JP4246943B2 - Method for producing article having photocatalyst-containing porous thin film - Google Patents
Method for producing article having photocatalyst-containing porous thin film Download PDFInfo
- Publication number
- JP4246943B2 JP4246943B2 JP2001334791A JP2001334791A JP4246943B2 JP 4246943 B2 JP4246943 B2 JP 4246943B2 JP 2001334791 A JP2001334791 A JP 2001334791A JP 2001334791 A JP2001334791 A JP 2001334791A JP 4246943 B2 JP4246943 B2 JP 4246943B2
- Authority
- JP
- Japan
- Prior art keywords
- thin film
- photocatalyst
- containing porous
- active material
- sublimation agent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000010409 thin film Substances 0.000 title claims description 87
- 239000011941 photocatalyst Substances 0.000 title claims description 68
- 238000004519 manufacturing process Methods 0.000 title claims description 13
- 239000011248 coating agent Substances 0.000 claims description 45
- 238000000576 coating method Methods 0.000 claims description 43
- 239000000758 substrate Substances 0.000 claims description 36
- 239000003795 chemical substances by application Substances 0.000 claims description 35
- 238000000859 sublimation Methods 0.000 claims description 35
- 230000008022 sublimation Effects 0.000 claims description 35
- 239000011149 active material Substances 0.000 claims description 34
- 239000010408 film Substances 0.000 claims description 33
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 26
- 238000000034 method Methods 0.000 claims description 25
- 239000002243 precursor Substances 0.000 claims description 23
- 239000007788 liquid Substances 0.000 claims description 22
- 239000011148 porous material Substances 0.000 claims description 14
- 239000004408 titanium dioxide Substances 0.000 claims description 11
- UFWIBTONFRDIAS-UHFFFAOYSA-N naphthalene-acid Natural products C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 claims description 10
- 239000007787 solid Substances 0.000 claims description 10
- 125000001624 naphthyl group Chemical group 0.000 claims description 4
- 230000015572 biosynthetic process Effects 0.000 claims description 3
- 230000000149 penetrating effect Effects 0.000 claims description 2
- 230000001699 photocatalysis Effects 0.000 description 25
- 239000000463 material Substances 0.000 description 22
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 16
- 239000011230 binding agent Substances 0.000 description 16
- 239000002245 particle Substances 0.000 description 14
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 11
- 239000000126 substance Substances 0.000 description 10
- 239000011521 glass Substances 0.000 description 9
- 150000007530 organic bases Chemical class 0.000 description 9
- 238000003618 dip coating Methods 0.000 description 8
- 238000010438 heat treatment Methods 0.000 description 8
- -1 titanium alkoxide Chemical class 0.000 description 8
- TZBCMHLFINVTGO-UHFFFAOYSA-N ethanol;naphthalene Chemical compound CCO.C1=CC=CC2=CC=CC=C21 TZBCMHLFINVTGO-UHFFFAOYSA-N 0.000 description 7
- 229910052751 metal Inorganic materials 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- 239000002131 composite material Substances 0.000 description 6
- 239000010410 layer Substances 0.000 description 6
- 239000003054 catalyst Substances 0.000 description 5
- 238000013032 photocatalytic reaction Methods 0.000 description 5
- 239000002904 solvent Substances 0.000 description 5
- 238000003756 stirring Methods 0.000 description 5
- 239000010936 titanium Substances 0.000 description 5
- 150000001875 compounds Chemical class 0.000 description 4
- 238000002425 crystallisation Methods 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 239000004033 plastic Substances 0.000 description 4
- 229920003023 plastic Polymers 0.000 description 4
- 238000004528 spin coating Methods 0.000 description 4
- 229910052719 titanium Inorganic materials 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 3
- 230000008025 crystallization Effects 0.000 description 3
- 238000000354 decomposition reaction Methods 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- AZQWKYJCGOJGHM-UHFFFAOYSA-N 1,4-benzoquinone Chemical compound O=C1C=CC(=O)C=C1 AZQWKYJCGOJGHM-UHFFFAOYSA-N 0.000 description 2
- WUPHOULIZUERAE-UHFFFAOYSA-N 3-(oxolan-2-yl)propanoic acid Chemical compound OC(=O)CCC1CCCO1 WUPHOULIZUERAE-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- 239000002202 Polyethylene glycol Substances 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 239000005083 Zinc sulfide Substances 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 239000005456 alcohol based solvent Substances 0.000 description 2
- 150000004703 alkoxides Chemical class 0.000 description 2
- 230000000844 anti-bacterial effect Effects 0.000 description 2
- 230000003373 anti-fouling effect Effects 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 238000007611 bar coating method Methods 0.000 description 2
- 229910052980 cadmium sulfide Inorganic materials 0.000 description 2
- CRPUJAZIXJMDBK-UHFFFAOYSA-N camphene Chemical compound C1CC2C(=C)C(C)(C)C1C2 CRPUJAZIXJMDBK-UHFFFAOYSA-N 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000011109 contamination Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000004332 deodorization Methods 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000003912 environmental pollution Methods 0.000 description 2
- JBKVHLHDHHXQEQ-UHFFFAOYSA-N epsilon-caprolactam Chemical compound O=C1CCCCCN1 JBKVHLHDHHXQEQ-UHFFFAOYSA-N 0.000 description 2
- 238000010304 firing Methods 0.000 description 2
- 239000005357 flat glass Substances 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 150000007529 inorganic bases Chemical class 0.000 description 2
- 239000012948 isocyanate Substances 0.000 description 2
- 150000002513 isocyanates Chemical class 0.000 description 2
- 229910001510 metal chloride Inorganic materials 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 238000001000 micrograph Methods 0.000 description 2
- QGLKJKCYBOYXKC-UHFFFAOYSA-N nonaoxidotritungsten Chemical compound O=[W]1(=O)O[W](=O)(=O)O[W](=O)(=O)O1 QGLKJKCYBOYXKC-UHFFFAOYSA-N 0.000 description 2
- 239000005416 organic matter Substances 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 238000007146 photocatalysis Methods 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 229920001223 polyethylene glycol Polymers 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 230000001737 promoting effect Effects 0.000 description 2
- YGSDEFSMJLZEOE-UHFFFAOYSA-N salicylic acid Chemical compound OC(=O)C1=CC=CC=C1O YGSDEFSMJLZEOE-UHFFFAOYSA-N 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000004071 soot Substances 0.000 description 2
- 230000001954 sterilising effect Effects 0.000 description 2
- 238000004659 sterilization and disinfection Methods 0.000 description 2
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 2
- VXUYXOFXAQZZMF-UHFFFAOYSA-N titanium(IV) isopropoxide Chemical compound CC(C)O[Ti](OC(C)C)(OC(C)C)OC(C)C VXUYXOFXAQZZMF-UHFFFAOYSA-N 0.000 description 2
- 229910001930 tungsten oxide Inorganic materials 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- 239000002912 waste gas Substances 0.000 description 2
- 239000002351 wastewater Substances 0.000 description 2
- 229910052984 zinc sulfide Inorganic materials 0.000 description 2
- DRDVZXDWVBGGMH-UHFFFAOYSA-N zinc;sulfide Chemical compound [S-2].[Zn+2] DRDVZXDWVBGGMH-UHFFFAOYSA-N 0.000 description 2
- DSSYKIVIOFKYAU-XCBNKYQSSA-N (R)-camphor Chemical compound C1C[C@@]2(C)C(=O)C[C@@H]1C2(C)C DSSYKIVIOFKYAU-XCBNKYQSSA-N 0.000 description 1
- OCJBOOLMMGQPQU-UHFFFAOYSA-N 1,4-dichlorobenzene Chemical compound ClC1=CC=C(Cl)C=C1 OCJBOOLMMGQPQU-UHFFFAOYSA-N 0.000 description 1
- ZNQVEEAIQZEUHB-UHFFFAOYSA-N 2-ethoxyethanol Chemical compound CCOCCO ZNQVEEAIQZEUHB-UHFFFAOYSA-N 0.000 description 1
- IQUPABOKLQSFBK-UHFFFAOYSA-N 2-nitrophenol Chemical compound OC1=CC=CC=C1[N+]([O-])=O IQUPABOKLQSFBK-UHFFFAOYSA-N 0.000 description 1
- 241000723346 Cinnamomum camphora Species 0.000 description 1
- 229910020288 Na2Ti6O13 Inorganic materials 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- PXRCIOIWVGAZEP-UHFFFAOYSA-N Primaeres Camphenhydrat Natural products C1CC2C(O)(C)C(C)(C)C1C2 PXRCIOIWVGAZEP-UHFFFAOYSA-N 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- 229910002367 SrTiO Inorganic materials 0.000 description 1
- OUUQCZGPVNCOIJ-UHFFFAOYSA-M Superoxide Chemical compound [O-][O] OUUQCZGPVNCOIJ-UHFFFAOYSA-M 0.000 description 1
- MCMNRKCIXSYSNV-UHFFFAOYSA-N ZrO2 Inorganic materials O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 1
- 238000004887 air purification Methods 0.000 description 1
- XCPQUQHBVVXMRQ-UHFFFAOYSA-N alpha-Fenchene Natural products C1CC2C(=C)CC1C2(C)C XCPQUQHBVVXMRQ-UHFFFAOYSA-N 0.000 description 1
- JRPBQTZRNDNNOP-UHFFFAOYSA-N barium titanate Chemical compound [Ba+2].[Ba+2].[O-][Ti]([O-])([O-])[O-] JRPBQTZRNDNNOP-UHFFFAOYSA-N 0.000 description 1
- 229910002113 barium titanate Inorganic materials 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 229930006739 camphene Natural products 0.000 description 1
- ZYPYEBYNXWUCEA-UHFFFAOYSA-N camphenilone Natural products C1CC2C(=O)C(C)(C)C1C2 ZYPYEBYNXWUCEA-UHFFFAOYSA-N 0.000 description 1
- 229930008380 camphor Natural products 0.000 description 1
- 229960000846 camphor Drugs 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- 210000003850 cellular structure Anatomy 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 238000007607 die coating method Methods 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000007756 gravure coating Methods 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 229910052976 metal sulfide Inorganic materials 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- VBEGHXKAFSLLGE-UHFFFAOYSA-N n-phenylnitramide Chemical compound [O-][N+](=O)NC1=CC=CC=C1 VBEGHXKAFSLLGE-UHFFFAOYSA-N 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- 238000006864 oxidative decomposition reaction Methods 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- FJKROLUGYXJWQN-UHFFFAOYSA-N papa-hydroxy-benzoic acid Natural products OC(=O)C1=CC=C(O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-N 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 239000011164 primary particle Substances 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 239000010948 rhodium Substances 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 229960004889 salicylic acid Drugs 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000001235 sensitizing effect Effects 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- GROMGGTZECPEKN-UHFFFAOYSA-N sodium metatitanate Chemical compound [Na+].[Na+].[O-][Ti](=O)O[Ti](=O)O[Ti]([O-])=O GROMGGTZECPEKN-UHFFFAOYSA-N 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- VEALVRVVWBQVSL-UHFFFAOYSA-N strontium titanate Chemical compound [Sr+2].[O-][Ti]([O-])=O VEALVRVVWBQVSL-UHFFFAOYSA-N 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 238000010345 tape casting Methods 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
- 229920003169 water-soluble polymer Polymers 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Images
Landscapes
- Catalysts (AREA)
- Paints Or Removers (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、光触媒含有多孔性薄膜を有する物品の製造方法に関する。さらに詳しくは、本発明は、光触媒反応が生じる表面積が大きく、優れた光触媒機能を発揮し得る光触媒含有多孔性薄膜を有する物品の製造方法に関するものである。
【0002】
【従来の技術】
光触媒活性材料(以下、単に光触媒と称すことがある。)は、そのバンドギャップ以上のエネルギーの光を照射すると、励起されて伝導帯に電子が生じ、かつ価電子帯に正孔が生じる。そして、生成した電子は表面酸素を還元してスーパーオキサイドアニオン(・O2 -)を生成させると共に、正孔は表面水酸基を酸化して水酸ラジカル(・OH)を生成し、これらの反応性活性酸素種が強い酸化分解機能を発揮し、光触媒の表面に付着している有機物質を高効率で分解することが知られている。
このような光触媒の機能を応用して、例えば脱臭、防汚、抗菌、殺菌、さらには廃水中や廃ガス中の環境汚染上の問題となっている各種物質の分解・除去などが検討されている。
【0003】
また、光触媒のもう1つの機能として、該光触媒が光励起されると、例えば国際特許公開96/29375号公報に開示されているように、光触媒表面は、水との接触角が10度以下となる超親水化を発現することも知られている。このような光触媒の超親水化機能を応用して、例えば高速道路の防音壁や街路灯などに対する自動車の排ガスに含まれるススなどによる汚染防止用に、あるいは自動車のボディーコートやサイドミラー用フィルム、防曇性、セルフクリーニング性窓ガラス用などに光触媒を用いることが検討されている。
【0004】
このような光触媒としては、これまで種々の半導体的特性を有する化合物、例えば二酸化チタン、酸化鉄、酸化タングステン、酸化亜鉛などの金属酸化物、硫化カドミウムや硫化亜鉛などの金属硫化物などが知られているが、これらの中で、二酸化チタン、特にアナターゼ型二酸化チタンは実用的な光触媒として有用である。この二酸化チタンは、太陽光などの日常光に含まれる紫外線領域の特定波長の光を吸収することによって優れた光触媒活性を示す。
【0005】
ところで、このような光触媒を含む薄膜において、その光触媒活性による有機物の分解反応を効果的に発揮させるには、光触媒薄膜の総表面積が極めて重要となる。これは、光触媒反応が、その表面のみで生じる不均一反応であることが最大の要因である。また易洗性や防曇性などをもたらすために光触媒機能の超親水性を積極的に利用する場合、光触媒薄膜の表面に凹凸構造を付与し、該表面の水に対する濡れ性を向上させることが好ましい。
【0006】
一方、酸化チタンなどの光触媒を用いた太陽電池への応用も盛んに進められている。この場合も、光触媒層の多表面積化が重要な課題の一つとなっており、該光触媒層を多表面積化し、増感色素との接触面積を向上させることによって、その発電効率を大幅に向上し得ることが期待されている。
【0007】
しかしながら、一般に、著しい凹凸構造は光を散乱させるために、光触媒薄膜の透明性を大幅に低下させる原因となる。したがって、高い透明性を維持させるためには、その凹凸構造を可視光波長以下(400nm以下)の大きさに制御する必要に迫られることが多い。
【0008】
このように、光触媒の多くの用途においては、透明性を維持すると共に、多表面積(凹凸構造)を有する光触媒薄膜が強く望まれている。このような光触媒薄膜としては、例えばコーティング液中にポリエチレングリコールを加え、焼成時に該ポリエチレングリコールを焼失させることで多孔質化した光触媒薄膜が知られている。しかしながら、この場合、有機物を完全に焼失させるには、200℃以上の熱処理を必要とするため、例えば耐熱性の乏しい有機基材上には、この方法で多孔質化された光触媒薄膜を形成することができないという問題がある。また、コーティング液中にポリビニルアルコールなどの水溶性高分子化合物を加え、成膜後、水洗によって該添加剤を取り除くことで、多孔質化した光触媒薄膜を形成することも試みられている。しかしながら、この場合、添加剤の除去工程を必要とし、操作が煩雑となり、コストが高くつくのを免れないという問題がある。
【0009】
【発明が解決しようとする課題】
本発明は、このような事情のもとで、簡単な操作で、かつ耐熱性に乏しい有機基材上にも形成が可能であって、光触媒反応が生じる表面積が大きく、優れた光触媒機能を発揮し得る光触媒含有多孔性薄膜を有する物品の製造方法を提供することを目的とするものである。
【0010】
【課題を解決するための手段】
本発明者らは、光触媒含有多孔性薄膜について鋭意研究を重ねた結果、光触媒活性材料やその前駆体と昇華剤とを含むコーティング液を基材に塗布後、該昇華剤を昇華させて、直径がある範囲にある空孔を形成させてなる特定の膜厚を有する光触媒含有多孔性薄膜により、前記目的を達成し得ることを見出し、この知見に基づいて本発明を完成するに至った。
【0011】
すなわち、本発明は、
(1) 光触媒活性材料および/またはその前駆体と、常圧または減圧下において120℃以下で昇華する昇華剤とを含むコーティング液を基材に塗布後、前記昇華剤を昇華させて空孔を形成させることにより、空孔形成後の薄膜の膜厚が10〜450nmで、空孔の直径が30〜3000nmであり、空孔が、薄膜の膜厚よりも大きな直径を有し、かつ薄膜表面に開孔部を有すると共に、基材表面まで貫通した構造を有する光触媒含有多孔性薄膜を形成することを特徴とする光触媒含有多孔性薄膜を有する物品の製造方法、
(2) コーティング液を基材に塗布し、昇華剤を昇華させて空孔を形成後、結晶化処理し、光触媒活性材料前駆体を光触媒活性材料に変換させる上記(1)項に記載の光触媒含有多孔性薄膜を有する物品の製造方法、
【0012】
(3) 昇華剤がナフタレンおよび/またはその類似体であり、かつコーティング液の固形分中における昇華剤の含有量が35〜60重量%である上記(1)または(2)項に記載の光触媒含有多孔性薄膜を有する物品の製造方法、
(4) 光触媒活性材料が二酸化チタンである上記(1)ないし(3)項のいずれか1項に記載の光触媒含有多孔性薄膜を有する物品の製造方法、
を提供するものである。
【0013】
【発明の実施の形態】
本発明の光触媒含有多孔性薄膜を有する物品の製造方法は、光触媒活性成分としての光触媒活性材料および/またはその前駆体と、常圧または減圧下において120℃以下で昇華する昇華剤とを含むコーティング液を基材に塗布後、前記昇華剤を昇華させて空孔を形成させることからなるものである。
【0014】
前記光触媒活性材料としては特に制限はなく、従来公知のもの、例えば二酸化チタン、チタン酸ストロンチウム(SrTiO3)、チタン酸バリウム(BaTi4O9)、チタン酸ナトリウム(Na2Ti6O13)、二酸化ジルコニウム、α−Fe2O3、酸化タングステン、K4Nb6O17、Rb4Nb6O17、K2Rb2Nb6O17、硫化カドミウム、硫化亜鉛などを挙げることができる。これらは1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよいが、これらの中で、二酸化チタン、特にアナターゼ型二酸化チタンは実用的な光触媒活性材料として有用である。この二酸化チタンは、太陽光などの日常光に含まれる紫外線領域の特定波長の光を吸収することによって優れた光触媒活性を示す。
【0015】
また、これらの光触媒活性材料の前駆体としては、結晶化を含むなんらかの処理により光触媒活性材料に変換されるものであればよく、特に制限されず、従来公知の化合物を用いることができる。例えば二酸化チタンの前駆体としては、チタンアルコキシドの部分加水分解物を含むものなどが用いられる。
本発明においては、光触媒活性成分として、光触媒活性材料のみを用いてもよいし、その前駆体のみを用いてもよく、また、それらを組み合わせて用いてもよい。
【0016】
一方、昇華剤については、コーティング液中に完全に溶解し、かつ常圧または1hPa程度までの減圧下において120℃以下の温度で昇華し得るものが好ましく、このようなものとしては、例えばナフタレンまたはその類似体、p−ジクロロベンゼン、樟脳、カンフェン、ε−カプロラクタム、サリチル酸、シュウ酸、ニトロアニリン、ニトロフェノール、p−ベンゾキノンなどを挙げることができるが、これらの中で常圧において120℃以下の温度で昇華するものが特に好ましい。これらは1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
【0017】
本発明においては、基材上にコーティング液を塗布し、光触媒含有多孔性薄膜を形成させる方法として、例えば(1)光触媒活性材料前駆体と昇華剤とを含むコーティング液を基材に塗布後、該昇華剤を昇華させて空孔を形成させたのち、熱処理を含む何らかの処理を施して、前記前駆体を光触媒活性材料に変換すると共に、基材への接着を促進させ、光触媒含有多孔性薄膜を形成させる方法、および(2)室温ないし120℃程度の温度で固化し得る無機バインダー中に、光触媒活性材料粒子と昇華剤とを含有させてなるコーティング液を基材に塗布後、120℃程度以下の温度で加熱処理し、該昇華剤を昇華させると共に、バインダーを固化させ、光触媒含有多孔性薄膜を形成させる方法を好ましく用いることができる。
【0018】
まず、前記(1)の方法について説明する。
この方法において、コーティング液に含まれる光触媒活性材料前駆体としては、前述した光触媒活性材料の前駆体をいずれも用いることができるが、特に二酸化チタンの前駆体、例えばチタンアルコキシドの部分加水分解物を含むものなどが好適である。また、光触媒活性材料前駆体が粒子状である場合には、該前駆体粒子と共に、無機バインダーを含むものを用いることができる。
【0019】
この無機バインダーとしては、特に制限はなく、従来公知のもの、例えばSi系、Ti系、Zr系などの金属アルコキシド、金属塩化物、金属イソシアネートなどを含むものを挙げることができる。
【0020】
当該コーティング液は、適当な溶剤中に、前記の光触媒活性材料前駆体、又は該前駆体粒子と無機バインダー、および昇華剤を加えることにより調製することができる。本発明においては、前記昇華剤はコーティング液中に完全に溶解状態で存在することが好ましい。また、コーティング液中の固形分濃度としては、基材上に塗布し、所望の膜厚の薄膜を形成し得る粘度を有するものであればよく、特に制限はない。溶剤としては、光触媒前駆体(粒子状ではないもの)または無機バインダーおよび昇華剤を溶解し得るものであればよく、特に制限されず、例えば光触媒前駆体または無機バインダーとしてチタンアルコキシドの部分加水分解物を含むものを用い、昇華剤としてナフタレンを用いる場合には、エタノール、イソプロパノール、エチルセロソルブなどのアルコール系溶剤が好ましく挙げられる。
【0021】
当該コーティング液の固形分中における昇華剤の含有量は、昇華剤および光触媒活性材料前駆体や無機バインダーの種類などにより左右され、一概に決めることはできないが、昇華剤がナフタレンやその類似体である場合には、通常35〜60重量%、好ましくは45〜55重量%の範囲で選定される。この含有量が上記範囲を逸脱すると所望の多孔質構造の薄膜が形成されにくい。
【0022】
当該コーティング液には、光触媒活性を促進させる目的で、所望により従来公知の光触媒促進剤を含有させることができる。この光触媒促進剤としては、例えば白金、パラジウム、ロジウム、ルテニウムなどの白金族金属が好ましく挙げられる。これらは単独で用いてもよいし、2種以上を組み合わせて用いてもよい。この光触媒促進剤の添加量は、光触媒活性の点から、通常、後述の結晶化処理で形成される光触媒活性材料と光触媒促進剤との合計重量に基づき、1〜20重量%の範囲で選ばれる。
【0023】
本発明においては、このようにして得られたコーティング液を、基材上に公知の方法、例えばディップコート法、スピンコート法、スプレーコート法、バーコート法、ナイフコート法、ロールコート法、ブレードコート法、ダイコート法、グラビアコート法などにより、最終的に形成される薄膜の膜厚が、10〜450nm、好ましくは30〜200nmになるように塗布し、常圧または1hPa程度までの減圧下に通常120℃以下の温度で加熱乾燥することにより、薄膜の固化と同時に昇華剤が昇華し、多孔質化された薄膜が形成される。次いで、薄膜中の光触媒活性材料前駆体を結晶化させ、光触媒活性材料に変換する。この結晶化方法としては、特に制限はなく、従来公知の方法、例えば加熱による方法、紫外線照射による方法、マイクロ波照射による方法、電子線照射による方法などを用いることができる。
【0024】
このようにして、空孔の直径が30〜3000nmの範囲にあり、かつ膜厚が10〜450nm、好ましくは30〜200nmの範囲にある多孔質光触媒含有薄膜を形成させることができる。
膜厚が10nm未満のものは形成が困難であり、また形成できたとしても十分な光触媒機能が発揮されにくい。一方、膜厚が450nmを超えると多孔質化が困難となり、本発明の目的が達せられない。
【0025】
次に、前記(2)の方法について説明する。
この方法において、コーティング液に含まれる光触媒活性材料粒子としては、前述した光触媒活性材料の粒子をいずれも用いることができるが、特に二酸化チタン粒子が好適である。前記光触媒活性材料粒子の粒度については特に制限はないが、多表面積化の点から、一次粒径が1〜10nm程度の粒子を凝集させて、50〜400nm程度にしたものが好適である。また、無機バインダーとしては、特に制限はなく、従来公知のもの、例えばSi系、Ti系、Zr系などの金属アルコキシド、金属塩化物、金属イソシアネートなどを含むものを挙げることができる。一方、昇華剤としては、前記(1)の場合と同様のものを挙げることができる。
【0026】
当該コーティング液は、適当な溶剤中に、前記の光触媒活性材料粒子と無機バインダー、および昇華剤を加えることにより調製することができる。本発明においては、前記昇華剤はコーティング液中に完全に溶解状態で存在することが好ましい。また、コーティング液中の固形分濃度としては、基材上に塗布し、所望の膜厚の薄膜を形成し得る粘度を有するものであればよく、特に制限はない。溶剤としては、無機バインダーおよび昇華剤を溶解し得るものであればよく、特に制限されず、例えば無機バインダーとしてケイ素アルコキシドの部分加水分解物を含むものを用い、昇華剤としてナフタレンを用いる場合には、メタノール、エタノール、イソプロパノールなどのアルコール系溶剤が好ましく挙げられる。
【0027】
当該コーティング液の固形分中における昇華剤の含有量は、昇華剤および無機バインダーの種類などにより左右され、一概に決めることはできないが、昇華剤がナフタレンやその類似体である場合には、通常35〜60重量%、好ましくは45〜55重量%の範囲で選定される。この含有量が上記範囲を逸脱すると所望の多孔質構造の薄膜が形成されにくい。
【0028】
当該コーティング液には、光触媒活性を促進させる目的で、所望により従来公知の光触媒促進剤を含有させることができる。この光触媒促進剤としては、前記(1)で例示したものと同じものを挙げることができ、その添加量は、光触媒活性の点から、通常、光触媒活性材料粒子と光触媒促進剤との合計重量に基づき、1〜20重量%の範囲で選ばれる。
【0029】
本発明においては、このようにして得られたコーティング液を、基材上に前記(1)と同様にして、最終的に形成される薄膜の膜厚が、10〜450nm、好ましくは30〜200nmになるように塗布し、常圧または1hPa程度までの減圧下に通常120℃以下の温度で加熱乾燥することにより、薄膜の固化と同時に昇華剤が昇華し、前記(1)と同様に、空孔の直径が30〜3000nmの範囲にあり、かつ膜厚が10〜450nm、好ましくは30〜200nmの範囲にある光触媒含有多孔性薄膜が形成される。
【0030】
光触媒含有多孔性薄膜においては、空孔は、通常その直径が薄膜の膜厚よりも大きく、かつ該薄膜表面に開孔部を有すると共に、基材表面まで貫通している。すなわち、空孔の底部の基材は、通常暴露しており、基材の特性を好ましく利用することが可能となる。
【0031】
例えば、光触媒層を設けた物品を、空気清浄や水浄化処理に利用する場合、その効果は該物品に対する除去対象物質の吸着能で決まることが多い。該物品に設けられた光触媒層に良い吸着能を示す除去対象物は光触媒作用により効果的に除去されるが、光触媒層に対する吸着能に劣る除去対象物は、光触媒作用による除去が多くは期待できない。しかし、本発明においては、空孔の底部の基材表面が暴露していることから、このような光触媒層に対する吸着能に劣る除去対象物を効果的に吸着し得る物質を基材とすることにより、あるいは、この物質を基材表面にあらかじめ担持させることにより、上記問題を容易に解決することができる。
【0032】
光触媒含有多孔性薄膜が形成される基材としては特に制限はなく、様々な基材、例えば金属、ガラス、セラミックスなどの無機系基材、プラスチック、有機繊維、木質材料などの有機系基材を挙げることができる。有機系基材の場合、その表面に直接光触媒含有多孔性薄膜を設けると、光触媒作用により該基材の劣化が免れないので、例えば無機系コーティング層や、本発明者らが先に見出した有機−無機複合傾斜膜(特願平11−264592号)などを介して設けることが好ましい。
【0033】
前記有機−無機複合傾斜膜は、プラスチック基材などの有機系基材に適用するのが好ましく、この複合傾斜膜を該基材上に設けることにより、表面層は、複合傾斜膜中の金属成分の含有率がほぼ100%であって、基材方向に逐次減少していき、基材近傍ではほぼ0%となる。すなわち、該有機−無機複合傾斜膜は、実質上、有機系基材に当接している面が有機高分子化合物成分のみからなり、もう一方の開放系面が金属酸化物系化合物成分のみからなっている。したがって、この複合傾斜膜上に、光触媒含有多孔性薄膜を設けることにより、有機系基材の劣化を抑制することができる。
クからなる有機系基材も用いることができる。
【0034】
前記無機系基材は、前述した(1)および(2)の方法のいずれにおいても用いることができるが、(1)の方法において、光触媒活性材料前駆体を、熱処理により結晶化して光触媒活性材料に変換する場合には、通常400℃以上の温度で熱処理が行われることから、基材としては耐熱性に優れる無機系基材、または有機系基材でも耐熱性に優れるポリイミド基材などが好ましく用いられる。なお、この(1)の方法において、高温加熱を必要としない手段で結晶化させる場合には、下記の汎用のプラスチックからなる有機系基材も用いることができる。
【0035】
一方、(2)の方法においては、耐熱温度が120℃以上のポリプロピレン、ポリエチレンテレフタレート、ポリメチルメタクリレートなどの汎用プラスチックからなる有機系基材も用いることができる。
【0037】
光触媒含有多孔性薄膜を有する物品の用途としては特に制限はなく、光触媒反応が適用できる用途には、いずれも用いることができる。例えば脱臭、防汚、抗菌、殺菌、あるいは廃水中や廃ガス中の環境汚染上の問題となっている各種物質の分解・除去、太陽電池部品などに有用である。さらには、光触媒の超親水化機能を応用して、例えば高速道路の防音壁や、街路灯などに対する自動車の排ガスに含まれるススなどによる汚染防止用に、あるいは自動車のボディーコートやサイドミラー用フィルム、防曇性、セルフクリーニング性窓ガラス用などにも用いることができる。
【0038】
【実施例】
次に、本発明を実施例により、さらに詳細に説明するが、本発明は、これらの例によってなんら限定されるものではない。
なお、各例で得られた薄膜の膜厚および空孔径は、以下に示す方法に従って測定した。
(1)膜厚
ピンセットなどの鋭利な先端を持つもので薄膜を10カ所部分的に剥離させ、その段差を表面形状測定顕微鏡(VF−7500、キーエンス(株)製)にて測定し、この平均値を薄膜の膜厚とした。
(2)空孔径
薄膜表面に走査型電子顕微鏡(SEM)像を得、その像から無作為に20個の空孔を選択してそれらの径を測定し、その平均値を薄膜の空孔径とした。
【0039】
実施例1
基材として、65×15×1mmのスライドガラス基板を用いた。
光触媒粒子とシリカ系バインダーを含む光触媒コーティング剤[石原産業(株)製、商品名「ST−K03」、固形物濃度90g/リットル]2mlと50g/リットル濃度のナフタレンエタノール溶液2mlを、エタノール6mlと混合・攪拌してコーティング液を調製した。
【0040】
このコーティング液を用い、スライドガラス基板上に、スピンコート法(1500rpm、12秒)で成膜し、十分に乾燥させたのち、120℃で10分間熱処理することにより、目的の光触媒含有多孔性薄膜を形成させた。この薄膜の性状を表1に示す。また得られた薄膜を上から見たときのSEM写真を図1に示す。
【0041】
実施例2
実施例1において、50g/リットル濃度のナフタレンエタノール溶液の量を1.6mlとし、かつエタノールの量を6.4mlとした以外は、実施例1と同様にして操作を行い、目的の光触媒含有多孔性薄膜を形成させた。この薄膜の性状を表1に示す。
【0042】
実施例3
実施例1において、50g/リットル濃度のナフタレンエタノール溶液の量を2.4mlとし、かつエタノールの量を5.6mlとした以外は、実施例1と同様にして操作を行い、目的の光触媒含有多孔性薄膜を形成させた。この薄膜の性状を表1に示す。
【0043】
実施例4
チタンテトライソプロポキシド[和光純薬工業(株)製]6.4gと2−プロパノール[和光純薬工業(株)製]60mlを混ぜ合わせたものに、濃塩酸[和光純薬工業(株)製]1.8gと2−プロパノール6mlを混ぜ合わせたものをゆっくりと滴下し、そのまま1時間攪拌した。これをバインダーAとする。
2−プロパノール11mlに酸化チタン懸濁液[住友大阪セメント(株)製、商品名「PCT−15T」、固形物濃度135g/リットル]2mlを加えてよく攪拌し、これにバインダーA 11mlと50g/リットル濃度のナフタレンエタノール溶液6mlを加え、混合・攪拌してコーティング液を調製した。
このコーティング液を用い、実施例1と同様にして、目的の光触媒含有多孔性薄膜を形成させた。この薄膜の性状を表1に示す。
【0044】
実施例5
基材として、65×15×1mmのスライドガラス基板を用いた。
実施例4と同様にして作製したバインダーA 11mlと2−プロパノール13mlを混合・攪拌し、これに、さらに50g/リットル濃度のナフタレンエタノール溶液6mlを加え、混合・攪拌してコーティング液を調製した。
このコーティング液を用い、スライドガラス基板上に、スピンコート法(1500rpm、12秒)で成膜し、十分に乾燥させたのち、120℃で10分間熱処理して薄膜を形成後、さらに500℃にて焼成処理することにより、目的の光触媒含有多孔性薄膜を形成させた。この薄膜の性状を表1に示す。
【0045】
実施例6
基材として、65×15×1mmのスライドガラス基板を用いた。
光触媒粒子とシリカ系バインダーを含む光触媒コーティング剤[石原産業(株)製、商品名「ST−K03」、固形物濃度90g/リットル]8mlと50g/リットル濃度のナフタレンエタノール溶液8mlを、エタノール184mlと混合・攪拌してコーティング液を調製した。
このコーティング液を用い、スライドガラス基板上に、ディップコート法(引上げ速度=100m/分)で成膜し、十分に乾燥させたのち、120℃で10分間熱処理することにより、目的の光触媒含有多孔性薄膜を形成させた。この薄膜の性状を表1に示す。
【0046】
実施例7
実施例6において、ディップコート法の代わりにバーコート法(塗布液膜6.9μm)を用いて成膜した以外は、実施例6と同様にして操作を行い、目的の光触媒含有多孔性薄膜を形成させた。この薄膜の性状を表1に示す。
【0047】
実施例8
実施例6において、ディップコート法における引上げ速度を10m/分とした以外は、実施例6と同様にして操作を行い、目的の光触媒含有多孔性薄膜を形成させた。この薄膜の性状を表1に示す。
【0048】
実施例9
基材として、65×15×1mmのスライドガラス基板を用いた。
光触媒粒子とシリカ系バインダーを含む光触媒コーティング剤[石原産業(株)製、商品名「ST−K03」、固形物濃度90g/リットル]40mlと50g/リットル濃度のナフタレンエタノール溶液40mlを、エタノール120mlと混合・攪拌してコーティング液を調製した。
このコーティング液を用い、スライドガラス基板上に、ディップコート法(引上げ速度=20m/分)で成膜し、十分に乾燥させたのち、120℃で10分間熱処理することにより、目的の光触媒含有多孔性薄膜を形成させた。この薄膜の性状を表1に示す。
【0049】
実施例10
実施例9において、ディップコート法における引上げ速度を150m/分とした以外は、実施例9と同様にして操作を行い、目的の光触媒含有多孔性薄膜を形成させた。この薄膜の性状を表1に示す。また得られた薄膜を上から見たときの顕微鏡写真を図2に示す。
【0050】
比較例1
実施例9において、ディップコート法における引上げ速度を300m/分とした以外は、実施例9と同様にして操作を行い、薄膜を形成させた。この薄膜の性状を表1に示す。
【0051】
【表1】
【0052】
(注)
1)成膜法:
SC=スピンコート法、DC=ディップコート法、BC=バーコート法
2)多孔質構造の有無
○:多孔質構造を有している。
×:多孔質構造を有していない。
【0053】
表1より実施例1〜10で得られた光触媒含有多孔性薄膜においては、膜厚が17〜390nmであり、本発明で規定された10〜450nmの範囲にあった。また空孔の直径も50〜2000nmであり、本発明で規定された30〜3000nmの範囲にあった。またいずれも空孔の直径が膜厚よりも大きいという関係を有していた。
一方、比較例1で得られた光触媒含有薄膜は膜厚が490nmであり、本発明で規定された10〜450nmの上限を超えており、多孔質構造とはならなかった。
【0054】
【発明の効果】
本発明によれば、簡単な操作で、かつ耐熱性に乏しい有機基材上にも形成が可能であって、光触媒反応が生じる表面積が大きく、優れた光触媒機能を発揮し得る光触媒含有多孔性薄膜を有する物品を製造する方法を提供することができる。
【図面の簡単な説明】
【図1】 実施例1で得られた薄膜のSEM写真である。
【図2】 実施例10で得られた薄膜の顕微鏡写真である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a photocatalyst-containing porous thin filmArticles withIt relates to the manufacturing method. More specifically, the present invention relates to a photocatalyst-containing porous thin film that has a large surface area where photocatalytic reaction occurs and can exhibit an excellent photocatalytic function.Articles withIt is related with the manufacturing method.
[0002]
[Prior art]
A photocatalytically active material (hereinafter sometimes simply referred to as a photocatalyst) is excited to produce electrons in the conduction band and holes in the valence band when irradiated with light having energy higher than its band gap. The generated electrons reduce the surface oxygen to form a superoxide anion (.O2 -), And the holes oxidize hydroxyl groups on the surface to generate hydroxyl radicals (.OH). These reactive active oxygen species exert a strong oxidative decomposition function and adhere to the surface of the photocatalyst. It is known to decompose organic substances with high efficiency.
By applying such photocatalytic functions, for example, deodorization, antifouling, antibacterial, sterilization, and decomposition / removal of various substances that cause environmental pollution in wastewater and waste gas are being studied. Yes.
[0003]
Further, as another function of the photocatalyst, when the photocatalyst is photoexcited, for example, as disclosed in International Patent Publication No. 96/29375, the photocatalyst surface has a contact angle with water of 10 degrees or less. It is also known to express superhydrophilization. Applying such a superhydrophilic function of the photocatalyst, for example, for prevention of contamination due to soot contained in the exhaust gas of automobiles for soundproof walls and street lights of highways, or for automobile body coats and side mirror films, The use of photocatalysts for antifogging and self-cleaning window glass has been studied.
[0004]
As such photocatalysts, compounds having various semiconductor characteristics such as metal oxides such as titanium dioxide, iron oxide, tungsten oxide and zinc oxide, and metal sulfides such as cadmium sulfide and zinc sulfide have been known. However, among these, titanium dioxide, particularly anatase titanium dioxide, is useful as a practical photocatalyst. This titanium dioxide exhibits excellent photocatalytic activity by absorbing light of a specific wavelength in the ultraviolet region contained in daily light such as sunlight.
[0005]
By the way, in such a thin film containing a photocatalyst, the total surface area of the photocatalytic thin film is extremely important in order to effectively exhibit the organic substance decomposition reaction due to the photocatalytic activity. This is because the photocatalytic reaction is a heterogeneous reaction that occurs only on the surface. In addition, when positively utilizing the superhydrophilicity of the photocatalytic function in order to provide easy washing properties, antifogging properties, etc., the surface of the photocatalytic thin film can be provided with an uneven structure to improve the wettability of the surface with water. preferable.
[0006]
On the other hand, application to solar cells using photocatalysts such as titanium oxide is also being actively promoted. Also in this case, increasing the surface area of the photocatalyst layer is one of the important issues. By increasing the surface area of the photocatalyst layer and improving the contact area with the sensitizing dye, the power generation efficiency is greatly improved. Expected to get.
[0007]
However, in general, a remarkable concavo-convex structure scatters light and causes a significant decrease in the transparency of the photocatalytic thin film. Therefore, in order to maintain high transparency, it is often necessary to control the concavo-convex structure to have a size of visible light wavelength or less (400 nm or less).
[0008]
Thus, in many uses of photocatalysts, there is a strong demand for photocatalytic thin films that maintain transparency and have a large surface area (uneven structure). As such a photocatalyst thin film, for example, a photocatalytic thin film made porous by adding polyethylene glycol to a coating solution and burning out the polyethylene glycol during firing is known. However, in this case, in order to completely burn off the organic matter, a heat treatment of 200 ° C. or higher is required. Therefore, for example, a porous photocatalytic thin film is formed by this method on an organic substrate having poor heat resistance. There is a problem that can not be. In addition, an attempt has been made to form a porous photocatalytic thin film by adding a water-soluble polymer compound such as polyvinyl alcohol to the coating liquid and removing the additive by washing with water after film formation. However, in this case, there is a problem that an additive removal step is required, the operation becomes complicated, and the cost is unavoidable.
[0009]
[Problems to be solved by the invention]
Under such circumstances, the present invention can be formed on an organic base material with a simple operation and poor heat resistance, has a large surface area for causing a photocatalytic reaction, and exhibits an excellent photocatalytic function. Photocatalyst-containing porous thin filmArticles withAn object of the present invention is to provide a manufacturing method.
[0010]
[Means for Solving the Problems]
As a result of extensive research on the photocatalyst-containing porous thin film, the present inventors applied a coating liquid containing a photocatalytically active material or its precursor and a sublimation agent to a substrate, and then sublimated the sublimation agent to obtain a diameter. The inventors have found that the above object can be achieved by a photocatalyst-containing porous thin film having a specific film thickness formed by forming pores in a certain range, and based on this finding, the present invention has been completed.
[0011]
That is, the present invention
(1) After applying a coating liquid containing a photocatalytically active material and / or a precursor thereof and a sublimation agent that sublimes at 120 ° C. or lower under normal pressure or reduced pressure, the sublimation agent is sublimated.SkyBy forming the holes, the film thickness of the thin film after forming the holes is 10 to 450 nm, the diameter of the holes is 30 to 3000 nm, the holes have a diameter larger than the film thickness of the thin film, and A method for producing an article having a photocatalyst-containing porous thin film, characterized by forming a photocatalyst-containing porous thin film having a structure having an opening on the surface of the thin film and penetrating to the substrate surface,
(2) The photocatalyst according to the above item (1), in which a coating liquid is applied to a substrate, a sublimation agent is sublimated to form pores, and then crystallized to convert a photocatalytically active material precursor into a photocatalytically active material. A method for producing an article having a porous thin film containing,
[0012]
(3The above (1), wherein the sublimation agent is naphthalene and / or an analogue thereof, and the content of the sublimation agent in the solid content of the coating liquid is 35 to 60% by weight.Or(2)In termsThe photocatalyst-containing porous thin film describedArticles withManufacturing method,
(4(1) to (1) above, wherein the photocatalytically active material is titanium dioxide.3The photocatalyst-containing porous thin film according to any one of items 1)Articles withManufacturing method,
Is to provide.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Photocatalyst-containing porous thin film of the present inventionArticles withThe production method of the present invention comprises applying a coating liquid containing a photocatalytically active material and / or a precursor thereof as a photocatalytically active component and a sublimation agent that sublimates at 120 ° C. or less under normal pressure or reduced pressure to a substrate, and then the sublimation agent. Is formed by sublimating the pores to form pores.
[0014]
The photocatalytically active material is not particularly limited, and conventionally known materials such as titanium dioxide, strontium titanate (SrTiO).Three), Barium titanate (BaTi)FourO9), Sodium titanate (Na2Ti6O13), Zirconium dioxide, α-Fe2OThree, Tungsten oxide, KFourNb6O17, RbFourNb6O17, K2Rb2Nb6O17, Cadmium sulfide, zinc sulfide and the like. These may be used alone or in combination of two or more. Among these, titanium dioxide, particularly anatase titanium dioxide, is useful as a practical photocatalytically active material. This titanium dioxide exhibits excellent photocatalytic activity by absorbing light of a specific wavelength in the ultraviolet region contained in daily light such as sunlight.
[0015]
The precursor of these photocatalytically active materials is not particularly limited as long as it is converted into a photocatalytically active material by any treatment including crystallization, and conventionally known compounds can be used. For example, as the precursor of titanium dioxide, one containing a partial hydrolyzate of titanium alkoxide is used.
In the present invention, only the photocatalytically active material may be used as the photocatalytically active component, or only the precursor thereof may be used, or a combination thereof may be used.
[0016]
On the other hand, the sublimation agent is preferably one that can be completely dissolved in the coating solution and can be sublimated at a temperature of 120 ° C. or lower under a normal pressure or a reduced pressure of about 1 hPa, such as naphthalene or Examples thereof include p-dichlorobenzene, camphor, camphene, ε-caprolactam, salicylic acid, oxalic acid, nitroaniline, nitrophenol, p-benzoquinone and the like. Those that sublime at temperature are particularly preferred. These may be used individually by 1 type and may be used in combination of 2 or more type.
[0017]
In the present invention, as a method of applying a coating liquid on a substrate to form a photocatalyst-containing porous thin film, for example, (1) after applying a coating liquid containing a photocatalytically active material precursor and a sublimation agent to the substrate, The sublimation agent is sublimated to form pores, and then subjected to some treatment including heat treatment to convert the precursor into a photocatalytically active material and promote adhesion to the substrate, thereby photocatalyst-containing porous thin film And (2) a coating liquid containing photocatalytically active material particles and a sublimation agent in an inorganic binder that can be solidified at a temperature of room temperature to 120 ° C. A method of heat treating at the following temperature to sublimate the sublimator and solidifying the binder to form a photocatalyst-containing porous thin film can be preferably used.
[0018]
First, the method (1) will be described.
In this method, as the photocatalytically active material precursor contained in the coating liquid, any of the above-mentioned photocatalytically active material precursors can be used. In particular, a precursor of titanium dioxide, for example, a partial hydrolyzate of titanium alkoxide is used. The inclusion is suitable. Moreover, when a photocatalytically active material precursor is a particulate form, what contains an inorganic binder with this precursor particle | grain can be used.
[0019]
The inorganic binder is not particularly limited, and examples thereof include conventionally known ones such as those containing metal alkoxides such as Si, Ti, and Zr, metal chlorides, and metal isocyanates.
[0020]
The coating liquid can be prepared by adding the photocatalytically active material precursor, or the precursor particles, an inorganic binder, and a sublimation agent in a suitable solvent. In the present invention, the sublimation agent is preferably present in a completely dissolved state in the coating solution. The solid content concentration in the coating solution is not particularly limited as long as it has a viscosity capable of being applied on a substrate and forming a thin film having a desired film thickness. The solvent is not particularly limited as long as it can dissolve the photocatalyst precursor (not in a particulate form) or the inorganic binder and the sublimation agent. For example, a partial hydrolyzate of titanium alkoxide as the photocatalyst precursor or the inorganic binder. When using naphthalene as a sublimation agent, alcohol solvents such as ethanol, isopropanol, and ethyl cellosolve are preferable.
[0021]
The content of the sublimation agent in the solid content of the coating liquid depends on the type of the sublimation agent, the photocatalytically active material precursor and the inorganic binder, and cannot be determined in general. However, the sublimation agent is naphthalene or an analog thereof. In some cases, it is usually selected in the range of 35 to 60% by weight, preferably 45 to 55% by weight. When this content deviates from the above range, it is difficult to form a thin film having a desired porous structure.
[0022]
For the purpose of promoting the photocatalytic activity, the coating liquid may contain a conventionally known photocatalyst promoter, if desired. Preferred examples of the photocatalyst promoter include platinum group metals such as platinum, palladium, rhodium, and ruthenium. These may be used alone or in combination of two or more. The addition amount of the photocatalyst promoter is usually selected in the range of 1 to 20% by weight based on the total weight of the photocatalytic active material and the photocatalyst promoter formed by the crystallization treatment described later from the viewpoint of photocatalytic activity. .
[0023]
In the present invention, the coating liquid thus obtained is applied to a substrate by a known method such as dip coating, spin coating, spray coating, bar coating, knife coating, roll coating, blade The thin film finally formed by coating method, die coating method, gravure coating method, etc. is applied so that the film thickness is 10 to 450 nm, preferably 30 to 200 nm, and the pressure is reduced to normal pressure or about 1 hPa. Usually, by heating and drying at a temperature of 120 ° C. or less, the sublimation agent sublimates simultaneously with the solidification of the thin film, and a porous thin film is formed. Next, the photocatalytically active material precursor in the thin film is crystallized and converted into a photocatalytically active material. The crystallization method is not particularly limited, and a conventionally known method such as a method using heating, a method using ultraviolet irradiation, a method using microwave irradiation, or a method using electron beam irradiation can be used.
[0024]
In this way, the pore diameter is in the range of 30 to 3000 nm, and the film thickness is in the range of 10 to 450 nm, preferably 30 to 200 nm.ManyA porous photocatalyst-containing thin film can be formed.
Those having a film thickness of less than 10 nm are difficult to form, and even if formed, a sufficient photocatalytic function is hardly exhibited. On the other hand, if the film thickness exceeds 450 nm, it becomes difficult to make the film porous, and the object of the present invention cannot be achieved.
[0025]
Next, the method (2) will be described.
In this method, as the photocatalytically active material particles contained in the coating liquid, any of the above-mentioned photocatalytically active material particles can be used, and titanium dioxide particles are particularly preferable. The particle size of the photocatalytically active material particles is not particularly limited, but from the viewpoint of increasing the surface area, particles having a primary particle size of about 1 to 10 nm are aggregated to have a size of about 50 to 400 nm are preferable. Moreover, there is no restriction | limiting in particular as an inorganic binder, For example, what contains conventionally well-known things, for example, metal alkoxide, metal chloride, metal isocyanate, etc., such as Si type, Ti type, and Zr type, can be mentioned. On the other hand, examples of the sublimation agent include the same as in the case of (1).
[0026]
The said coating liquid can be prepared by adding the said photocatalytically active material particle, an inorganic binder, and a sublimation agent in a suitable solvent. In the present invention, the sublimation agent is preferably present in a completely dissolved state in the coating solution. The solid content concentration in the coating solution is not particularly limited as long as it has a viscosity capable of being applied on a substrate and forming a thin film having a desired film thickness. The solvent is not particularly limited as long as it can dissolve the inorganic binder and the sublimation agent. For example, a solvent containing a partial hydrolyzate of silicon alkoxide is used as the inorganic binder, and naphthalene is used as the sublimation agent. Alcohol solvents such as methanol, ethanol and isopropanol are preferred.
[0027]
The content of the sublimation agent in the solid content of the coating liquid depends on the types of the sublimation agent and the inorganic binder, and cannot be determined in general, but when the sublimation agent is naphthalene or an analog thereof, It is selected in the range of 35 to 60% by weight, preferably 45 to 55% by weight. When this content deviates from the above range, it is difficult to form a thin film having a desired porous structure.
[0028]
For the purpose of promoting the photocatalytic activity, the coating liquid may contain a conventionally known photocatalyst promoter, if desired. As this photocatalyst promoter, the same ones as exemplified in the above (1) can be mentioned, and the addition amount thereof is usually the total weight of the photocatalytically active material particles and the photocatalyst promoter from the viewpoint of photocatalytic activity. Based on the range of 1 to 20% by weight.
[0029]
In the present invention, the coating liquid thus obtained is formed on the substrate in the same manner as in (1) above, and the film thickness of the finally formed thin film is 10 to 450 nm, preferably 30 to 200 nm. The sublimation agent is sublimated at the same time as the thin film is solidified by heating and drying at a temperature of usually 120 ° C. or less under normal pressure or a reduced pressure of about 1 hPa. The hole diameter is in the range of 30 to 3000 nm, and the film thickness is in the range of 10 to 450 nm, preferably 30 to 200 nm.LightA catalyst-containing porous thin film is formed.
[0030]
lightIn the catalyst-containing porous thin film, the pores are usually larger in diameter than the thin film, have pores on the thin film surface, and penetrate to the substrate surface. That is, the base material at the bottom of the hole is normally exposed, and the characteristics of the base material can be preferably used.
[0031]
For example, when an article provided with a photocatalyst layer is used for air purification or water purification treatment, the effect is often determined by the ability of the substance to be removed to adsorb to the article. The removal target that exhibits good adsorption ability to the photocatalyst layer provided on the article is effectively removed by photocatalysis, but the removal target inferior to the photocatalyst layer cannot be expected to be removed by photocatalysis. . However, in the present invention, since the base material surface at the bottom of the pores is exposed, the base material is a substance capable of effectively adsorbing the removal target inferior to the photocatalytic layer. Alternatively, the above problem can be easily solved by preloading this substance on the substrate surface.
[0032]
lightThe substrate on which the catalyst-containing porous thin film is formed is not particularly limited, and various substrates such as inorganic substrates such as metal, glass and ceramics, organic substrates such as plastics, organic fibers, and woody materials can be used. Can be mentioned. In the case of an organic base material, if a photocatalyst-containing porous thin film is directly provided on the surface, deterioration of the base material is unavoidable due to photocatalytic action. For example, an inorganic coating layer or the organic matter previously found by the present inventors -It is preferably provided via an inorganic composite gradient film (Japanese Patent Application No. 11-264592).
[0033]
The organic-inorganic composite gradient film is preferably applied to an organic base material such as a plastic substrate. By providing the composite gradient film on the substrate, the surface layer is a metal component in the composite gradient film. Is approximately 100% and gradually decreases in the direction of the base material, and is almost 0% in the vicinity of the base material. That is, in the organic-inorganic composite gradient film, the surface in contact with the organic base material is substantially composed of only the organic polymer compound component, and the other open system surface is composed of only the metal oxide compound component. ing. Therefore, on this composite gradient membrane,lightBy providing the catalyst-containing porous thin film, deterioration of the organic base material can be suppressed.
An organic base material made of cocoon can also be used.
[0034]
The inorganic base material can be used in any of the methods (1) and (2) described above, but in the method (1), the photocatalytically active material precursor is crystallized by heat treatment to produce a photocatalytically active material. In the case of conversion to, since heat treatment is usually performed at a temperature of 400 ° C. or higher, an inorganic base material excellent in heat resistance as a base material, or a polyimide base material excellent in heat resistance even in an organic base material is preferable. Used. In the method (1), when crystallization is performed by means that does not require high-temperature heating, organic base materials made of the following general-purpose plastics can also be used.
[0035]
On the other hand, in the method (2), an organic base material made of a general-purpose plastic such as polypropylene, polyethylene terephthalate or polymethyl methacrylate having a heat resistant temperature of 120 ° C. or higher can also be used.
[0037]
lightThere is no restriction | limiting in particular as an application of the articles | goods which have a catalyst containing porous thin film, All can be used for the use which can apply a photocatalytic reaction. For example, it is useful for deodorization, antifouling, antibacterial, sterilization, decomposition / removal of various substances that are problems in environmental pollution in wastewater and waste gas, and solar cell components. Furthermore, by applying the superhydrophilic function of the photocatalyst, for example, for the prevention of contamination due to soot contained in the exhaust gas of automobiles such as noise barriers on highways and street lights, or films for automobile body coats and side mirrors It can also be used for antifogging and self-cleaning window glass.
[0038]
【Example】
EXAMPLES Next, although an Example demonstrates this invention further in detail, this invention is not limited at all by these examples.
In addition, the film thickness and pore diameter of the thin film obtained in each example were measured according to the following methods.
(1) Film thickness
The thin film is partially peeled off at 10 points with a sharp tip such as tweezers, and the step is measured with a surface shape measuring microscope (VF-7500, manufactured by Keyence Corporation). Thickness.
(2) Hole diameter
A scanning electron microscope (SEM) image was obtained on the surface of the thin film, 20 vacancies were randomly selected from the image, their diameters were measured, and the average value was taken as the vacancy diameter of the thin film.
[0039]
Example 1
A 65 × 15 × 1 mm slide glass substrate was used as the substrate.
Photocatalyst coating agent containing photocatalyst particles and silica-based binder [manufactured by Ishihara Sangyo Co., Ltd., trade name “ST-K03”, solid concentration 90 g / liter] 2 ml and 50 g / liter naphthalene ethanol solution 2 ml, ethanol 6 ml A coating solution was prepared by mixing and stirring.
[0040]
Using this coating solution, a film is formed on a slide glass substrate by a spin coating method (1500 rpm, 12 seconds), sufficiently dried, and then heat-treated at 120 ° C. for 10 minutes. Formed. Table 1 shows the properties of this thin film. Moreover, the SEM photograph when the obtained thin film is seen from the top is shown in FIG.
[0041]
Example 2
In Example 1, except that the amount of the naphthalene ethanol solution having a concentration of 50 g / liter was 1.6 ml and the amount of ethanol was 6.4 ml, the operation was performed in the same manner as in Example 1 to obtain the target photocatalyst-containing porous A functional thin film was formed. Table 1 shows the properties of this thin film.
[0042]
Example 3
In Example 1, the same procedure as in Example 1 was performed except that the amount of the naphthalene ethanol solution having a concentration of 50 g / liter was 2.4 ml and the amount of ethanol was 5.6 ml. A functional thin film was formed. Table 1 shows the properties of this thin film.
[0043]
Example 4
Concentrated hydrochloric acid [Wako Pure Chemical Industries, Ltd.] mixed with 6.4 g of titanium tetraisopropoxide [Wako Pure Chemical Industries, Ltd.] and 60 ml of 2-propanol [Wako Pure Chemical Industries, Ltd.] Made] A mixture of 1.8 g and 6 ml of 2-propanol was slowly added dropwise and stirred as it was for 1 hour. This is designated as Binder A.
Add 2 ml of titanium oxide suspension (trade name “PCT-15T”, solid concentration 135 g / liter, manufactured by Sumitomo Osaka Cement Co., Ltd.) to 11 ml of 2-propanol and stir well. 6 ml of a liter-concentrated naphthalene ethanol solution was added, mixed and stirred to prepare a coating solution.
Using this coating solution, the target photocatalyst-containing porous thin film was formed in the same manner as in Example 1. Table 1 shows the properties of this thin film.
[0044]
Example 5
A 65 × 15 × 1 mm slide glass substrate was used as the substrate.
11 ml of Binder A produced in the same manner as in Example 4 and 13 ml of 2-propanol were mixed and stirred, and 6 ml of a 50 g / liter naphthalene ethanol solution was further added thereto, followed by mixing and stirring to prepare a coating solution.
Using this coating solution, a film is formed on a slide glass substrate by a spin coating method (1500 rpm, 12 seconds), sufficiently dried, heat-treated at 120 ° C. for 10 minutes to form a thin film, and further heated to 500 ° C. The target photocatalyst-containing porous thin film was formed by firing. Table 1 shows the properties of this thin film.
[0045]
Example 6
A 65 × 15 × 1 mm slide glass substrate was used as the substrate.
8 ml of a photocatalyst coating agent containing a photocatalyst particle and a silica-based binder [manufactured by Ishihara Sangyo Co., Ltd., trade name “ST-K03”, solid matter concentration 90 g / liter] and 8 ml of a naphthalene ethanol solution having a concentration of 50 g / liter, A coating solution was prepared by mixing and stirring.
Using this coating solution, a film is formed on a slide glass substrate by a dip coating method (pulling rate = 100 m / min), sufficiently dried, and then heat-treated at 120 ° C. for 10 minutes to obtain a target photocatalyst-containing porous material. A functional thin film was formed. Table 1 shows the properties of this thin film.
[0046]
Example 7
In Example 6, the same procedure as in Example 6 was performed, except that the bar coating method (coating liquid film 6.9 μm) was used instead of the dip coating method, and the target photocatalyst-containing porous thin film was obtained. Formed. Table 1 shows the properties of this thin film.
[0047]
Example 8
In Example 6, the operation was performed in the same manner as in Example 6 except that the pulling rate in the dip coating method was set to 10 m / min, and the target photocatalyst-containing porous thin film was formed. Table 1 shows the properties of this thin film.
[0048]
Example 9
A 65 × 15 × 1 mm slide glass substrate was used as the substrate.
40 ml of a photocatalyst coating agent containing a photocatalyst particle and a silica-based binder [manufactured by Ishihara Sangyo Co., Ltd., trade name “ST-K03”, solid concentration: 90 g / liter] and 40 ml of a naphthalene ethanol solution having a concentration of 50 g / liter, A coating solution was prepared by mixing and stirring.
Using this coating solution, a film is formed on a slide glass substrate by a dip coating method (pulling speed = 20 m / min), sufficiently dried, and then heat-treated at 120 ° C. for 10 minutes to obtain a target photocatalyst-containing porous material. A functional thin film was formed. Table 1 shows the properties of this thin film.
[0049]
Example 10
In Example 9, the operation was performed in the same manner as in Example 9 except that the pulling rate in the dip coating method was set to 150 m / min, and the target photocatalyst-containing porous thin film was formed. Table 1 shows the properties of this thin film. Moreover, the micrograph when the obtained thin film is seen from the top is shown in FIG.
[0050]
Comparative Example 1
In Example 9, a thin film was formed in the same manner as in Example 9 except that the pulling speed in the dip coating method was 300 m / min. Table 1 shows the properties of this thin film.
[0051]
[Table 1]
[0052]
(note)
1) Film formation method:
SC = spin coating method, DC = dip coating method, BC = bar coating method
2) Presence or absence of porous structure
○: It has a porous structure.
X: It does not have a porous structure.
[0053]
In Table 1, the photocatalyst-containing porous thin films obtained in Examples 1 to 10 had a film thickness of 17 to 390 nm, which was in the range of 10 to 450 nm defined in the present invention. The diameter of the holes was also 50 to 2000 nm, and was in the range of 30 to 3000 nm defined in the present invention. Moreover, all had the relationship that the diameter of a void | hole is larger than a film thickness.
On the other hand, the photocatalyst-containing thin film obtained in Comparative Example 1 had a film thickness of 490 nm, exceeding the upper limit of 10 to 450 nm defined in the present invention, and did not have a porous structure.
[0054]
【The invention's effect】
According to the present invention, a photocatalyst-containing porous thin film that can be formed on an organic substrate with a simple operation and poor in heat resistance, has a large surface area where a photocatalytic reaction occurs, and can exhibit an excellent photocatalytic function.Articles withCan be provided.
[Brief description of the drawings]
1 is an SEM photograph of a thin film obtained in Example 1. FIG.
2 is a micrograph of the thin film obtained in Example 10. FIG.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001334791A JP4246943B2 (en) | 2001-10-31 | 2001-10-31 | Method for producing article having photocatalyst-containing porous thin film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001334791A JP4246943B2 (en) | 2001-10-31 | 2001-10-31 | Method for producing article having photocatalyst-containing porous thin film |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003135972A JP2003135972A (en) | 2003-05-13 |
JP4246943B2 true JP4246943B2 (en) | 2009-04-02 |
Family
ID=19149871
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001334791A Expired - Fee Related JP4246943B2 (en) | 2001-10-31 | 2001-10-31 | Method for producing article having photocatalyst-containing porous thin film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4246943B2 (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4545687B2 (en) | 2003-10-08 | 2010-09-15 | 花王株式会社 | Method for producing tertiary amine |
JP3817603B2 (en) * | 2003-10-30 | 2006-09-06 | 敏夫 入江 | Photocatalyst particle fixing coating agent and photocatalyst particle fixing method |
JP2007321263A (en) * | 2006-05-31 | 2007-12-13 | Suminoe Textile Co Ltd | Fibrous cloth carrying photocatalyst and having deodorizing function, and method for producing the same |
JP5111270B2 (en) * | 2008-07-11 | 2013-01-09 | 太陽工業株式会社 | Photocatalyst sheet manufacturing method |
JP5323582B2 (en) * | 2009-05-14 | 2013-10-23 | 国立大学法人北海道大学 | Method for producing photocatalyst body |
FR2950543B1 (en) * | 2009-09-25 | 2011-12-16 | Centre Nat Rech Scient | ULTRA-POROUS PHOTOCATALYTIC MATERIAL, MANUFACTURING METHOD AND USES |
US9587877B2 (en) * | 2013-07-09 | 2017-03-07 | Nitto Denko Corporation | Organic electroluminescent device having a photocatalyst layer |
CN112556967B (en) * | 2020-12-30 | 2022-08-23 | 太原理工大学 | Gas-solid two-phase migration simulation test device for pipe network with complex structure |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3701718A (en) * | 1969-09-29 | 1972-10-31 | Pechiney Saint Gobain | High-porous activated alumina and method |
JP2636158B2 (en) * | 1993-12-09 | 1997-07-30 | 工業技術院長 | Titanium oxide porous thin film photocatalyst and method for producing the same |
JP3729880B2 (en) * | 1994-10-27 | 2005-12-21 | 松下エコシステムズ株式会社 | Method for supporting titanium dioxide particles |
JP3649603B2 (en) * | 1998-11-06 | 2005-05-18 | セントラル硝子株式会社 | Porous photocatalyst-coated glass and coating method thereof |
JP2001300326A (en) * | 1999-11-25 | 2001-10-30 | Kobe Steel Ltd | Coating material for photocatalyst film, method of manufacturing the coating material, and cleaning method and cleaning device using the coating material |
WO2001068786A1 (en) * | 2000-03-13 | 2001-09-20 | Toto Ltd. | Hydrophilic member and method for manufacture thereof |
-
2001
- 2001-10-31 JP JP2001334791A patent/JP4246943B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2003135972A (en) | 2003-05-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2001282711B2 (en) | Titanium-containing materials | |
JP4803180B2 (en) | Titanium oxide photocatalyst, its production method and use | |
JP3592727B2 (en) | Photocatalyst | |
CN1314484C (en) | Preparation method of titanium dioxide thin film photocatalyst supported on the surface of flexible substrate material | |
US6284314B1 (en) | Porous ceramic thin film and method for production thereof | |
US8241706B2 (en) | High surface area ceramic coated fibers | |
AU2001282711A1 (en) | Titanium-containing materials | |
KR102686704B1 (en) | Nitrogen-doped TiO2 nanoparticles and their use in photocatalysis | |
Tokudome et al. | Titanate nanotube thin films via alternate layer deposition | |
JP4246943B2 (en) | Method for producing article having photocatalyst-containing porous thin film | |
EP1182169A1 (en) | Process for producing anatase titania or composite oxide containing anatase titania | |
JP2945926B2 (en) | Photocatalyst particles and method for producing the same | |
JP2000096212A (en) | Photocatalyst film-coated member and method of manufacturing the same | |
JP2001347162A (en) | Photocatalytic material with thin titanium dioxide film | |
JPH10128110A (en) | Photocatalyst composition and its forming agent | |
JP3885248B2 (en) | Photocatalyst composition | |
JP4613021B2 (en) | Photocatalyst-containing composition and photocatalyst-containing layer | |
JP2000015112A (en) | Photocatalyst manufacturing method | |
JP3846673B2 (en) | Silica gel molded body having photocatalytic function and method for producing the same | |
CN1609000A (en) | Prepn process of nano filming titanium dioxide colloid | |
JP2002113369A (en) | Photocatalyst and method of manufacturing the same | |
JP2000254518A (en) | Surface coating catalyst, surface coating agent using the same and photocatalytic member | |
JP2001096154A (en) | Vanadium oxide/titania hybrid photocatalyst and its manufacturing method | |
JPH11290696A (en) | Photocatalytic substrate | |
HU231386B1 (en) | Composition and process for the preparation of bifunctional thin layers with superhydrophobic and photocatalytic effects |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040809 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070312 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070406 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070601 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070802 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070921 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20071210 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080204 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080715 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080814 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090106 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090109 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120116 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120116 Year of fee payment: 3 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120116 Year of fee payment: 3 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120116 Year of fee payment: 3 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120116 Year of fee payment: 3 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120116 Year of fee payment: 3 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120116 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |