン、トリデシルアミン、トリドデシルアミン、トリセチルアミン、N,N,N’,N’−テトラメチルメチレンジアミン、N,N,N’,N’−テトラメチルエチレンジアミン、N,N,N’,N’−テトラメチルテトラエチレンペンタミン等が例示される。
【0059】
また、混成アミン類としては、例えばジメチルエチルアミン、メチルエチルプロピルアミン、ベンジルアミン、フェネチルアミン、ベンジルジメチルアミン等が例示される。芳香族アミン類及び複素環アミン類の具体例としては、アニリン誘導体(例えばアニリン、N−メチルアニリン、N−エチルアニリン、N−プロピルアニリン、N,N−ジメチルアニリン、2−メチルアニリン、3−メチルアニリン、4−メチルアニリン、エチルアニリン、プロピルアニリン、トリメチルアニリン、2−ニトロアニリン、3−ニトロアニリン、4−ニトロアニリン、2,4−ジニトロアニリン、2,6−ジニトロアニリン、3,5−ジニトロアニリン、N,N−ジメチルトルイジン等)、ジフェニル(p−トリル)アミン、メチルジフェニルアミン、トリフェニルアミン、フェニレンジアミン、ナフチルアミン、ジアミノナフタレン、ピロール誘導体(例えばピロール、2H−ピロール、1−メチルピロール、2,4−ジメチルピロール、2,5−ジメチルピロール、N−メチルピロール等)、オキサゾール誘導体(例えばオキサゾール、イソオキサゾール等)、チアゾール誘導体(例えばチアゾール、イソチアゾール等)、イミダゾール誘導体(例えばイミダゾール、4−メチルイミダゾール、4−メチル−2−フェニルイミダゾール等)、ピラゾール誘導体、フラザン誘導体、ピロリン誘導体(例えばピロリン、2−メチル−1−ピロリン等)、ピロリジン誘導体(例えばピロリジン、N−メチルピロリジン、ピロリジノン、N−メチルピロリドン等)、イミダゾリン誘導体、イミダゾリジン誘導体、ピリジン誘導体(例えばピリジン、メチルピリジン、エチルピリジン、プロピルピリジン、ブチルピリジン、4−(1−ブチルペンチル)ピリジン、ジメチルピリジン、トリメチルピリジン、トリエチルピリジン、フェニルピリジン、3−メチル−2−フェニルピリジン、4−tert−ブチルピリジン、ジフェニルピリジン、ベンジルピリジン、メトキシピリジン、ブトキシピリジン、ジメトキシピリジン、1−メチル−2−ピリジン、4−ピロリジノピリジン、1−メチル−4−フェニルピリジン、2−(1−エチルプロピル)ピリジン、アミノピリジン、ジメチルアミノピリジン等)、ピリダジン誘導体、ピリミジン誘導体、ピラジン誘導体、ピラゾリン誘導体、ピラゾリジン誘導体、ピペリジン誘導体、ピペラジン誘導体、モルホリン誘導体、インドール誘導体、イソインドール誘導体、1H−インダゾール誘導体、インドリン誘導体、キノリン誘導体(例えばキノリン、3−キノリンカルボニトリル等)、イソキノリン誘導体、シンノリン誘導体、キナゾリン誘導体、キノキサリン誘導体、フタラジン誘導体、プリン誘導体、プテリジン誘導体、カルバゾール誘導体、フェナントリジン誘導体、アクリジン誘導体、フェナジン誘導体、1,10−フェナントロリン誘導体、アデニン誘導体、アデノシン誘導体、グアニン誘導体、グアノシン誘導体、ウラシル誘導体、ウリジン誘導体等が例示される。
【0060】
更に、カルボキシ基を有する含窒素化合物としては、例えばアミノ安息香酸、インドールカルボン酸、アミノ酸誘導体(例えばニコチン酸、アラニン、アルギニン、アスパラギン酸、グルタミン酸、グリシン、ヒスチジン、イソロイシン、グリシルロイシン、ロイシン、メチオニン、フェニルアラニン、スレオニン、リジン、3−アミノピラジン−2−カルボン酸、メトキシアラニン等)等が例示され、スルホニル基を有する含窒素化合物として3−ピリジンスルホン酸、p−トルエンスルホン酸ピリジニウム等が例示され、ヒドロキシ基を有する含窒素化合物、ヒドロキシフェニル基を有する含窒素化合物、アルコール性含窒素化合物としては、2−ヒドロキシピリジン、アミノクレゾール、2,4−キノリンジオール、3−インドールメタノールヒドレート、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、N−エチルジエタノールアミン、N,N−ジエチルエタノールアミン、トリイソプロパノールアミン、2,2’−イミノジエタノール、2−アミノエタノ−ル、3−アミノ−1−プロパノール、4−アミノ−1−ブタノール、4−(2−ヒドロキシエチル)モルホリン、2−(2−ヒドロキシエチル)ピリジン、1−(2−ヒドロキシエチル)ピペラジン、1−[2−(2−ヒドロキシエトキシ)エチル]ピペラジン、ピペリジンエタノール、1−(2−ヒドロキシエチル)ピロリジン、1−(2−ヒドロキシエチル)−2−ピロリジノン、3−ピペリジノ−1,2−プロパンジオール、3−ピロリジノ−1,2−プロパンジオール、8−ヒドロキシユロリジン、3−クイヌクリジノール、3−トロパノール、1−メチル−2−ピロリジンエタノール、1−アジリジンエタノール、N−(2−ヒドロキシエチル)フタルイミド、N−(2−ヒドロキシエチル)イソニコチンアミド等が例示される。アミド誘導体としては、ホルムアミド、N−メチルホルムアミド、N,N−ジメチルホルムアミド、アセトアミド、N−メチルアセトアミド、N,N−ジメチルアセトアミド、プロピオンアミド、ベンズアミド等が例示される。イミド誘導体としては、フタルイミド、サクシンイミド、マレイミド等が例示される。
【0061】
更に、下記一般式(14)及び(15)で示される塩基性化合物を配合することもできる。
【0062】
【化12】
Figure 0004257480
(式中、R41,R42,R43,R47,R48はそれぞれ独立して直鎖状、分岐鎖状又は環状の炭素数1〜20のアルキレン基、R44,R45,R46,R49,R50は水素原子、炭素数1〜20のアルキル基又はアミノ基を示し、R44とR45、R45とR46、R44とR46、R44とR45とR46、R49とR50はそれぞれ結合して環を形成してもよい。S,T,Uはそれぞれ0〜20の整数を示す。但し、S,T,U=0のとき、R44,R45,R46,R49,R50は水素原子を含まない。)
【0063】
ここで、R41,R42,R43,R47,R48のアルキレン基としては、炭素数1〜20、好ましくは1〜10、更に好ましくは1〜8のものであり、具体的には、メチレン基、エチレン基、n−プロピレン基、イソプロピレン基、n−ブチレン基、イソブチレン基、n−ペンチレン基、イソペンチレン基、ヘキシレン基、ノニレン基、デシレン基、シクロペンチレン基、シクロへキシレン基等が挙げられる。
【0064】
また、R44,R45,R46,R49,R50のアルキル基としては、炭素数1〜20、好ましくは1〜8、更に好ましくは1〜6のものであり、これらは直鎖状、分岐状、環状のいずれであってもよい。具体的には、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、tert−ブチル基、n−ペンチル基、イソペンチル基、ヘキシル基、ノニル基、デシル基、ドデシル基、トリデシル基、シクロペンチル基、シクロヘキシル基等が挙げられる。
【0065】
更に、R44とR45、R45とR46、R44とR46、R44とR45とR46、R49とR50が環を形成する場合、その環の炭素数は1〜20、より好ましくは1〜8、更に好ましくは1〜6であり、またこれらの環は炭素数1〜6、特に1〜4のアルキル基が分岐していてもよい。
【0066】
S,T,Uはそれぞれ0〜20の整数であり、より好ましくは1〜10、更に好ましくは1〜8の整数である。
【0067】
上記式(14),(15)の化合物として具体的には、トリス{2−(メトキシメトキシ)エチル}アミン、トリス{2−(メトキシエトキシ)エチル}アミン、トリス[2−{(2−メトキシエトキシ)メトキシ}エチル]アミン、トリス{2−(2−メトキシエトキシ)エチル}アミン、トリス{2−(1−メトキシエトキシ)エチル}アミン、トリス{2−(1−エトキシエトキシ)エチル}アミン、トリス{2−(1−エトキシプロポキシ)エチル}アミン、トリス[2−{(2−ヒドロキシエトキシ)エトキシ}エチル]アミン、4,7,13,16,21,24−ヘキサオキサ−1,10−ジアザビシクロ[8.8.8]ヘキサコサン、4,7,13,18−テトラオキサ−1,10−ジアザビシクロ[8.5.5]エイコサン、1,4,10,13−テトラオキサ−7,16−ジアザビシクロオクタデカン、1−アザ−12−クラウン−4、1−アザ−15−クラウン−5、1−アザ−18−クラウン−6等が挙げられる。特に第三級アミン、アニリン誘導体、ピロリジン誘導体、ピリジン誘導体、キノリン誘導体、アミノ酸誘導体、ヒドロキシ基を有する含窒素化合物、ヒドロキシフェニル基を有する含窒素化合物、アルコール性含窒素化合物、アミド誘導体、イミド誘導体、トリス{2−(メトキシメトキシ)エチル}アミン、トリス{2−(2−メトキシエトキシ)エチル}アミン、トリス[2−{(2−メトキシエトキシ)メチル}エチル]アミン、1−アザ−15−クラウン−5等が好ましい。
【0068】
なお、上記塩基性化合物は1種を単独で又は2種以上を組み合わせて用いることができ、その配合量は全ベース樹脂100重量部に対して0.01〜2重量部、特に0.01〜1重量部が好適である。配合量が0.01重量部より少ないと配合効果がなく、2重量部を超えると感度が低下しすぎる場合がある。
【0069】
次に、(F)成分の溶解阻止剤としては、酸の作用によりアルカリ現像液への溶解性が変化する分子量3,000以下の化合物、特に2,500以下の低分子量のフェノールあるいはカルボン酸誘導体の一部あるいは全部を酸に不安定な置換基で置換した化合物を挙げることができる。
【0070】
分子量2,500以下のフェノールあるいはカルボン酸誘導体としては、ビスフェノールA、ビスフェノールH、ビスフェノールS、4,4−ビス(4’−ヒドロキシフェニル)吉草酸、トリス(4−ヒドロキシフェニル)メタン、1,1,1−トリス(4’−ヒドロキシフェニル)エタン、1,1,2−トリス(4’−ヒドロキシフェニル)エタン、フェノールフタレイン、チモールフタレイン等が挙げられ、酸に不安定な置換基としては、R2と同様のものが挙げられる。
【0071】
好適に用いられる溶解阻止剤の例としては、ビス(4−(2’−テトラヒドロピラニルオキシ)フェニル)メタン、ビス(4−(2’−テトラヒドロフラニルオキシ)フェニル)メタン、ビス(4−tert−ブトキシフェニル)メタン、ビス(4−tert−ブトキシカルボニルオキシフェニル)メタン、ビス(4−tert−ブトキシカルボニルメチルオキシフェニル)メタン、ビス(4−(1’−エトキシエトキシ)フェニル)メタン、ビス(4−(1’−エトキシプロピルオキシ)フェニル)メタン、2,2−ビス(4’−(2’’−テトラヒドロピラニルオキシ))プロパン、2,2−ビス(4’−(2’’−テトラヒドロフラニルオキシ)フェニル)プロパン、2,2−ビス(4’−tert−ブトキシフェニル)プロパン、2,2−ビス(4’−tert−ブトキシカルボニルオキシフェニル)プロパン、2,2−ビス(4−tert−ブトキシカルボニルメチルオキシフェニル)プロパン、2,2−ビス(4’−(1’’−エトキシエトキシ)フェニル)プロパン、2,2−ビス(4’−(1’’−エトキシプロピルオキシ)フェニル)プロパン、4,4−ビス(4’−(2’’−テトラヒドロピラニルオキシ)フェニル)吉草酸tert−ブチル、4,4−ビス(4’−(2’’−テトラヒドロフラニルオキシ)フェニル)吉草酸tert−ブチル、4,4−ビス(4’−tert−ブトキシフェニル)吉草酸tert−ブチル、4,4−ビス(4−tert−ブトキシカルボニルオキシフェニル)吉草酸tert−ブチル、4,4−ビス(4’−tert−ブトキシカルボニルメチルオキシフェニル)吉草酸tert−ブチル、4,4−ビス(4’−(1’’−エトキシエトキシ)フェニル)吉草酸tert−ブチル、4,4−ビス(4’−(1’’−エトキシプロピルオキシ)フェニル)吉草酸tert−ブチル、トリス(4−(2’−テトラヒドロピラニルオキシ)フェニル)メタン、トリス(4−(2’−テトラヒドロフラニルオキシ)フェニル)メタン、トリス(4−tert−ブトキシフェニル)メタン、トリス(4−tert−ブトキシカルボニルオキシフェニル)メタン、トリス(4−tert−ブトキシカルボニルオキシメチルフェニル)メタン、トリス(4−(1’−エトキシエトキシ)フェニル)メタン、トリス(4−(1’−エトキシプロピルオキシ)フェニル)メタン、1,1,2−トリス(4’−(2’’−テトラヒドロピラニルオキシ)フェニル)エタン、1,1,2−トリス(4’−(2’’−テトラヒドロフラニルオキシ)フェニル)エタン、1,1,2−トリス(4’−tert−ブトキシフェニル)エタン、1,1,2−トリス(4’−tert−ブトキシカルボニルオキシフェニル)エタン、1,1,2−トリス(4’−tert−ブトキシカルボニルメチルオキシフェニル)エタン、1,1,2−トリス(4’−(1’−エトキシエトキシ)フェニル)エタン、1,1,2−トリス(4’−(1’−エトキシプロピルオキシ)フェニル)エタン等が挙げられる。
【0072】
本発明のレジスト材料中の溶解阻止剤[(F)成分]の添加量としては、レジスト材料中の固形分100重量部に対して20重量部以下、好ましくは15重量部以下である。20重量部より多いとモノマー成分が増えるためレジスト材料の耐熱性が低下する。
【0073】
またネガ型レジスト材料における(D)成分の酸の作用により架橋構造を形成する酸架橋剤として、分子内に2個以上のヒドロキシメチル基、アルコキシメチル基、エポキシ基又はビニルエーテル基を有する化合物が挙げられ、置換グリコウリル誘導体、尿素誘導体、ヘキサ(メトキシメチル)メラミン等が化学増幅ネガ型レジスト材料の酸架橋剤として好適に用いられる。例えば、N,N,N’,N’−テトラメトキシメチル尿素とヘキサメトキシメチルメラミン、テトラヒドロキシメチル置換グリコールウリル類及びテトラメトキシメチルグリコールウリルのようなテトラアルコキシメチル置換グリコールウリル類、置換及び未置換ビス−ヒドロキシメチルフェノール類、ビスフェノールA等のフェノール性化合物とエピクロロヒドリン等の縮合物が挙げられる。特に好適な架橋剤は、1,3,5,7−テトラメトキシメチルグリコールウリルなどの1,3,5,7−テトラアルコキシメチルグリコールウリル又は1,3,5,7−テトラヒドロキシメチルグリコールウリル、2,6−ジヒドロキシメチルp−クレゾール、2,6−ジヒドロキシメチルフェノール、2,2’,6,6’−テトラヒドロキシメチル−ビスフェノールA及び1,4−ビス−[2−(2−ヒドロキシプロピル)]−ベンゼン、N,N,N’,N’−テトラメトキシメチル尿素とヘキサメトキシメチルメラミン等が挙げられる。添加量は任意であるがレジスト材料中の全固形分に対して1〜25重量部、好ましくは5〜15重量部である。これらは単独でも2種以上併用してもよい。
【0074】
本発明のレジスト材料には、上記成分以外に任意成分として塗布性を向上させるために慣用されている界面活性剤を添加することができる。なお、任意成分の添加量は、本発明の効果を妨げない範囲で通常量とすることができる。
【0075】
ここで、界面活性剤としては非イオン性のものが好ましく、パーフルオロアルキルポリオキシエチレンエタノール、フッ素化アルキルエステル、パーフルオロアルキルアミンオキサイド、含フッ素オルガノシロキサン系化合物等が挙げられる。例えばフロラード「FC−430」、「FC−431」(いずれも住友スリーエム(株)製)、サーフロン「S−141」、「S−145」、「S−381」、「S−383」(いずれも旭硝子(株)製)、ユニダイン「DS−401」、「DS−403」、「DS−451」(いずれもダイキン工業(株)製)、メガファック「F−8151」、「F−171」、「F−172」、「F−173」、「F−177」(いずれも大日本インキ工業(株)製)、「X−70−092」、「X−70−093」(いずれも信越化学工業(株)製)等を挙げることができる。好ましくはフロラード「FC−430」(住友スリーエム(株)製)、「X−70−093」(信越化学工業(株)製)が挙げられる。
【0076】
本発明のレジスト材料を使用してパターンを形成するには、公知のリソグラフィー技術を採用して行うことができ、例えばシリコンウエハー等の基板上にスピンコーティング等の手法で膜厚が0.1〜1.0μmとなるように塗布し、これをホットプレート上で60〜200℃、10秒〜10分間、好ましくは80〜150℃、30秒〜5分間プリベークする。次いで目的のパターンを形成するためのマスクを上記のレジスト膜上にかざし、波長300nm以下の遠紫外線、エキシマレーザー、X線等の高エネルギー線もしくは電子線を露光量1〜200mJ/cm2程度、好ましくは10〜100mJ/cm2程度となるように照射した後、ホットプレート上で60〜150℃、10秒〜5分間、好ましくは80〜130℃、30秒〜3分間ポストエクスポージャベーク(PEB)する。更に、0.1〜5%、好ましくは2〜3%のテトラメチルアンモニウムハイドロオキサイド(TMAH)等のアルカリ水溶液の現像液を用い、10秒〜3分間、好ましくは30秒〜2分間、浸漬(dip)法、パドル(puddle)法、スプレー(spray)法等の常法により現像することにより基板上に目的のパターンが形成される。なお、本発明材料は、特に高エネルギー線の中でも254〜120nmの遠紫外線又はエキシマレーザー、特に193nmのArF、157nmのF2、146nmのKr2、134nmのKrAr、126nmのAr2などのエキシマレーザー、X線及び電子線による微細パターンニングに最適である。また、上記範囲を上限及び下限から外れる場合は、目的のパターンを得ることができない場合がある。
【0077】
【発明の効果】
本発明のレジスト材料は、高エネルギー線に感応し、200nm以下、特には170nm以下の波長における感度、解像性、プラズマエッチング耐性に優れている。従って、本発明のレジスト材料は、これらの特性より、特にF2エキシマレーザーの露光波長での吸収が小さいレジスト材料となり得るもので、微細でしかも基板に対して垂直なパターンを容易に形成でき、このため超LSI製造用の微細パターン形成材料として好適である。
【0078】
【実施例】
以下、合成例及び実施例を示して本発明を具体的に説明するが、本発明は下記例に制限されるものではない。
【0079】
[合成例1] 4−フルオロフェノールノボラックの合成
1Lのフラスコ中に4−フルオロフェノール150g、37%ホルムアルデヒド水溶液121g、シュウ酸0.9gを仕込み、撹拌しながらフラスコを湯浴に浸し、内温を100℃に保ちながら12時間反応を行った。
得られたポリマーを精製するために、反応系にメチルイソブチルケトンを添加し、純水で十分洗浄後、溶媒を分離したところ、110gの4−フルオロフェノールノボラック(Mw:4,000)が得られた。
【0080】
[合成例2] 3−フルオロフェノールノボラックの合成
1Lのフラスコ中に3−フルオロフェノール150g、37%ホルムアルデヒド水溶液121g、シュウ酸0.9gを仕込み、撹拌しながらフラスコを湯浴に浸し、内温を100℃に保ちながら12時間反応を行った。
得られたポリマーを精製するために、反応系にメチルイソブチルケトンを添加し、純水で十分洗浄後、溶媒を分離したところ、103gの3−フルオロフェノールノボラック(Mw:3,800)が得られた。
【0081】
[合成例3] 3,5−ジフルオロフェノールノボラックの合成
1Lのフラスコ中に3,5−ジフルオロフェノール150g、37%ホルムアルデヒド水溶液121g、シュウ酸0.9gを仕込み、撹拌しながらフラスコを湯浴に浸し、内温を100℃に保ちながら12時間反応を行った。
得られたポリマーを精製するために、反応系にメチルイソブチルケトンを添加し、純水で十分洗浄後、溶媒を分離したところ、103gの3,5−ジフルオロフェノールノボラック(Mw:3,000)が得られた。
【0082】
[合成例4] 4−フルオロフェノールノボラックのエトキシエチル化
300mlのフラスコに4−フルオロフェノールノボラック20g、トリフルオロメタンスルホン酸0.6g、THF100mlを仕込んだ。室温で撹拌しながら、滴下漏斗よりエチルビニルエーテル2.8gを滴下し、室温で1時間熟成を行った。
反応系にトリエチルアミンを添加して反応を停止させ、溶媒を減圧下で留去した。得られた粗ポリマーをアセトン40gに溶かし、20gの酢酸を溶かした純水5L中に注いでポリマーを沈澱させた。得られたポリマーをアセトン40gに溶かし、純水5L中に注いでポリマーを沈澱させる操作を二回繰り返した後、重合体を分離し、乾燥させた。このようにして得られた15.5gのポリマー(Mw:4,200)は1H−NMRより4−フルオロフェノールノボラックの水酸基の21%がエトキシエチル化されていることがわかった。
【0083】
[合成例5] 4−フルオロフェノールノボラックのエトキシプロピル化
300mlのフラスコに4−フルオロフェノールノボラック20g、トリフルオロメタンスルホン酸0.6g、THF100mlを仕込んだ。室温で撹拌しながら、滴下漏斗よりエチルプロペニルエーテル3.2gを滴下し、室温で1時間熟成を行った。
反応系にトリエチルアミンを添加して反応を停止させ、溶媒を減圧下で留去した。得られた粗ポリマーをアセトン40gに溶かし、20gの酢酸を溶かした純水5L中に注いでポリマーを沈澱させた。得られたポリマーをアセトン40gに溶かし、純水5L中に注いでポリマーを沈澱させる操作を二回繰り返した後、重合体を分離し、乾燥させた。このようにして得られた14.0gのポリマー(Mw:4,400)は1H−NMRより4−フルオロフェノールノボラックの水酸基の19%がエトキシプロピル化されていることがわかった。
【0084】
[合成例6] 4−フルオロフェノールノボラックのテトラヒドロピラニル化
300mlのフラスコに4−フルオロフェノールノボラック20g、トリフルオロメタンスルホン酸0.6g、THF100mlを仕込んだ。室温で撹拌しながら、滴下漏斗より3,4−ジヒドロ−2H−ピラン3.2gを滴下し、室温で1時間熟成を行った。
反応系にトリエチルアミンを添加して反応を停止させ、溶媒を減圧下で留去した。得られた粗ポリマーをアセトン40gに溶かし、20gの酢酸を溶かした純水5L中に注いでポリマーを沈澱させた。得られたポリマーをアセトン40gに溶かし、純水5L中に注いでポリマーを沈澱させる操作を二回繰り返した後、重合体を分離し、乾燥させた。このようにして得られた14.5gのポリマー(Mw:4,500)は1H−NMRより4−フルオロフェノールノボラックの水酸基の18%がテトラヒドロピラニル化されていることがわかった。
【0085】
[合成例7] 3−フルオロフェノールノボラックのエトキシエチル化
300mlのフラスコに3−フルオロフェノールノボラック20g、トリフルオロメタンスルホン酸0.6g、THF100mlを仕込んだ。室温で撹拌しながら、滴下漏斗よりエチルビニルエーテル2.8gを滴下し、室温で1時間熟成を行った。
反応系にトリエチルアミンを添加して反応を停止させ、溶媒を減圧下で留去した。得られた粗ポリマーをアセトン40gに溶かし、20gの酢酸を溶かした純水5L中に注いでポリマーを沈澱させた。得られたポリマーをアセトン40gに溶かし、純水5L中に注いでポリマーを沈澱させる操作を二回繰り返した後、重合体を分離し、乾燥させた。このようにして得られた15.5gのポリマー(Mw:4,000)は1H−NMRより3−フルオロフェノールノボラックの水酸基の19%がエトキシエチル化されていることがわかった。
【0086】
[合成例8] 3−フルオロフェノールノボラックのエトキシプロピル化
300mlのフラスコに3−フルオロフェノールノボラック20g、トリフルオロメタンスルホン酸0.6g、THF100mlを仕込んだ。室温で撹拌しながら、滴下漏斗よりエチルプロペニルエーテル3.2gを滴下し、室温で1時間熟成を行った。
反応系にトリエチルアミンを添加して反応を停止させ、溶媒を減圧下で留去した。得られた粗ポリマーをアセトン40gに溶かし、20gの酢酸を溶かした純水5L中に注いでポリマーを沈澱させた。得られたポリマーをアセトン40gに溶かし、純水5L中に注いでポリマーを沈澱させる操作を二回繰り返した後、重合体を分離し、乾燥させた。このようにして得られた14.5gのポリマー(Mw:4,200)は1H−NMRより3−フルオロフェノールノボラックの水酸基の20%がエトキシプロピル化されていることがわかった。
【0087】
[合成例9] 3−フルオロフェノールノボラックのテトラヒドロピラニル化
300mlのフラスコに3−フルオロフェノールノボラック20g、トリフルオロメタンスルホン酸0.6g、THF100mlを仕込んだ。室温で撹拌しながら、滴下漏斗より3,4−ジヒドロ−2H−ピラン3.2gを滴下し、室温で1時間熟成を行った。
反応系にトリエチルアミンを添加して反応を停止させ、溶媒を減圧下で留去した。得られた粗ポリマーをアセトン40gに溶かし、20gの酢酸を溶かした純水5L中に注いでポリマーを沈澱させた。得られたポリマーをアセトン40gに溶かし、純水5L中に注いでポリマーを沈澱させる操作を二回繰り返した後、重合体を分離し、乾燥させた。このようにして得られた14.0gのポリマー(Mw:4,300)は1H−NMRより3−フルオロフェノールノボラックの水酸基の19%がテトラヒドロピラニル化されていることがわかった。
【0088】
[合成例10] 3,5−ジフルオロフェノールノボラックのエトキシプロピル化
300mlのフラスコに3−フルオロフェノールノボラック20g、トリフルオロメタンスルホン酸0.6g、THF100mlを仕込んだ。室温で撹拌しながら、滴下漏斗よりエチルプロペニルエーテル3.2gを滴下し、室温で1時間熟成を行った。
反応系にトリエチルアミンを添加して反応を停止させ、溶媒を減圧下で留去した。得られた粗ポリマーをアセトン40gに溶かし、20gの酢酸を溶かした純水5L中に注いでポリマーを沈澱させた。得られたポリマーをアセトン40gに溶かし、純水5L中に注いでポリマーを沈澱させる操作を二回繰り返した後、重合体を分離し、乾燥させた。このようにして得られた14.5gのポリマー(Mw:3,200)は1H−NMRより3−フルオロフェノールノボラックの水酸基の18%がエトキシプロピル化されていることがわかった。
【0089】
次に、上で得られたポリマー1gをプロピレングリコールモノメチルエーテルアセテート(PGMEA)10gに十分に溶解させ、0.2μmのフィルターで濾過して、ポリマー溶液を調製した。
一方、分子量10,000、分散度(=Mw/Mn)1.10の単分散ポリヒドロキシスチレンの水酸基の30%をテトラヒドロピラニル基で置換したポリマーを合成し、比較例ポリマー1とした。また、分子量15,000、分散度1.7のポリメチルメタクリレートを比較例ポリマー2、メタ/パラ比40/60で分子量9,000、分散度2.5のクレゾールノボラックポリマーを比較例ポリマー3とした。得られたポリマー1gをプロピレングリコールモノメチルエーテルアセテート20gに十分に溶解させ、0.1μmのフィルターで濾過して、ポリマー溶液を調製した。
これらのポリマー溶液をMgF2基板にスピンコーティング、ホットプレートを用いて100℃で90秒間ベークし、厚さ100nmのポリマー層をMgF2基板上に作成した。真空紫外光度計(日本分光製、VUV200S)を用いて248nm、193nm、157nmにおける透過率を測定した。結果を表1に示す。
【0090】
【表1】
Figure 0004257480
【0091】
[実施例、比較例]
上記ポリマー及び下記に示す成分を表2に示す量で用い、常法によりPGMEAに溶解させた溶液を0.1μmフィルターで濾過し、レジスト液を調製した。
次に、得られたレジスト液を、シリコンウエハーにDUV−30(日産化学製)を55nmの膜厚で成膜して、KrF光(248nm)で反射率を1%以下に抑えた基板上にスピンコーティングし、ホットプレートを用いて100℃で90秒間ベークし、レジストの厚みを300nmの厚さにした。
これをエキシマレーザーステッパー(ニコン社、NSR−S202A,NA−0.5、σ0.75、2/3輪帯照明)を用いて露光し、露光後直ちに110℃で90秒間ベークし、2.38%のテトラメチルアンモニウムヒドロキシドの水溶液で60秒間現像を行って、ポジ型のパターンを得た。
【0092】
得られたレジストパターンを次のように評価した。結果を表2,3に示す。
評価方法:
0.30μmのラインアンドスペースを1:1で解像する露光量を最適露光量(Eop)として、この露光量において分離しているラインアンドスペースの最小線幅を評価レジストの解像度とした。
【0093】
耐ドライエッチング性の試験では、レジストのスピンコート後のウエハーを、2系統の条件で評価した。
(1)CHF3/CF4系ガスでのエッチング試験
東京エレクトロン株式会社製ドライエッチング装置TE−8500Pを用い、エッチング前後のレジストの膜厚差を求めた。
エッチング条件は下記に示す通りである。
チャンバー圧力 300mmTorr
RFパワー 1300W
ギャップ 9mm
CHF3ガス流量 30sccm
CF4ガス流量 30sccm
Arガス流量 100sccm
時間 60sec
(2)Cl2/BCl3系ガスでのエッチング試験
日電アネルバ株式会社製ドライエッチング装置L−507D−Lを用い、エッチング前後のレジストの膜厚差を求めた。
エッチング条件は下記に示す通りである。
チャンバー圧力 300mmTorr
RFパワー 300W
ギャップ 9mm
Cl2ガス流量 30sccm
BCl3ガス流量 30sccm
CHF3ガス流量 100sccm
2ガス流量 2sccm
時間 360sec
【0094】
【化13】
Figure 0004257480
【0095】
【化14】
Figure 0004257480
【0096】
【表2】
Figure 0004257480
【0097】
【表3】
Figure 0004257480
【0098】
表1,2,3の結果より、本発明の高分子化合物を用いたレジスト材料は、F2エキシマレーザー(157nm)付近の波長における十分な透明性と、解像力と感度を満たし、エッチング後の膜厚差が小さいことより、優れた耐ドライエッチング性を有していることがわかった。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a polymer compound (fluorinated novolak resin) useful as a base polymer of a chemically amplified resist material suitable for a microfabrication technique, a chemically amplified resist material, and a pattern forming method using the same.
[0002]
[Prior art and problems to be solved by the invention]
With the high integration and high speed of LSI, pattern rule miniaturization is progressing rapidly. The background of rapid progress in miniaturization includes higher NA of projection lenses, improved performance of resist materials, and shorter wavelengths. In particular, the shortening of the wavelength from i-line (365 nm) to KrF (248 nm) has brought about a major change, and the mass production of 0.18 micron rule devices has become possible. A chemically amplified positive resist material using acid as a catalyst (described in JP-B-2-27660, JP-A-63-27829, etc.) has excellent characteristics for increasing the resolution and sensitivity of the resist material. It has become a mainstream resist material particularly for deep ultraviolet lithography.
[0003]
Resist materials for KrF excimer lasers are generally used in 0.3 micron processes, passed through the 0.25 micron rule, and are now applied to mass production of the 0.18 micron rule. Has also begun, and the momentum of miniaturization is increasingly accelerated. The shortening of the wavelength from KrF to ArF (193 nm) is expected to make the design rule finer to 0.13 μm or less, but the novolak and polyvinylphenol resins that have been used in the past are around 193 nm. Since it has very strong absorption, it cannot be used as a base resin for resist. In view of this, acrylic and cycloolefin-based alicyclic resins have been studied to ensure transparency and necessary dry etching resistance (Japanese Patent Laid-Open Nos. 9-73173 and 10-10739). JP-A-9-230595 and WO97 / 33198) can be expected to be further miniaturized to 0.10 μm or less.2Regarding (157 nm), it became more difficult to ensure transparency, the acrylic system did not transmit light at all, and the cycloolefin system having a carbonyl bond had strong absorption.
[0004]
The present invention has been made in view of the above circumstances, and is 300 nm or less, particularly F.2(157 nm), Kr2(146 nm), KrAr (134 nm), Ar2To provide a novel polymer compound useful as a base polymer of a chemically amplified resist material having excellent transmittance in vacuum ultraviolet light such as (126 nm), a chemically amplified resist material containing the same, and a pattern forming method using the resist material With the goal.
[0005]
Means for Solving the Problem and Embodiment of the Invention
As a result of intensive investigations to achieve the above object, the present inventor has achieved transparency and transparency by using a resin based on a fluorinated novolac resin containing a repeating unit represented by the following general formula (1). It has been found that a resist material ensuring alkali solubility can be obtained.
[0006]
[Chemical formula 2]
Figure 0004257480
(Wherein R1Is a hydrogen atom, a linear, branched or cyclic alkyl group having 1 to 20 carbon atoms or a fluorinated alkyl group. R2Is, A group represented by the following formulas (2) and (3), a tertiary alkyl group having 4 to 40 carbon atoms represented by the following formula (4), and an oxoalkyl group having 4 to 20 carbon atoms.An acid labile group, 0 ≦ p <4, 0 ≦ q <4, 0 ≦ r <4, 0 <s <4, 0 <t <4, 1 ≦ q + r <4, 2 ≦ p + q + r + s ≦ 4, 2 ≦ p + q + r + t ≦ 4. m and n are in the range of 0 <m <1, 0 <n <1, and m + n = 1. )
Embedded image
Figure 0004257480
(In formula (2), R 6 Is a tertiary alkyl group having 4 to 20 carbon atoms, each alkyl group is a trialkylsilyl group having 1 to 6 carbon atoms, an oxoalkyl group having 4 to 20 carbon atoms, or a group represented by the above general formula (3) . a is an integer of 0-6.
In formula (3), R 7 , R 8 Represents a hydrogen atom or a linear, branched or cyclic alkyl group having 1 to 18 carbon atoms. R 9 Represents a monovalent hydrocarbon group which may have a hetero atom such as an oxygen atom having 1 to 18 carbon atoms. R 7 And R 8 , R 7 And R 9 , R 8 And R 9 May form a ring, and in the case of forming a ring, R 7 , R 8 , R 9 Each represents a linear or branched alkylene group having 1 to 18 carbon atoms.
In formula (4), R Ten , R 11 , R 12 Is a linear, branched or cyclic monovalent hydrocarbon group having 1 to 20 carbon atoms and may contain heteroatoms such as oxygen, sulfur, nitrogen and fluorine, R Ten And R 11 , R Ten And R 12 , R 11 And R 12 And may combine with each other to form a ring. )
[0007]
That is, according to the study of the present inventor, in novolak and polyvinylphenol, the absorption is reduced to around 160 nm and the transmittance is slightly improved, but it is far from the practical level, and the double bond between carbonyl and carbon carbon is reduced. It has been found that this is a necessary condition for ensuring the transmittance. However, phenol with respect to acrylic exhibits excellent characteristics in etching resistance, alkali solubility and adhesion to the substrate, and further substituted with halogen, particularly fluorine-substituted, has an effect of improving transmittance and is practical. It has been found that a transmittance close to can be obtained.
[0008]
  Accordingly, the present invention provides the following polymer compound, chemically amplified resist material, and pattern formation method.
Claim 1:
  The high molecular compound containing the repeating unit shown by the said General formula (1).
Claim 2:
  A resist material comprising a polymer compound having a repeating unit represented by the general formula (1).
Claim 3:
(A) The polymer compound according to claim 1,
(B) an organic solvent,
(C) Acid generator
A chemically amplified positive resist material comprising:
Claim 4:
(A) The polymer compound according to claim 1,
(B) an organic solvent,
(C) an acid generator,
(D) Crosslinking agent
A chemically amplified negative resist material comprising:
Claim 5:
  Furthermore, the resist material of Claim 3 or 4 containing a basic compound.
Claim 6:
  The resist material according to claim 3, 4 or 5, further comprising a dissolution inhibitor.
Claim 7:
(1) applying a resist material according to any one of claims 2 to 6 on a substrate;
(2) Next, after the heat treatment, a step of exposing with a high energy beam or an electron beam having a wavelength of 300 nm or less through a photomask;
(3) A step of developing using a developer after heat treatment as necessary;
The pattern formation method characterized by including.
Claim 8:
  High energy rays are ArF (193 nm), F 2 (157 nm), Kr 2 (146 nm), KrAr (134 nm), Ar 2 The pattern forming method according to claim 7, wherein the pattern forming method is selected from (126 nm).
[0009]
Hereinafter, the present invention will be described in more detail.
The polymer compound of the present invention is a fluorinated novolak resin having a repeating unit represented by the following general formula (1).
[0010]
[Chemical 3]
Figure 0004257480
[0011]
R1Is a hydrogen atom, a linear, branched or cyclic alkyl group having 1 to 20 carbon atoms or a fluorinated alkyl group.
[0012]
In this case, R1As the linear, branched or cyclic alkyl group having 1 to 20 carbon atoms, methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, sec-butyl group, tert-butyl group, cyclopentyl group Cyclohexyl group, 2-ethylhexyl group, n-octyl group and the like, and those having 1 to 12 carbon atoms, particularly those having 1 to 10 carbon atoms are preferable. The fluorinated alkyl group is one in which part or all of the hydrogen atoms of the alkyl group are substituted with fluorine atoms, and includes a trifluoromethyl group, a 2,2,2-trifluoroethyl group, 3, Examples include 3,3-trifluoropropyl group and 1,1,2,3,3,3-hexafluoropropyl group.
[0013]
R2Is an acid labile group, and various acid labile groups are selected. Particularly, groups represented by the following formulas (2) and (3), and those having 4 to 40 carbon atoms represented by the following formula (4) A tertiary alkyl group, a C1-C6 trialkylsilyl group, a C4-C20 oxoalkyl group, and the like are preferable.
[0014]
[Formula 4]
Figure 0004257480
In formula (2), R6Is a tertiary alkyl group having 4 to 20 carbon atoms, preferably 4 to 15 carbon atoms, each alkyl group is a trialkylsilyl group having 1 to 6 carbon atoms, an oxoalkyl group having 4 to 20 carbon atoms, or the above general formula (3) Specific examples of the tertiary alkyl group include tert-butyl group, tert-amyl group, 1,1-diethylpropyl group, 1-ethylcyclopentyl group, 1-butylcyclopentyl group, and 1-ethyl group. Specific examples of the trialkylsilyl group include cyclohexyl group, 1-butylcyclohexyl group, 1-ethyl-2-cyclopentenyl group, 1-ethyl-2-cyclohexenyl group, 2-methyl-2-adamantyl group and the like. Includes a trimethylsilyl group, a triethylsilyl group, a dimethyl-tert-butylsilyl group, and the like. Specific examples of the oxoalkyl group include It is 3-oxo-cyclohexyl group, 4-methyl-2-oxooxan-4-yl group, and 5-methyl-2-oxooxolan-5-yl group. a is an integer of 0-6.
[0015]
In formula (3), R7, R8Represents a hydrogen atom or a linear, branched or cyclic alkyl group having 1 to 18 carbon atoms, preferably 1 to 10 carbon atoms, specifically a methyl group, an ethyl group, a propyl group, an isopropyl group, or an n-butyl group. , Sec-butyl group, tert-butyl group, cyclopentyl group, cyclohexyl group, 2-ethylhexyl group, n-octyl group and the like. R9Represents a monovalent hydrocarbon group which may have a hetero atom such as an oxygen atom having 1 to 18 carbon atoms, preferably 1 to 10 carbon atoms, a linear, branched or cyclic alkyl group, and these hydrogen atoms In which a part of them is substituted with a hydroxyl group, an alkoxy group, an oxo group, an amino group, an alkylamino group, or the like. Specific examples include the following substituted alkyl groups.
[0016]
[Chemical formula 5]
Figure 0004257480
[0017]
R7And R8, R7And R9, R8And R9May form a ring, and in the case of forming a ring, R7, R8, R9Each represents a linear or branched alkylene group having 1 to 18 carbon atoms, preferably 1 to 10 carbon atoms.
[0018]
Specific examples of the acid labile group of the above formula (2) include tert-butoxycarbonyl group, tert-butoxycarbonylmethyl group, tert-amyloxycarbonyl group, tert-amyloxycarbonylmethyl group, 1,1-diethyl. Propyloxycarbonyl group, 1,1-diethylpropyloxycarbonylmethyl group, 1-ethylcyclopentyloxycarbonyl group, 1-ethylcyclopentyloxycarbonylmethyl group, 1-ethyl-2-cyclopentenyloxycarbonyl group, 1-ethyl-2 Examples include -cyclopentenyloxycarbonylmethyl group, 1-ethoxyethoxycarbonylmethyl group, 2-tetrahydropyranyloxycarbonylmethyl group, 2-tetrahydrofuranyloxycarbonylmethyl group and the like.
[0019]
Among the acid labile groups represented by the above formula (3), specific examples of the linear or branched groups include the following groups.
[0020]
[Chemical 6]
Figure 0004257480
[0021]
Among the acid labile groups represented by the above formula (3), specific examples of cyclic groups include tetrahydrofuran-2-yl group, 2-methyltetrahydrofuran-2-yl group, tetrahydropyran-2-yl group, 2 -A methyltetrahydropyran-2-yl group etc. can be illustrated. As the formula (3), an ethoxyethyl group, a butoxyethyl group, and an ethoxypropyl group are preferable.
[0022]
Next, in formula (4), RTen, R11, R12Is a monovalent hydrocarbon group such as a linear, branched or cyclic alkyl group having 1 to 20 carbon atoms, and may contain heteroatoms such as oxygen, sulfur, nitrogen, fluorine, RTenAnd R11, RTenAnd R12, R11And R12And may combine with each other to form a ring.
[0023]
As the tertiary alkyl group represented by the formula (4), tert-butyl group, triethylcarbyl group, 1-ethylnorbornyl group, 1-methylcyclohexyl group, 1-ethylcyclopentyl group, 2- (2-methyl) Examples thereof include an adamantyl group, a 2- (2-ethyl) adamantyl group, a tert-amyl group, and the like.
[0024]
Moreover, as a tertiary alkyl group, Formula (4-1)-(4-16) shown below can also be specifically mentioned.
[0025]
[Chemical 7]
Figure 0004257480
[0026]
Where R13, R14Represents a linear, branched or cyclic alkyl group having 1 to 6 carbon atoms, specifically, methyl, ethyl, propyl, isopropyl, n-butyl, sec-butyl, n-pentyl. Group, n-hexyl group, cyclopropyl group, cyclopropylmethyl group and the like. R15Represents a monovalent hydrocarbon group such as a hydrogen atom, a monovalent hydrocarbon group which may contain a hetero atom having 1 to 6 carbon atoms, or an alkyl group which may have a hetero atom having 1 to 6 carbon atoms. Examples of the hetero atom include an oxygen atom, a sulfur atom, and a nitrogen atom. S-, -S (= O)-, -NH2, -NHR, -NR2, -NH-, -NR-.
[0027]
R16Examples thereof include a hydrogen atom, or an alkyl group having 1 to 20 carbon atoms, particularly 1 to 16 carbon atoms, a hydroxyalkyl group, an alkoxyalkyl group, an alkoxy group or an alkoxyalkyl group, and these are linear or branched. Any of an annular shape may be used. Specifically, methyl group, hydroxymethyl group, ethyl group, hydroxyethyl group, propyl group, isopropyl group, n-butyl group, sec-butyl group, n-pentyl group, n-hexyl group, methoxy group, methoxymethoxy Group, ethoxy group, tert-butoxy group and the like.
[0028]
R2Examples of the trialkylsilyl group in which each alkyl group used as the acid labile group has 1 to 6 carbon atoms include trimethylsilyl group, triethylsilyl group, and tert-butyldimethylsilyl group.
[0029]
Examples of the oxoalkyl group having 4 to 20 carbon atoms include a 3-oxocyclohexyl group and a group represented by the following formula.
[0030]
[Chemical 8]
Figure 0004257480
[0031]
In the formula (1), 0 ≦ p <4, 0 ≦ q <4, 0 ≦ r <4, 0 <s <4, 0 <t <4, 1 ≦ q + r <4, 2 ≦ p + q + r + s ≦ 4, It is an integer of 2 ≦ p + q + r + t ≦ 4 and contains at least one fluorine atom in each unit. M and n are in the range of 0 <m <1, 0 <n <1, and m + n = 1.
[0032]
The polymer compound of the present invention has the above units, but may further contain other copolymer units.
In this case, when another unit is represented by A, the novolak resin of the present invention has a repeating unit represented by the following formula, and 0 ≦ a <1 and m + n + a = 1 in this formula.
[0033]
[Chemical 9]
Figure 0004257480
[0034]
The polymer compound of the present invention preferably has a weight average molecular weight of 1,000 to 1,000,000, particularly 2,000 to 100,000.
[0035]
When the above polymer compound is produced, it can be synthesized by heating a fluorinated hydroxyaromatic compound such as fluorinated phenol or cresol and an aldehyde under an acid catalyst, followed by addition condensation.
[0036]
Here, as the fluorinated aromatic compound, 2-fluorophenol, 3-fluorophenol, 4-fluorophenol, 2-fluoro-5-methylphenol, 4-fluoro-2-methylphenol, 4-fluoro- 3-methylphenol, 2-fluoro-5- (trifluoromethyl) phenol, 2,3-difluorophenol, 2,4-difluorophenol, 2,5-difluorophenol, 2,6-difluorophenol, 3,4- Difluorophenol, 3,5-difluorophenol, 2,3,4-trifluorophenol, 2,3,6-trifluorophenol, 2,4,5-trifluorophenol, 2,4,6-trifluorophenol, 3-fluorocatechol, tetrafluorocatechol, 3- (trifluoro Methoxy) phenol, 4- (trifluoromethoxy) phenol, 2,3,5,6-tetrafluorophenol, pentafluorophenol, 3,5-bis (trifluoromethyl) phenol, 4,4 ′-(hexafluoroisopropyl Redene) diphenol, 3,3′-difluoro [(1,1′-diphenyl) -4,4′-diol], 3,3 ′, 5,5′-tetrafluoro [(1,1′-diphenyl) -4,4'-diol], 4,4 '-[(4-fluorophenyl) methylene] bisphenol, 4,4'-methylenebis [2-fluorophenol], 2,2'-methylenebis [4-fluorophenol] 4,4′-isopropylidenebis [2-fluorophenol], cyclohexylidenebis [2-fluorophenol], 4,4 -(Phenylmethylene) bis [2-fluorophenol], 4,4 '-(9Hfluorene-9-ylidene) bis [2-fluorophenol], 4,4'-(diphenylmethylene) bis [2-fluorophenol] 4,4 ′-[(4-fluorophenyl) methylene] bis [2-fluorophenol], 4,4′-methylenebis [2,6-difluorophenol], 4,4 ′-(phenylmethylene) bis [2 , 6-difluorophenol], 4,4 ′-(diphenylmethylene) bis [2,6-difluorophenol], 4,4 ′-(4-fluorophenyl) methylenebis [2,6-difluorophenol], 2,6 -Bis [(2-hydroxy-5-fluorophenyl) methyl] -4-fluorophenol, 2,6-bis [(4-hydroxy-3 -Fluorophenyl) methyl] -4-fluorophenol, 2,4-bis [(3-fluoro-4-hydroxyphenyl) methyl] -6-methylphenol, 4,4 '-[1- [4- [1- (4-hydroxy-3-fluorophenyl) -1-methylethyl] phenyl] ethylidene] bisphenol and the like. These hydroxy aromatic compounds can be used alone or in combination.
[0037]
Examples of the aldehydes include formaldehyde, paraformaldehyde, acetaldehyde, propylaldehyde, benzaldehyde, phenylacetaldehyde, α-phenylpropylaldehyde, β-phenylpropylaldehyde, o-chlorobenzaldehyde, m-chlorobenzaldehyde, p-chlorobenzaldehyde, Examples thereof include o-methylbenzaldehyde, m-methylbenzaldehyde, p-methylbenzaldehyde, p-ethylbenzaldehyde, pn-butylbenzaldehyde and the like.
Aldehydes are usually used in a proportion of 0.7 to 3 mol, preferably 1 to 2 mol, per 1 mol of fluorinated hydroxyaromatic.
[0038]
As the acid catalyst, inorganic acids such as hydrochloric acid, nitric acid and sulfuric acid, organic acids such as formic acid, succinic acid and acetic acid, and metal salts thereof are used.
The amount of these acid catalysts used is preferably 0 to 0.5 mol with respect to 1 mol in total of the fluorinated hydroxyaromatic compound and aldehydes. In the condensation reaction, water or a hydrophilic solvent for forming a homogeneous system, specifically, alcohols such as methanol, ethanol, propanol and butanol, cyclic ethers such as tetrahydrofuran and dioxane, and the like can be used.
[0039]
Although the temperature of a condensation reaction can be adjusted suitably, it is 10-200 degreeC normally, Preferably it is 50-150 degreeC.
[0040]
It has been reported that novolak resins usually have a broad molecular weight distribution after polymerization and are improved in resolution by narrow dispersion or tandem type (Proc. SPIE Vol. 1466 p132, 1991). Narrowing is not particularly a problem. As a method of fractionation, there are a method of fractionating by dissolving a resin in a good solvent and adding a poor solvent or adding it into a poor solvent to cause crystallization, a method of fractionating by washing with methanol or alkaline water, etc. However, there is no particular limitation to these methods.
[0041]
The fluorinated novolak resin of the present invention can further increase the transmittance by a hydrogenation reaction.
R2The acid labile group can be introduced according to a conventional method.
[0042]
The polymer compound of the present invention can be used as a resist material, particularly as a chemically amplified resist material.
[0043]
Therefore, the present invention
[I] (A) the above polymer compound,
(B) an organic solvent,
(C) Acid generator
A chemically amplified positive resist material, comprising:
[II] (A) the above polymer compound,
(B) an organic solvent,
(C) an acid generator,
(D) Crosslinking agent
Chemically amplified negative resist material characterized by containing
I will provide a.
[0044]
In this case, these resist materials
(E) a basic compound,
(F) Dissolution inhibitor
May be blended.
[0045]
Here, the organic solvent of the component (B) used in the present invention may be any organic solvent that can dissolve the acid generator, the base resin (the polymer compound of the present invention), the dissolution inhibitor, and the like. . Examples of such an organic solvent include ketones such as cyclohexanone and methyl-2-n-amyl ketone, 3-methoxybutanol, 3-methyl-3-methoxybutanol, 1-methoxy-2-propanol, and 1-ethoxy-2. -Alcohols such as propanol, propylene glycol monomethyl ether, ethylene glycol monomethyl ether, propylene glycol monoethyl ether, ethylene glycol monoethyl ether, propylene glycol dimethyl ether, diethylene glycol dimethyl ether, and other ethers, propylene glycol monomethyl ether acetate, propylene glycol monoethyl Ether acetate, ethyl lactate, ethyl pyruvate, butyl acetate, methyl 3-methoxypropionate, 3-ethoxy Esters such as ethyl lopionate, tert-butyl acetate, tert-butyl propionate, propylene glycol mono-tert-butyl ether acetate, etc. are used, and one of these may be used alone or in combination of two or more. However, it is not limited to these. In the present invention, among these organic solvents, diethylene glycol dimethyl ether, 1-ethoxy-2-propanol, and ethyl lactate, which are most excellent in solubility of the acid generator in the resist component, as well as propylene glycol monomethyl ether acetate, which is a safety solvent, are used. And mixed solvents thereof are preferably used.
[0046]
In addition, the usage-amount of an organic solvent is 200-5,000 weight part with respect to 100 weight part of base resins, especially 400-3,000 weight part.
[0047]
As the acid generator of the component (C), an onium salt of the following general formula (11), a diazomethane derivative of the formula (12), a glyoxime derivative of the formula (13), a β-ketosulfone derivative, a disulfone derivative, a nitrobenzyl sulfonate derivative, Examples thereof include sulfonic acid ester derivatives and imido-yl sulfonate derivatives.
[0048]
(R30)bM+K-            (11)
(However, R30Represents a linear, branched or cyclic alkyl group having 1 to 12 carbon atoms, an aryl group having 6 to 12 carbon atoms or an aralkyl group having 7 to 12 carbon atoms;+Represents iodonium, sulfonium, K-Represents a non-nucleophilic counter ion, and b is 2 or 3. )
[0049]
R30Examples of the alkyl group include a methyl group, an ethyl group, a propyl group, a butyl group, a cyclohexyl group, a 2-oxocyclohexyl group, a norbornyl group, and an adamantyl group. As the aryl group, an alkoxyphenyl group such as a phenyl group, p-methoxyphenyl group, m-methoxyphenyl group, o-methoxyphenyl group, ethoxyphenyl group, p-tert-butoxyphenyl group, m-tert-butoxyphenyl group, Examples thereof include alkylphenyl groups such as 2-methylphenyl group, 3-methylphenyl group, 4-methylphenyl group, ethylphenyl group, 4-tert-butylphenyl group, 4-butylphenyl group, and dimethylphenyl group. Examples of the aralkyl group include a benzyl group and a phenethyl group. K-Examples of non-nucleophilic counter ions include halide ions such as chloride ions and bromide ions, triflate, fluoroalkyl sulfonates such as 1,1,1-trifluoroethanesulfonate, and nonafluorobutanesulfonate, tosylate, and benzenesulfonate. -Aryl sulfonates such as fluorobenzene sulfonate and 1,2,3,4,5-pentafluorobenzene sulfonate, and alkyl sulfonates such as mesylate and butane sulfonate.
[0050]
[Chemical Formula 10]
Figure 0004257480
(However, R31, R32Represents a linear, branched or cyclic alkyl group or halogenated alkyl group having 1 to 12 carbon atoms, an aryl group having 6 to 12 carbon atoms, a halogenated aryl group or an aralkyl group having 7 to 12 carbon atoms. )
[0051]
R31, R32Examples of the alkyl group include a methyl group, an ethyl group, a propyl group, a butyl group, an amyl group, a cyclopentyl group, a cyclohexyl group, a norbornyl group, and an adamantyl group. Examples of the halogenated alkyl group include a trifluoromethyl group, a 1,1,1-trifluoroethyl group, a 1,1,1-trichloroethyl group, and a nonafluorobutyl group. As the aryl group, an alkoxyphenyl group such as a phenyl group, p-methoxyphenyl group, m-methoxyphenyl group, o-methoxyphenyl group, ethoxyphenyl group, p-tert-butoxyphenyl group, m-tert-butoxyphenyl group, Examples thereof include alkylphenyl groups such as 2-methylphenyl group, 3-methylphenyl group, 4-methylphenyl group, ethylphenyl group, 4-tert-butylphenyl group, 4-butylphenyl group, and dimethylphenyl group. Examples of the halogenated aryl group include a fluorobenzene group, a chlorobenzene group, and 1,2,3,4,5-pentafluorobenzene group. Examples of the aralkyl group include a benzyl group and a phenethyl group.
[0052]
Embedded image
Figure 0004257480
(However, R33, R34, R35Represents a linear, branched or cyclic alkyl group or halogenated alkyl group having 1 to 12 carbon atoms, an aryl group or halogenated aryl group having 6 to 12 carbon atoms, or an aralkyl group having 7 to 12 carbon atoms. R34, R35May be bonded to each other to form a cyclic structure.34, R35Each represents a linear or branched alkylene group having 1 to 6 carbon atoms. )
[0053]
R33, R34, R35As the alkyl group, halogenated alkyl group, aryl group, halogenated aryl group and aralkyl group,31, R32And the same groups as described above. R34, R35Examples of the alkylene group include a methylene group, an ethylene group, a propylene group, a butylene group, and a hexylene group.
[0054]
Specifically, for example, trifluoromethanesulfonic acid diphenyliodonium, trifluoromethanesulfonic acid (p-tert-butoxyphenyl) phenyliodonium, p-toluenesulfonic acid diphenyliodonium, p-toluenesulfonic acid (p-tert-butoxyphenyl) phenyl Iodonium, triphenylsulfonium trifluoromethanesulfonate, trifluoromethanesulfonate (p-tert-butoxyphenyl) diphenylsulfonium, bis (p-tert-butoxyphenyl) phenylsulfonium trifluoromethanesulfonate, tris (p-tert) trifluoromethanesulfonate -Butoxyphenyl) sulfonium, p-toluenesulfonic acid triphenylsulfonium, p-toluenesulfonic acid (pt rt-butoxyphenyl) diphenylsulfonium, bis (p-tert-butoxyphenyl) phenylsulfonium p-toluenesulfonate, tris (p-tert-butoxyphenyl) sulfonium p-toluenesulfonate, triphenylsulfonium nonafluorobutanesulfonate, Triphenylsulfonium butanesulfonate, trimethylsulfonium trifluoromethanesulfonate, trimethylsulfonium p-toluenesulfonate, cyclohexylmethyl (2-oxocyclohexyl) sulfonium trifluoromethanesulfonate, cyclohexylmethyl (2-oxocyclohexyl) sulfonium p-toluenesulfonate , Dimethylphenylsulfonium trifluoromethanesulfonate, dimethylphenol p-toluenesulfonate Onyl salts such as nylsulfonium, dicyclohexylphenylsulfonium trifluoromethanesulfonate, dicyclohexylphenylsulfonium p-toluenesulfonate, bis (benzenesulfonyl) diazomethane, bis (p-toluenesulfonyl) diazomethane, bis (xylenesulfonyl) diazomethane, bis (cyclohexyl) Sulfonyl) diazomethane, bis (cyclopentylsulfonyl) diazomethane, bis (n-butylsulfonyl) diazomethane, bis (isobutylsulfonyl) diazomethane, bis (sec-butylsulfonyl) diazomethane, bis (n-propylsulfonyl) diazomethane, bis (isopropylsulfonyl) Diazomethane, bis (tert-butylsulfonyl) diazomethane, bis (n-amylsulfonyl) ) Diazomethane, bis (isoamylsulfonyl) diazomethane, bis (sec-amylsulfonyl) diazomethane, bis (tert-amylsulfonyl) diazomethane, 1-cyclohexylsulfonyl-1- (tert-butylsulfonyl) diazomethane, 1-cyclohexylsulfonyl-1- Diazomethane derivatives such as (tert-amylsulfonyl) diazomethane, 1-tert-amylsulfonyl-1- (tert-butylsulfonyl) diazomethane, bis-o- (p-toluenesulfonyl) -α-dimethylglyoxime, bis-o- (P-toluenesulfonyl) -α-diphenylglyoxime, bis-o- (p-toluenesulfonyl) -α-dicyclohexylglyoxime, bis-o- (p-toluenesulfonyl) -2,3-pentanedi Nglyoxime, bis-o- (p-toluenesulfonyl) -2-methyl-3,4-pentanedione glyoxime, bis-o- (n-butanesulfonyl) -α-dimethylglyoxime, bis-o- (n- Butanesulfonyl) -α-diphenylglyoxime, bis-o- (n-butanesulfonyl) -α-dicyclohexylglyoxime, bis-o- (n-butanesulfonyl) -2,3-pentanedioneglyoxime, bis-o -(N-butanesulfonyl) -2-methyl-3,4-pentanedione glyoxime, bis-o- (methanesulfonyl) -α-dimethylglyoxime, bis-o- (trifluoromethanesulfonyl) -α-dimethylglyme Oxime, bis-o- (1,1,1-trifluoroethanesulfonyl) -α-dimethylglyoxime, bis o- (tert-butanesulfonyl) -α-dimethylglyoxime, bis-o- (perfluorooctanesulfonyl) -α-dimethylglyoxime, bis-o- (cyclohexanesulfonyl) -α-dimethylglyoxime, bis-o -(Benzenesulfonyl) -α-dimethylglyoxime, bis-o- (p-fluorobenzenesulfonyl) -α-dimethylglyoxime, bis-o- (p-tert-butylbenzenesulfonyl) -α-dimethylglyoxime, Glyoxime derivatives such as bis-o- (xylenesulfonyl) -α-dimethylglyoxime, bis-o- (camphorsulfonyl) -α-dimethylglyoxime, 2-cyclohexylcarbonyl-2- (p-toluenesulfonyl) propane, 2 -Isopropylcarbonyl-2- (p-tolue Sulfonyl) propane and other β-ketosulfone derivatives, diphenyldisulfone, dicyclohexyldisulfone and other disulfone derivatives, p-toluenesulfonic acid 2,6-dinitrobenzyl, p-toluenesulfonic acid 2,4-dinitrobenzyl and other nitrobenzylsulfonate derivatives, Sulfonic acid ester derivatives such as 1,2,3-tris (methanesulfonyloxy) benzene, 1,2,3-tris (trifluoromethanesulfonyloxy) benzene, 1,2,3-tris (p-toluenesulfonyloxy) benzene Phthalimido-yl-triflate, phthalimido-yl-tosylate, 5-norbornene-2,3-dicarboximido-yl-triflate, 5-norbornene-2,3-dicarboximido-yl-tosylate, 5-norbol Imido-yl-sulfonate derivatives such as 2-phenylcarboxyl-yl-n-butylsulfonate, triphenylsulfonium trifluoromethanesulfonate, trifluoromethanesulfonic acid (p-tert-butoxyphenyl) Diphenylsulfonium, trifluoromethanesulfonic acid tris (p-tert-butoxyphenyl) sulfonium, p-toluenesulfonic acid triphenylsulfonium, p-toluenesulfonic acid (p-tert-butoxyphenyl) diphenylsulfonium, p-toluenesulfonic acid tris ( Onium salts such as p-tert-butoxyphenyl) sulfonium, bis (benzenesulfonyl) diazomethane, bis (p-toluenesulfonyl) diazomethane, bis (cyclohexylsulfo) Lu) diazomethane, bis (n-butylsulfonyl) diazomethane, bis (isobutylsulfonyl) diazomethane, bis (sec-butylsulfonyl) diazomethane, bis (n-propylsulfonyl) diazomethane, bis (isopropylsulfonyl) diazomethane, bis (tert-butyl) Glyoxime derivatives such as diazomethane derivatives such as (sulfonyl) diazomethane, bis-o- (p-toluenesulfonyl) -α-dimethylglyoxime, bis-o- (n-butanesulfonyl) -α-dimethylglyoxime are preferably used. In addition, the said acid generator can be used individually by 1 type or in combination of 2 or more types. An onium salt is excellent in the effect of improving rectangularity, and a diazomethane derivative and a glyoxime derivative are excellent in a standing wave reducing effect. However, by combining both, the profile can be finely adjusted.
[0055]
The blending amount of the acid generator is preferably 0.2 to 15 parts by weight, particularly 0.5 to 8 parts by weight with respect to 100 parts by weight of the total base resin. The amount of acid generated is small and the sensitivity and resolution may be inferior, and if it exceeds 15 parts by weight, the transmittance of the resist may be lowered and the resolution may be inferior.
[0056]
As the basic compound of component (E), a compound capable of suppressing the diffusion rate when the acid generated from the acid generator diffuses into the resist film is suitable. By blending such a basic compound, The resolution of acid can be improved by suppressing the diffusion rate of acid in the resist film, the sensitivity change after exposure can be suppressed, the substrate and environment dependency can be reduced, and the exposure margin and pattern profile can be improved. (JP-A-5-232706, JP-A-5-249683, JP-A-5-158239, JP-A-5-24962, JP-A-5-257282, JP-A-5-289322, JP-A-5-289340, etc.).
[0057]
Examples of such basic compounds include primary, secondary, and tertiary aliphatic amines, hybrid amines, aromatic amines, heterocyclic amines, nitrogen-containing compounds having a carboxy group, and sulfonyl groups. A nitrogen-containing compound having a hydroxy group, a nitrogen-containing compound having a hydroxy group, a nitrogen-containing compound having a hydroxyphenyl group, an alcoholic nitrogen-containing compound, an amide derivative, an imide derivative, and the like. Particularly, an aliphatic amine is preferably used.
[0058]
Specifically, primary aliphatic amines include ammonia, methylamine, ethylamine, n-propylamine, isopropylamine, n-butylamine, isobutylamine, sec-butylamine, tert-butylamine, pentylamine, tert- Amylamine, cyclopentylamine, hexylamine, cyclohexylamine, heptylamine, octylamine, nonylamine, decylamine, dodecylamine, cetylamine, methylenediamine, ethylenediamine, tetraethylenepentamine, etc. are exemplified as secondary aliphatic amines. Dimethylamine, diethylamine, di-n-propylamine, diisopropylamine, di-n-butylamine, diisobutylamine, di-sec-butylamine, dipentylamine, disi Lopentylamine, dihexylamine, dicyclohexylamine, diheptylamine, dioctylamine, dinonylamine, didecylamine, didodecylamine, dicetylamine, N, N-dimethylmethylenediamine, N, N-dimethylethylenediamine, N, N-dimethyltetraethylenepenta Examples of tertiary aliphatic amines include trimethylamine, triethylamine, tri-n-propylamine, triisopropylamine, tri-n-butylamine, triisobutylamine, tri-sec-butylamine, and tripentylamine. , Tricyclopentylamine, trihexylamine, tricyclohexylamine, triheptylamine, trioctylamine, trinonylamine, tridecylamine, tridodecylamine, Examples include cetylamine, N, N, N ′, N′-tetramethylmethylenediamine, N, N, N ′, N′-tetramethylethylenediamine, N, N, N ′, N′-tetramethyltetraethylenepentamine and the like. Is done.
[0059]
Examples of hybrid amines include dimethylethylamine, methylethylpropylamine, benzylamine, phenethylamine, and benzyldimethylamine. Specific examples of aromatic amines and heterocyclic amines include aniline derivatives (eg, aniline, N-methylaniline, N-ethylaniline, N-propylaniline, N, N-dimethylaniline, 2-methylaniline, 3- Methylaniline, 4-methylaniline, ethylaniline, propylaniline, trimethylaniline, 2-nitroaniline, 3-nitroaniline, 4-nitroaniline, 2,4-dinitroaniline, 2,6-dinitroaniline, 3,5- Dinitroaniline, N, N-dimethyltoluidine, etc.), diphenyl (p-tolyl) amine, methyldiphenylamine, triphenylamine, phenylenediamine, naphthylamine, diaminonaphthalene, pyrrole derivatives (eg pyrrole, 2H-pyrrole, 1-methylpyrrole, 2,4-dim Lupyrrole, 2,5-dimethylpyrrole, N-methylpyrrole, etc.), oxazole derivatives (eg oxazole, isoxazole etc.), thiazole derivatives (eg thiazole, isothiazole etc.), imidazole derivatives (eg imidazole, 4-methylimidazole, 4 -Methyl-2-phenylimidazole, etc.), pyrazole derivatives, furazane derivatives, pyrroline derivatives (eg pyrroline, 2-methyl-1-pyrroline etc.), pyrrolidine derivatives (eg pyrrolidine, N-methylpyrrolidine, pyrrolidinone, N-methylpyrrolidone etc.) ), Imidazoline derivatives, imidazolidine derivatives, pyridine derivatives (eg pyridine, methylpyridine, ethylpyridine, propylpyridine, butylpyridine, 4- (1-butylpentyl) pyridine, dimethyl) Lysine, trimethylpyridine, triethylpyridine, phenylpyridine, 3-methyl-2-phenylpyridine, 4-tert-butylpyridine, diphenylpyridine, benzylpyridine, methoxypyridine, butoxypyridine, dimethoxypyridine, 1-methyl-2-pyridine, 4-pyrrolidinopyridine, 1-methyl-4-phenylpyridine, 2- (1-ethylpropyl) pyridine, aminopyridine, dimethylaminopyridine, etc.), pyridazine derivatives, pyrimidine derivatives, pyrazine derivatives, pyrazoline derivatives, pyrazolidine derivatives, piperidine Derivatives, piperazine derivatives, morpholine derivatives, indole derivatives, isoindole derivatives, 1H-indazole derivatives, indoline derivatives, quinoline derivatives (eg quinoline, 3-quinoline carbo Nitriles), isoquinoline derivatives, cinnoline derivatives, quinazoline derivatives, quinoxaline derivatives, phthalazine derivatives, purine derivatives, pteridine derivatives, carbazole derivatives, phenanthridine derivatives, acridine derivatives, phenazine derivatives, 1,10-phenanthroline derivatives, adenine derivatives, adenosine Examples include derivatives, guanine derivatives, guanosine derivatives, uracil derivatives, uridine derivatives and the like.
[0060]
Furthermore, examples of the nitrogen-containing compound having a carboxy group include aminobenzoic acid, indolecarboxylic acid, amino acid derivatives (for example, nicotinic acid, alanine, arginine, aspartic acid, glutamic acid, glycine, histidine, isoleucine, glycylleucine, leucine, methionine. , Phenylalanine, threonine, lysine, 3-aminopyrazine-2-carboxylic acid, methoxyalanine and the like) and nitrogen-containing compounds having a sulfonyl group include 3-pyridinesulfonic acid, pyridinium p-toluenesulfonate, and the like. , Nitrogen-containing compounds having a hydroxy group, nitrogen-containing compounds having a hydroxyphenyl group, and alcoholic nitrogen-containing compounds include 2-hydroxypyridine, aminocresol, 2,4-quinolinediol, 3-indoleme Nord hydrate, monoethanolamine, diethanolamine, triethanolamine, N-ethyldiethanolamine, N, N-diethylethanolamine, triisopropanolamine, 2,2'-iminodiethanol, 2-aminoethanol, 3-amino-1 -Propanol, 4-amino-1-butanol, 4- (2-hydroxyethyl) morpholine, 2- (2-hydroxyethyl) pyridine, 1- (2-hydroxyethyl) piperazine, 1- [2- (2-hydroxy) Ethoxy) ethyl] piperazine, piperidine ethanol, 1- (2-hydroxyethyl) pyrrolidine, 1- (2-hydroxyethyl) -2-pyrrolidinone, 3-piperidino-1,2-propanediol, 3-pyrrolidino-1,2 -Propanediol, 8-hydroxy Yurolidine, 3-cuincridinol, 3-tropanol, 1-methyl-2-pyrrolidine ethanol, 1-aziridine ethanol, N- (2-hydroxyethyl) phthalimide, N- (2-hydroxyethyl) isonicotinamide, etc. Illustrated. Examples of amide derivatives include formamide, N-methylformamide, N, N-dimethylformamide, acetamide, N-methylacetamide, N, N-dimethylacetamide, propionamide, benzamide and the like. Examples of imide derivatives include phthalimide, succinimide, maleimide and the like.
[0061]
Furthermore, basic compounds represented by the following general formulas (14) and (15) can also be blended.
[0062]
Embedded image
Figure 0004257480
(Wherein R41, R42, R43, R47, R48Are each independently a linear, branched or cyclic alkylene group having 1 to 20 carbon atoms, R44, R45, R46, R49, R50Represents a hydrogen atom, an alkyl group having 1 to 20 carbon atoms or an amino group, and R44And R45, R45And R46, R44And R46, R44And R45And R46, R49And R50May be bonded to each other to form a ring. S, T, and U each represent an integer of 0-20. However, when S, T, U = 0, R44, R45, R46, R49, R50Does not contain a hydrogen atom. )
[0063]
Where R41, R42, R43, R47, R48As the alkylene group, those having 1 to 20 carbon atoms, preferably 1 to 10 carbon atoms, more preferably 1 to 8 carbon atoms, specifically methylene group, ethylene group, n-propylene group, isopropylene group, n -Butylene group, isobutylene group, n-pentylene group, isopentylene group, hexylene group, nonylene group, decylene group, cyclopentylene group, cyclohexylene group and the like.
[0064]
R44, R45, R46, R49, R50The alkyl group has 1 to 20 carbon atoms, preferably 1 to 8 carbon atoms, more preferably 1 to 6 carbon atoms, and these may be linear, branched or cyclic. Specifically, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, tert-butyl group, n-pentyl group, isopentyl group, hexyl group, nonyl group, decyl group, dodecyl Group, tridecyl group, cyclopentyl group, cyclohexyl group and the like.
[0065]
In addition, R44And R45, R45And R46, R44And R46, R44And R45And R46, R49And R50When forming a ring, the ring has 1 to 20 carbon atoms, more preferably 1 to 8 carbon atoms, still more preferably 1 to 6 carbon atoms, and these rings are alkyl having 1 to 6 carbon atoms, particularly 1 to 4 carbon atoms. The group may be branched.
[0066]
S, T, and U are each an integer of 0 to 20, more preferably 1 to 10, and still more preferably an integer of 1 to 8.
[0067]
Specific examples of the compounds of the above formulas (14) and (15) include tris {2- (methoxymethoxy) ethyl} amine, tris {2- (methoxyethoxy) ethyl} amine, tris [2-{(2-methoxy). Ethoxy) methoxy} ethyl] amine, tris {2- (2-methoxyethoxy) ethyl} amine, tris {2- (1-methoxyethoxy) ethyl} amine, tris {2- (1-ethoxyethoxy) ethyl} amine, Tris {2- (1-ethoxypropoxy) ethyl} amine, tris [2-{(2-hydroxyethoxy) ethoxy} ethyl] amine, 4,7,13,16,21,24-hexaoxa-1,10-diazabicyclo [8.8.8] hexacosane, 4,7,13,18-tetraoxa-1,10-diazabicyclo [8.5.5] eicosane 1,4,10,13-tetraoxa-7,16-diazabicyclooctadecane, 1-aza-12-crown-4, 1-aza-15-crown-5, 1-aza-18-crown-6, etc. Can be mentioned. Especially tertiary amines, aniline derivatives, pyrrolidine derivatives, pyridine derivatives, quinoline derivatives, amino acid derivatives, nitrogen-containing compounds having a hydroxy group, nitrogen-containing compounds having a hydroxyphenyl group, alcoholic nitrogen-containing compounds, amide derivatives, imide derivatives, Tris {2- (methoxymethoxy) ethyl} amine, tris {2- (2-methoxyethoxy) ethyl} amine, tris [2-{(2-methoxyethoxy) methyl} ethyl] amine, 1-aza-15-crown -5 etc. are preferred.
[0068]
In addition, the said basic compound can be used individually by 1 type or in combination of 2 or more types, The compounding quantity is 0.01-2 weight part with respect to 100 weight part of all base resins, Especially 0.01- One part by weight is preferred. If the blending amount is less than 0.01 parts by weight, there is no blending effect, and if it exceeds 2 parts by weight, the sensitivity may be too low.
[0069]
Next, as a dissolution inhibitor for the component (F), a compound having a molecular weight of 3,000 or less, particularly a low molecular weight phenol or carboxylic acid derivative having a molecular weight of 2,500 or less, whose solubility in an alkaline developer is changed by the action of an acid. And a compound in which a part or all of the compound is substituted with an acid-labile substituent.
[0070]
The phenol or carboxylic acid derivative having a molecular weight of 2,500 or less includes bisphenol A, bisphenol H, bisphenol S, 4,4-bis (4′-hydroxyphenyl) valeric acid, tris (4-hydroxyphenyl) methane, 1,1 , 1-tris (4′-hydroxyphenyl) ethane, 1,1,2-tris (4′-hydroxyphenyl) ethane, phenolphthalein, thymolphthalein, etc. , R2The same thing is mentioned.
[0071]
Examples of suitably used dissolution inhibitors include bis (4- (2′-tetrahydropyranyloxy) phenyl) methane, bis (4- (2′-tetrahydrofuranyloxy) phenyl) methane, bis (4-tert -Butoxyphenyl) methane, bis (4-tert-butoxycarbonyloxyphenyl) methane, bis (4-tert-butoxycarbonylmethyloxyphenyl) methane, bis (4- (1'-ethoxyethoxy) phenyl) methane, bis ( 4- (1′-ethoxypropyloxy) phenyl) methane, 2,2-bis (4 ′-(2 ″ -tetrahydropyranyloxy)) propane, 2,2-bis (4 ′-(2 ″-) Tetrahydrofuranyloxy) phenyl) propane, 2,2-bis (4′-tert-butoxyphenyl) propane, 2 2-bis (4′-tert-butoxycarbonyloxyphenyl) propane, 2,2-bis (4-tert-butoxycarbonylmethyloxyphenyl) propane, 2,2-bis (4 ′-(1 ″ -ethoxyethoxy) ) Phenyl) propane, 2,2-bis (4 ′-(1 ″ -ethoxypropyloxy) phenyl) propane, 4,4-bis (4 ′-(2 ″ -tetrahydropyranyloxy) phenyl) valeric acid tert-butyl, 4-tert-butyl 4,4-bis (4 ′-(2 ″ -tetrahydrofuranyloxy) phenyl) valerate, tert-butyl 4,4-bis (4′-tert-butoxyphenyl) valerate, Tert-Butyl 4,4-bis (4-tert-butoxycarbonyloxyphenyl) valerate, 4,4-bis (4′-tert-butyl) Xycarbonylmethyloxyphenyl) tert-butyl valerate, 4,4-bis (4 ′-(1 ″ -ethoxyethoxy) phenyl) tert-butyl valerate, 4,4-bis (4 ′-(1 ″) -Ethoxypropyloxy) phenyl) tert-butyl valerate, tris (4- (2'-tetrahydropyranyloxy) phenyl) methane, tris (4- (2'-tetrahydrofuranyloxy) phenyl) methane, tris (4- tert-butoxyphenyl) methane, tris (4-tert-butoxycarbonyloxyphenyl) methane, tris (4-tert-butoxycarbonyloxymethylphenyl) methane, tris (4- (1′-ethoxyethoxy) phenyl) methane, tris (4- (1′-ethoxypropyloxy) phenyl) methane, 1, 1,2-tris (4 ′-(2 ″ -tetrahydropyranyloxy) phenyl) ethane, 1,1,2-tris (4 ′-(2 ″ -tetrahydrofuranyloxy) phenyl) ethane, 1,1 , 2-tris (4′-tert-butoxyphenyl) ethane, 1,1,2-tris (4′-tert-butoxycarbonyloxyphenyl) ethane, 1,1,2-tris (4′-tert-butoxycarbonyl) Methyloxyphenyl) ethane, 1,1,2-tris (4 ′-(1′-ethoxyethoxy) phenyl) ethane, 1,1,2-tris (4 ′-(1′-ethoxypropyloxy) phenyl) ethane Etc.
[0072]
The addition amount of the dissolution inhibitor [component (F)] in the resist material of the present invention is 20 parts by weight or less, preferably 15 parts by weight or less with respect to 100 parts by weight of the solid content in the resist material. If the amount is more than 20 parts by weight, the heat resistance of the resist material decreases because the monomer component increases.
[0073]
In addition, as an acid crosslinking agent that forms a crosslinked structure by the action of the acid of component (D) in the negative resist material, a compound having two or more hydroxymethyl groups, alkoxymethyl groups, epoxy groups, or vinyl ether groups in the molecule can be mentioned. Substituted glycouril derivatives, urea derivatives, hexa (methoxymethyl) melamine, and the like are preferably used as acid crosslinking agents for chemically amplified negative resist materials. For example, tetraalkoxymethyl substituted glycolurils such as N, N, N ′, N′-tetramethoxymethylurea and hexamethoxymethylmelamine, tetrahydroxymethyl substituted glycolurils and tetramethoxymethylglycoluril, substituted and unsubstituted Examples thereof include phenolic compounds such as bis-hydroxymethylphenols and bisphenol A and condensates such as epichlorohydrin. Particularly suitable crosslinking agents are 1,3,5,7-tetraalkoxymethylglycoluril such as 1,3,5,7-tetramethoxymethylglycoluril or 1,3,5,7-tetrahydroxymethylglycoluril, 2,6-dihydroxymethyl p-cresol, 2,6-dihydroxymethylphenol, 2,2 ′, 6,6′-tetrahydroxymethyl-bisphenol A and 1,4-bis- [2- (2-hydroxypropyl) ] -Benzene, N, N, N ′, N′-tetramethoxymethylurea, hexamethoxymethylmelamine and the like. Although the addition amount is arbitrary, it is 1 to 25 parts by weight, preferably 5 to 15 parts by weight based on the total solid content in the resist material. These may be used alone or in combination of two or more.
[0074]
In addition to the above components, a surfactant conventionally used for improving the coating property can be added to the resist material of the present invention. In addition, the addition amount of an arbitrary component can be made into a normal amount in the range which does not inhibit the effect of this invention.
[0075]
Here, the surfactant is preferably nonionic, and examples thereof include perfluoroalkyl polyoxyethylene ethanol, fluorinated alkyl ester, perfluoroalkylamine oxide, and fluorinated organosiloxane compound. For example, Florard “FC-430”, “FC-431” (all manufactured by Sumitomo 3M Limited), Surflon “S-141”, “S-145”, “S-381”, “S-383” (any Manufactured by Asahi Glass Co., Ltd.), Unidyne "DS-401", "DS-403", "DS-451" (all manufactured by Daikin Industries, Ltd.), MegaFuck "F-8151", "F-171" , “F-172”, “F-173”, “F-177” (all manufactured by Dainippon Ink and Co., Ltd.), “X-70-092”, “X-70-093” (all Shin-Etsu) Chemical Industry Co., Ltd.). Preferably, Florard “FC-430” (manufactured by Sumitomo 3M Co., Ltd.) and “X-70-093” (manufactured by Shin-Etsu Chemical Co., Ltd.) are used.
[0076]
In order to form a pattern using the resist material of the present invention, a known lithography technique can be adopted. For example, a film thickness of 0.1 to 0.1 can be formed on a substrate such as a silicon wafer by spin coating or the like. It is applied to a thickness of 1.0 μm and prebaked on a hot plate at 60 to 200 ° C. for 10 seconds to 10 minutes, preferably 80 to 150 ° C. for 30 seconds to 5 minutes. Next, a mask for forming a target pattern is placed over the resist film, and high-energy rays such as far ultraviolet rays having a wavelength of 300 nm or less, excimer laser, X-rays or electron beams are applied in an exposure amount of 1 to 200 mJ / cm.2Degree, preferably 10 to 100 mJ / cm2After irradiation to a degree, post-exposure baking (PEB) is performed on a hot plate at 60 to 150 ° C. for 10 seconds to 5 minutes, preferably 80 to 130 ° C. for 30 seconds to 3 minutes. Further, using an alkaline aqueous developer such as tetramethylammonium hydroxide (TMAH) of 0.1 to 5%, preferably 2-3%, immersion for 10 seconds to 3 minutes, preferably 30 seconds to 2 minutes. The target pattern is formed on the substrate by developing by a conventional method such as a dip method, a paddle method, or a spray method. The material of the present invention is a 254 to 120 nm deep ultraviolet ray or excimer laser, especially 193 nm ArF, 157 nm F, among high energy rays.2146 nm Kr2134 nm KrAr, 126 nm Ar2It is most suitable for fine patterning by excimer laser such as X-ray and electron beam. In addition, when the above range deviates from the upper limit and the lower limit, the target pattern may not be obtained.
[0077]
【The invention's effect】
The resist material of the present invention is sensitive to high energy rays and is excellent in sensitivity, resolution and plasma etching resistance at a wavelength of 200 nm or less, particularly 170 nm or less. Therefore, the resist material according to the present invention has F characteristics in particular because of these characteristics.2It can be a resist material that absorbs less light at the exposure wavelength of the excimer laser, and can easily form a fine pattern perpendicular to the substrate. Therefore, it is suitable as a fine pattern forming material for VLSI manufacturing.
[0078]
【Example】
EXAMPLES Hereinafter, although a synthesis example and an Example are shown and this invention is demonstrated concretely, this invention is not restrict | limited to the following example.
[0079]
[Synthesis Example 1] Synthesis of 4-fluorophenol novolak
A 1 L flask was charged with 150 g of 4-fluorophenol, 121 g of 37% formaldehyde aqueous solution and 0.9 g of oxalic acid, and the flask was immersed in a hot water bath with stirring, and the reaction was carried out for 12 hours while maintaining the internal temperature at 100 ° C.
In order to purify the obtained polymer, methyl isobutyl ketone was added to the reaction system, and after sufficiently washing with pure water, the solvent was separated to obtain 110 g of 4-fluorophenol novolak (Mw: 4,000). It was.
[0080]
[Synthesis Example 2] Synthesis of 3-fluorophenol novolak
In a 1 L flask, 150 g of 3-fluorophenol, 121 g of a 37% formaldehyde aqueous solution and 0.9 g of oxalic acid were charged, and the flask was immersed in a hot water bath while stirring, and the reaction was performed for 12 hours while maintaining the internal temperature at 100 ° C.
In order to purify the obtained polymer, methyl isobutyl ketone was added to the reaction system, washed sufficiently with pure water, and the solvent was separated. As a result, 103 g of 3-fluorophenol novolak (Mw: 3,800) was obtained. It was.
[0081]
[Synthesis Example 3] Synthesis of 3,5-difluorophenol novolak
In a 1 L flask, 150 g of 3,5-difluorophenol, 121 g of 37% formaldehyde aqueous solution and 0.9 g of oxalic acid were charged, and the flask was immersed in a hot water bath with stirring, and the reaction was performed for 12 hours while maintaining the internal temperature at 100 ° C. It was.
In order to purify the obtained polymer, methyl isobutyl ketone was added to the reaction system, washed sufficiently with pure water, and the solvent was separated. As a result, 103 g of 3,5-difluorophenol novolak (Mw: 3,000) was obtained. Obtained.
[0082]
Synthesis Example 4 Ethoxyethylation of 4-fluorophenol novolak
A 300 ml flask was charged with 20 g of 4-fluorophenol novolak, 0.6 g of trifluoromethanesulfonic acid, and 100 ml of THF. While stirring at room temperature, 2.8 g of ethyl vinyl ether was dropped from the dropping funnel, and aging was performed at room temperature for 1 hour.
Triethylamine was added to the reaction system to stop the reaction, and the solvent was distilled off under reduced pressure. The obtained crude polymer was dissolved in 40 g of acetone, and poured into 5 L of pure water in which 20 g of acetic acid was dissolved to precipitate the polymer. The operation of dissolving the obtained polymer in 40 g of acetone and pouring it into 5 L of pure water to precipitate the polymer was repeated twice, and then the polymer was separated and dried. 15.5 g of the polymer thus obtained (Mw: 4,200)1From 1 H-NMR, it was found that 21% of the hydroxyl groups of 4-fluorophenol novolak were ethoxyethylated.
[0083]
Synthesis Example 5 Ethoxypropylation of 4-fluorophenol novolak
A 300 ml flask was charged with 20 g of 4-fluorophenol novolak, 0.6 g of trifluoromethanesulfonic acid, and 100 ml of THF. While stirring at room temperature, 3.2 g of ethyl propenyl ether was dropped from the dropping funnel, and aging was performed at room temperature for 1 hour.
Triethylamine was added to the reaction system to stop the reaction, and the solvent was distilled off under reduced pressure. The obtained crude polymer was dissolved in 40 g of acetone, and poured into 5 L of pure water in which 20 g of acetic acid was dissolved to precipitate the polymer. The operation of dissolving the obtained polymer in 40 g of acetone and pouring it into 5 L of pure water to precipitate the polymer was repeated twice, and then the polymer was separated and dried. 14.0 g of the polymer thus obtained (Mw: 4,400)1From 1 H-NMR, it was found that 19% of the hydroxyl groups of 4-fluorophenol novolak were ethoxypropylated.
[0084]
Synthesis Example 6 Tetrahydropyranylation of 4-fluorophenol novolak
A 300 ml flask was charged with 20 g of 4-fluorophenol novolak, 0.6 g of trifluoromethanesulfonic acid, and 100 ml of THF. While stirring at room temperature, 3.2 g of 3,4-dihydro-2H-pyran was added dropwise from a dropping funnel and aged at room temperature for 1 hour.
Triethylamine was added to the reaction system to stop the reaction, and the solvent was distilled off under reduced pressure. The obtained crude polymer was dissolved in 40 g of acetone, and poured into 5 L of pure water in which 20 g of acetic acid was dissolved to precipitate the polymer. The operation of dissolving the obtained polymer in 40 g of acetone and pouring it into 5 L of pure water to precipitate the polymer was repeated twice, and then the polymer was separated and dried. 14.5 g of the polymer thus obtained (Mw: 4,500) is1From 1 H-NMR, it was found that 18% of the hydroxyl groups of 4-fluorophenol novolak were tetrahydropyranylated.
[0085]
Synthesis Example 7 Ethoxyethylation of 3-fluorophenol novolak
A 300 ml flask was charged with 20 g of 3-fluorophenol novolak, 0.6 g of trifluoromethanesulfonic acid, and 100 ml of THF. While stirring at room temperature, 2.8 g of ethyl vinyl ether was dropped from the dropping funnel, and aging was performed at room temperature for 1 hour.
Triethylamine was added to the reaction system to stop the reaction, and the solvent was distilled off under reduced pressure. The obtained crude polymer was dissolved in 40 g of acetone, and poured into 5 L of pure water in which 20 g of acetic acid was dissolved to precipitate the polymer. The operation of dissolving the obtained polymer in 40 g of acetone and pouring it into 5 L of pure water to precipitate the polymer was repeated twice, and then the polymer was separated and dried. 15.5 g of the polymer thus obtained (Mw: 4,000)1From 1 H-NMR, it was found that 19% of the hydroxyl group of 3-fluorophenol novolak was ethoxyethylated.
[0086]
[Synthesis Example 8] Ethoxypropylation of 3-fluorophenol novolak
A 300 ml flask was charged with 20 g of 3-fluorophenol novolak, 0.6 g of trifluoromethanesulfonic acid, and 100 ml of THF. While stirring at room temperature, 3.2 g of ethyl propenyl ether was dropped from the dropping funnel, and aging was performed at room temperature for 1 hour.
Triethylamine was added to the reaction system to stop the reaction, and the solvent was distilled off under reduced pressure. The obtained crude polymer was dissolved in 40 g of acetone, and poured into 5 L of pure water in which 20 g of acetic acid was dissolved to precipitate the polymer. The operation of dissolving the obtained polymer in 40 g of acetone and pouring it into 5 L of pure water to precipitate the polymer was repeated twice, and then the polymer was separated and dried. 14.5 g of the polymer thus obtained (Mw: 4,200)1From 1 H-NMR, it was found that 20% of the hydroxyl groups of 3-fluorophenol novolak were ethoxypropylated.
[0087]
[Synthesis Example 9] Tetrahydropyranylation of 3-fluorophenol novolak
A 300 ml flask was charged with 20 g of 3-fluorophenol novolak, 0.6 g of trifluoromethanesulfonic acid, and 100 ml of THF. While stirring at room temperature, 3.2 g of 3,4-dihydro-2H-pyran was added dropwise from a dropping funnel and aged at room temperature for 1 hour.
Triethylamine was added to the reaction system to stop the reaction, and the solvent was distilled off under reduced pressure. The obtained crude polymer was dissolved in 40 g of acetone, and poured into 5 L of pure water in which 20 g of acetic acid was dissolved to precipitate the polymer. The operation of dissolving the obtained polymer in 40 g of acetone and pouring it into 5 L of pure water to precipitate the polymer was repeated twice, and then the polymer was separated and dried. Thus obtained 14.0 g of polymer (Mw: 4,300)1From 1 H-NMR, it was found that 19% of the hydroxyl groups of 3-fluorophenol novolak were tetrahydropyranylated.
[0088]
Synthesis Example 10 Ethoxypropylation of 3,5-difluorophenol novolak
A 300 ml flask was charged with 20 g of 3-fluorophenol novolak, 0.6 g of trifluoromethanesulfonic acid, and 100 ml of THF. While stirring at room temperature, 3.2 g of ethyl propenyl ether was dropped from the dropping funnel, and aging was performed at room temperature for 1 hour.
Triethylamine was added to the reaction system to stop the reaction, and the solvent was distilled off under reduced pressure. The obtained crude polymer was dissolved in 40 g of acetone, and poured into 5 L of pure water in which 20 g of acetic acid was dissolved to precipitate the polymer. The operation of dissolving the obtained polymer in 40 g of acetone and pouring it into 5 L of pure water to precipitate the polymer was repeated twice, and then the polymer was separated and dried. 14.5 g of the polymer thus obtained (Mw: 3,200)1From 1 H-NMR, it was found that 18% of the hydroxyl groups of 3-fluorophenol novolak were ethoxypropylated.
[0089]
Next, 1 g of the polymer obtained above was sufficiently dissolved in 10 g of propylene glycol monomethyl ether acetate (PGMEA) and filtered through a 0.2 μm filter to prepare a polymer solution.
On the other hand, a polymer in which 30% of the hydroxyl groups of monodisperse polyhydroxystyrene having a molecular weight of 10,000 and a dispersity (= Mw / Mn) of 1.10 were substituted with tetrahydropyranyl groups was synthesized as Comparative Example Polymer 1. Also, polymethyl methacrylate having a molecular weight of 15,000 and a dispersity of 1.7 was used as Comparative Example Polymer 2, and a cresol novolak polymer having a meta / para ratio of 40/60 and a molecular weight of 9,000 and a dispersity of 2.5 was used as Comparative Example Polymer 3. did. 1 g of the obtained polymer was sufficiently dissolved in 20 g of propylene glycol monomethyl ether acetate and filtered through a 0.1 μm filter to prepare a polymer solution.
These polymer solutions are MgF2The substrate was spin-coated and baked at 100 ° C. for 90 seconds using a hot plate to form a 100 nm thick polymer layer with MgF2Created on the substrate. The transmittance at 248 nm, 193 nm, and 157 nm was measured using a vacuum ultraviolet photometer (manufactured by JASCO Corporation, VUV200S). The results are shown in Table 1.
[0090]
[Table 1]
Figure 0004257480
[0091]
[Examples and Comparative Examples]
The above polymer and the components shown below were used in the amounts shown in Table 2, and a solution dissolved in PGMEA by a conventional method was filtered through a 0.1 μm filter to prepare a resist solution.
Next, the obtained resist solution is formed on a silicon wafer by depositing DUV-30 (manufactured by Nissan Chemical Co., Ltd.) with a film thickness of 55 nm on a substrate whose reflectance is suppressed to 1% or less with KrF light (248 nm). It spin-coated and baked at 100 degreeC for 90 second using the hotplate, and the thickness of the resist was made into the thickness of 300 nm.
This was exposed using an excimer laser stepper (Nikon Corporation, NSR-S202A, NA-0.5, σ0.75, 2/3 annular illumination), and immediately after exposure, baked at 110 ° C. for 90 seconds, and 2.38. Development was performed for 60 seconds with an aqueous solution of% tetramethylammonium hydroxide to obtain a positive pattern.
[0092]
The obtained resist pattern was evaluated as follows. The results are shown in Tables 2 and 3.
Evaluation methods:
The exposure amount for resolving 0.30 μm line and space at 1: 1 was defined as the optimum exposure amount (Eop), and the minimum line width of the line and space separated at this exposure amount was defined as the resolution of the evaluation resist.
[0093]
In the dry etching resistance test, the wafer after spin coating of the resist was evaluated under two systems.
(1) CHFThree/ CFFourEtching test with system gas
Using a dry etching apparatus TE-8500P manufactured by Tokyo Electron Limited, the difference in thickness of the resist before and after etching was determined.
Etching conditions are as shown below.
Chamber pressure 300mmTorr
RF power 1300W
Gap 9mm
CHFThreeGas flow rate 30sccm
CFFourGas flow rate 30sccm
Ar gas flow rate 100sccm
60 sec
(2) Cl2/ BClThreeEtching test with system gas
Using a dry etching apparatus L-507D-L manufactured by Nidec Anelva Co., Ltd., the difference in resist film thickness before and after etching was determined.
Etching conditions are as shown below.
Chamber pressure 300mmTorr
RF power 300W
Gap 9mm
Cl2Gas flow rate 30sccm
BClThreeGas flow rate 30sccm
CHFThreeGas flow rate 100sccm
O2Gas flow rate 2sccm
Time 360sec
[0094]
Embedded image
Figure 0004257480
[0095]
Embedded image
Figure 0004257480
[0096]
[Table 2]
Figure 0004257480
[0097]
[Table 3]
Figure 0004257480
[0098]
From the results of Tables 1, 2, and 3, the resist material using the polymer compound of the present invention is F.2It was found that the film has excellent dry etching resistance because it has sufficient transparency at a wavelength near the excimer laser (157 nm), resolution and sensitivity, and a small difference in film thickness after etching.

Claims (8)

下記一般式(1)で示される繰り返し単位を含む高分子化合物。
Figure 0004257480
(式中、R1は水素原子、又は炭素数1〜20の直鎖状、分岐状もしくは環状のアルキル基又はフッ素化されたアルキル基である。R2、下記式(2),(3)で示される基、下記式(4)で示される炭素数4〜40の三級アルキル基、及び炭素数4〜20のオキソアルキル基から選ばれる酸不安定基であり、0≦p<4、0≦q<4、0≦r<4、0<s<4、0<t<4、1≦q+r<4、2≦p+q+r+s≦4、2≦p+q+r+t≦4の範囲である。m,nは0<m<1、0<n<1の範囲であり、m+n=1である。)
Figure 0004257480
(式(2)中、R 6 は炭素数4〜20の三級アルキル基、各アルキル基がそれぞれ炭素数1〜6のトリアルキルシリル基、炭素数4〜20のオキソアルキル基又は上記一般式(3)で示される基を示す。aは0〜6の整数である。
式(3)中、R 7 ,R 8 は水素原子又は炭素数1〜18の直鎖状、分岐状又は環状のアルキル基を示す。R 9 は炭素数1〜18の酸素原子等のヘテロ原子を有してもよい1価の炭化水素基を示す。R 7 とR 8 、R 7 とR 9 、R 8 とR 9 とは環を形成してもよく、環を形成する場合にはR 7 ,R 8 ,R 9 はそれぞれ炭素数1〜18の直鎖状又は分岐状のアルキレン基を示す。
式(4)中、R 10 ,R 11 ,R 12 は炭素数1〜20の直鎖状、分岐状もしくは環状の1価炭化水素基であり、酸素、硫黄、窒素、フッ素などのヘテロ原子を含んでもよく、R 10 とR 11 、R 10 とR 12 、R 11 とR 12 とは互いに結合して環を形成してもよい。)
The high molecular compound containing the repeating unit shown by following General formula (1).
Figure 0004257480
(In the formula, R 1 is a hydrogen atom, a linear, branched or cyclic alkyl group having 1 to 20 carbon atoms or a fluorinated alkyl group. R 2 is represented by the following formulas (2), (3 ), A tertiary alkyl group having 4 to 40 carbon atoms represented by the following formula (4), and an oxoalkyl group having 4 to 20 carbon atoms, and 0 ≦ p <4 0 ≦ q <4, 0 ≦ r <4, 0 <s <4, 0 <t <4, 1 ≦ q + r <4, 2 ≦ p + q + r + s ≦ 4, 2 ≦ p + q + r + t ≦ 4. Is a range of 0 <m <1, 0 <n <1, and m + n = 1.)
Figure 0004257480
(In the formula (2), R 6 is a tertiary alkyl group having 4 to 20 carbon atoms, each alkyl group is a trialkylsilyl group having 1 to 6 carbon atoms, an oxoalkyl group having 4 to 20 carbon atoms, or the above general formula. It shows group shown by (3), a is an integer of 0-6.
In formula (3), R < 7 > , R < 8 > shows a hydrogen atom or a C1-C18 linear, branched or cyclic alkyl group. R 9 represents a monovalent hydrocarbon group which may have a hetero atom such as an oxygen atom having 1 to 18 carbon atoms. R 7 and R 8 , R 7 and R 9 , R 8 and R 9 may form a ring, and in the case of forming a ring, R 7 , R 8 , and R 9 each have 1 to 18 carbon atoms. A linear or branched alkylene group is shown.
In the formula (4), R 10 , R 11 and R 12 are linear, branched or cyclic monovalent hydrocarbon groups having 1 to 20 carbon atoms, and hetero atoms such as oxygen, sulfur, nitrogen and fluorine are substituted. R 10 and R 11 , R 10 and R 12 , and R 11 and R 12 may be bonded to each other to form a ring. )
請求項1記載の高分子化合物を含むことを特徴とするレジスト材料。  A resist material comprising the polymer compound according to claim 1. (A)請求項1記載の高分子化合物、
(B)有機溶剤、
(C)酸発生剤
を含有することを特徴とする化学増幅ポジ型レジスト材料。
(A) The polymer compound according to claim 1,
(B) an organic solvent,
(C) A chemically amplified positive resist material containing an acid generator.
(A)請求項1記載の高分子化合物、
(B)有機溶剤、
(C)酸発生剤、
(D)架橋剤
を含有することを特徴とする化学増幅ネガ型レジスト材料。
(A) The polymer compound according to claim 1,
(B) an organic solvent,
(C) an acid generator,
(D) A chemically amplified negative resist material comprising a crosslinking agent.
更に、塩基性化合物を含有する請求項3又は4記載のレジスト材料。  Furthermore, the resist material of Claim 3 or 4 containing a basic compound. 更に、溶解阻止剤を含有する請求項3,4又は5記載のレジスト材料。  The resist material according to claim 3, 4 or 5, further comprising a dissolution inhibitor. (1)請求項2乃至6のいずれか1項に記載のレジスト材料を基板上に塗布する工程と、
(2)次いで加熱処理後、フォトマスクを介して波長300nm以下の高エネルギー線もしくは電子線で露光する工程と、
(3)必要に応じて加熱処理した後、現像液を用いて現像する工程と
を含むことを特徴とするパターン形成方法。
(1) applying a resist material according to any one of claims 2 to 6 on a substrate;
(2) Next, after the heat treatment, a step of exposing with a high energy beam or an electron beam having a wavelength of 300 nm or less through a photomask;
(3) A pattern forming method comprising a step of performing heat treatment as necessary and then developing using a developer.
高エネルギー線が、ArF(193nm)、FHigh energy rays are ArF (193 nm), F 22 (157nm)、Kr(157 nm), Kr 22 (146nm)、KrAr(134nm)、Ar(146 nm), KrAr (134 nm), Ar 22 (126nm)から選ばれるものである請求項7記載のパターン形成方法。The pattern forming method according to claim 7, wherein the pattern forming method is selected from (126 nm).
JP2000272782A 1999-09-29 2000-09-08 Polymer compound, chemically amplified resist material, and pattern forming method Expired - Lifetime JP4257480B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000272782A JP4257480B2 (en) 1999-09-29 2000-09-08 Polymer compound, chemically amplified resist material, and pattern forming method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP11-276844 1999-09-29
JP27684499 1999-09-29
JP2000272782A JP4257480B2 (en) 1999-09-29 2000-09-08 Polymer compound, chemically amplified resist material, and pattern forming method

Publications (2)

Publication Number Publication Date
JP2001163945A JP2001163945A (en) 2001-06-19
JP4257480B2 true JP4257480B2 (en) 2009-04-22

Family

ID=26552137

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000272782A Expired - Lifetime JP4257480B2 (en) 1999-09-29 2000-09-08 Polymer compound, chemically amplified resist material, and pattern forming method

Country Status (1)

Country Link
JP (1) JP4257480B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6461717B1 (en) * 2000-04-24 2002-10-08 Shipley Company, L.L.C. Aperture fill
JP4222850B2 (en) 2003-02-10 2009-02-12 Spansion Japan株式会社 Radiation-sensitive resin composition, method for producing the same, and method for producing a semiconductor device using the same
KR101546222B1 (en) * 2008-02-25 2015-08-20 허니웰 인터내셔널 인코포레이티드 Processable inorganic and organic polymer formulations, methods of production and uses thereof
US11852973B2 (en) 2018-09-18 2023-12-26 Toray Industries, Inc. Photosensitive resin composition, resin sheet, cured film, organic EL display device, semiconductor electronic component, semiconductor device, and method for producing organic EL display device

Also Published As

Publication number Publication date
JP2001163945A (en) 2001-06-19

Similar Documents

Publication Publication Date Title
US6579658B2 (en) Polymers, resist compositions and patterning process
JP3829913B2 (en) Resist material
JP3838329B2 (en) Polymer compound, resist material, and pattern forming method
JP3861966B2 (en) Polymer compound, chemically amplified resist material, and pattern forming method
JP3965547B2 (en) Polymer compound, resist material, and pattern forming method
JP3796560B2 (en) Chemically amplified positive resist composition and pattern forming method
KR20010088333A (en) Novel Polymers, Resist Compositions and Patterning Process
US6730451B2 (en) Polymers, chemical amplification resist compositions and patterning process
JP3804756B2 (en) Polymer compound, chemically amplified resist material, and pattern forming method
JP3981803B2 (en) Polymer compound, resist material, and pattern forming method
KR100538500B1 (en) Polymers, Resist Compositions and Patterning Process
US6461791B1 (en) Polymers, chemical amplification resist compositions and patterning process
JP3915870B2 (en) Polymer compound, chemically amplified resist material, and pattern forming method
JP3797415B2 (en) Polymer compound, resist material, and pattern forming method
KR100488176B1 (en) Resist compositions and patterning process
JP3736606B2 (en) Polymer compound, resist material, and pattern forming method
US6461789B1 (en) Polymers, chemical amplification resist compositions and patterning process
JP4132510B2 (en) Chemically amplified resist material and pattern forming method
JP3687735B2 (en) Polymer compound, chemically amplified resist material, and pattern forming method
JP4257480B2 (en) Polymer compound, chemically amplified resist material, and pattern forming method
JP3712048B2 (en) Resist material
JP3874061B2 (en) Polymer compound, resist material, and pattern forming method
JP4780262B2 (en) Polymer compound, chemically amplified resist material, and pattern forming method
JP3876968B2 (en) Polymer compound, chemically amplified resist material, and pattern forming method
JP4255633B2 (en) Resist material and pattern forming method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081008

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090107

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090120

R150 Certificate of patent or registration of utility model

Ref document number: 4257480

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120213

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120213

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150213

Year of fee payment: 6

EXPY Cancellation because of completion of term