[go: up one dir, main page]

JP4251858B2 - Powdered rubber with an uneven surface, rubber composition and tire using the same - Google Patents

Powdered rubber with an uneven surface, rubber composition and tire using the same Download PDF

Info

Publication number
JP4251858B2
JP4251858B2 JP2002344276A JP2002344276A JP4251858B2 JP 4251858 B2 JP4251858 B2 JP 4251858B2 JP 2002344276 A JP2002344276 A JP 2002344276A JP 2002344276 A JP2002344276 A JP 2002344276A JP 4251858 B2 JP4251858 B2 JP 4251858B2
Authority
JP
Japan
Prior art keywords
rubber
powder
treatment
powder rubber
powdered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002344276A
Other languages
Japanese (ja)
Other versions
JP2003231118A (en
Inventor
邦器 木野
光太郎 桐村
将広 北條
裕一 石野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2002344276A priority Critical patent/JP4251858B2/en
Publication of JP2003231118A publication Critical patent/JP2003231118A/en
Application granted granted Critical
Publication of JP4251858B2 publication Critical patent/JP4251858B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Tires In General (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Biological Depolymerization Polymers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、高い破壊特性及び高い耐磨耗性を維持するゴム組成物を得るための粉ゴムとそれを配合したゴム組成物に関する。
【0002】
【従来の技術】
廃タイヤは、一般のプラスチック製品と比較して回収率は高く、特にセメント工場を中心に燃料として再利用されている。しかしながら、近年、タイヤゴム片あるいはゴム粉末をそのまま使用する、いわゆるマテリアルリサイクル率の向上が求められており、廃タイヤ等の廃ゴムを再利用する方法として二軸押出機などで大きな剪断力を加える粉砕脱硫方法、微粒粉砕法や粉砕した加硫ゴムの様々な脱硫方法が検討されているが、エネルギーコストが高くなるという問題がある。
【0003】
そこで、省エネルギー的な方法として、微生物による処理が検討されている。微生物処理は、低温での処理なので、エネルギー消費は最も少ない処理法といえる。微生物処理については特開平9―194624、特開平11―60793に硬質ゴムを効率よく分解処理する方法が提案されているが、いずれもゴム片を完全に分解することを念頭にした処理方法が示されているだけで、どのようにすればマテリアルリサイクルに有効な粉ゴムを得ることができるかについては何も述べられていない。
【0004】
【発明が解決しようとする課題】
本発明は、廃ゴムから少ないエネルギーで、従来の粉ゴムを使用した場合に比べ、高い破壊特性及び高い耐磨耗性を維持するゴム組成物を得るための粉ゴムとそれを配合したゴム組成物を得ることを目的とする。
【0005】
【課題を解決するための手段】
本発明者らは、上記の問題を解決するために鋭意検討した結果、廃ゴムを従来法で粉砕した特定サイズの粉末ゴムの表面に、更に凹凸を増やす表面処理を行うことで、該粉末ゴムを用いたゴム組成物は高い破壊物性が得られること、この凹凸を増やす方法としては限定されないが、特に微生物による分解手法が有効であることを見出し本発明を完成させるに至った。
【0006】
すなわち、本発明は次の(1)〜(9)からなる。
(1) 表面に凹凸化処理を施した粉ゴム。
(2) 凹凸化処理が、微生物を用いてなされたことを特徴とする上記(1)に記載の粉ゴム。
(3) 微生物が、シュードノカルディアセアエ(Pseudonocardiaceae)に属する微生物であることを特徴とする上記(2)に記載の粉ゴム。
(4) シュードノカルディアセアエ(Pseudonocardiaceae)に属する微生物が、WU−YS05株、受託番号FERM P−18660であることを特徴とする上記(3)に記載の粉ゴム。
(5) 凹凸化処理前粉ゴムの平均粒径が1mm以下であることを特徴とする上記(1)から(4)のいずれか1項に記載の粉ゴム。
(6) 凹凸化処理前粉ゴムの平均粒径が0.2mm以下であることを特徴とする上記(5)に記載の粉ゴム。
(7) 凹凸化処理が、処理前後の粉ゴムの重量変化率が0.01%から40%の範囲でなされたことを特徴とする上記(1)から(6)のいずれか1項に記載の粉ゴム。
(8) 上記(1)から(7)のいずれか1項に記載の粉ゴムを用いたゴム組成物。
(9) 上記(8)に記載のゴム組成物を用いたことを特徴とするタイヤ。
【0007】
本発明で利用される粉ゴムの原料となる廃ゴムのゴム種は、特に限定されない。また、微生物処理に利用する微生物は、土壌などからスクリーニングして分離することができる。
【0008】
【発明の実施の形態】
以下、本発明の実施の形態を具体的に説明する。
本発明で利用される粉ゴムの原料となる廃ゴムのゴム種は、特に限定されるものでなく、天然ゴム及び合成ゴムの中から選ばれる少なくとも一種を含むものであればよい。合成ゴムとしては、ジエン系ゴムが好ましく、例えば、シス−1,4−ポリイソプレン、スチレン・ブタジエン共重合体、低シス−1,4−ポリブタジエン、高シス−1,4−ポリブタジエン、エチレン−プロピレン−ジエン共重合体、クロロブレンゴム、ハロゲン化ブチルゴム、アクリロニトリル−ブタジエンゴム等を例示できる。
【0009】
粉ゴムの原料となる加硫ゴムには、ゴム工業で通常使用されているシランカップリング剤、硫黄、加硫剤、加硫促進剤、加硫促進助剤、酸化防止剤、オゾン劣化防止剤、老化防止剤、プロセス油、亜鉛華(ZnO)、ステアリン酸、過酸化物等が配合されている。
【0010】
本発明は、かかる加硫ゴムからなる廃タイヤ・チューブ等を従来の方法で粉砕して得られる粉ゴムに限らず、タイヤ製造時等に発生する未加硫スクラップ物、タイヤ等加硫時に発生するスピュー片などを粉砕した粉ゴムも使用できる。
【0011】
本発明では、粉ゴムの表面に凹凸化処理をすることにより、粒径を実質的に変えずにその表面積を上げることができ、そのような粉ゴムを使用することで、高い破壊物性のゴム組成物が得られる。
【0012】
本発明の表面凹凸化処理の方法は、特に限定されず、具体的には、微生物を用いる方法、酸化分解、オゾン処理、プラズマ処理などを挙げることができる。なかでも、微生物を用いる方法が有効である。
【0013】
本発明で使用できる微生物は、特に限定はないが、細菌、放線菌、真菌、白色腐朽菌の類が好ましい。
細菌では、Xantomonas sp.、Pseudomonas citronellolis、Pseudomonas aeruginosaが天然ゴムを分解することが知られており、また放線菌として、Nocardia sp.、Nocardia asteroides、Nocardia blasiliensis、Gordona sp.、Gordona polyisoprenivorans、Micromonospora aurantiaca、Micromonospora fortuitum、Sreptomyces coelicolor、Actinomyces elastica、Actinomyces fluscus、Proactinomyces ruber、Actinomadura libanotica、Actinoplanes missouriensi、Actinoplanes italicus、Actinoplanes utahensis、Dactylosporangium thailandense、Micromonospora sp.、Streptomyces sp.、Streptomyces acrimycini、Streptomyces albogriseu、Streptomyces albadunctus、Streptomyces antibioticus、Streptomyces atroolivaceus、Streptomyces aureocirculatus、Streptomyces daghestanicus、Streptomyces flavoviridi、Streptomyces fradiae、Streptomyces griseus、Streptomyces griseobrunneus、Streptomyces griseoflavus、Streptomyces griseoflavus、Streptomyces griseoviridis、Streptomyces nitrosporeus、Streptomyces olivaceus、Streptomyces olivoviridis、Streptomyces tauricus、Amycolatopsis sp.のような多くの放線菌の類が天然ゴムを分解することが知られている。本発明者らは、中でもPseudonocardiaceae に属する微生物、とりわけWU−YS05株が、天然ゴムの分解能力が高いことを発見した。
WU−YS05株は、独立行政法人産業技術総合研究所 特許生物寄託センターに、受託番号FERM P−18660(寄託日:平成13年12月21日)として寄託されている。
【0014】
また、真菌(かび)の類では、Aspergillus sp.、Stemphylium macrosporoideum、Paecilomysces lilacinus、Phoma eupyrena、Fusarium solani、Cladosporium cladosporioideが天然ゴムを分解することが知られ、最近では白色腐朽菌、中でもCeriporiosis subvermisporaが天然ゴム及びSBRなどの合成ゴムを分解することが報告されている。
【0015】
本発明では、これらの微生物を単独及び複数を組み合わせて使用することができる。これらの微生物は、基本的にはゴムを唯一の炭素源として生育できるもので、ゴムを炭素源として生育するような環境にすることにより、土壌などからスクリーニングし、単離することが可能である。たとえば、放線菌の場合の液体培地としては表1に示すものが例示される。
【0016】
【表1】

Figure 0004251858
【0017】
この培地には炭素源はないため、例えば、これに天然ゴムシートを添加することにより、上記の天然ゴム分解菌を生育させることができ、それを微生物処理の種菌とすることができる。
【0018】
本発明における粉ゴムの微生物処理の仕方として、特に限定はしないが、例えば、上記の培地の中に粉ゴムを添加し、種菌として得たPseudonocardiaceaeに属する微生物のような菌を植菌すると、ゴム分解微生物がその粉ゴムを唯一の炭素源として増殖を始め、粉ゴムの表面を分解し、粉ゴムの表面に凹凸をつけることとなる。
【0019】
微生物の培養条件は、通常の好気性微生物の培養条件とすることができ、液体培地1000ml〜100mlあたり、菌の量は1白金耳、粉ゴムは1g〜5g、培養温度は常温(25℃〜35℃)、培養時間は凹凸化処理の程度によるが5〜20日間である。
また、粉ゴムは、その表面の凹凸化処理前の粒径が1mm以下であることが好ましく、より好ましくは、0.5mm以下、さらに好ましくは0.2mm、特に好ましくは0.1mm以下である。もっと大きな粒径であっても、表面を凹凸化することにより所望の効果は得られるが、予めある程度小さくしておくことにより、より効率的に表面積の大きい粉ゴムを得ることができる。
【0020】
表面の凹凸化処理の程度は、特に制限はなく、目的、用途に併せて適宜選択される。凹凸化処理の程度は、粉ゴムの重量変化率で判定することができ、粉ゴムの重量変化率が0.1%から40%の範囲であることが好ましい。
培養後、粉ゴムを濾過し、有機溶剤及び水で洗浄し、乾燥後ゴム組成物の原料とする。
【0021】
本発明の表面処理した粉ゴムを配合することにより、従来の粉ゴムを用いた場合よりも破壊特性、耐磨耗性に優れるゴム組成物を得ることができ、このようなゴム組成物をタイヤトレッド、サイドウォール、カーカスプライやベルトプライのコーティングゴムに用いると、従来の粉ゴムを用いたタイヤに比べると耐久性を向上させることができる。また、本発明のタイヤに充填する気体としては空気に限らず、窒素などの不活性なガスも使用できる。
【0022】
実施例
次に、実施例および比較例により本発明を説明するが、本発明は下記実施例に何ら限定されるものではない。
【0023】
1.微生物のスクリーニング
表1に示す培地100ml中に土壌約10mgとアセトン抽出した天然ゴムラテックス手袋を5cm角に切ったゴム片を入れ、30℃で2週間振とう培養し、ゴム片の表面に付着した菌を表1に示す培地と同一組成の溶液に、寒天1.5重量%を加えた固体培地上で分離し、WU−YS05株(Pseudonocardiaceaeの微生物)を得た。
【0024】
2.表面凹凸化処理
シリコーン栓付きのガラス容器に準備した表1に示す組成の培地に市販の粉ゴム(米国Rouse社製:200メッシュ)5g/lを入れ、90℃でオートクレーブ中で滅菌処理した後、WU−YS05株を白金耳により、無菌的に植菌した。30℃で10日間50〜70rpmの条件で振とう培養した後、粉ゴムをろ紙でろ過した。ろ紙上の粉ゴムをアセトンで数回洗浄後、純水で洗浄し、40℃で真空乾燥して、配合する粉ゴムの試料とした。
また、比較用として微生物株を全く植菌しないで同様の処理を行った。
処理前後での重量減少率(分解率)は植菌したものが、0.8%に対して未植菌のものは0.1%未満であり、微生物により粉ゴムが分解されていることが確認された。
【0025】
3.表面観察
乾燥後の粉ゴム表面を、日本電子株式会社社製走査電子顕微鏡(SEM)で観察したところ、植菌せずに処理した粉ゴムと比べてPseudonocardiaceaeYS05株を植菌して処理した粉ゴムは、表面が明らかに侵食されて凸凹が微細になっていることが確認された。
【0026】
4.再生ゴムの評価
上記の植菌した場合と、植菌しない場合で得た粉ゴムを使用し、新材のゴム成分に得られた粉ゴムとゴム配合剤を加えて、80mlプラストミルを用いて混練りし、トレッド用およびサイドウォール用ゴム組成物を得た。これを150℃20分間加圧し、加硫ゴムサンプルを得た。
この組成物につき、耐摩耗性、破壊特性、亀裂成長性を測定し、再生ゴム(表面処理ゴム)を評価した。
【0027】
1)ゴム組成物の調製
トレッド用ゴム組成物は、新材のSBR70重量部とBR30重量部のゴム成分に対して表2に示す配合割合で、サイドウォール用組成物は、新材の天然ゴム50重量部とBR50重量部のゴム成分に対して表3に示す配合割合で配合剤及び粉ゴムを配合しゴム組成物を得た。
粉ゴムの使用量は、各実施例、比較例について表4及び表5に示す。
【0028】
【表2】
Figure 0004251858
【0029】
【表3】
Figure 0004251858
【0030】
2)測定方法
上記の組成物につき、耐摩耗性、破壊特性、耐亀裂成長性を下記の方法で測定し、再生ゴムを評価した。
評価は各特性とも、トレッド用の場合、比較例1(粉ゴムを使用せず、新材ゴムのみ)の値を100とし、サイドウォール用の場合は比較例6(粉ゴム不使用の例)の値を100として指数で表示した。指数が大きい程特性が優れている。
得られた結果を、表4、5に示す。
【0031】
破壊特性
JIS K6301−1995により、破壊強度(TB)を測定し、コントロールを100とした指数で表わした。数値が大きい程、破壊特性は良好である。
【0032】
耐亀裂成長性
JIS K6301−1995と同様に試験を行ない、亀裂の長さが10mmとなったときの屈曲回数を測定し、コントロールを100として指数で表した。数値が大きい程、耐亀裂成長性は良好である。
【0033】
耐摩耗性
ランボーン摩耗法により測定した。測定条件は、負荷荷重が4.5kg、砥石の表面速度が100m/秒、試験速度が130m/秒、スリップ率が30%、落砂量が20g/分、測定温度が室温であった。コントロールを100として指数で表示した。数値が大きい程結果が良好である。
【0034】
【表4】
Figure 0004251858
【0035】
【表5】
Figure 0004251858
【0036】
【発明の効果】
粉ゴムを入れない比較例1に対し、未処理粉ゴムあるいは未植菌で処理した粉ゴムを配合すると破壊物性、耐摩耗性、耐亀裂成長性が大きく低下することが判る。これに対してWU−YS05株を植菌して処理した粉ゴムを用いると物性が大きく改良されることが確認された。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a rubber powder and a rubber composition blended with it to obtain a rubber composition that maintains high fracture characteristics and high wear resistance.
[0002]
[Prior art]
Waste tires have a higher recovery rate than ordinary plastic products, and are reused as fuel, especially in cement factories. However, in recent years, tire rubber pieces or rubber powders are used as they are, and so-called material recycling rate improvement has been demanded. As a method of reusing waste rubber such as waste tires, grinding with a large shear force applied by a twin screw extruder or the like Various desulfurization methods, such as a desulfurization method, a fine particle pulverization method, and a pulverized vulcanized rubber, have been studied.
[0003]
Therefore, treatment with microorganisms has been studied as an energy-saving method. Microbial treatment is a treatment at a low temperature, so it can be said to be the treatment method with the least energy consumption. Regarding microbial treatment, methods for efficiently decomposing hard rubber have been proposed in Japanese Patent Application Laid-Open Nos. 9-194624 and 11-60793, and all of them show treatment methods with the intention of completely decomposing rubber pieces. However, nothing is said about how to obtain powdered rubber effective for material recycling.
[0004]
[Problems to be solved by the invention]
The present invention is a powder rubber for obtaining a rubber composition that maintains high fracture characteristics and high wear resistance compared to the case of using conventional powder rubber with less energy from waste rubber, and a rubber composition containing the same. The purpose is to get things.
[0005]
[Means for Solving the Problems]
As a result of intensive studies to solve the above problems, the present inventors have performed a surface treatment for increasing irregularities on the surface of a powder rubber of a specific size obtained by pulverizing waste rubber by a conventional method. The rubber composition using the above has a high destructive physical property and is not limited as a method for increasing the unevenness. However, the present invention has been completed by finding that the decomposition method using microorganisms is particularly effective.
[0006]
That is, this invention consists of following (1)-(9).
(1) Powdered rubber with a roughened surface.
(2) The rubber powder as described in (1) above, wherein the roughening treatment is performed using microorganisms.
(3) The powder rubber according to (2) above, wherein the microorganism is a microorganism belonging to Pseudonocardiaceae.
(4) The rubber powder as described in (3) above, wherein the microorganism belonging to Pseudonocardiaceae is WU-YS05 strain, accession number FERM P-18660.
(5) The powder rubber according to any one of (1) to (4) above, wherein an average particle diameter of the powdered rubber before the roughening treatment is 1 mm or less.
(6) The powder rubber according to (5) above, wherein the average particle diameter of the powder rubber before the roughening treatment is 0.2 mm or less.
(7) The unevenness treatment is performed in a range of 0.01% to 40% in weight change rate of the rubber powder before and after the treatment, according to any one of (1) to (6) above Powder rubber.
(8) A rubber composition using the powder rubber according to any one of (1) to (7) above.
(9) A tire using the rubber composition according to (8).
[0007]
The rubber type of the waste rubber used as a raw material for the powder rubber used in the present invention is not particularly limited. In addition, microorganisms used for microbial treatment can be screened and separated from soil.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be specifically described.
The rubber type of the waste rubber used as a raw material for the powder rubber used in the present invention is not particularly limited, and may be any as long as it contains at least one selected from natural rubber and synthetic rubber. The synthetic rubber is preferably a diene rubber such as cis-1,4-polyisoprene, styrene-butadiene copolymer, low cis-1,4-polybutadiene, high cis-1,4-polybutadiene, or ethylene-propylene. -Diene copolymer, chlorobrene rubber, halogenated butyl rubber, acrylonitrile-butadiene rubber and the like can be exemplified.
[0009]
The vulcanized rubber used as the raw material for powder rubber includes silane coupling agents, sulfur, vulcanizing agents, vulcanization accelerators, vulcanization accelerators, antioxidants, and ozone deterioration inhibitors that are commonly used in the rubber industry. Anti-aging agent, process oil, zinc white (ZnO), stearic acid, peroxide and the like are blended.
[0010]
The present invention is not limited to powder rubber obtained by pulverizing waste tires and tubes made of such vulcanized rubber by conventional methods, but is generated during vulcanization of unvulcanized scraps and tires that are generated during tire production It is also possible to use powder rubber obtained by pulverizing spew pieces.
[0011]
In the present invention, it is possible to increase the surface area without substantially changing the particle size by subjecting the surface of the powder rubber to a roughening process. By using such a powder rubber, a rubber having high destructive properties. A composition is obtained.
[0012]
The method for surface roughening treatment of the present invention is not particularly limited, and specific examples include a method using microorganisms, oxidative decomposition, ozone treatment, plasma treatment and the like. Among these, a method using a microorganism is effective.
[0013]
The microorganism that can be used in the present invention is not particularly limited, but bacteria, actinomycetes, fungi, and white rot fungi are preferable.
Among bacteria, Xantomonas sp., Pseudomonas citronellolis, Pseudomonas aeruginosa are known to degrade natural rubber, and as actinomycetes, Nocardia sp., Nocardia asteroides, Nocardia blasiliensis, Gordona sp. Micromonospora fortuitum, Sreptomyces coelicolor, Actinomyces elastica, Actinomyces fluscus, Proactinomyces ruber, Actinomadura libanotica, Actinoplanes missouriensi, Actinoplanes italicus, Actinoplanes utahensis, Dactylosporangium thailandense, Micromonosptomy Streptomyces atroolivaceus, Streptomyces aureocirculatus, Streptomyces daghestanicus, Streptomyces flavoviridi, Streptomyces fradiae, Streptomyces griseus, Streptomyces griseobrunneus, Streptomyces griseoflavus, Streptomyces griseoflavus, Streptomyces griseovces Many actinomycetes, such as poreus, Streptomyces olivaceus, Streptomyces olivoviridis, Streptomyces tauricus, Amycolatopsis sp. are known to degrade natural rubber. The inventors of the present invention have found that a microorganism belonging to Pseudonocardiaceae, in particular, WU-YS05 strain has a high ability to decompose natural rubber.
The WU-YS05 strain has been deposited at the Patent Organism Depositary of the National Institute of Advanced Industrial Science and Technology under the deposit number FERM P-18660 (Deposit Date: December 21, 2001).
[0014]
As for fungi, Aspergillus sp., Stemphylium macrosporoideum, Paecilomysces lilacinus, Phoma eupyrena, Fusarium solani, Cladosporium cladosporioide are known to degrade natural rubber. Decomposing rubber and synthetic rubbers such as SBR has been reported.
[0015]
In the present invention, these microorganisms can be used alone or in combination. These microorganisms are basically those that can grow using rubber as the sole carbon source, and can be screened and isolated from soil, etc., by creating an environment where rubber is used as the carbon source. . For example, what is shown in Table 1 is illustrated as a liquid culture medium in the case of actinomycetes.
[0016]
[Table 1]
Figure 0004251858
[0017]
Since there is no carbon source in this medium, for example, by adding a natural rubber sheet to this medium, the above natural rubber-degrading bacteria can be grown and used as seeds for microbial treatment.
[0018]
The method of microbial treatment of powdered rubber in the present invention is not particularly limited. For example, when powdered rubber is added to the above medium and inoculated with a fungus such as a microorganism belonging to Pseudonocardiaceae obtained as an inoculum, the rubber Decomposing microorganisms start to grow using the powder rubber as the sole carbon source, decompose the surface of the powder rubber, and make the surface of the powder rubber uneven.
[0019]
The culture conditions of microorganisms can be normal aerobic microorganism culture conditions. The amount of bacteria per 1000 ml to 100 ml of liquid medium is 1 platinum ear, 1 g to 5 g of powdered rubber, and the culture temperature is room temperature (25 ° C. to 25 ° C. 35 ° C.), and the culture time is 5 to 20 days depending on the degree of the unevenness treatment.
Further, the powder rubber preferably has a particle size of 1 mm or less before the surface roughening treatment, more preferably 0.5 mm or less, further preferably 0.2 mm, particularly preferably 0.1 mm or less. . Even if the particle size is larger, the desired effect can be obtained by making the surface uneven, but by making the surface small to some extent, a powder rubber having a large surface area can be obtained more efficiently.
[0020]
The degree of the surface roughening treatment is not particularly limited and is appropriately selected according to the purpose and application. The degree of unevenness treatment can be determined by the weight change rate of the powder rubber, and the weight change rate of the powder rubber is preferably in the range of 0.1% to 40%.
After culturing, the rubber powder is filtered, washed with an organic solvent and water, dried and used as a raw material for the rubber composition.
[0021]
By blending the surface-treated powder rubber of the present invention, it is possible to obtain a rubber composition having superior fracture characteristics and wear resistance than when using conventional powder rubber. Such a rubber composition is used as a tire. When used as a coating rubber for treads, sidewalls, carcass plies and belt plies, durability can be improved as compared with conventional tires using powder rubber. Further, the gas filled in the tire of the present invention is not limited to air, and an inert gas such as nitrogen can also be used.
[0022]
EXAMPLES Next, the present invention will be described with reference to examples and comparative examples, but the present invention is not limited to the following examples.
[0023]
1. Microorganism screening In 100 ml of the medium shown in Table 1, about 10 mg of soil and acetone-extracted natural rubber latex gloves were cut into 5 cm square rubber pieces, cultured at 30 ° C. for 2 weeks with shaking, and adhered to the surface of the rubber pieces. The bacteria were separated on a solid medium obtained by adding 1.5% by weight of agar to a solution having the same composition as the medium shown in Table 1 to obtain WU-YS05 strain (a microorganism of Pseudonocardiaceae).
[0024]
2. After putting 5 g / l of a commercially available powdered rubber (US Rouse: 200 mesh) in a medium having the composition shown in Table 1 prepared in a glass container with a surface-roughened silicone plug, sterilized in an autoclave at 90 ° C. The WU-YS05 strain was aseptically inoculated with a platinum loop. After culturing at 30 ° C. for 10 days under conditions of 50 to 70 rpm, the rubber powder was filtered with a filter paper. The powder rubber on the filter paper was washed several times with acetone, then washed with pure water, and vacuum dried at 40 ° C. to prepare a powder rubber sample to be blended.
For comparison, the same treatment was performed without inoculating any microorganism strain.
The weight reduction rate (decomposition rate) before and after treatment is 0.8%, but the non-inoculated one is less than 0.1%, and the powder rubber is decomposed by microorganisms. confirmed.
[0025]
3. Surface observation The surface of the powder rubber after drying was observed with a scanning electron microscope (SEM) manufactured by JEOL Ltd .. Compared with the powder rubber treated without inoculation, the powder rubber treated with inoculated Pseudonocardiaceae YS05 strain. It was confirmed that the surface was clearly eroded and the unevenness became fine.
[0026]
4). Evaluation of Recycled Rubber Use the powder rubber obtained with and without inoculation as described above, add the rubber powder and rubber compounding agent obtained to the rubber component of the new material, and mix with 80 ml plastmill. This was kneaded to obtain rubber compositions for treads and sidewalls. This was pressurized at 150 ° C. for 20 minutes to obtain a vulcanized rubber sample.
About this composition, abrasion resistance, a fracture characteristic, and crack growth property were measured, and recycled rubber (surface treatment rubber) was evaluated.
[0027]
1) Preparation of rubber composition The rubber composition for tread is a blending ratio shown in Table 2 with respect to the rubber components of 70 parts by weight of SBR and 30 parts by weight of BR, and the composition for sidewall is natural rubber of the new material. A rubber composition was obtained by blending a compounding agent and powdered rubber at a blending ratio shown in Table 3 with respect to a rubber component of 50 parts by weight and 50 parts by weight of BR.
The amount of powder rubber used is shown in Tables 4 and 5 for each Example and Comparative Example.
[0028]
[Table 2]
Figure 0004251858
[0029]
[Table 3]
Figure 0004251858
[0030]
2) Measuring method Wear resistance, fracture characteristics, and crack growth resistance of the above composition were measured by the following methods to evaluate recycled rubber.
For each characteristic, the value of Comparative Example 1 (without using rubber powder, only new rubber) is 100 for treads, and Comparative Example 6 (example of using no rubber rubber) for sidewalls. The value of 100 was expressed as an index. The larger the index, the better the characteristics.
The obtained results are shown in Tables 4 and 5.
[0031]
Fracture characteristics According to JIS K6301-1995, the fracture strength (T B ) was measured and expressed as an index with a control of 100. The larger the value, the better the fracture characteristics.
[0032]
Crack growth resistance The test was conducted in the same manner as in JIS K6301-1995, and the number of bendings when the crack length was 10 mm was measured. The larger the value, the better the crack growth resistance.
[0033]
It was measured by the wear-resistant lambourne wear method. The measurement conditions were a load of 4.5 kg, a grindstone surface speed of 100 m / sec, a test speed of 130 m / sec, a slip rate of 30%, a sandfall amount of 20 g / min, and a measurement temperature of room temperature. The control was shown as an index with 100 as the index. The larger the value, the better the result.
[0034]
[Table 4]
Figure 0004251858
[0035]
[Table 5]
Figure 0004251858
[0036]
【The invention's effect】
It can be seen that the destruction physical properties, wear resistance, and crack growth resistance are greatly reduced when the untreated powder rubber or the powder rubber treated with uninoculated bacteria is added to Comparative Example 1 in which no powder rubber is added. On the other hand, it was confirmed that the physical properties were greatly improved by using powder rubber treated by inoculating WU-YS05 strain.

Claims (10)

シュードノカルディアセアエ(Pseudonocardiaceae)に属する微生物であるWU−YS05株、受託番号FERM P−18660により表面に凹凸化処理を施した粉ゴム。 Powdered rubber whose surface has been roughened by WU-YS05 strain, accession number FERM P-18660, which is a microorganism belonging to Pseudonocardiaceae . 凹凸化処理前粉ゴムの平均粒径が1mm以下であることを特徴とする請求項に記載の粉ゴム。The powder rubber according to claim 1 , wherein the average particle size of the powder rubber before the roughening treatment is 1 mm or less. 凹凸化処理前粉ゴムの平均粒径が0.2mm以下であることを特徴とする請求項に記載の粉ゴム。The powder rubber according to claim 2 , wherein the average particle size of the powder rubber before the uneven treatment is 0.2 mm or less. 凹凸化処理が、処理前後の粉ゴムの重量変化率が0.01%から40%の範囲でなされたことを特徴とする請求項1からのいずれか1項に記載の粉ゴム。4. The powder rubber according to any one of claims 1 to 3 , wherein the unevenness treatment is performed such that the weight change rate of the powder rubber before and after the treatment is in a range of 0.01% to 40%. 請求項1からのいずれか1項に記載の粉ゴムを用いたゴム組成物。A rubber composition using the powder rubber according to any one of claims 1 to 4 . 請求項に記載のゴム組成物を用いたことを特徴とするタイヤ。A tire comprising the rubber composition according to claim 5 . シュードノカルディアセアエ(Pseudonocardiaceae)に属する微生物であるWU−YS05株、受託番号FERM P−18660により凹凸化処理する凹凸表面を有する粉ゴムの製造方法。 The manufacturing method of the powder rubber which has the uneven | corrugated surface processed by uneven | corrugation by WU-YS05 stock | strain and accession number FERM P-18660 which are microorganisms which belong to Pseudonocardiaceae . 凹凸化処理前の粉ゴムの平均粒径が、1mm以下であることを特徴する請求項に記載の方法。The method according to claim 7 , wherein the average particle diameter of the rubber powder before the roughening treatment is 1 mm or less. 凹凸化処理が、処理前後の粉ゴムの重量変化率が0.01%から40%の範囲でなされることを特徴とする請求項7または8に記載の方法。The method according to claim 7 or 8 , wherein the roughening treatment is performed in a range where the weight change rate of the powdered rubber before and after the treatment is 0.01% to 40%. 微生物を培地に植菌して凹凸化処理する際の培地の炭素源が粉ゴムのみである請求項7から9のいずれか1項に記載の方法。The method according to any one of claims 7 to 9 , wherein the carbon source of the medium when the microorganisms are inoculated into the medium and subjected to the unevenness treatment is only powder rubber.
JP2002344276A 2001-12-04 2002-11-27 Powdered rubber with an uneven surface, rubber composition and tire using the same Expired - Fee Related JP4251858B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002344276A JP4251858B2 (en) 2001-12-04 2002-11-27 Powdered rubber with an uneven surface, rubber composition and tire using the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001-370373 2001-12-04
JP2001370373 2001-12-04
JP2002344276A JP4251858B2 (en) 2001-12-04 2002-11-27 Powdered rubber with an uneven surface, rubber composition and tire using the same

Publications (2)

Publication Number Publication Date
JP2003231118A JP2003231118A (en) 2003-08-19
JP4251858B2 true JP4251858B2 (en) 2009-04-08

Family

ID=27790470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002344276A Expired - Fee Related JP4251858B2 (en) 2001-12-04 2002-11-27 Powdered rubber with an uneven surface, rubber composition and tire using the same

Country Status (1)

Country Link
JP (1) JP4251858B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4641214B2 (en) * 2004-10-26 2011-03-02 国立大学法人京都大学 Rubber composition for tire, method for producing the same, and pneumatic tire using the rubber composition for tire
JP5250206B2 (en) * 2006-03-28 2013-07-31 株式会社ブリヂストン Method for producing natural rubber and / or synthetic isoprene rubber masterbatch using microbially decomposed powder rubber

Also Published As

Publication number Publication date
JP2003231118A (en) 2003-08-19

Similar Documents

Publication Publication Date Title
US7344777B2 (en) Powder rubber subjected to treatment of making unevenness on surface thereof and rubber composition using the same and tire
EP1816143B1 (en) a method for producing a natural rubber master batch using biodegraded rubber powder.
Li et al. Microbial desulfurization of ground tire rubber by Thiobacillus ferrooxidans
US6479558B1 (en) Microbial processing of used rubber
CA2955402C (en) Process for bacterially devulcanizing sulphur-vulcanized rubber particles
EP0647252B1 (en) A process for activating vulcanized waste rubber particles and a process for producing a rubber-like article using said activated waste rubber particles
Tsuchii et al. Degradation of the rubber in truck tires by a strain of Nocardia
CN110709459A (en) Rubber composition, rubber product and tire
JP4641214B2 (en) Rubber composition for tire, method for producing the same, and pneumatic tire using the rubber composition for tire
JP4251858B2 (en) Powdered rubber with an uneven surface, rubber composition and tire using the same
CN114213730A (en) Rubber nano composite material and preparation method thereof
US7749747B2 (en) Process for surface activation and/or devulcanisation of sulfur-vulcanized rubber particles
JP2007063507A (en) Rubber powder treated with microorganism, rubber composition using the same and tire
JP2005232347A (en) Rubber composition containing enzymatically decomposed rubber decomposed by lignase, its manufacturing process and pneumatic tire using this
JP2004035663A (en) Rubber composition containing reclaimed rubber
Tsuchii et al. Colonization and disintegration of tire rubber by a colonial mutant of Nocardia
CN110016151B (en) Modified butadiene rubber and preparation method and application thereof
Huong et al. Degradation of deproteinized natural rubber by Gordonia sp. isolated from enrichment consortia
JP5222610B2 (en) A novel microorganism having a resolution of polyisoprene rubber and a method for decomposing a rubber composition
JP4467424B2 (en) Microbial treated rubber powder and rubber composition containing the rubber powder
JP4652147B2 (en) Novel microorganism WU-YS09 strain, method for microbial degradation of rubber
Francis et al. Conventional and modern waste treatment approaches–bioremediation of rubber waste
US7737191B2 (en) Rubber treatment method
JP2006180822A (en) New microorganism bs-ha1 strain, method for degrading rubber with microorganism
Akkharabunditsakul et al. Biodegradation of synthetic rubbers by a mixed culture isolated from various rubber factory soils in Songkhla, Thailand

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080527

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081007

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090120

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090120

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120130

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120130

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130130

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130130

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140130

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees