[go: up one dir, main page]

JP4256756B2 - Method for producing cage-type silsesquioxane resin having functional group - Google Patents

Method for producing cage-type silsesquioxane resin having functional group Download PDF

Info

Publication number
JP4256756B2
JP4256756B2 JP2003338025A JP2003338025A JP4256756B2 JP 4256756 B2 JP4256756 B2 JP 4256756B2 JP 2003338025 A JP2003338025 A JP 2003338025A JP 2003338025 A JP2003338025 A JP 2003338025A JP 4256756 B2 JP4256756 B2 JP 4256756B2
Authority
JP
Japan
Prior art keywords
group
cage
type
reaction
silsesquioxane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003338025A
Other languages
Japanese (ja)
Other versions
JP2004143449A (en
Inventor
憲 齋藤
正義 磯崎
秀樹 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Chemical Co Ltd filed Critical Nippon Steel Chemical Co Ltd
Priority to JP2003338025A priority Critical patent/JP4256756B2/en
Publication of JP2004143449A publication Critical patent/JP2004143449A/en
Application granted granted Critical
Publication of JP4256756B2 publication Critical patent/JP4256756B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Silicon Polymers (AREA)

Description

本発明は、かご型シルセスキオキサン樹脂及びその製造法に関し、詳しくはケイ素原子全てに(メタ)アクリロイル基、グリシジル基又はビニル基を有する有機官能基からなる反応性官能基を有するかご型シルセスキオキサン樹脂の製造方法に関するものである。   The present invention relates to a cage-type silsesquioxane resin and a method for producing the same, and more specifically, a cage-type silyl having a reactive functional group composed of an organic functional group having a (meth) acryloyl group, a glycidyl group or a vinyl group on all silicon atoms. The present invention relates to a method for producing a sesquioxane resin.

一般式[RSiO3/2]nで表されるシルセスキオキサン樹脂は、大きく分けてかご型、はしご型、ランダム型の3種類に分別されるポリオルガノシルセスキオキサンである。中でも、かご型のシルセスキオキサン樹脂は分子構造が明確であり、剛直な骨格を有している。また、分子構造が制御されているためポリマーのビルディングブロックとして用いることで、ポリマー構造の制御が可能であり、構造制御することができれば全く違った物性が期待できる。すなわち、同じ一般式[RSiO3/2]で表されるであってもシルセスキオキサン樹脂の分子構造によって、物性が大きく異なる可能性がある。 The silsesquioxane resin represented by the general formula [RSiO 3/2 ] n is a polyorganosilsesquioxane which is roughly classified into a cage type, a ladder type and a random type. Among them, the cage-type silsesquioxane resin has a clear molecular structure and has a rigid skeleton. In addition, since the molecular structure is controlled, the polymer structure can be controlled by using it as a polymer building block. If the structure can be controlled, completely different physical properties can be expected. That is, even if they are represented by the same general formula [RSiO 3/2 ], their physical properties may vary greatly depending on the molecular structure of the silsesquioxane resin.

シルセスキオキサン化合物の合成法は、フェニルトリクロロシランを加水分解し、その後KOHを用い平衡化反応させる方法(J.Am.Chem.Soc,82, 6194‐6195,1960)をはじめ多くの方法が知られている。かご型シルセスキオキサン樹脂の合成法の中でも反応性官能基を有するかご型シルセスキオキサン樹脂の合成法としては、ビニル基を有する合成法がZh.Obshch.Khim.1552‐1555,49,1997(非特許文献1)に掲載されている。また、特開平11‐29640号公報(特許文献1)に記載されたオキセタニル基を有するシルセスキオキサンの製造法などがある。
しかしながら、特許文献1に掲載されている製造法を参考に(メタ)アクリル基を有するシルセスキオキサン樹脂の合成を行っても、分子量分布及び構造の制御を十分に行うことが困難であり、かご型構造のように分子構造が明確なシルセスキオキサン樹脂を収率良く製造することができなかった。
There are many methods for synthesizing silsesquioxane compounds, including hydrolyzing phenyltrichlorosilane and then equilibrating with KOH (J. Am. Chem. Soc, 82, 6194-6195, 1960). Are known. Among the methods for synthesizing the cage silsesquioxane resin, as a method for synthesizing the cage silsesquioxane resin having a reactive functional group, a synthesis method having a vinyl group is Zh.Obshch.Khim.1552-1555, 49, It is published in 1997 (Non-Patent Document 1). Further, there is a method for producing silsesquioxane having an oxetanyl group described in JP-A-11-29640 (Patent Document 1).
However, even when synthesizing a silsesquioxane resin having a (meth) acryl group with reference to the production method described in Patent Document 1, it is difficult to sufficiently control the molecular weight distribution and structure, A silsesquioxane resin having a clear molecular structure such as a cage structure could not be produced with good yield.

特開平11-29640号公報Japanese Patent Laid-Open No. 11-29640 Zh.Obshch.Khim.1552-1555,49,(1997)Zh.Obshch.Khim.1552-1555, 49, (1997)

本発明の目的は、従来の欠点を解消し、分子量分布及び分子構造の制御された(メタ)アクリロイル基、グリシジル基又はビニル基を有するかご型シルセスキオキサン樹脂を提供することにある。また、前記かご型シルセスキオキサン樹脂を高収率で製造する方法を提供することにある。   An object of the present invention is to provide a cage-type silsesquioxane resin having a (meth) acryloyl group, a glycidyl group or a vinyl group in which the molecular weight distribution and the molecular structure are controlled while eliminating the conventional drawbacks. Another object of the present invention is to provide a method for producing the cage silsesquioxane resin in a high yield.

本発明者等は、上記課題を解決するために検討を重ねた結果、特定の反応条件によりこれを解決し得ることを見出し、本発明を解決するに至った。   As a result of repeated studies to solve the above problems, the present inventors have found that this can be solved by specific reaction conditions, and have come to solve the present invention.

すなわち、本発明は、下記一般式(1)
RSiX3 (1)
(但し、Rは(メタ)アクリロイル基、グリシジル基又はビニル基のいずれか一つを有する有機官能基であり、Xは加水分解性基を示す)で表されるケイ素化合物を有機極性溶媒及び塩基性触媒存在下で加水分解反応させると共に一部縮合させ、得られた加水分解生成物を更に非極性溶媒及び塩基性触媒存在下で再縮合させることを特徴とするかご型シルセスキオキサン樹脂の製造方法である。
That is, the present invention provides the following general formula (1)
RSix 3 (1)
(Wherein R is an organic functional group having any one of a (meth) acryloyl group, a glycidyl group, and a vinyl group, and X represents a hydrolyzable group) an organic polar solvent and a base The cage silsesquioxane resin is characterized in that it undergoes a hydrolysis reaction in the presence of a basic catalyst and partially condenses, and the resulting hydrolysis product is further recondensed in the presence of a nonpolar solvent and a basic catalyst. It is a manufacturing method.

この製造方法で得られるかご型シルセスキオキサン樹脂は、下記一般式(2)
[RSiO3/2]n (2)
(但し、Rは(メタ)アクリロイル基、グリシジル基又はビニル基のいずれか一つを有する有機官能基であり、nは8、10、12又は14である)で表されるものであることが好ましい。また、一般式(1)において、Rが下記一般式(3)、(4)又は(5)

Figure 0004256756

(但し、mは1〜3の整数であり、R1は水素原子又はメチル基を示す)で表される有機官能基であることが好ましい。 The cage silsesquioxane resin obtained by this production method has the following general formula (2)
[RSiO 3/2 ] n (2)
(Wherein R is an organic functional group having any one of (meth) acryloyl group, glycidyl group and vinyl group, and n is 8, 10, 12 or 14). preferable. In the general formula (1), R represents the following general formula (3), (4) or (5)
Figure 0004256756

(However, m is an integer of 1 to 3, and R 1 represents a hydrogen atom or a methyl group).

更に、前記加水分解生成物の数平均分子量が500〜7000の範囲にあることが好ましい。また、この加水分解生成物がかご型、はしご型及びランダム型のシルセスキオキサンの混合物であり、再縮合させて得られるかご型シルセスキオキサン樹脂が、上記一般式(2)で表され、nが8、10、12及び14から選ばれる3種以上のかご型シルセスキオキサン樹脂の混合物であり、nが8、10、12及び14のかご型シルセスキオキサンの合計量が全シルセスキオキサンの50wt%以上であることが好ましい。   Furthermore, the number average molecular weight of the hydrolysis product is preferably in the range of 500 to 7000. The hydrolysis product is a mixture of a cage type, a ladder type, and a random type silsesquioxane, and the cage silsesquioxane resin obtained by recondensation is represented by the general formula (2). , N is a mixture of three or more cage-type silsesquioxane resins selected from 8, 10, 12, and 14, and the total amount of cage-type silsesquioxanes where n is 8, 10, 12, and 14 is all It is preferable that it is 50 wt% or more of silsesquioxane.

また、本発明は、官能基を有するかご型シルセスキオキサン樹脂であって、混合物中、上記一般式(2)で表されるかご型シルセスキオキサン樹脂の占める割合が50wt%以上であるかご型シルセスキオキサン樹脂に関係する。ここで、官能基を有するかご型シルセスキオキサン樹脂の分子量分布(Mw/Mn)が1.03〜1.10の範囲にあることが好ましい。 Further, the present invention is a cage silsesquioxane resin having a functional group, the proportion of the cage silsesquioxane resin represented by the general formula (2) in the mixture is 50 wt% or more Related to cage-type silsesquioxane resin . Here, the molecular weight distribution (Mw / Mn) of the cage-type silsesquioxane resin having a functional group is preferably in the range of 1.03 to 1.10.

以下に、本発明の実施の形態を具体的に説明する。
なお、以下の説明において、一般式(2)で表されるかご型シルセスキオキサン樹脂であって、n=8の化合物をT8、n=10の化合物をT10、n=12の化合物をT12、n=14の化合物をT14と称する。本発明のかご型シルセスキオキサン樹脂は、一般式(2)で表されるかご型シルセスキオキサン樹脂又はこれを主成分として含有する樹脂であるが、n数の異なる成分等の他の成分が含まれうる。また、かご型シルセスキオキサン樹脂というときは、オリゴマーを含む意味に解される。
Embodiments of the present invention will be specifically described below.
In the following description, a cage-type silsesquioxane resin represented by the general formula (2), where n = 8 is T8, n = 10 is T10, and n = 12 is T12. , N = 14 is referred to as T14. The cage-type silsesquioxane resin of the present invention is a cage-type silsesquioxane resin represented by the general formula (2) or a resin containing this as a main component. Ingredients may be included. In addition, the cage-type silsesquioxane resin is understood to include an oligomer.

T8、T10、T12及びT14の構造式を、下記式(6)、(7)、(8)及び(9)にそれぞれ示す。なお、下記一般式(6)〜(9)において、Rは(メタ)アクリロイル基、グリシジル基又はビニル基のいずれか一つを有する有機官能基を示す。   The structural formulas of T8, T10, T12 and T14 are shown in the following formulas (6), (7), (8) and (9), respectively. In the following general formulas (6) to (9), R represents an organic functional group having any one of a (meth) acryloyl group, a glycidyl group, and a vinyl group.

Figure 0004256756
Figure 0004256756
Figure 0004256756
Figure 0004256756
Figure 0004256756
Figure 0004256756
Figure 0004256756
Figure 0004256756

本発明によれば、上記T8、T10、T12及びT14のいずれか一つ、又は二つ以上、有利には三つ又は四つの混合物を主成分とする、好ましくは50wt%以上含むシルセスキオキサン樹脂を得ることができる。
更に好ましくは、有機官能基Rが(メタ)アクリロイル基又はグリシジル基を有する官能基である場合には、T8、T10及びT12からなるかご型シルセスキオキサンの合計が全体の50wt%以上、好ましくは70wt%以上であることがよい。この場合、T8が20〜40wt%、T10が40〜50wt%及びT12が5〜20wt%の範囲にあることがよい。
また、有機官能基Rがビニル基を有する官能基である場合には、T10、T12及びT14からなるかご型シルセスキオキサンの合計が全体の50wt%以上、好ましくは70wt%以上であることがよい。この場合、T10が10〜40wt%、T12が20〜60wt%、T14が5〜20wt%の範囲にあることがよい。
その他の成分はn数が異なるT8、T10、T12及びT14以外の化合物、かご型以外の化合物等が主である。
According to the present invention, a silsesquioxane resin comprising, as a main component, preferably 50 wt% or more of any one of T8, T10, T12 and T14, or advantageously a mixture of three or four. Can be obtained.
More preferably, when the organic functional group R is a (meth) acryloyl group or a functional group having a glycidyl group, the total of the cage silsesquioxane composed of T8, T10 and T12 is preferably 50 wt% or more, preferably Is preferably 70 wt% or more. In this case, it is preferable that T8 is in the range of 20 to 40 wt%, T10 is in the range of 40 to 50 wt%, and T12 is in the range of 5 to 20 wt%.
When the organic functional group R is a functional group having a vinyl group, the total of the cage silsesquioxanes composed of T10, T12 and T14 is 50 wt% or more, preferably 70 wt% or more. Good. In this case, it is preferable that T10 is in the range of 10 to 40 wt%, T12 is in the range of 20 to 60 wt%, and T14 is in the range of 5 to 20 wt%.
Other components are mainly compounds other than T8, T10, T12 and T14 having different n numbers, compounds other than the cage type, and the like.

T8、T10、T12及びT14の分子量分布(GPC測定法による)は、1.00〜1.01の範囲にあることが良い。本発明のかご型シルセスキオキサン樹脂の分子量分布(Mw/Mn)は、1.1以下、好ましくは1.03〜1.10の範囲にあることがよい。分子量範囲は、数平均分子量で600〜2500、好ましくは1000〜2000の範囲である。   The molecular weight distribution of T8, T10, T12 and T14 (according to the GPC measurement method) is preferably in the range of 1.00 to 1.01. The molecular weight distribution (Mw / Mn) of the cage silsesquioxane resin of the present invention is 1.1 or less, preferably 1.03 to 1.10. The molecular weight range is 600 to 2500, preferably 1000 to 2000 in terms of number average molecular weight.

なお、上記T8〜T14を含む樹脂からT8〜T14の1種を分離する操作を付加すれば、T8〜T14のいずれか1種からなるシルセスキオキサン樹脂とその1種が分離されたシルセスキオキサン樹脂を得ることもできる。このように分離されたシルセスキオキサン樹脂も本発明のシルセスキオキサン樹脂に含まれる。   If an operation for separating one of T8 to T14 from the resin containing T8 to T14 is added, a silsesquioxane resin composed of any one of T8 to T14 and a silsesquioxane from which one of them is separated. Oxane resins can also be obtained. The silsesquioxane resin thus separated is also included in the silsesquioxane resin of the present invention.

本発明のシルセスキオキサンの製造方法では、まず、一般式(1)で表されるケイ素化合物を有機極性溶媒及び塩基性触媒存在下で加水分解反応を行う。一般式(1)中、Rは(メタ)アクリロイル基、グリシジル基又はビニル基を有する有機官能基であり、(メタ)アクリロイル基又はグリシジル基は直接Siに結合してもよいが、間にアルキレン基やフェニレン基等の炭化水素基やその他の2価の基を介して存在することが望ましい。
好ましい有機官能基Rには一般式(3)で表されるものがある。一般式(3)において、R1はH又はメチル基であり、mは1〜3である。好ましいRの具体例を示せば、3-メタクリロキシプロピル基、メタクリロキシメチル基、3-アクリロキシプロピル基が例示される。
In the method for producing silsesquioxane of the present invention, first, a silicon compound represented by the general formula (1) is hydrolyzed in the presence of an organic polar solvent and a basic catalyst. In general formula (1), R is an organic functional group having a (meth) acryloyl group, a glycidyl group or a vinyl group, and the (meth) acryloyl group or glycidyl group may be directly bonded to Si. It is desirable to exist via a hydrocarbon group such as a group or a phenylene group or other divalent group.
Preferred organic functional groups R include those represented by the general formula (3). In the general formula (3), R 1 is H or a methyl group, and m is 1 to 3. Specific examples of preferred R include a 3-methacryloxypropyl group, a methacryloxymethyl group, and a 3-acryloxypropyl group.

一般式(1)において、Xは加水分解性基であり、アルコキシ基、アセトキシ基等が挙げられるが、アルコキシル基であることが好ましい。アルコキシル基としてはメトキシ基、エトキシ基、n−及びi-プロポキシ基、n-、i-及びt−ブトキシ基等が挙げられる。このうち反応性が高いメトキシ基であることが好ましい。   In the general formula (1), X is a hydrolyzable group, and examples thereof include an alkoxy group and an acetoxy group, and an alkoxyl group is preferable. Examples of the alkoxyl group include methoxy group, ethoxy group, n- and i-propoxy group, n-, i- and t-butoxy group. Of these, a highly reactive methoxy group is preferred.

一般式(1)で表されるケイ素化合物の中で好ましい化合物を示せば、メタクリロキシメチルトリエトキシシラン、メタクリロキシメチルトリメトキシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-アクリロキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシランが挙げられる。中でも、原料の入手が容易である3-メタクリロキシプロピルトリメトキシシランを用いることが好ましい。   Among the silicon compounds represented by the general formula (1), methacryloxymethyltriethoxysilane, methacryloxymethyltrimethoxylane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropyltriethoxy Examples include silane, 3-acryloxypropyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, vinyltrimethoxysilane, and vinyltriethoxysilane. Among these, it is preferable to use 3-methacryloxypropyltrimethoxysilane, which is easily available.

加水分解反応に用いられる塩基性触媒としては、水酸化カリウム、水酸化ナトリウム、水酸化セシウムなどのアルカリ金属水酸化物、あるいはテトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシド、ベンジルトリメチルアンモニウムヒドロキシド、ベンジルトリエチルアンモニウムヒドロキシドなどの水酸化アンモニウム塩が例示される。これらの中でも、触媒活性が高い点からテトラメチルアンモニウムヒドロキシドが好ましく用いられる。塩基性触媒は、通常水溶液として使用される。   Basic catalysts used in the hydrolysis reaction include alkali metal hydroxides such as potassium hydroxide, sodium hydroxide, cesium hydroxide, tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrabutylammonium hydroxide, benzyl Examples thereof include ammonium hydroxide salts such as trimethylammonium hydroxide and benzyltriethylammonium hydroxide. Among these, tetramethylammonium hydroxide is preferably used because of its high catalytic activity. The basic catalyst is usually used as an aqueous solution.

加水分解反応条件については、反応温度は0〜60℃が好ましく、20〜40℃がより好ましい。反応温度が0℃より低いと、反応速度が遅くなり加水分解性基が未反応の状態で残存してしまい反応時間を多く費やす結果となる、一方、60℃より高いと反応速度が速すぎるために複雑な縮合反応が進行し結果として加水分解生成物の高分子量化が促進される。また、反応時間は2時間以上が好ましい。反応時間が2時間に満たないと、加水分解反応が十分に進行せず加水分解性基が未反応の状態で残存してしまう状態となる。   Regarding the hydrolysis reaction conditions, the reaction temperature is preferably 0 to 60 ° C, more preferably 20 to 40 ° C. When the reaction temperature is lower than 0 ° C, the reaction rate becomes slow and the hydrolyzable group remains in an unreacted state, resulting in a long reaction time. On the other hand, when the reaction temperature is higher than 60 ° C, the reaction rate is too high. The complex condensation reaction proceeds, and as a result, the high molecular weight of the hydrolysis product is promoted. The reaction time is preferably 2 hours or more. If the reaction time is less than 2 hours, the hydrolysis reaction does not proceed sufficiently and the hydrolyzable group remains in an unreacted state.

加水分解反応は水の存在が必須であるが、これは塩基性触媒の水溶液から供給することもできるし、別途水として加えてもよい。水の量は加水分解性基を加水分解するに足る量以上、好ましくは理論量の1.0〜1.5倍量である。また、加水分解時には有機溶媒を用いることが好ましく、有機溶媒としてはメタノール、エタノール、2-プロパノールなどのアルコール類、或いは他の極性溶媒を用いることができる。好ましくは、水と溶解性のある炭素数1〜6の低級アルコール類であり、2-プロパノールを用いることがより好ましい。非極性溶媒を用いると反応系が均一にならず加水分解反応が十分に進行せず未反応のアルコキシル基が残存してしまい好ましくない。   In the hydrolysis reaction, the presence of water is essential, but this can be supplied from an aqueous solution of a basic catalyst or may be added as water separately. The amount of water is not less than an amount sufficient to hydrolyze the hydrolyzable group, preferably 1.0 to 1.5 times the theoretical amount. Moreover, it is preferable to use an organic solvent at the time of hydrolysis, and as the organic solvent, alcohols such as methanol, ethanol, 2-propanol, or other polar solvents can be used. Preferred are lower alcohols having 1 to 6 carbon atoms that are soluble in water, and 2-propanol is more preferred. Use of a nonpolar solvent is not preferable because the reaction system is not uniform and the hydrolysis reaction does not proceed sufficiently and unreacted alkoxyl groups remain.

加水分解反応終了後は、水又は水含有反応溶媒を分離する。水又は水含有反応溶媒の分離は、減圧蒸発等の手段が採用できる。水分やその他の不純物を十分に除去するためには、非極性溶媒を添加して加水分解反応生成物を溶解させ、この溶液を食塩水等で洗浄し、その後無水硫酸マグネシウム等の乾燥剤で乾燥させる等の手段が採用できる。非極性溶媒を、蒸発等の手段で分離すれば、加水分解反応生成物を回収することができるが、非極性溶媒が次の反応で使用する非極性溶媒として使用可能であれば、これを分離する必要はない。   After completion of the hydrolysis reaction, water or a water-containing reaction solvent is separated. Separation of water or the water-containing reaction solvent can employ means such as evaporation under reduced pressure. In order to sufficiently remove moisture and other impurities, a non-polar solvent is added to dissolve the hydrolysis reaction product, this solution is washed with brine, and then dried with a desiccant such as anhydrous magnesium sulfate. It is possible to adopt a means such as If the nonpolar solvent is separated by means such as evaporation, the hydrolysis reaction product can be recovered. However, if the nonpolar solvent can be used as the nonpolar solvent used in the next reaction, it is separated. do not have to.

本発明の加水分解反応では加水分解と共に、加水分解物の縮合反応が生じる。加水分解物の縮合反応が伴う加水分解生成物は、通常、数平均分子量が500〜7000の無色の粘性液体となる。加水分解生成物は、反応条件により異なるが数平均分子量が500〜3000の樹脂(又はオリゴマー)となり、一般式(1)に表される加水分解性基Xの大部分、好ましくはほぼ全部がOH基に置換され、更にそのOH基の大部分、好ましくは95%以上が縮合されている。
加水分解生成物の構造については、複数種のかご型、はしご型、ランダム型のシルセスキオキサンであり、かご型構造をとっている化合物についても完全なかご型構造の割合は少なく、かごの一部が開いている不完全なかご型の構造が主となっている。したがって、本発明においては、加水分解で得られた加水分解生成物を、更に、塩基性触媒存在下、有機溶媒中で加熱することによりシロキサン結合を縮合(再縮合という)させることによりかご型構造のシルセスキオキサンを選択的に製造する。
In the hydrolysis reaction of the present invention, hydrolysis and condensation of the hydrolyzate occur. The hydrolysis product accompanying the condensation reaction of the hydrolyzate usually becomes a colorless viscous liquid having a number average molecular weight of 500 to 7000. The hydrolysis product becomes a resin (or oligomer) having a number average molecular weight of 500 to 3000 depending on the reaction conditions, and most, preferably almost all, of the hydrolyzable group X represented by the general formula (1) is OH. Substituents are substituted, and most of the OH groups, preferably 95% or more, are condensed.
As for the structure of the hydrolysis product, there are several types of cage-type, ladder-type, and random-type silsesquioxanes, and the proportion of the complete cage-type structure is small even for compounds that have a cage-type structure. Mainly an incomplete cage structure with some open. Therefore, in the present invention, the hydrolysis product obtained by hydrolysis is further heated in an organic solvent in the presence of a basic catalyst to condense a siloxane bond (referred to as recondensation) to form a cage structure. The silsesquioxane is selectively produced.

水又は水含有反応溶媒を分離したのち、非極性溶媒及び塩基性触媒の存在下に再縮合反応を行う。
再縮合反応の反応条件については、反応温度は100〜200℃の範囲が好ましく、110〜140℃がより好ましい。反応温度が低すぎると再縮合反応をさせるために十分なドライビングフォースが得られず反応が進行しない。反応温度が高すぎると反応性有機官能基が自己重合反応を起こす可能性があるので、反応温度を抑制するか、重合禁止剤などを添加する必要がある。反応時間は2〜12時間が好ましい。有機溶媒の使用量は加水分解反応生成物を溶解するに足る量であることがよく、塩基性触媒の使用量は加水分解反応生成物に対し、0.1〜10wt%の範囲である。
After separating water or the water-containing reaction solvent, a recondensation reaction is performed in the presence of a nonpolar solvent and a basic catalyst.
Regarding the reaction conditions for the recondensation reaction, the reaction temperature is preferably in the range of 100 to 200 ° C, more preferably 110 to 140 ° C. If the reaction temperature is too low, a sufficient driving force is not obtained for the recondensation reaction, and the reaction does not proceed. If the reaction temperature is too high, the reactive organic functional group may cause a self-polymerization reaction. Therefore, it is necessary to suppress the reaction temperature or add a polymerization inhibitor or the like. The reaction time is preferably 2 to 12 hours. The amount of the organic solvent used is preferably an amount sufficient to dissolve the hydrolysis reaction product, and the amount of the basic catalyst used is in the range of 0.1 to 10 wt% with respect to the hydrolysis reaction product.

非極性溶媒としては、水と溶解性の無い又は殆どないものであればよいが、炭化水素系溶媒が好ましい。かかる、炭化水素系溶媒としてはトルエン、ベンゼン、キシレンなどの沸点の低い非極性溶媒がある。中でもトルエンを用いることが好ましい。
塩基性触媒としては、加水分解反応に使用される塩基性触媒が使用でき、水酸化カリウム、水酸化ナトリウム、水酸化セシウムなどのアルカリ金属水酸化物、あるいはテトラメルアンモニウムヒヒドロキシド、テトラエチルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシド、ベンジルトリメチルアンモニウムヒドロキシド、ベンジルトリエチルアンモニウムヒドロキシドなどの水酸化アンモニウム塩が挙げられるが、テトラアルキルアンモニウム等の非極性溶媒に可溶性の触媒が好ましい。
Any nonpolar solvent may be used as long as it is insoluble or hardly soluble in water, but a hydrocarbon solvent is preferred. Such hydrocarbon solvents include nonpolar solvents having a low boiling point such as toluene, benzene, and xylene. Of these, it is preferable to use toluene.
As the basic catalyst, a basic catalyst used in a hydrolysis reaction can be used. Alkali metal hydroxides such as potassium hydroxide, sodium hydroxide and cesium hydroxide, tetramer ammonium ammonium hydroxide, tetraethyl ammonium hydroxide Ammonium hydroxide salts such as tetrabutylammonium hydroxide, benzyltrimethylammonium hydroxide, and benzyltriethylammonium hydroxide, but a catalyst soluble in a nonpolar solvent such as tetraalkylammonium is preferred.

また、再縮合に使用する加水分解生成物は水洗、脱水し濃縮したものを用いるのが好ましいが、水洗、脱水を行わなくても使用できる。この反応の際、水は存在してもよいが、積極的に加える必要はなく、塩基性触媒溶液から持ち込まれる水分程度にとどめることがよい。なお、加水分解生成物の加水分解が十分に行われていない場合は、残存する加水分解性基を加水分解するに必要な理論量以上の水分が必要であるが、通常は加水分解反応が十分に行われる。
再縮合反応後は、触媒を水洗して取り除き濃縮し、シルセスキオキサン混合物が得られる。
The hydrolysis product used for recondensation is preferably washed, dehydrated and concentrated, but can be used without washing and dehydration. In this reaction, water may be present, but it is not necessary to add it positively, and it is preferable that the water is brought to the extent of water brought from the basic catalyst solution. If the hydrolysis product has not been sufficiently hydrolyzed, it requires more water than the theoretical amount necessary to hydrolyze the remaining hydrolyzable groups, but usually the hydrolysis reaction is sufficient. To be done.
After the recondensation reaction, the catalyst is washed away with water and concentrated to obtain a silsesquioxane mixture.

本発明によって得られるシルセスキオキサン樹脂は、官能基の種類や反応条件や加水分解生成物の状態により異なるが、構成成分は、上記一般式(6)〜(9)で示した複数種かご型シルセスキオキサンが全体の50wt%以上である。T8〜T14の存在割合は前記のとおりであることがよい。一般式においてRが3−メタクリロキシプロピル基の場合、T8はシロキサン混合物を20℃以下で放置することで針状の結晶として析出させ分離することができる。   The silsesquioxane resin obtained by the present invention varies depending on the type of functional group, the reaction conditions, and the state of the hydrolysis product, but the constituent components are a plurality of cages represented by the above general formulas (6) to (9). Type silsesquioxane is 50 wt% or more of the whole. The ratio of T8 to T14 is preferably as described above. When R is a 3-methacryloxypropyl group in the general formula, T8 can be precipitated and separated as needle-like crystals by leaving the siloxane mixture at 20 ° C. or lower.

本発明のかご型シルセスキオキサンの製造方法によれば、構造制御されたかご型シルセスキオキサンを高収率で製造することができる。得られたかご型シルセスキオキサンはケイ素原子すべてに反応性官能基を有していることから、(メタ)アクリレート及びエポキシ樹脂等との相溶性があり任意に混合することが可能であり、このような光重合性樹脂組成物の原料として広く使用することができる。また、光重合性樹脂組成物にかご型シルセスキオキサンを用いることにより、樹脂の架橋密度を増加させることが可能であり、硬化樹脂の耐熱性、熱安定性、耐薬品性、機械物性の向上にも有効である。   According to the method for producing a cage silsesquioxane of the present invention, a structure-controlled cage silsesquioxane can be produced in a high yield. Since the obtained cage-type silsesquioxane has a reactive functional group on all silicon atoms, it is compatible with (meth) acrylate and epoxy resin and can be arbitrarily mixed, It can be widely used as a raw material for such a photopolymerizable resin composition. In addition, by using a cage-type silsesquioxane in the photopolymerizable resin composition, it is possible to increase the crosslink density of the resin, and the heat resistance, thermal stability, chemical resistance, and mechanical properties of the cured resin can be increased. It is also effective for improvement.

以下、実施例により本発明を更に具体的に説明する。
実施例1
撹拌機、滴下ロート、温度計を備えた反応容器に、溶媒として2-プロパノール(IPA)120mlと塩基性触媒として5%テトラメチルアンモニウムヒドロキシド水溶液(TMAH水溶液)9.4gを装入した。滴下ロートにIPA45mlと3-メタクリロキシプロピルトリメトキシシラン(MTMS:東レ・ダウコーニング・シリコーン株式会社製SZ-6300)38.07gを入れ、反応容器を撹拌しながら、室温でMTMSのIPA溶液を30分かけて滴下した。MTMS滴下終了後、加熱することなく2時間撹拌した。2時間撹拌後溶媒を減圧下で溶媒を除去し、トルエン250mlで溶解した。反応溶液を飽和食塩水で中性になるまで水洗した後、無水硫酸マグネシウムで脱水した。無水硫酸マグネシウムをろ別し、濃縮することで加水分解生成物(シルセスキオキサン)を25.8g回収率94%で得た。このシルセスキオキサンは種々の有機溶剤に可溶な無色の粘性液体であった。
Hereinafter, the present invention will be described more specifically with reference to examples.
Example 1
A reaction vessel equipped with a stirrer, a dropping funnel and a thermometer was charged with 120 ml of 2-propanol (IPA) as a solvent and 9.4 g of a 5% tetramethylammonium hydroxide aqueous solution (TMAH aqueous solution) as a basic catalyst. Add 45 ml of IPA and 38.07 g of 3-methacryloxypropyltrimethoxysilane (MTMS: SZ-6300 manufactured by Toray Dow Corning Silicone Co., Ltd.) to the dropping funnel, and stir the reaction vessel at room temperature for 30 minutes with the IPA solution of MTMS. It was dripped over. After completion of the MTMS addition, the mixture was stirred for 2 hours without heating. After stirring for 2 hours, the solvent was removed under reduced pressure and dissolved in 250 ml of toluene. The reaction solution was washed with saturated brine until neutral, and then dehydrated with anhydrous magnesium sulfate. The anhydrous magnesium sulfate was filtered off and concentrated to obtain 25.8 g of a hydrolyzed product (silsesquioxane) with a recovery rate of 94%. This silsesquioxane was a colorless viscous liquid soluble in various organic solvents.

このシルセスキオキサンのGPCを測定した結果を図1に示す。図1から、シルセスキオキサンの分子量分布及び存在割合は表1のように計算される。この段階での加水分解生成物の分子量分布(Mw/Mn)は、1.26であった。   The result of measuring the GPC of this silsesquioxane is shown in FIG. From FIG. 1, the molecular weight distribution and abundance of silsesquioxane are calculated as shown in Table 1. The molecular weight distribution (Mw / Mn) of the hydrolysis product at this stage was 1.26.

また、高速液体クロマトグラフィー分離後の質量分析(LC-MS)を行った結果を図2に示す。図2から下記式(10)及び(11)で示されるかごが一部開いた不完全かご型構造をしているT9(OH)及びT11(OH)と、完全なかご型構造をしているT8、T10、T12にアンモニウムイオンが付いた分子イオンが観測された。下記式中、Rは3-メタクリロキシプロピル基である。   The results of mass spectrometry (LC-MS) after separation by high performance liquid chromatography are shown in FIG. As shown in FIG. 2, the car represented by the following formulas (10) and (11) has a complete cage structure with T9 (OH) and T11 (OH) having a partially opened incomplete cage structure. Molecular ions with ammonium ions at T8, T10 and T12 were observed. In the following formula, R is a 3-methacryloxypropyl group.

Figure 0004256756
Figure 0004256756
Figure 0004256756
Figure 0004256756

1H−NMRを測定したところ、メタクリロキシプロピル基に由来するブロードなシグナルが観測された。また、メトキシ基に由来するシグナル(3.58ppm)は観測されなかった。-C=CH2と-O-CH2−の積分比を比較したところ1.999:2.002であった。このことからメタクリロキシプロピル基の二重結合への反応は起こらないことが確認された。以上の結果より、ピーク1、ピーク2及びピーク3はシルセスキオキサンの構造がランダムの化合物(R型)又ははしご状の化合物(L型)であり。ピーク4は、かご型又は一部開いたかご型構造をとっている化合物(C型)であることが確認された。GPCとLC−MSの結果から算出すると、GPCから、化合物(C型)は、T8,T10、T12と不完全なかご型T9OH,T11OHからなり、その合計が24.6%と計算され、LC−MSの結果を踏まえるとT8、T10、T12、T9OH、T11OHの存在量は表1のように計算される。 When 1H-NMR was measured, a broad signal derived from a methacryloxypropyl group was observed. In addition, a signal derived from a methoxy group (3.58 ppm) was not observed. When the integration ratio of —C═CH 2 and —O—CH 2 — was compared, it was 1.999: 2.002. From this, it was confirmed that the reaction to the double bond of the methacryloxypropyl group did not occur. From the above results, peak 1, peak 2 and peak 3 are compounds having a random silsesquioxane structure (R-type) or ladder-like compounds (L-type). Peak 4 was confirmed to be a compound having a cage type or partially opened cage type structure (C type). When calculated from the results of GPC and LC-MS, from GPC, the compound (C type) consists of T8, T10, T12 and incomplete cage type T9OH, T11OH, and the total is calculated to be 24.6%. LC-MS Based on these results, the abundances of T8, T10, T12, T9OH, and T11OH are calculated as shown in Table 1.

次に、撹拌機、ディンスターク、冷却管を備えた反応容器に上記で得られたシルセスキオキサン20.65gとトルエン82mlと10%TMAH水溶液3.0gを入れ、徐々に加熱し水を留去した。更に130℃まで加熱しトルエンを還流温度で再縮合反応を行った。このときの反応溶液の温度は108℃であった。トルエン還流後2時間撹拌した後、反応を終了とした。反応溶液を飽和食塩水で中性になるまで水洗した後、無水硫酸マグネシウムで脱水した。無水硫酸マグネシウムをろ別し、濃縮することで目的物であるかご型シルセスキオキサン(混合物)を18.77g得た。得られたかご型シルセスキオキサンは種々の有機溶剤に可溶な無色の粘性液体であった。   Next, 20.65 g of the silsesquioxane obtained above, 82 ml of toluene and 3.0 g of 10% TMAH aqueous solution were placed in a reaction vessel equipped with a stirrer, a Dinsterk, and a cooling tube, and the water was distilled off gradually by heating. . The mixture was further heated to 130 ° C., and toluene was subjected to a recondensation reaction at the reflux temperature. The temperature of the reaction solution at this time was 108 ° C. After stirring for 2 hours after refluxing toluene, the reaction was terminated. The reaction solution was washed with saturated brine until neutral, and then dehydrated with anhydrous magnesium sulfate. The anhydrous magnesium sulfate was filtered off and concentrated to obtain 18.77 g of the target basket-type silsesquioxane (mixture). The resulting cage-type silsesquioxane was a colorless viscous liquid soluble in various organic solvents.

再縮合反応後の反応物のGPCを測定した結果を図3に示す。図3からMn2018(ピーク5)、Mn1570(ピーク6)、Mn1387(ピーク7)及びMn1192(ピーク8)が認められる。各ピークの分子量及び分子量分布及び存在量を表1に示す。また、再縮合後の反応物の分子量分布(Mw/Mn)は、1.04であった。
また、液体クロマトグラフィー分離後の質量分析を行った結果を図4に示す。図4からT8、T10、T12にアンモニウムイオンが付いた分子イオンが確認された。
以上の結果より、ピーク5はシルセスキオキサンの構造がランダム又ははしご状の化合物であり。ピーク6はT12、ピーク7はT10、ピーク8はT8と同定できる。
The result of having measured GPC of the reaction material after a recondensation reaction is shown in FIG. From FIG. 3, Mn2018 (peak 5), Mn1570 (peak 6), Mn1387 (peak 7) and Mn1192 (peak 8) are observed. Table 1 shows the molecular weight, molecular weight distribution, and abundance of each peak. The molecular weight distribution (Mw / Mn) of the reaction product after recondensation was 1.04.
Moreover, the result of having performed mass spectrometry after liquid chromatography separation is shown in FIG. From FIG. 4, molecular ions having ammonium ions at T8, T10, and T12 were confirmed.
From the above results, peak 5 is a compound in which the structure of silsesquioxane is random or ladder-like. Peak 6 can be identified as T12, Peak 7 as T10, and Peak 8 as T8.

上記した再縮合後のかご型シルセスキオキサン混合物を20℃以下で放置したところ針状の結晶が析出した。針状結晶をろ別したところ5.89gであった。また、針状結晶をGPC測定したところピーク8のみ検出され、この結晶がT8であることが確認できた。1H−NMRを測定したところメタクリロキシプロピル基に由来するシグナルが再縮合前はブロードであったシグナルがシャープに分離してシグナルが観測された、このことから非常に対象性の良い化合物、すなわちかご型構造を有する化合の生成が推測される。また、メトキシ基に由来するシグナル(3.58ppm)は観測されなかった。-C=CH2と-O-CH2−の積分比を比較したところ1.999:1.984であった。再縮合反応前後のGPCまとめを表1に示す。 When the cage-type silsesquioxane mixture after recondensation was allowed to stand at 20 ° C. or lower, needle-like crystals were deposited. The needle-like crystal was filtered off and found to be 5.89 g. Further, when GPC measurement was performed on the acicular crystal, only peak 8 was detected, and it was confirmed that this crystal was T8. As a result of 1H-NMR measurement, the signal derived from the methacryloxypropyl group was broad before the recondensation, and the signal was observed to be sharply separated. Generation of a compound having a type structure is presumed. In addition, a signal derived from a methoxy group (3.58 ppm) was not observed. When the integration ratio of —C═CH 2 and —O—CH 2 — was compared, it was 1.999: 1.984. Table 1 shows a summary of GPC before and after the recondensation reaction.

Figure 0004256756
Figure 0004256756

表1から判るように、再縮合反応前ではピーク1、ピーク2、ピーク3のシルセスキオキサン構造がランダム又ははしご型であるものが全体の75.4%を占めているのに対して、再縮合反応後ではこれらのピークは消失し、ピーク6、ピーク7、ピーク8のシルセスキオキサン構造が明確なかご型全体の93.7%を占めている。すなわち、再縮合反応を行うことによりランダム・はしご型構造を採っていたシルセスキオキサンがかご型構造に変換されたことを示している。   As can be seen from Table 1, before the recondensation reaction, the silsesquioxane structure of peak 1, peak 2 and peak 3 is random or ladder-type, accounting for 75.4% of the total. After the reaction, these peaks disappear and the silsesquioxane structures of Peak 6, Peak 7, and Peak 8 account for 93.7% of the entire cage. That is, it shows that silsesquioxane, which had a random / ladder structure, was converted to a cage structure by performing a recondensation reaction.

実施例2
実施例1同様にシルセスキオキサン組成物の合成を以下の仕込量で行った。IPA40ml、5%TMAH水溶液2.2g及びMTMS8.46g、滴下後2時間室温(20〜25℃で、加水分解反応時に発熱)で撹拌した後、減圧下でIPAを留去し、トルエン30mlで溶解した。実施例1同様に再縮合反応を行い、シルセスキオキサン混合物を5.65g回収率92%で得た。このかご型シルセスキオキサン混合物のGPCを測定した結果を図5に示す。図5から各ピークの分子量Mn、分子量分布Mw/Mn、型及び存在量を計算した結果を表2に示す。実施例2はシルセスキオキサン組成物の水洗工程を省略して行っており、かご型の構成比率は減少するが、水洗工程を行わなくてもかご型シルセスキオキサン混合物の合成が可能であることが確認できる。
Example 2
In the same manner as in Example 1, the synthesis of the silsesquioxane composition was carried out in the following amounts. 40 ml of IPA, 2.2 g of 5% TMAH aqueous solution and 8.46 g of MTMS, and after stirring for 2 hours at room temperature (20-25 ° C., exothermic during hydrolysis reaction), IPA was distilled off under reduced pressure and dissolved in 30 ml of toluene. . A recondensation reaction was carried out in the same manner as in Example 1 to obtain 5.65 g of a silsesquioxane mixture with a recovery rate of 92%. The result of having measured GPC of this cage silsesquioxane mixture is shown in FIG. Table 2 shows the results of calculating the molecular weight Mn, molecular weight distribution Mw / Mn, type, and abundance of each peak from FIG. In Example 2, the water washing step of the silsesquioxane composition is omitted, and the composition ratio of the cage type is reduced, but the cage type silsesquioxane mixture can be synthesized without the water washing step. It can be confirmed that there is.

実施例3
撹拌機、滴下ロート、温度計を備えた反応容器に、溶媒としてIPA200mlと塩基性触媒として5%TMAH水溶液15.6gを装入した。滴下ロートにIPA30mlと3−グリシドキシプロピルトリメトキシシラン60.38gを入れ、反応容器を撹拌しながら、室温で3−グリシドキシプロピルトリメトキシシランのIPA溶液を60分かけて滴下した。滴下終了後、加熱することなく6時間撹拌した。6時間撹拌後溶媒を減圧下でIPAを除去し、トルエン200mlで溶解した。
実施例1同様に再縮合反応を行い、シルセスキオキサン混合物を得た。このかご型シルセスキオキサン混合物のGPCを測定した結果を図6に、LC-MSを測定した結果を図7に示す。図6及び図7から各ピークの分子量Mn、分子量分布Mw/Mn、型及び存在量を計算した結果を表2に示す。以上の結果より、ピーク9及び10はシルセスキオキサンの構造がランダム又ははしご状の化合物であり。ピーク11はT12、ピーク12はT10、ピーク13はT8と同定できる。すなわち、実施例3は官能基Rがグリシジル基を有するかご型シルセスキオキサン混合物の合成が可能であることが確認できる。
Example 3
A reaction vessel equipped with a stirrer, a dropping funnel and a thermometer was charged with 200 ml of IPA as a solvent and 15.6 g of 5% TMAH aqueous solution as a basic catalyst. To the dropping funnel, 30 ml of IPA and 60.38 g of 3-glycidoxypropyltrimethoxysilane were added, and the IPA solution of 3-glycidoxypropyltrimethoxysilane was added dropwise over 60 minutes at room temperature while stirring the reaction vessel. After completion of dropping, the mixture was stirred for 6 hours without heating. After stirring for 6 hours, the solvent was removed from the IPA under reduced pressure and dissolved in 200 ml of toluene.
A recondensation reaction was performed in the same manner as in Example 1 to obtain a silsesquioxane mixture. The result of measuring GPC of this cage silsesquioxane mixture is shown in FIG. 6, and the result of measuring LC-MS is shown in FIG. The results of calculating the molecular weight Mn, molecular weight distribution Mw / Mn, type and abundance of each peak from FIG. 6 and FIG. 7 are shown in Table 2. From the above results, peaks 9 and 10 are compounds in which the structure of silsesquioxane is random or ladder-like. Peak 11 can be identified as T12, Peak 12 as T10, and Peak 13 as T8. That is, Example 3 can confirm that a cage-type silsesquioxane mixture in which the functional group R has a glycidyl group can be synthesized.

実施例4
撹拌機、滴下ロート、温度計を備えた反応容器に、溶媒としてIPA120mlと塩基性触媒として5%TMAH水溶液4.0gを装入した。滴下ロートにIPA30mlとビニルトリメトキシシラン10.2gを入れ、反応容器を撹拌しながら、0℃でビニルトリメトキシシランのIPA溶液を60分かけて滴下した。滴下終了後、徐々に室温に戻し、加熱することなく6時間撹拌した。6時間撹拌後溶媒を減圧下でIPAを除去し、トルエン200mlで溶解した。
次に、実施例1同様に再縮合反応を行い、シルセスキオキサン混合物を得た。このかご型シルセスキオキサン混合物のGPC及びLC-MSを測定した結果を図8及び図9に示す。図8及び図9から各ピークの分子量Mn、分子量分布Mw/Mn、型及び存在量を計算した結果を表2に示す。以上の結果より、ピーク14、15及び16はシルセスキオキサンの構造がランダム又ははしご状の化合物であり。ピーク17はT14、ピーク18はT12、ピーク19はT10と同定できる。すなわち、実施例4は官能基Rがビニル基を有するかご型シルセスキオキサン混合物の合成が可能であることが確認できる。
Example 4
A reaction vessel equipped with a stirrer, a dropping funnel and a thermometer was charged with 120 ml of IPA as a solvent and 4.0 g of 5% TMAH aqueous solution as a basic catalyst. To the dropping funnel, 30 ml of IPA and 10.2 g of vinyltrimethoxysilane were added, and the IPA solution of vinyltrimethoxysilane was added dropwise at 0 ° C. over 60 minutes while stirring the reaction vessel. After completion of the dropwise addition, the temperature was gradually returned to room temperature and stirred for 6 hours without heating. After stirring for 6 hours, the solvent was removed from the IPA under reduced pressure and dissolved in 200 ml of toluene.
Next, a recondensation reaction was performed in the same manner as in Example 1 to obtain a silsesquioxane mixture. The results of GPC and LC-MS measurements of this cage silsesquioxane mixture are shown in FIGS. The results of calculating the molecular weight Mn, molecular weight distribution Mw / Mn, type and abundance of each peak from FIG. 8 and FIG. 9 are shown in Table 2. From the above results, peaks 14, 15 and 16 are compounds in which the structure of silsesquioxane is random or ladder-like. Peak 17 can be identified as T14, Peak 18 as T12, and Peak 19 as T10. That is, it can be confirmed that Example 4 can synthesize a cage-type silsesquioxane mixture in which the functional group R has a vinyl group.

比較例1
撹拌機、滴下ロート、冷却器、温度計を備えた反応容器に、溶媒としてIPA160mlと5%TMAH水溶液6.5gを収めた。滴下ロートにIPA18mlとMTMS27.54gを収めた。反応容器を撹拌しながら、室温でMTMSのIPA溶液を30分かけて滴下した。MTMS滴下終了後2時間室温で撹拌した。2時間撹拌後95℃に加熱した。IPA還流条件で、更に4時間撹拌した。減圧下で溶媒を留去し、トルエン377mlで溶解した。トルエンで溶解した反応溶液を飽和食塩水で中性になるまで水洗した後、無水硫酸マグネシウムで脱水した。無水硫酸マグネシウムをろ別し、濃縮する反応溶液を飽和食塩水で中性になるまで水洗した後無水硫酸マグネシウムで脱水した。無水硫酸マグネシウムをろ過で取り除き濃縮することで加水分解生成物(シルセスキオキサン)を19.59g得た。得られたシルセスキオキサンは種々の有機溶剤に可溶な無色の粘性液体であった。
このシルセスキオキサンのGPCを測定した結果を図10に示す。図10から、実施例1で見られたと同様な波形は得られず、かご型以外の不純物を含むものであった。すなわち、比較例1はIPAのような極性溶媒の存在下では再縮合反応が進行しないことを示唆している。また、このシルセスキオキサンの分子量分布(Mw/Mn)は1.15であった。
Comparative Example 1
In a reaction vessel equipped with a stirrer, a dropping funnel, a cooler, and a thermometer, 160 ml of IPA and 6.5 g of 5% TMAH aqueous solution were placed as a solvent. The dropping funnel was charged with 18 ml of IPA and 27.54 g of MTMS. While stirring the reaction vessel, an IPA solution of MTMS was added dropwise at room temperature over 30 minutes. After completion of the MTMS addition, the mixture was stirred at room temperature for 2 hours. After stirring for 2 hours, the mixture was heated to 95 ° C. The mixture was further stirred for 4 hours under IPA reflux conditions. The solvent was distilled off under reduced pressure, and the residue was dissolved in 377 ml of toluene. The reaction solution dissolved in toluene was washed with saturated brine until neutral, and then dehydrated over anhydrous magnesium sulfate. The anhydrous magnesium sulfate was filtered off, and the concentrated reaction solution was washed with saturated brine until neutral, and then dehydrated with anhydrous magnesium sulfate. The anhydrous magnesium sulfate was removed by filtration and concentrated to obtain 19.59 g of a hydrolysis product (silsesquioxane). The obtained silsesquioxane was a colorless viscous liquid soluble in various organic solvents.
The result of measuring the GPC of this silsesquioxane is shown in FIG. From FIG. 10, a waveform similar to that seen in Example 1 was not obtained, but contained impurities other than the cage type. That is, Comparative Example 1 suggests that the recondensation reaction does not proceed in the presence of a polar solvent such as IPA. The molecular weight distribution (Mw / Mn) of this silsesquioxane was 1.15.

比較例2
撹拌機、滴下ロート、冷却器、温度計を備えた反応容器に、溶媒としてトルエン50mlと5%TMAH水溶液3.0gを装入した。滴下ロートにトルエン10mlとMTMS12.64gからなる溶液を入れ、反応容器を撹拌しながら、室温でMTMSのトルエン溶液を10分かけて滴下した。滴下終了後、2時間室温で撹拌した。撹拌後135℃に加熱し、トルエン還流(溶液温度108℃)温度で更に4時間撹拌した。反応溶液を飽和食塩水で中性になるまで水洗した後、無水硫酸マグネシウムで脱水した。無水硫酸マグネシウムをろ過で取り除き濃縮する反応溶液を飽和食塩水で中性になるまで水洗した後無水硫酸マグネシウムで脱水した。無水硫酸マグネシウムをろ別し、濃縮することでシルセスキオキサン組成物を10.78g得た。得られたシルセスキオキサン組成物のGPCを測定した結果を図11に示す。図11から、原料であるMTMSのピークが観測された。すなわち、比較例2は反応系が均一にならない非極性有機溶媒であるトルエンを加水分解反応に用いると、加水分解反応が十分に進行せず縮合が困難であることを示唆している。
Comparative Example 2
A reaction vessel equipped with a stirrer, a dropping funnel, a cooler, and a thermometer was charged with 50 ml of toluene and 3.0 g of 5% TMAH aqueous solution as a solvent. A solution consisting of 10 ml of toluene and 12.64 g of MTMS was placed in the dropping funnel, and a toluene solution of MTMS was added dropwise over 10 minutes at room temperature while stirring the reaction vessel. After completion of the dropwise addition, the mixture was stirred for 2 hours at room temperature. After stirring, the mixture was heated to 135 ° C., and further stirred at a temperature of toluene reflux (solution temperature: 108 ° C.) for 4 hours. The reaction solution was washed with saturated brine until neutral, and then dehydrated with anhydrous magnesium sulfate. The anhydrous magnesium sulfate was removed by filtration, and the concentrated reaction solution was washed with saturated brine until neutral, and then dehydrated with anhydrous magnesium sulfate. The anhydrous magnesium sulfate was filtered off and concentrated to obtain 10.78 g of a silsesquioxane composition. FIG. 11 shows the results of GPC measurement of the resulting silsesquioxane composition. From FIG. 11, a peak of MTMS as a raw material was observed. That is, Comparative Example 2 suggests that when toluene, which is a nonpolar organic solvent whose reaction system does not become uniform, is used for the hydrolysis reaction, the hydrolysis reaction does not proceed sufficiently and the condensation is difficult.

表2に実施例1、2、3及び4、比較例1及び2のGPC測定結果のまとめを示す。表2に3-MAPは3−メタクリロキシプロピル基を、3-GOPは3−グリシドキシプロピル基を示す。また、Lははしご型を、Rはランダム型を、Cは不完全を含むかご型を示す。なお、T8〜T14はかご型である。   Table 2 shows a summary of the GPC measurement results of Examples 1, 2, 3 and 4, and Comparative Examples 1 and 2. In Table 2, 3-MAP represents a 3-methacryloxypropyl group, and 3-GOP represents a 3-glycidoxypropyl group. L represents a ladder type, R represents a random type, and C represents a cage type including imperfections. T8 to T14 are cage types.

Figure 0004256756
Figure 0004256756

実施例1の加水分解生成物のGPCチャートGPC chart of hydrolysis product of Example 1 実施例1の加水分解生成物のLC−MSチャートLC-MS chart of the hydrolysis product of Example 1 実施例1の再縮合反応生成物のGPCチャートGPC chart of recondensation reaction product of Example 1 実施例1の再縮合反応生成物のLC−MSチャートLC-MS chart of the recondensation reaction product of Example 1 実施例2の再縮合反応生成物のGPCチャートGPC chart of recondensation reaction product of Example 2 実施例3の再縮合反応生成物のGPCチャートGPC chart of recondensation reaction product of Example 3 実施例3の再縮合反応生成物のLC−MSチャートLC-MS chart of recondensation reaction product of Example 3 実施例4の再縮合反応生成物のGPCチャートGPC chart of recondensation reaction product of Example 4 実施例4の再縮合反応生成物のLC−MSチャートLC-MS chart of recondensation reaction product of Example 4 比較例1のGPCチャートGPC chart of Comparative Example 1 比較例2のGPCチャートGPC chart of Comparative Example 2

Claims (5)

下記一般式(1)
RSiX3 (1)
(但し、Rは(メタ)アクリロイル基、グリシジル基又はビニル基のいずれか一つを有する有機官能基であり、Xは加水分解性基を示す)で表されるケイ素化合物を有機極性溶媒及び塩基性触媒存在下で加水分解反応させると共に一部縮合させ、得られた加水分解生成物を更に非極性溶媒及び塩基性触媒存在下で再縮合させることを特徴とするかご型シルセスキオキサン樹脂の製造方法。
The following general formula (1)
RSix 3 (1)
(Wherein R is an organic functional group having any one of a (meth) acryloyl group, a glycidyl group, and a vinyl group, and X represents a hydrolyzable group) an organic polar solvent and a base The cage silsesquioxane resin is characterized in that it undergoes a hydrolysis reaction in the presence of a basic catalyst and partially condenses, and the resulting hydrolysis product is further recondensed in the presence of a nonpolar solvent and a basic catalyst. Production method.
かご型シルセスキオキサン樹脂が、下記一般式(2)
[RSiO3/2]n (2)
(但し、Rは(メタ)アクリロイル基、グリシジル基又はビニル基のいずれか一つを有する有機官能基であり、nは8、10、12又は14である)で表される請求項1記載のかご型シルセスキオキサン樹脂の製造方法。
The cage silsesquioxane resin is represented by the following general formula (2)
[RSiO 3/2 ] n (2)
(Wherein R is an organic functional group having any one of a (meth) acryloyl group, a glycidyl group, and a vinyl group, and n is 8, 10, 12, or 14). A method for producing a cage-type silsesquioxane resin.
一般式(1)において、Rが下記一般式(3)、(4)又は(5)
Figure 0004256756
(但し、mは1〜3の整数であり、R1は水素原子又はメチル基を示す)で表される有機官能基である請求項1又は2記載のかご型シルセスキオキサン樹脂の製造方法。
In the general formula (1), R is the following general formula (3), (4) or (5)
Figure 0004256756
The method for producing a cage silsesquioxane resin according to claim 1 or 2, wherein m is an integer of 1 to 3 and R 1 represents a hydrogen atom or a methyl group. .
下記一般式(1)
RSiX3 (1)
(但し、Rは(メタ)アクリロイル基、グリシジル基又はビニル基のいずれか一つを有する有機官能基であり、Xは加水分解性基を示す)で表されるケイ素化合物を有機極性溶媒及び塩基性触媒存在下で加水分解反応させると共に一部縮合させて、数平均分子量が500〜7000の加水分解生成物を得て、次いで得られた加水分解生成物を、更に非極性溶媒及び塩基性触媒存在下で再縮合させることを特徴とするかご型シルセスキオキサン樹脂の製造方法。
The following general formula (1)
RSix 3 (1)
(Wherein R is an organic functional group having any one of a (meth) acryloyl group, a glycidyl group, and a vinyl group, and X represents a hydrolyzable group) an organic polar solvent and a base Hydrolysis reaction and partial condensation in the presence of a neutral catalyst to obtain a hydrolysis product having a number average molecular weight of 500 to 7000, and then the obtained hydrolysis product is further mixed with a nonpolar solvent and a basic catalyst. A method for producing a cage-type silsesquioxane resin, characterized by recondensing in the presence.
加水分解生成物がかご型、はしご型及びランダム型のシルセスキオキサンの混合物であり、再縮合させて得られるかご型シルセスキオキサン樹脂が、下記一般式(2)
[RSiO3/2]n (2)
(但し、Rは(メタ)アクリロイル基、グリシジル基又はビニル基のいずれか一つを有する有機官能基であり、nは8、10、12又は14である)で表され、nが8、10、12及び14から選ばれる3種以上のかご型シルセスキオキサン樹脂の混合物であり、nが8、10、12及び14のかご型シルセスキオキサンの合計量が全シルセスキオキサンの50wt%以上である請求項4記載のかご型シルセスキオキサン樹脂の製造方法。
The hydrolysis product is a mixture of a cage-type, ladder-type and random-type silsesquioxane, and a cage-type silsesquioxane resin obtained by recondensation has the following general formula (2)
[RSiO 3/2 ] n (2)
(Wherein R is an organic functional group having any one of (meth) acryloyl group, glycidyl group and vinyl group, and n is 8, 10, 12 or 14), and n is 8, 10 A mixture of three or more cage-type silsesquioxane resins selected from 12 and 14, and the total amount of cage-type silsesquioxanes having n of 8, 10, 12, and 14 is 50 wt. The method for producing a cage-type silsesquioxane resin according to claim 4, which is at least%.
JP2003338025A 2002-09-30 2003-09-29 Method for producing cage-type silsesquioxane resin having functional group Expired - Lifetime JP4256756B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003338025A JP4256756B2 (en) 2002-09-30 2003-09-29 Method for producing cage-type silsesquioxane resin having functional group

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002285387 2002-09-30
JP2003338025A JP4256756B2 (en) 2002-09-30 2003-09-29 Method for producing cage-type silsesquioxane resin having functional group

Publications (2)

Publication Number Publication Date
JP2004143449A JP2004143449A (en) 2004-05-20
JP4256756B2 true JP4256756B2 (en) 2009-04-22

Family

ID=32473247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003338025A Expired - Lifetime JP4256756B2 (en) 2002-09-30 2003-09-29 Method for producing cage-type silsesquioxane resin having functional group

Country Status (1)

Country Link
JP (1) JP4256756B2 (en)

Families Citing this family (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4558643B2 (en) 2003-03-27 2010-10-06 新日鐵化学株式会社 Silicone resin composition and molded body thereof
JP4734832B2 (en) * 2003-05-14 2011-07-27 ナガセケムテックス株式会社 Encapsulant for optical element
DE602005003475T2 (en) * 2004-07-16 2008-09-25 Dow Corning Corp., Midland RADIATION SENSITIVE SILICONE RESIN COMPOSITION
JP4409397B2 (en) 2004-09-27 2010-02-03 新日鐵化学株式会社 Silicone resin composition and molded body
KR100991025B1 (en) * 2004-09-27 2010-10-29 신닛테츠가가쿠 가부시키가이샤 Silica-containing silicone resin composition and molded article thereof
JP4497014B2 (en) * 2005-04-01 2010-07-07 セイコーエプソン株式会社 Method for manufacturing polarization separating element
JP4775561B2 (en) * 2005-04-01 2011-09-21 信越化学工業株式会社 Silsesquioxane-based compound mixture, production method thereof, resist composition using the same, and pattern formation method
TW200700427A (en) * 2005-05-25 2007-01-01 Hybrid Plastics Inc Process for continuous production of olefin polyhedral oligomeric silsesquioxane cages
JP2009504890A (en) * 2005-08-16 2009-02-05 ハイブリッド・プラスティックス・インコーポレイテッド Preparation of polyhedral oligomeric silsesquioxane silanols and siloxanes functionalized with olefinic groups
DE102005047396A1 (en) * 2005-10-04 2007-04-05 Wacker Chemie Ag New liquid organopolysiloxanes are used for same purposes as existing organopolysiloxanes, e.g. as paint and lacquer binder and in silicone resin paint, building protection, coating, cosmetics, textile or paper field or emulsion production
JP4868135B2 (en) 2006-04-18 2012-02-01 信越化学工業株式会社 Photoreactive group-containing siloxane compound, method for producing the same, photocurable resin composition, and article having the cured film
JP4239030B2 (en) 2006-07-13 2009-03-18 信越化学工業株式会社 Photo-curable resin composition and article having cured film thereof
JP4400751B2 (en) 2006-10-24 2010-01-20 信越化学工業株式会社 Light and thermosetting coating composition and article having cured film thereof
KR101332227B1 (en) * 2006-11-29 2013-11-22 주식회사 동진쎄미켐 Monomer, polymer for forming organic anti-reflective coating layer, and organic composition including the same
JP5006674B2 (en) * 2007-03-14 2012-08-22 株式会社リコー Carrier, two-component developer, and image forming method
WO2008123252A1 (en) * 2007-03-26 2008-10-16 Nippon Steel Chemical Co., Ltd. Lens
EP3042909B1 (en) 2007-04-17 2018-08-01 Kaneka Corporation Polyhedral polysiloxane modified product and composition using the modified product
JP5101930B2 (en) 2007-06-08 2012-12-19 マブチモーター株式会社 Small motor with polygonal outline
JP5275589B2 (en) * 2007-08-02 2013-08-28 日本曹達株式会社 Silsesquioxane-containing composition and silsesquioxane-containing hydroxyalkyl cellulose resin composition
JP5119843B2 (en) * 2007-10-09 2013-01-16 宇部興産株式会社 Method for producing cage-type silsesquioxane derivative
JP5258788B2 (en) * 2007-11-30 2013-08-07 昭和電工株式会社 Curable composition for transfer material and method for forming fine pattern using the composition
CN101896537B (en) 2007-12-10 2012-10-24 株式会社钟化 Alkali-developable curable composition, insulating thin film using the same, and thin film transistor
JP5036060B2 (en) * 2008-01-30 2012-09-26 新日鐵化学株式会社 Decorative printing film laminate
AU2009224354B2 (en) 2008-03-11 2013-07-25 Toray Industries, Inc. Composite separation membrane
TW201000491A (en) * 2008-03-28 2010-01-01 Nippon Steel Chemical Co Silanol-group-containing curable cage-type silsesquioxane compound, cage-structure-containing curable silicone copolymer, processes for producing these, and curable resin composition
CN102171268B (en) 2008-10-02 2016-05-18 株式会社钟化 Photocurable composition and solidfied material
KR101600093B1 (en) 2009-01-20 2016-03-04 신에쓰 가가꾸 고교 가부시끼가이샤 Photocurable resin composition and article having cured coating thereof
JP5457051B2 (en) * 2009-03-05 2014-04-02 新日鉄住金化学株式会社 Retardation film and method for producing the same
JP5348479B2 (en) * 2009-03-18 2013-11-20 株式会社リコー Electrophotographic carrier, electrophotographic two-component developer and image forming method
JP5438447B2 (en) * 2009-09-18 2014-03-12 昭和電工株式会社 Method for producing hydrosilyl compound
JP5509920B2 (en) 2010-02-24 2014-06-04 帝人株式会社 PHOTOCURABLE RESIN COMPOSITION, ARTICLE HAVING THE CURED CELL
JP5281607B2 (en) * 2010-03-18 2013-09-04 新日鉄住金化学株式会社 Laminate film
JP5385832B2 (en) * 2010-03-23 2014-01-08 新日鉄住金化学株式会社 Curable resin composition and molded product obtained therefrom
CN102918110B (en) 2010-05-28 2015-08-12 株式会社钟化 Polysiloxane based composition, cured article and optics
US9698320B2 (en) 2010-09-22 2017-07-04 Kaneka Corporation Modified product of polyhedral structure polysiloxane, polyhedral structure polysiloxane composition, cured product, and optical semiconductor device
CN103459468B (en) * 2011-03-31 2015-06-24 新日铁住金化学株式会社 Basket type silsesquioxane resin, basket type silsesquioxane copolymer and method for producing same
JP5698584B2 (en) * 2011-03-31 2015-04-08 新日鉄住金化学株式会社 Cage-type silsesquioxane resin and method for producing the same
JP5662864B2 (en) * 2011-03-31 2015-02-04 新日鉄住金化学株式会社 Cage-type silsesquioxane copolymer and method for producing the same
CN103459447B (en) * 2011-03-31 2015-03-25 新日铁住金化学株式会社 Curable silicone resin composition and cured silicone resin
JP2012232975A (en) 2011-04-20 2012-11-29 Central Glass Co Ltd Siloxane compound, and cured product thereof
JP6011230B2 (en) 2011-10-25 2016-10-19 セントラル硝子株式会社 Siloxane composition, cured product thereof and use thereof
JP6021605B2 (en) * 2012-11-19 2016-11-09 新日鉄住金化学株式会社 Cage type silsesquioxane compound, curable resin composition and resin cured product using the same
EP2966144B1 (en) 2013-03-04 2017-10-25 Tokuyama Corporation Photochromic curable composition
KR102363819B1 (en) * 2014-02-28 2022-02-17 주식회사 동진쎄미켐 Silsesquioxane composite polymer and method for manufacturing thereof
US10696016B2 (en) * 2015-07-31 2020-06-30 Samsung Sdi Co., Ltd. Window film and flexible display including the same
CN107921476A (en) * 2015-08-25 2018-04-17 株式会社东进世美肯 Laminate and method for producing same
US10501583B2 (en) 2016-01-28 2019-12-10 Lg Chem, Ltd. Method for preparing polyhedral oligomeric silsesquioxane
KR102476069B1 (en) 2016-09-29 2022-12-12 가부시키가이샤 가네카 Photosensitive composition, and coloring pattern and method for producing the same
KR20210124274A (en) 2019-02-08 2021-10-14 닛테츠 케미컬 앤드 머티리얼 가부시키가이샤 A photocurable silicone resin composition, a silicone resin molded article obtained by curing the same, and a method for producing the molded article
JP7628821B2 (en) 2020-12-22 2025-02-12 日鉄ケミカル&マテリアル株式会社 Photocurable silicone resin composition, silicone resin molded article obtained by curing the composition, and method for producing the molded article
US20240182749A1 (en) 2021-03-08 2024-06-06 Tokuyama Corporation Photochromic curable composition, photochromic laminate and method for producing the same
CN118369387A (en) 2021-12-22 2024-07-19 日铁化学材料株式会社 Photocurable silicone resin composition and cured product thereof
KR102739431B1 (en) 2022-07-26 2024-12-06 주식회사 파이오셀 POSS (polyhedral oligomeric silsesquioxane)- modified polysiloxane compound having a novel structure, a method for producing the same, and a composition comprising a POSS (polyhedral oligomeric silsesquioxane)-modified polysiloxane compound having a novel structure produced by the method for producing the same
KR102739430B1 (en) 2022-02-08 2024-12-06 주식회사 파이오셀 Novel structural POSS (polyhedral oligomeric silsesquioxane)-modified polysiloxane compound
CN116063981A (en) * 2022-12-29 2023-05-05 中科院广州化学有限公司 High-temperature-resistant anaerobic adhesive with functional cage-type silsesquioxane structure, and preparation method and application thereof

Also Published As

Publication number Publication date
JP2004143449A (en) 2004-05-20

Similar Documents

Publication Publication Date Title
JP4256756B2 (en) Method for producing cage-type silsesquioxane resin having functional group
KR101013824B1 (en) Basket-type silsesquioxane resin having a functional group and a method of manufacturing the same
CN102219906B (en) A kind of hyperbranched polysiloxane and preparation method thereof
WO2010062695A2 (en) Properties tailoring in silsesquioxanes
JPH02255689A (en) Glycidoxy group-containing organosilicon compound
JP5890288B2 (en) Method for producing novel organosilicon compound
JP5890284B2 (en) Method for producing novel organosilicon compound
JP5698584B2 (en) Cage-type silsesquioxane resin and method for producing the same
JP2000239390A (en) Carbosiloxane dendrimer
JP5346593B2 (en) Cage-cleavable siloxane resin having a functional group and method for producing the same
US20060041098A1 (en) Synthesis and characterization of novel cyclosiloxanes and their self- and co-condensation with silanol-terminated polydimethylsiloxane
JP4866050B2 (en) Production method of polysilane
TWI520987B (en) Cage silsesquioxane silicone resin and siloxane cage silsesquioxane silicone siloxane copolymer, and manufacturing method thereof
JPWO2019003767A1 (en) Isocyanuric acid derivative having alkoxyalkyl group and method for producing the same
JP2526187B2 (en) Fluorosilicone resin and method for producing the same
JP6048380B2 (en) Organosilicon compound having oxetane ring and method for producing the same
JP3155783B2 (en) Silicone-novolak block copolymer and method for producing the same
JP2917619B2 (en) Polysilane copolymer and method for producing the same
JP5273941B2 (en) Process for producing polyhedral silsesquioxane
TW200916507A (en) New silicone compound, and raw material thereof and method for producing the silicone compound
JP5662864B2 (en) Cage-type silsesquioxane copolymer and method for producing the same
JP3882682B2 (en) Polycarbosilane, method for producing the same, and organosilicon compound
JP4276805B2 (en) Novel silazane compound and method for producing the same, and novel silazane compound polymer and method for producing the same
JP3227759B2 (en) Method for producing silicone-novolak block copolymer
JP2903488B2 (en) Cyclopentadienyl group-containing disiloxane and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080716

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080805

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081002

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090127

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090130

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4256756

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150206

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150206

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150206

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term