[go: up one dir, main page]

JP4247459B2 - Method for forming oxide film on silicon carbide semiconductor substrate - Google Patents

Method for forming oxide film on silicon carbide semiconductor substrate Download PDF

Info

Publication number
JP4247459B2
JP4247459B2 JP2001082087A JP2001082087A JP4247459B2 JP 4247459 B2 JP4247459 B2 JP 4247459B2 JP 2001082087 A JP2001082087 A JP 2001082087A JP 2001082087 A JP2001082087 A JP 2001082087A JP 4247459 B2 JP4247459 B2 JP 4247459B2
Authority
JP
Japan
Prior art keywords
oxide film
silicon carbide
sic
carbon
semiconductor substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001082087A
Other languages
Japanese (ja)
Other versions
JP2002280381A (en
Inventor
崇 辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Device Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Device Technology Co Ltd filed Critical Fuji Electric Device Technology Co Ltd
Priority to JP2001082087A priority Critical patent/JP4247459B2/en
Publication of JP2002280381A publication Critical patent/JP2002280381A/en
Application granted granted Critical
Publication of JP4247459B2 publication Critical patent/JP4247459B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/0445Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising crystalline silicon carbide
    • H01L21/048Making electrodes
    • H01L21/049Conductor-insulator-semiconductor electrodes, e.g. MIS contacts

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Formation Of Insulating Films (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は炭化珪素(以下SiCと記す)を材料とする半導体基板の酸化膜形成方法に関する。
【0002】
【従来の技術】
シリコンに代わる次世代半導体材料の一つとしてSiCが注目されている。SiCはシリコンと比較してバンドギャップが大きい、飽和ドリフト速度が大きい、熱伝導度が高い、絶縁破壊電界強度が1桁程度大きいなど、物性面で優れた材料である。これらの特長を生かして炭化けい素は、高温センサー、高周波デバイス、パワーデバイスなどとして期待されている。実際にシリコンの特性を越えるデバイスも次々と試作されている。
【0003】
パワーデバイスに関しては、オン抵抗は次の式によって決定される。
【0004】
【数1】
RON=4BVPP 2sμEC 3
ここで、RONはオン抵抗、BVPPは絶縁耐圧、εsはSiCの誘電率、μは移動度、ECはSiCの臨界電界強度である。
【0005】
SiCと従来半導体材料として使用されているシリコンとを比較すると、SiCの移動度は900cm2/Vsとシリコンの移動度1350cm2/Vsより小さいが、臨界電界強度がシリコンの2×105V/cm 対して3×106V/cmと一桁以上大きい。比誘電率はシリコン11.9に対してSiCが9.7とほとんど変わらない。
このためSiCを用いた半導体素子はシリコン半導体素子と比較してオン抵抗として3桁程度の低減が可能となる。さらに、バンドギャップが大きく、熱伝導度も高いため、熱暴走しにくく、冷却装置も小型化できるというメリットも生まれる。このようなことが、主に次世代のパワーデバイスとしての研究が盛んな理由である。
【0006】
パワーデバイスの中の一つに金属−酸化物−半導体のゲート構造を持つ電界効果型トランジスタ(以下MOSFETと記す)がある。MOSFETは、電子のみが流れるユニポーラ素子であり、ゲート信号を電圧で制御するためスイッチング速度が速いという特長がある。しかし反面、少数キャリアの注入による伝導度変調を利用する、絶縁ゲートバイポーラトランジスタ(以下IGBTと記す)などのようなパイポーラトランジスタと比べ、オン抵抗が高くなってしまうのが難点である。従って、シリコンを用いた場合ではパワーデバイスとしてはIGBTが主に採用されている。
【0007】
しかしながら、SiCを用いるとMOSFETでもシリコンIGBTよりオン抵抗を低減させることができる。またSiCにおいてはシリコンの場合と同じプロセス手法で酸化することができるため、シリコンの技術の蓄積を生かすことができるという利点がある。このため、SiCを用いたMOSFETは現在盛んに研究が行われている。
【0008】
SiCを用いると上記の理由から同様の構造のシリコン素子と比べるとオン抵抗を下げることができるが、まだまだ十分なレベルにはない。このオン抵抗は基板抵抗、金属のオーミツク接触部の接触抵抗、エピタキシャル層のドリフト抵抗、チャネル抵抗の直列抵抗として表される。これらのうちオン抵抗の大部分はチャネル抵抗によって占められている。
【0009】
このチヤネル抵抗を低減させるためには、チヤネル部を流れるキャリアの移動度を向上させなければならない。シリコンを用いたIGBTに対して特性面で有意差を出すためには100〜200cm2/Vsの値が求められている。
【0010】
【発明が解決しようとする課題】
しかしながら現在移動度としてシリコンと同様なプロセスを用いただけでは、4H-SiCにおいて数10cm2/Vsの移動度しか得られていない。この値は4H-SiCの結晶中の移動度が900cm2/Vsであることから考えると1桁以上小さな値である。
SiCのバンドギャップ中の界面準位密度を測定すると伝導帯端に近づくに従い急激に増加することが知られている[M.K.Das,B.S.Um,and J.A.Cooper,Jr.,International Conference on Silicon Carbide and Related Materials,Raleigh,NC,October pp.11-15,(1999)参照]。これらの準位は電子を捕獲してしまうため伝導に寄与する電子が減少し、そのために見かけ上の移動度が大きく低下してしまうと考えられている。また、負に帯電した準位による伝導電子のクーロン散乱も移動度の低下を引き起こしているものと考えられている。
【0011】
この界面準位の原因として、酸化時に残留したSiCのカーボンクラスタが考えられている[V.V.Afanas'ev,A.Stesmans and C.I.Harris,International Conference on Silicon Carbide and Related Materials,Stockholm,Sweden,September pp.857−860,(1997)参照]。通常酸化時にSiCの構成元素であるカーボンは酸素原子によりCO、CO2などの形態で膜中から除去されると考えられる。しかしながら、一部のカーボン原子は残留してしまい、それらは大きな応力を発生しているために拡散速度が大きくなる酸化膜/半導体界面に徐々に集まってくると考えられる。その結果、酸化膜/半導体界面にはカーボンが密集してクラスター状になると考えられ、実際に酸化膜/半導体界面でカーボンクラスターが検出されている[B.Hornetz,H-J.Michel and J.Halbritter,Joumal of Materials Reserch,Vol.9,No.12,Dec.(1994)pp.3088−3093参照]。
【0012】
また、このカーボンクラスタは2.77eV付近に深い準位を作ることがPenslらのグループにより報告されている。これらのことから伝導帯付近の高密度の界面準位は、カーボンクラスタによるものと考えられている。
カーボンクラスタを除去するために様々な対策が立てられている。その中の一つとして酸化後に常圧の水素あるいはアルゴン雰囲気中において再び1000℃程度のアニールをおこなうという手法がある[S.Suzuki et.al.,Materials Science Forum,Vols.338-342,pp.1073〜1076,(1999)参照]。
【0013】
この方法によりミッドギャップ付近の界面準位密度は低下するということが確認された。これはアニールにより残留カーボンが除去されたことと、水素アニールの場合にはカーボンクラスタのダングリングボンドを水素原子により終端したことによるものと考えられる。しかしながら、移動度に関してはミツドギャップ付近の界面準位密度が減少した場合においても向上が見られなかったとしている[鈴木誠二、原田信介、先崎純寿、小杉亮治、福田憲司、田中知行、新井和雄、;SiC及び関連ワイドギャップ半導体研究会第9回講演会予稿集、pp.86,(2000)]。
【0014】
酸化後の再アニールにより、界面準位密度は低下しているがまだまだ十分ではなく、移動度を向上させるためにはさらにカーボンクラスタを減少させ、また残留カーボンのダングリングボンドをより多く終端する必要があると考えられる。
このような問題に鑑み本発明の目的は、SiC表面近傍のカーボンクラスタの影響を免れ、良好な特性のSiCデバイスが得られる酸化膜形成方法を提供することにある。
【0015】
【課題を解決するための手段】
上記の課題を解決するため本発明は、炭化けい素半導体基板上に熱酸化による15nm以下の薄い酸化膜の形成工程と、熱酸化による酸化膜の形成工程とは異なるガス雰囲気中におけるアニール工程とをこの順で複数回繰り返し、所期の厚さの酸化膜を形成することとする。
【0016】
化膜が薄い段階における残留カーボン量は、設定膜厚まで酸化を行った場合に比べて、カーボンクラスタが大きく成長しておらず、少ない。そして酸化膜厚が小さい分だけ、カーボンを分解除去するガスが、界面へ到達する確率が大きくなる。
従って、酸化膜厚が小さい段階におけるアニールを繰り返せば、界面に存在する残留カ一ボンクラスタは除去され易く、より短時間、より低温でカーボンクラスタを除去することができる。これは、残留カーボンが同量であっても、少数の大きなクラスタの場合よりも多数の小さなクラスタの場合の方が体積に対する表面積の割合が大きいため、分解反応が進みやすいためと理解することができる。
【0017】
一ボンクラスタの除去過程が拡散律速とすると、一回に形成する薄い酸化膜の厚さが薄いほど、短時間の熱処理で済むことになる。後述のゲート酸化膜に必要な膜厚30nmのとき、一回に形成する薄い酸化膜の厚さを、15nm以下とすれば、除去に要する時間がほぼ1/4以下にできる。
【0018】
アニール工程のガスを水素、アンモニア、酸化窒素、亜酸化窒素、窒素、アルゴンのいずれかを含むものとする。
そのようなガスは炭素と反応するので、速やかにカ一ボンクラスタの除去ができる。
【0019】
【発明の実施の形態】
以下実施例に基づき、本発明の実施の形態を説明する。
[実施例1]
酸化を行う基板としては、p型4H−SiCサブストレート1の(0001)Si面から8°オフした面上にp型エピタキシャル層2を成長したエピタキシャルウェハを用いた。サブストレート1のキャリア濃度は1×1018/cm3であり、p型エピタキシャル層2のキャリア濃度は1×1016/cm3、厚さ10μmである。
【0020】
この基板のRCA洗浄を以下の手順でおこなった。
まず、有機物、貴金属の除去のために硫酸過水(H2SO4:H22=4:1、120〜150℃)により10分処理した後、自然酸化膜の除去のために希HF(0.5%、RT)処理をおこなう。その後、自然酸化膜中に存在するパーティクルを除去するために水酸化アンモニウム(NHOH:H22:H2O=0.05:1:5、80〜90℃)処理をおこなう。その後、自然酸化膜中に存在していた金属を除去するために塩酸過水(HCl:H22:H2O=1:1:6、80〜90℃)処理をおこなう。最後に、これらのプロセス中で新たに生じた自然酸化膜を除去するために再度希HF処理をおこなう。これらの処理の間には純水により5分程度のリンスをおこなう。
【0021】
次に、常圧水素雰囲気中で1000℃の30分間アニールを行った。
その後この清浄表面をウェット酸化した。
まず、窒素雰囲気中において700℃から10℃/minのレートで1100℃まで昇温した。その後、1100℃において酸素と水素の流量比を1:1に保って1時間の酸化を行い酸化膜3を形成した。
【0022】
その後、カーボンクラスタの除去のため、アルゴンと水素が1対1の雰囲気に切り換え30分間のアニールをおこなった。
この操作を計5回おこなって30nmの膜厚の酸化膜3〜7を形成した。30nm程度までは、ほぼ反応律速であり、毎回約5nmの酸化膜が成長する。なお、30nmの酸化膜は、MOSFETのゲート酸化膜として適当な厚さである。
【0023】
この後、窒素の雰囲気中で700℃まで3℃/minのレートで降温した。
このような酸化処理を行った酸化膜/半導体界面の残留カ一ボンが除去されているかどうか調べるために、特別な処理をしない比較例とともに種々の観察をおこなった。
まず、希ふっ酸により酸化膜をエッチングして炭化けい索半導体表面を露出させた後、原子間力顕微鏡(AFM)観察をおこなった。
【0024】
比較例においては、直径80nm、高さ5nm程度の突起が数10個/μm2の密度で観察されるが、本発明の方法を実施した場合の炭化けい素表面にはそのような突起物は見られなかった。次に、二次イオン質量スペクトロメータ(SIMS)分析により酸化膜の表面からカーボン原子の深さ方向分布を測定した。比較例に比べて、本発明の方法を実施した場合では、酸化膜/炭化けい素半導体界面近傍におけるカーボン原子の分布の傾きが急峻になっていた。これは、カーボンクラスタの消滅を示唆している。
【0025】
更に、酸化膜/半導体界面近傍を透過電子顕微鏡(TEM)で直接観察した。比較例ではカーボンクラスタが見られたが、本発明の方法を実施した場合には、界面にカーボンクラスタが見られなかった。また、このウェハを用いてMOSFETを作製したところ、キャリア移動度が150cm2/Vsであり、本発明の処理をすることによって、従来の50cm2/Vsから大幅に改善された。
【0026】
すなわち、本発明の方法では、カーボンクラスタの除去が十分におこなわれたことがわかる。
先に挙げた鈴木らの報告では、水素アニールをしても移動度の改善効果がみられなかったとあったが、その場合との大きな違いは、酸化膜厚にある。鈴木らの場合は酸化膜の厚さが48nmであり、その厚さに対しては水素アニールが不十分であり、カーボンダングリングボンドを水素で終端しただけで終わっていたと考えられる。また、酸化膜を厚く成長させたため、カーボンクラスタが成長してクラスタの体積に対して表面積の割合が減ってしまい、水素による除去が有効におこなわれなかったと考えられる。
【0027】
それに対し本発明の方法では、酸化膜が薄い段階で水素アニールをおこなうので、酸化膜界面でのカーボンクラスタの核がまだ小さく、体積に対する表面積の割合も大きいので、容易に水素との反応が進み、CHxという形で除去されるのである。アニール用のガスとしては、上記の水素以外に、窒素、アンモニア、アルゴン、亜酸化窒素、酸化窒素等を用いても効果がある。
【0028】
参考例
使用した基板、エピタキシャル層、表面処理方法、1回目の酸化の昇温、保持、カーボンクラスタ除去のためのアニール、冷却までは実施例1と同様にした。
この時点での酸化膜8の膜厚は6nmである。
この酸化膜8の上に減圧CVD法により、厚さ24nmのCVD酸化膜9を堆積した。成膜条件は次のようにした。ガスとしてモノシラン(SiH4)および酸素(O2)を使用し、その流量比をSiH4:O2=1:5とした。圧力は1Pa、成膜温度は300℃とし、時間は1分間である。
【0029】
この例についても、酸化膜/半導体界面近傍を透過電子顕微鏡(TEM)で直接観察したが、界面にカーボンクラスタが見られなかった。すなわち、本発明の方法では、カーボンクラスタの除去が十分におこなわれたと考えられる。
なお、炭化けい素基板のエピタキシャル膜2上に最初からCVD酸化膜9を形成せず、薄い熱酸化膜8を形成した後にCVD酸化膜9を形成したのは、炭化けい素基板表面の汚染がMOS界面に取り込まれて、界面準位が生じるのを避けるためである。
【0030】
CVD酸化膜9の堆積方法としては、LPCVD法以外に、スパッタ法、プラズマCVD法を用いても良い。
【0031】
【発明の効果】
以上説明したように本発明によれば、炭化けい素半導体基板上に熱酸化による15nm以下の薄い酸化膜の形成工程と、酸化膜の形成工程とは異なるガス雰囲気中におけるアニール工程とをこの順に複数回繰り返し、所期の厚さの酸化膜とすることによって、酸化膜/炭化けい素近傍のカーボンクラスタの分解除去が確実におこなわれ、従来見られた界面準位の発生や、キャリア移動度の低下を防止し、良好な特性のSiC半導体デバイスを作製することができることを示した。
【0032】
従って本発明は、炭化珪素半導体素子の普及、発展に大きな貢献をなすものである。
【図面の簡単な説明】
【図1】 本発明第一の実施例の方法によるSiC半導体素子の断面図
【図2】 本発明参考例の方法によるSiC半導体素子の断面図
【符号の説明】
1・・・p型サブストレート
2・・・p型エビタキシヤル層
3・・・第1回目の熱酸化による酸化膜
4・・・第2回目の熱酸化による酸化膜
S・・・第3回目の熱酸化による酸化膜
6・・・第4回目の熱酸化による酸化膜
7・・・第5回目の熱酸化による酸化膜
8・・・第1回目の熱酸化による酸化膜
9・・・CVD酸化膜
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for forming an oxide film on a semiconductor substrate made of silicon carbide (hereinafter referred to as SiC).
[0002]
[Prior art]
SiC is attracting attention as one of the next-generation semiconductor materials that can replace silicon. SiC is an excellent material in terms of physical properties, such as a large band gap, a large saturation drift velocity, a high thermal conductivity, and a dielectric breakdown electric field strength that is about one digit larger than silicon. Taking advantage of these features, silicon carbide is expected as a high temperature sensor, a high frequency device, a power device and the like. Devices that actually exceed the characteristics of silicon are being prototyped one after another.
[0003]
For power devices, the on-resistance is determined by the following equation:
[0004]
[Expression 1]
R ON = 4BV PP 2 / ε s μE C 3
Here, R ON is the on-resistance, BV PP is the withstand voltage, ε s is the dielectric constant of SiC, μ is the mobility, and E C is the critical electric field strength of SiC.
[0005]
Comparing the silicon being used as SiC and conventional semiconductor material, the mobility of SiC 900 cm 2 / Vs and the mobility 1350 cm 2 / Vs is less than the silicon, the critical electric field intensity of the silicon 2 × 10 5 V / It is 3 × 10 6 V / cm or more an order of magnitude larger than cm. The relative dielectric constant of SiC is almost the same as that of 9.7 with respect to silicon of 11.9.
For this reason, the semiconductor element using SiC can reduce the on-resistance by about three digits compared to the silicon semiconductor element. Furthermore, since the band gap is large and the thermal conductivity is high, there is an advantage that thermal runaway is difficult and the cooling device can be downsized. This is the main reason why research as a next-generation power device is active.
[0006]
One of the power devices is a field effect transistor (hereinafter referred to as a MOSFET) having a metal-oxide-semiconductor gate structure. The MOSFET is a unipolar element through which only electrons flow, and has a feature that the switching speed is high because the gate signal is controlled by voltage. On the other hand, however, it is difficult to increase the on-resistance as compared to a bipolar transistor such as an insulated gate bipolar transistor (hereinafter referred to as IGBT) that uses conductivity modulation by minority carrier injection. Therefore, when silicon is used, IGBT is mainly adopted as a power device.
[0007]
However, when SiC is used, even the MOSFET can reduce the on-resistance as compared with the silicon IGBT. In addition, since SiC can be oxidized by the same process method as that of silicon, there is an advantage that the accumulation of silicon technology can be utilized. For this reason, MOSFETs using SiC are currently being actively researched.
[0008]
When SiC is used, the on-resistance can be lowered as compared with a silicon element having a similar structure for the above reason, but it is not yet at a sufficient level. This on-resistance is expressed as the series resistance of the substrate resistance, the contact resistance of the ohmic contact portion of the metal, the drift resistance of the epitaxial layer, and the channel resistance. Of these, most of the on-resistance is occupied by channel resistance.
[0009]
In order to reduce the channel resistance, the mobility of carriers flowing through the channel portion must be improved. A value of 100 to 200 cm 2 / Vs is required to make a significant difference in characteristics with respect to an IGBT using silicon.
[0010]
[Problems to be solved by the invention]
However, only mobility of several tens of cm 2 / Vs can be obtained in 4H-SiC only by using a process similar to that of silicon as the mobility at present. Considering that the mobility in the 4H—SiC crystal is 900 cm 2 / Vs, this value is smaller by one digit or more.
It is known that the interface state density in the band gap of SiC increases rapidly as it approaches the conduction band edge [MKDas, BSUm, and JACooper, Jr., International Conference on Silicon Carbide and Related Materials, Raleigh NC, October pp. 11-15, (1999)]. These levels are thought to capture electrons and thus reduce the number of electrons that contribute to conduction, thus greatly reducing the apparent mobility. In addition, Coulomb scattering of conduction electrons due to negatively charged levels is considered to cause a decrease in mobility.
[0011]
The cause of this interface state is considered to be SiC carbon clusters remaining during oxidation [VVAfanas'ev, A. Stesmans and CI Harris, International Conference on Silicon Carbide and Related Materials, Stockholm, Sweden, September pp.857- 860, (1997)]. It is considered that carbon that is a constituent element of SiC is usually removed from the film in the form of CO, CO 2 or the like by oxygen atoms during oxidation. However, it is considered that some carbon atoms remain and gradually gather at the oxide film / semiconductor interface where the diffusion rate increases because a large stress is generated. As a result, it is thought that carbon is densely clustered at the oxide film / semiconductor interface, and carbon clusters are actually detected at the oxide film / semiconductor interface [B. Hornetz, HJ. Michel and J. Halbritter, Joumal of Materials Reserch, Vol. 9, No. 12, Dec. (1994) pp. 3088-3093].
[0012]
Pensl et al. Reported that this carbon cluster forms a deep level around 2.77 eV. From these facts, it is considered that the high-density interface states near the conduction band are due to carbon clusters.
Various measures have been taken to remove carbon clusters. One of them is a method of performing annealing at about 1000 ° C. again in an atmosphere of hydrogen or argon at normal pressure after oxidation [S. Suzuki et.al., Materials Science Forum, Vols. 338-342, pp. 1073-1076, (1999)].
[0013]
It was confirmed that the interface state density in the vicinity of the midgap decreases by this method. This is considered to be because residual carbon was removed by annealing, and in the case of hydrogen annealing, dangling bonds of carbon clusters were terminated by hydrogen atoms. However, the mobility is not improved even when the interface state density near the gap is decreased [Seiji Suzuki, Shinsuke Harada, Junju Sakizaki, Ryoji Kosugi, Kenji Fukuda, Tomoyuki Tanaka, Kazuo Arai ,; SiC and related wide gap semiconductor study group 9th lecture proceedings, pp.86, (2000)].
[0014]
Although the interface state density has decreased due to re-annealing after oxidation, it is still not sufficient. To improve mobility, it is necessary to further reduce carbon clusters and to terminate dangling bonds of residual carbon more. It is thought that there is.
In view of such a problem, an object of the present invention is to provide an oxide film forming method which can avoid the influence of carbon clusters near the SiC surface and obtain a SiC device having good characteristics.
[0015]
[Means for Solving the Problems]
In order to solve the above problems, the present invention provides a thin oxide film forming process of 15 nm or less by thermal oxidation on a silicon carbide semiconductor substrate, and an annealing process in a gas atmosphere different from the oxide film forming process by thermal oxidation. repeating a plurality of times in this order, it decided to form a desired thickness of oxide film.
[0016]
Amount of residual carbon oxidation film in the thin phase, as compared with the case of performing the oxidation to a set thickness, not grown large carbon clusters, small. And the probability that the gas for decomposing and removing the carbon reaches the interface increases as the oxide film thickness decreases.
Therefore, if annealing at a stage where the oxide film thickness is small is repeated, residual carbon clusters existing at the interface can be easily removed, and carbon clusters can be removed at a lower temperature in a shorter time. It can be understood that even if the amount of residual carbon is the same, the decomposition reaction tends to proceed because the ratio of the surface area to the volume is larger in the case of many small clusters than in the case of a few large clusters. it can.
[0017]
If the carbon cluster removal process is diffusion-controlled, the shorter the thickness of the thin oxide film formed at one time, the shorter the heat treatment. If the thickness of the thin oxide film formed at one time is 15 nm or less when the film thickness required for the gate oxide film described later is 30 nm, the time required for removal can be reduced to almost 1/4 or less.
[0018]
The gas for the annealing step includes any of hydrogen, ammonia, nitric oxide, nitrous oxide, nitrogen, and argon.
Since such a gas reacts with carbon, carbon clusters can be removed quickly.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described based on examples.
[Example 1]
As a substrate to be oxidized, an epitaxial wafer was used in which a p-type epitaxial layer 2 was grown on a surface of the p-type 4H—SiC substrate 1 that was 8 ° off from the (0001) Si surface. The substrate 1 has a carrier concentration of 1 × 10 18 / cm 3 , the p-type epitaxial layer 2 has a carrier concentration of 1 × 10 16 / cm 3 and a thickness of 10 μm.
[0020]
RCA cleaning of this substrate was performed according to the following procedure.
First, in order to remove organic substances and noble metals, after treatment with sulfuric acid / hydrogen peroxide (H 2 SO 4 : H 2 O 2 = 4: 1, 120 to 150 ° C.) for 10 minutes, dilute HF is used to remove the natural oxide film. (0.5%, RT) Processing is performed. Thereafter, ammonium hydroxide (NHOH: H 2 O 2 : H 2 O = 0.05: 1: 5, 80 to 90 ° C.) treatment is performed to remove particles present in the natural oxide film. Thereafter, in order to remove the metal present in the natural oxide film, a hydrochloric acid perwater treatment (HCl: H 2 O 2 : H 2 O = 1: 1: 6, 80 to 90 ° C.) is performed. Finally, dilute HF treatment is performed again to remove the natural oxide film newly generated in these processes. During these treatments, rinse with pure water for about 5 minutes.
[0021]
Next, annealing was performed at 1000 ° C. for 30 minutes in a normal pressure hydrogen atmosphere.
The clean surface was then wet oxidized.
First, the temperature was raised from 700 ° C. to 1100 ° C. at a rate of 10 ° C./min in a nitrogen atmosphere. Thereafter, at 1100 ° C., the flow rate ratio of oxygen and hydrogen was maintained at 1: 1, and oxidation was performed for 1 hour to form an oxide film 3.
[0022]
Thereafter, in order to remove the carbon cluster, the atmosphere was changed to a one-to-one atmosphere of argon and hydrogen, and annealing was performed for 30 minutes.
This operation was performed a total of 5 times to form oxide films 3 to 7 having a thickness of 30 nm. Up to about 30 nm, the reaction rate is almost limited, and an oxide film of about 5 nm grows every time. The 30 nm oxide film has an appropriate thickness as a gate oxide film of the MOSFET.
[0023]
Thereafter, the temperature was lowered to 700 ° C. at a rate of 3 ° C./min in a nitrogen atmosphere.
In order to investigate whether or not the residual carbon at the oxide film / semiconductor interface subjected to such an oxidation treatment was removed, various observations were made together with a comparative example in which no special treatment was performed.
First, the oxide film was etched with dilute hydrofluoric acid to expose the surface of the silicon carbide semiconductor, and then observed with an atomic force microscope (AFM).
[0024]
In the comparative example, protrusions having a diameter of about 80 nm and a height of about 5 nm are observed at a density of several tens of pieces / μm 2. However, such protrusions are not formed on the surface of silicon carbide when the method of the present invention is performed. I couldn't see it. Next, the distribution of carbon atoms in the depth direction from the surface of the oxide film was measured by secondary ion mass spectrometer (SIMS) analysis. Compared to the comparative example, when the method of the present invention was performed, the slope of the distribution of carbon atoms in the vicinity of the oxide film / silicon carbide semiconductor interface was steeper. This suggests the disappearance of carbon clusters.
[0025]
Further, the vicinity of the oxide film / semiconductor interface was directly observed with a transmission electron microscope (TEM). In the comparative example, carbon clusters were observed, but when the method of the present invention was performed, no carbon clusters were observed at the interface. Further, when a MOSFET was fabricated using this wafer, the carrier mobility was 150 cm 2 / Vs, and the treatment according to the present invention was greatly improved from the conventional 50 cm 2 / Vs.
[0026]
That is, it can be seen that the carbon cluster was sufficiently removed by the method of the present invention.
In the above-mentioned report by Suzuki et al., The effect of improving mobility was not observed even after hydrogen annealing, but the major difference from this case is the oxide film thickness. In the case of Suzuki et al., The thickness of the oxide film is 48 nm, hydrogen annealing is insufficient for that thickness, and it is considered that the carbon dangling bond was terminated only by hydrogen termination. Further, since the oxide film is grown thick, the carbon cluster grows, and the ratio of the surface area to the volume of the cluster decreases, so that it is considered that the removal by hydrogen was not performed effectively.
[0027]
In contrast, in the method of the present invention, hydrogen annealing is performed at a stage where the oxide film is thin, so that the nucleus of the carbon cluster at the oxide film interface is still small and the ratio of the surface area to the volume is large. , CH x are removed. As the annealing gas, nitrogen, ammonia, argon, nitrous oxide, nitrogen oxide or the like can be used in addition to the above hydrogen.
[0028]
[ Reference example ]
The substrate, epitaxial layer, surface treatment method used, the first oxidation temperature rise, retention, annealing for carbon cluster removal, and cooling were the same as in Example 1.
At this time, the thickness of the oxide film 8 is 6 nm.
On this oxide film 8, a CVD oxide film 9 having a thickness of 24 nm was deposited by low pressure CVD. The film forming conditions were as follows. Monosilane (SiH 4 ) and oxygen (O 2 ) were used as gases, and the flow rate ratio was SiH 4 : O 2 = 1: 5. The pressure is 1 Pa, the film forming temperature is 300 ° C., and the time is 1 minute.
[0029]
Also in this example, the vicinity of the oxide film / semiconductor interface was directly observed with a transmission electron microscope (TEM), but no carbon cluster was observed at the interface. That is, it is considered that the carbon cluster was sufficiently removed by the method of the present invention.
The CVD oxide film 9 was not formed on the epitaxial film 2 of the silicon carbide substrate from the beginning, but the CVD oxide film 9 was formed after the thin thermal oxide film 8 was formed because of contamination of the silicon carbide substrate surface. This is for avoiding the generation of interface states due to incorporation into the MOS interface.
[0030]
As a method for depositing the CVD oxide film 9, a sputtering method or a plasma CVD method may be used in addition to the LPCVD method.
[0031]
【The invention's effect】
As described above, according to the present invention, a thin oxide film formation process of a thickness of 15 nm or less by thermal oxidation on a silicon carbide semiconductor substrate and an annealing process in a gas atmosphere different from the oxide film formation process are performed in this order. Just repeat several times, by an oxide film having a thickness of Tokoro stage, decomposition and removal of the oxide film / silicon carbide vicinity of the carbon clusters is performed reliably, occurrence of conventional seen interface state, the carrier It was shown that an SiC semiconductor device having good characteristics can be manufactured by preventing a decrease in mobility.
[0032]
Therefore, the present invention greatly contributes to the spread and development of silicon carbide semiconductor elements.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of an SiC semiconductor device by the method of the first embodiment of the present invention. FIG. 2 is a cross-sectional view of an SiC semiconductor device by the method of the reference embodiment of the present invention.
1 ・ ・ ・ p-type substrate
2 ... p-type shrimp layer
3 ... Oxide film by the first thermal oxidation
4 ... 2nd thermal oxidation film
S ... Oxide film by the third thermal oxidation
6 ... Oxide film by the fourth thermal oxidation
7 ... Fifth thermal oxidation film
8 ... Oxide film by the first thermal oxidation
9 ... CVD oxide film

Claims (2)

炭化けい素半導体基板上に熱酸化による15nm以下の薄い酸化膜の形成工程と、熱酸化による酸化膜の形成工程とは異なるガス雰囲気中におけるアニール工程とをこの順で複数回繰り返し、所期の厚さの酸化膜を形成することを特徴とする炭化けい素半導体基板の酸化膜形成方法。A process of forming a thin oxide film of 15 nm or less by thermal oxidation on a silicon carbide semiconductor substrate and an annealing process in a gas atmosphere different from the process of forming an oxide film by thermal oxidation are repeated a plurality of times in this order. A method for forming an oxide film on a silicon carbide semiconductor substrate, comprising forming an oxide film having a thickness. アニール工程のガスを水素、アンモニア、酸化窒素、亜酸化窒素、窒素、アルゴンのいずれかを含むものとすることを特徴とする請求項に記載の炭化けい素半導体基板の酸化膜形成方法。2. The method for forming an oxide film on a silicon carbide semiconductor substrate according to claim 1 , wherein the annealing gas contains any one of hydrogen, ammonia, nitric oxide, nitrous oxide, nitrogen, and argon.
JP2001082087A 2001-03-22 2001-03-22 Method for forming oxide film on silicon carbide semiconductor substrate Expired - Fee Related JP4247459B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001082087A JP4247459B2 (en) 2001-03-22 2001-03-22 Method for forming oxide film on silicon carbide semiconductor substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001082087A JP4247459B2 (en) 2001-03-22 2001-03-22 Method for forming oxide film on silicon carbide semiconductor substrate

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008245229A Division JP4844609B2 (en) 2008-09-25 2008-09-25 Method for forming oxide film on silicon carbide semiconductor substrate

Publications (2)

Publication Number Publication Date
JP2002280381A JP2002280381A (en) 2002-09-27
JP4247459B2 true JP4247459B2 (en) 2009-04-02

Family

ID=18938077

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001082087A Expired - Fee Related JP4247459B2 (en) 2001-03-22 2001-03-22 Method for forming oxide film on silicon carbide semiconductor substrate

Country Status (1)

Country Link
JP (1) JP4247459B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7214984B2 (en) 2003-11-25 2007-05-08 Matsushita Electric Industrial Co., Ltd. High-breakdown-voltage insulated gate semiconductor device
CN101336473A (en) * 2006-01-30 2008-12-31 住友电气工业株式会社 Method for manufacturing silicon carbide semiconductor device
JP2007201343A (en) * 2006-01-30 2007-08-09 Central Res Inst Of Electric Power Ind Method for manufacturing silicon carbide semiconductor element
CN102484069A (en) 2009-09-07 2012-05-30 罗姆股份有限公司 Semiconductor device and process for production thereof
JP7082558B2 (en) * 2018-10-11 2022-06-08 株式会社豊田中央研究所 Silicon carbide semiconductor device and its manufacturing method

Also Published As

Publication number Publication date
JP2002280381A (en) 2002-09-27

Similar Documents

Publication Publication Date Title
JP5603008B2 (en) Method for forming SiCMOSFET having large inversion layer mobility
WO2007086196A1 (en) Method for manufacturing silicon carbide semiconductor device
JP6222771B2 (en) Method for manufacturing silicon carbide semiconductor device
JP6945585B2 (en) How to Form Wide Bandgap Semiconductor Devices and Wide Bandgap Semiconductor Devices
WO2007102281A1 (en) Method for manufacturing silicon carbide semiconductor device, and silicon carbide semiconductor device
CN104241348A (en) Low-on-resistance SiC IGBT and manufacturing method thereof
JP2003243653A (en) Method for manufacturing silicon carbide semiconductor device
CN102227000A (en) Silicon carbide MOSFET device based on super junction and preparation method
CN109037333A (en) Silicone carbide metal oxide semiconductor field effect transistor and its manufacturing method
CN104810282B (en) A method of N-channel IGBT device is made using N-type silicon carbide substrates
JP3733792B2 (en) Method for manufacturing silicon carbide semiconductor element
JP2006156478A (en) Silicon carbide semiconductor device and manufacturing method thereof
JP6162388B2 (en) Method for manufacturing silicon carbide semiconductor device
JP2011146662A (en) METHOD OF MANUFACTURING SiC SEMICONDUCTOR ELEMENT
CN109791889A (en) The method and semiconductor device of insulating layer are manufactured on sic
CN109686667A (en) A kind of SiC base MOS device and its preparation method and application
JP4247459B2 (en) Method for forming oxide film on silicon carbide semiconductor substrate
JP4844609B2 (en) Method for forming oxide film on silicon carbide semiconductor substrate
CN107452624A (en) Schottky contacts SiC IGBT and preparation method thereof
CN102770961B (en) The method of manufacture semiconductor device
CN118448463A (en) A diamond trench gate VDMOS device and its preparation method
JP2017168673A (en) Silicon carbide semiconductor device and method for manufacturing silicon carbide semiconductor device
CN210156382U (en) SiC-based MOS device
CN108257856A (en) The preparation method and its structure of the SiC MOSFET power devices of high temperature resistant low-power consumption
CN112038394A (en) Preparation method of MOSFET (Metal-oxide-semiconductor field Effect transistor) capable of improving stability of threshold voltage

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060315

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060703

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060704

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080603

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080804

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080826

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080925

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20081107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081211

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20081216

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081224

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120123

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4247459

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120123

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120123

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120123

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120123

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130123

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130123

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140123

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees