JP4245720B2 - High Mn austenitic stainless steel with improved high temperature oxidation characteristics - Google Patents
High Mn austenitic stainless steel with improved high temperature oxidation characteristics Download PDFInfo
- Publication number
- JP4245720B2 JP4245720B2 JP05773399A JP5773399A JP4245720B2 JP 4245720 B2 JP4245720 B2 JP 4245720B2 JP 05773399 A JP05773399 A JP 05773399A JP 5773399 A JP5773399 A JP 5773399A JP 4245720 B2 JP4245720 B2 JP 4245720B2
- Authority
- JP
- Japan
- Prior art keywords
- stainless steel
- mass
- content
- austenitic stainless
- temperature oxidation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Heat Treatment Of Sheet Steel (AREA)
- Heat Treatment Of Steel (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、各種熱機関、例えば発電,廃棄物焼却プラントの高温燃焼雰囲気に曝される部材や、内燃機関の排ガス経路部材に使用される、高温酸化特性および高温強度に優れた高Mnオーステナイト系ステンレス鋼材に関するものである。
【0002】
【従来の技術】
ステンレス鋼は良好な耐食性および耐熱性を有するため、上記の用途に幅広く使用されている。耐熱用途において最も重要な特性は、高温酸化特性および高温強度である。
【0003】
フェライト系ステンレス鋼は、オーステナイト系ステンレス鋼に比べ高温酸化特性に優れ、また熱膨張係数が小さいことから、熱応力が繰り返される用途、例えば各種燃焼器具や自動車排ガス部材に適している。しかし、高温強度がオーステナイト系ステンレス鋼に比べ本質的に低く、構造材としては650℃程度が使用限界温度とされる。
【0004】
オーステナイト系ステンレス鋼は、JIS G 4305に規定される300系(SUS304,SUS316,SUS302B,SUS310S等)や200系(SUS201,SUS202等)のものが耐熱用途に幅広く使用されており、使用温度が700℃を超える構造材などの用途にも適用されている。
【0005】
300系のオーステナイト系ステンレス鋼はMn含有量が2.0質量%以下に規定されていて耐高温酸化性にも比較的優れている。SUS304やSUS316は850〜900℃までの温度で使用可能とされ、SUS302B,SUS310Sでは900℃を超える高温域で使用可能とされる。
【0006】
一方、200系のオーステナイト系ステンレス鋼はNiをMnで置換した高Mnステンレス鋼であり、Nを多く含むため高温強度が高く、また安価であることが特徴である。これらは各種内燃機関の弁用部材や各種プラントの耐熱耐摩耗部材に使用されている。しかしながら、200系のものはMn含有量が高いことに起因して300系のものより耐高温酸化性に劣り、SUS201やSUS202の使用限界温度は800〜850℃付近までとされている。近年開発されたCr含有量の高い高Mn系ステンレス鋼では耐高温酸化性も多少向上しているが、それでも使用限界温度はSUS304と同程度で高々850〜900℃までとされる。
【0007】
【発明が解決しようとする課題】
オーステナイト系ステンレス鋼の耐高温酸化性を改善する手段に関し、Mn含有量が2.0質量%以下の300系については従来から多くの検討がなされており、例えば特公昭54−12890号公報に開示されているように、Cr,Si,Al,REM(希土類元素),Ca等の元素が有効に作用することが知られている。しかし、200系の高Mnオーステナイト系ステンレス鋼の場合、高温酸化の厳しい用途には適さないとされており、その耐高温酸化性の改善を検討した例は非常に少ない。その中で、特開昭57−108250号公報には、95%窒素−5%酸素雰囲気中1200℃×2時間までの加熱条件においてCaおよびREMの添加が有効であることが示されている。しかしこれは、鋼材製造過程のスラブ加熱を想定したものであり、耐熱部材として大気中で高温に曝される場合の耐高温酸化性改善を意図したものではない。高Mnオーステナイト系ステンレス鋼において、900℃以上の高温大気中における耐高温酸化性を向上させる手法は確立されておらず、SUS302BやSUS310Sのように900℃以上の高温域で使用できる高Mnオーステナイト系ステンレス鋼は未だ出現していないのが現状である。
【0008】
本発明は、このような現状に対応すべく、900℃以上の高温域においても優れた耐高温酸化性を呈する高Mnオーステナイト系ステンレス鋼材を提供することを目的とする。
【0009】
【課題を解決するための手段】
上記目的を達成するために、請求項1の発明は、質量%で、C:0.1%以下,Si:2.0%超え〜4.5%,Mn:5.0%超え〜7.0%,Ni:3.0〜5.0%,Cr:15.0〜25.0%,N:0.10〜0.25%,Al:0〜2.5%(無添加を含む),REM:0〜0.1%(無添加を含む)を含有し、残部がFeおよび不可避的不純物からなり、 1000 ℃× 100 時間の大気中連続加熱後の酸化増量が 0.1kg/m 2 未満, 1100 ℃× 100 時間の大気中連続加熱後の酸化増量が 0.2kg/m 2 以下,かつ 900 ℃における 0.2 %耐力が 90N/mm 2 以上である高Mnオーステナイト系ステンレス鋼材である。ここで、REMはCe,La,Y等に代表される希土類元素であり、希土類元素の合計含有量を規定するものである。
【0010】
請求項2の発明は、請求項1の発明において、Al含有量が0.5〜2.5質量%である点を規定したものである。
【0012】
上記の酸化増量は、JIS Z 2281に準拠した高温酸化試験を実施して求める。加熱→空冷の過程で酸化スケールが剥離した場合は剥離した酸化スケールの質量も含めて酸化増量を算出する。900℃における0.2%耐力は、JIS G 0567に準拠した高温引張試験を行って求める。
【0013】
請求項3の発明は、請求項1または2の発明において、1100℃×100時間の大気中連続加熱後の酸化増量が0.1kg/m2未満である点を規定したものである。
【0014】
【発明の実施の形態】
発明者らは種々検討の結果、Mnを多量に含有するオーステナイト系ステンレス鋼において、Siを特定量以上含有させたとき、900℃以上の高温域での耐高温酸化性が顕著に向上することを見出した。また、微量のAlやREMをSiと複合で含有させると、さらに良好な耐高温酸化性を示すことも明らかになった。本発明はこれらの知見に基づいてなされたものである。
【0015】
高Mnオーステナイト系ステンレス鋼材の耐高温酸化性に及ぼすSi含有量の影響を調査した一例として、図1に、Fe−17Cr−6Mn−4Ni−0.2Nを基本成分とする高Mnオーステナイト系ステンレス鋼においてSi含有量を変化させたときの、耐高温酸化性に及ぼすSi含有量の影響を示す。図1には、1000℃×100時間の大気中連続加熱後の酸化増量と、1100℃×100時間の大気中連続加熱後の酸化増量のデータを示してある。また、比較のため、SUS304およびSUS310Sについての1100℃×100時間加熱による酸化増量もプロットしてある。
【0016】
図1から、高Mnオーステナイト系ステンレス鋼にSiを添加していくと、Si含有量の増加とともに酸化増量は減少し、Si含有量が2.0質量%を超えたときに酸化増量は極めて低い値に安定することがわかる。加熱温度が1000℃の場合と1100℃の場合とを比較すると、Si含有量が2質量%以下の範囲では両者の酸化増量に大きな差が見られる。これは、加熱温度が高いほど酸化が激しくなるという、材料の一般的な性質を示しているものといえる。一方、Si含有量が2.0質量%を超えると、1000℃,1100℃いずれの場合でも酸化増量は非常に少なくなる。また、スケール剥離量も極めて少なくなる。本発明ではこの新たな知見に基づき、高Mnオーステナイト系ステンレス鋼材の耐高温酸化性をSUS310Sと同程度にまで向上させることを可能にした。以下、本発明を特定する事項について説明する。
【0017】
Cは、一般にクリープ特性を向上させる元素として有効であるが、0.10質量%を超えると炭化物の析出による脆化や溶接施工時のビード割れを誘発しやすくなる。したがって、C含有量は0.1質量%以下とした。
【0018】
Siは、前述のように2.0質量%を超える含有量とすることで高Mnオーステナイト系ステンレス鋼材の高温酸化特性を著しく改善する他、高温腐食特性を向上させるためにも有効に作用する。しかし、Siを4.5質量%を超えて多量に含有させると、σ脆化感受性が高くなり、また、溶接性および熱間加工性の低下も懸念される。このため、Si含有量は2.0質量%を超え4.5質量%以下の範囲に規定した。好ましいSi含有量の範囲は2.0質量%を超え4.0質量%以下である。なお、特に優れた耐高温酸化性を安定して得るためにはSiを3.5質量%以上含有させるのがよい。 したがって、高温酸化特性を特に重視する場合は、Si含有量を3.5〜4.5質量%にするのがよい。より一層好ましいSi含有量の範囲は3.5〜4.0質量%である
。
【0019】
Mnは、本成分系においてはオーステナイト生成元素であるNiの代替として添加される。Mn含有量が少ないとNiまたはNを多量に添加する必要があるが、Niの多量添加は製鋼原価の上昇を、またNの多量添加は鋼の硬質化を招く。一方、Mn含有量が多くなりすぎると、Siを2.0質量%を超えて添加しても十分な耐高温酸化性が得られなくなる。したがって、Mn含有量は5.0質量%を超え7.0質量%以下の範囲に規定した。
【0020】
Niは、オーステナイト系ステンレス鋼に含まれる基本元素の1つである。本成分系ではNiの替わりにMnおよびNを含有させてオーステナイト組織とするため、300系のオーステナイト系ステンレス鋼ほどの添加は必要としない。製造コストの低減とオーステナイト単相組織を得ることを目的として、Ni含有量は3.0〜5.0質量%とした。
【0021】
Crは、ステンレス鋼材の耐高温酸化性を確保するのに不可欠な元素であるが、15.0質量%未満では十分な特性が得られない。一方、25.0質量%を超えるとδフェライトが生成しやすくなり、σ脆化の促進を招く。したがって、Cr含有量は15.0〜25.0質量%とした。
【0022】
Nは、オーステナイト系ステンレス鋼材の高温強度を上昇させる元素であるが、本成分系ではNiの代替元素としての役割もある。0.10質量%未満では強度上昇の効果が小さいこと、0.25質量%を超えると加工性が劣化することから、N含有量は0.10〜0.25質量%とした。
【0023】
Alは、鋼の溶製時に残存酸素を除去する脱酸剤として作用するとともに、耐高温酸化性の改善に有効に作用する。これらの作用は0.5質量%以上のAl含有により、一層効果的に発揮される。ただし、2.5質量%を超えると加工性および溶接性の劣化を招くようになる。したがって、Alを添加する場合は、0.5〜2.5質量%の含有量とすることが望ましい。
【0024】
REM(希土類元素)は、Cr,Siなどからなる酸化皮膜の保護性を著しく改善する。しかし、多量に添加すると熱間加工性を害する。このため、REMを添加する場合は、1.0質量%以下の含有量とすることが望ましい。
【0025】
【実施例】
表1に示す鋼を真空溶解炉にて30kg溶製し、熱延→焼鈍→冷延→焼鈍の工程で板厚2.0mmの供試材を得た。各供試材について、高温引張試験,高温酸化試験および常温引張試験を実施した。
高温引張試験では、JIS G 0567に準拠して900℃における0.2%耐力を求めた。高温酸化試験では、JIS Z 2281に準拠して1000℃×100時間の大気中連続加熱後の酸化増量および1100℃×100時間の大気中連続加熱後の酸化増量を求めた。常温引張試験では、JIS Z 2241に準拠した引張試験を25℃で行い、伸びを求めて加工性の指標とした。
結果を表2に示す。
【0026】
【表1】
【0027】
【表2】
【0028】
表2の結果にみられるように、発明例である鋼No.01〜07では、大気中連続加熱後の酸化増量が、1000℃×100時間の加熱で0.1kg/m2未満、かつ1100℃×100時間の加熱で0.2kg/m2以下であり、良好な耐高温酸化性を呈する。特にSi含有量が3.5質量%以上であるNo.02,04、AlまたはREMを添加したNo.06,07は、いずれも1100℃×100時間の加熱後の酸化増量が0.1kg/m2未満と、非常に優れた耐高温酸化性を示す。また、発明例のものはいずれも900℃の0.2%耐力が90N/mm2以上であり、この値はSUS304よりも高く、SUS201と同レベルの優れたものである。常温での伸びも50%以上であり、比較的良好な加工性を有している。
【0029】
一方、比較例のNo.08(SUS201相当)およびNo.09は、Si含有量が低いため十分な耐高温酸化性を示さない。No.10はSi含有量が多いため耐高温酸化性には優れるものの、伸び(加工性)は劣っている。No.11はSUS304相当鋼であり、高温酸化特性はSUS201よりも良好であるが、上記本発明例の鋼材には及ばない。またN含有量が少ないため高温強度は本発明例の鋼材より大きく劣る。No.12はSUS202系鋼にSiを多量に添加したものであるが、Mn含有量が本発明規定範囲から外れて多いため、高温酸化特性の改善は十分でない。
【0030】
【発明の効果】
本発明により、高Mnオーステナイト系ステンレス鋼材の耐高温酸化性を大幅に向上させることができ、900℃以上の高温域で使用可能な高Mnオーステナイト系ステンレス鋼材が得られた。
【図面の簡単な説明】
【図1】 Fe−17Cr−6Mn−4Ni−0.2N系高Mnオーステナイト系ステンレス鋼の1000℃または1100℃×100時間大気加熱後の酸化増量に及ぼすSi含有量の影響を表したグラフである。[0001]
BACKGROUND OF THE INVENTION
The present invention is a high-Mn austenitic system excellent in high-temperature oxidation characteristics and high-temperature strength used for members exposed to high-temperature combustion atmospheres of various heat engines such as power generation and waste incineration plants and exhaust gas passage members of internal combustion engines. It relates to stainless steel materials.
[0002]
[Prior art]
Since stainless steel has good corrosion resistance and heat resistance, it is widely used in the above applications. The most important properties in heat resistant applications are high temperature oxidation properties and high temperature strength.
[0003]
Ferritic stainless steel is superior to austenitic stainless steel in terms of high-temperature oxidation characteristics and has a low thermal expansion coefficient. Therefore, it is suitable for applications in which thermal stress is repeated, such as various combustion appliances and automobile exhaust gas members. However, the high temperature strength is essentially lower than that of austenitic stainless steel, and the use limit temperature is about 650 ° C. as a structural material.
[0004]
As for austenitic stainless steel, 300 series (SUS304, SUS316, SUS302B, SUS310S, etc.) and 200 series (SUS201, SUS202, etc.) stipulated in JIS G 4305 are widely used for heat-resistant applications. It is also applied to applications such as structural materials exceeding ℃.
[0005]
300 series austenitic stainless steel has a Mn content of 2.0% by mass or less and is relatively excellent in high temperature oxidation resistance. SUS304 and SUS316 can be used at temperatures from 850 to 900 ° C, and SUS302B and SUS310S can be used at high temperatures exceeding 900 ° C.
[0006]
On the other hand, the 200 series austenitic stainless steel is a high Mn stainless steel in which Ni is replaced with Mn, and is characterized by high N strength and high cost because it contains a lot of N. These are used for valve members of various internal combustion engines and heat and wear resistant members of various plants. However, the 200 series is inferior in high-temperature oxidation resistance than the 300 series due to its high Mn content, and the use limit temperature of SUS201 and SUS202 is up to around 800-850 ° C. High-Mn stainless steels with high Cr content developed in recent years have slightly improved high-temperature oxidation resistance. However, the service limit temperature is still the same as SUS304 and is at most 850-900 ° C.
[0007]
[Problems to be solved by the invention]
Regarding the means for improving the high temperature oxidation resistance of austenitic stainless steel, many studies have been made on the 300 series having an Mn content of 2.0% by mass or less, such as disclosed in Japanese Patent Publication No. 54-12890. As described above, it is known that elements such as Cr, Si, Al, REM (rare earth element), and Ca act effectively. However, in the case of the 200 series high Mn austenitic stainless steel, it is said that it is not suitable for applications where the high temperature oxidation is severe, and there are very few examples of studying the improvement of the high temperature oxidation resistance. Among them, JP-A-57-108250 shows that addition of Ca and REM is effective under heating conditions up to 1200 ° C. × 2 hours in a 95% nitrogen-5% oxygen atmosphere. However, this assumes slab heating in the steel material manufacturing process, and is not intended to improve high-temperature oxidation resistance when exposed to high temperatures in the atmosphere as a heat-resistant member. For high-Mn austenitic stainless steels, no method has been established to improve high-temperature oxidation resistance in high-temperature atmospheres of 900 ° C or higher. Stainless steel has not yet appeared.
[0008]
An object of the present invention is to provide a high-Mn austenitic stainless steel material exhibiting excellent high-temperature oxidation resistance even in a high temperature range of 900 ° C. or higher in order to cope with such a current situation.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, the invention of claim 1 is, in mass%, C: 0.1% or less, Si: more than 2.0% to 4.5%, Mn: more than 5.0% to 7.0%, Ni: 3.0 to 5.0%, Contains Cr: 15.0 to 25.0%, N: 0.10 to 0.25%, Al: 0 to 2.5% (including no additive), REM: 0 to 0.1% (including no additive), the balance being Fe and inevitable impurities Tona Ri, 1000 ° C. × 100 hours atmospheric oxidation weight gain of less than 0.1 kg / m 2 after continuous heating, oxidation weight gain after atmospheric continuous heating of 1100 ° C. × 100 hours 0.2 kg / m 2 or less, and 900 It is a high Mn austenitic stainless steel material having a 0.2 % proof stress at 90 ° C. of 90 N / mm 2 or more . Here, REM is a rare earth element typified by Ce, La, Y, etc., and defines the total content of rare earth elements.
[0010]
Invention of
[0012]
The above increase in oxidation is obtained by conducting a high temperature oxidation test in accordance with JIS Z 2281. When the oxide scale is peeled off in the process of heating → air cooling, the amount of increase in oxidation is calculated including the mass of the peeled oxide scale. The 0.2% yield strength at 900 ° C. is obtained by conducting a high-temperature tensile test in accordance with JIS G 0567.
[0013]
The invention of
[0014]
DETAILED DESCRIPTION OF THE INVENTION
As a result of various studies, the inventors have found that, in an austenitic stainless steel containing a large amount of Mn, when Si is contained in a specific amount or more, high-temperature oxidation resistance in a high temperature region of 900 ° C. or more is significantly improved. I found it. It was also found that when a small amount of Al or REM is contained in combination with Si, it exhibits better high-temperature oxidation resistance. The present invention has been made based on these findings.
[0015]
As an example of investigating the effect of Si content on the high-temperature oxidation resistance of high-Mn austenitic stainless steel materials, Fig. 1 shows a high-Mn austenitic stainless steel based on Fe-17Cr-6Mn-4Ni-0.2N. The influence of the Si content on the high-temperature oxidation resistance when the Si content is changed is shown. FIG. 1 shows data on the increase in oxidation after continuous heating in the air at 1000 ° C. for 100 hours and the increase in oxidation after continuous heating in the air at 1100 ° C. for 100 hours. For comparison, the increase in oxidation by heating at 1100 ° C. × 100 hours for SUS304 and SUS310S is also plotted.
[0016]
From Fig. 1, when Si is added to high-Mn austenitic stainless steel, the increase in oxidation decreases with increasing Si content, and the increase in oxidation becomes extremely low when the Si content exceeds 2.0 mass%. It turns out to be stable. Comparing the case where the heating temperature is 1000 ° C. and the case where the heating temperature is 1100 ° C., there is a large difference in the amount of increase in oxidation in the range where the Si content is 2% by mass or less. It can be said that this shows the general property of the material that the higher the heating temperature, the more intense the oxidation. On the other hand, when the Si content exceeds 2.0% by mass, the increase in oxidation is very small in both cases of 1000 ° C. and 1100 ° C. Also, the amount of scale peeling is extremely small. Based on this new knowledge, the present invention makes it possible to improve the high-temperature oxidation resistance of high-Mn austenitic stainless steel materials to the same level as SUS310S. Hereinafter, the matter which specifies this invention is demonstrated.
[0017]
C is generally effective as an element for improving the creep characteristics, but when it exceeds 0.10% by mass, it tends to induce embrittlement due to precipitation of carbides and bead cracking during welding. Therefore, the C content is set to 0.1% by mass or less.
[0018]
Si has a content exceeding 2.0% by mass as described above, and not only remarkably improves the high-temperature oxidation characteristics of the high Mn austenitic stainless steel material, but also acts effectively to improve the high-temperature corrosion characteristics. However, if Si is contained in a large amount exceeding 4.5 mass%, the σ embrittlement susceptibility becomes high, and there is a concern that the weldability and the hot workability are lowered. For this reason, Si content was prescribed | regulated in the range exceeding 2.0 mass% and 4.5 mass% or less. The range of preferable Si content is more than 2.0 mass% and 4.0 mass% or less. In order to stably obtain particularly excellent high-temperature oxidation resistance, it is preferable to contain 3.5% by mass or more of Si. Therefore, when high temperature oxidation characteristics are particularly important, the Si content is preferably 3.5 to 4.5% by mass. The more preferable range of the Si content is 3.5 to 4.0% by mass.
[0019]
In this component system, Mn is added as a substitute for Ni, which is an austenite generating element. If the Mn content is low, it is necessary to add a large amount of Ni or N. However, a large amount of Ni increases the cost of steelmaking, and a large amount of N causes hardening of the steel. On the other hand, if the Mn content is too high, sufficient high-temperature oxidation resistance cannot be obtained even if Si is added in excess of 2.0 mass%. Therefore, the Mn content is specified in the range of more than 5.0% by mass and 7.0% by mass or less.
[0020]
Ni is one of the basic elements contained in austenitic stainless steel. In this component system, Mn and N are contained instead of Ni to form an austenitic structure, so that the addition of 300 series austenitic stainless steel is not necessary. For the purpose of reducing the manufacturing cost and obtaining the austenite single phase structure, the Ni content was set to 3.0 to 5.0 mass%.
[0021]
Cr is an indispensable element for ensuring the high-temperature oxidation resistance of stainless steel, but if it is less than 15.0% by mass, sufficient characteristics cannot be obtained. On the other hand, if it exceeds 25.0% by mass, δ ferrite tends to be formed, and σ embrittlement is promoted. Therefore, the Cr content is set to 15.0 to 25.0 mass%.
[0022]
N is an element that increases the high-temperature strength of the austenitic stainless steel material. In this component system, N also serves as an alternative element for Ni. If the content is less than 0.10% by mass, the effect of increasing the strength is small, and if it exceeds 0.25% by mass, the workability deteriorates. Therefore, the N content is set to 0.10 to 0.25% by mass.
[0023]
Al acts as a deoxidizer that removes residual oxygen during the melting of steel, and effectively acts to improve high-temperature oxidation resistance. These actions are more effectively exhibited by containing 0.5% by mass or more of Al. However, when it exceeds 2.5 mass%, workability and weldability are deteriorated. Therefore, when adding Al, it is desirable to make it content of 0.5-2.5 mass%.
[0024]
REM (rare earth element) significantly improves the protective properties of oxide films made of Cr, Si, etc. However, when added in a large amount, hot workability is impaired. For this reason, when adding REM, it is desirable to set it as 1.0 mass% or less content.
[0025]
【Example】
30 kg of the steel shown in Table 1 was melted in a vacuum melting furnace, and a specimen having a thickness of 2.0 mm was obtained in the steps of hot rolling → annealing → cold rolling → annealing. Each test material was subjected to a high temperature tensile test, a high temperature oxidation test, and a normal temperature tensile test.
In the high temperature tensile test, a 0.2% proof stress at 900 ° C. was determined in accordance with JIS G 0567. In the high-temperature oxidation test, the increase in oxidation after continuous heating in the air at 1000 ° C. for 100 hours and the increase in oxidation after continuous heating in the air at 1100 ° C. for 100 hours were determined in accordance with JIS Z 2281. In the room temperature tensile test, a tensile test in accordance with JIS Z 2241 was performed at 25 ° C., and elongation was obtained as an index of workability.
The results are shown in Table 2.
[0026]
[Table 1]
[0027]
[Table 2]
[0028]
As can be seen from the results in Table 2, in steel Nos. 01 to 07 which are inventive examples, the increase in oxidation after continuous heating in the air is less than 0.1 kg / m 2 when heated at 1000 ° C. for 100 hours and 1100 ° C. × 0.2 kg / m 2 or less when heated for 100 hours, exhibiting good high-temperature oxidation resistance. In particular, No. 02, 04 with Si content of 3.5% by mass or more, No. 06, 07 with addition of Al or REM, both increase in oxidation after heating at 1100 ° C x 100 hours is less than 0.1 kg / m 2 And very high temperature oxidation resistance. In each of the inventive examples, the 0.2% proof stress at 900 ° C. is 90 N / mm 2 or more, which is higher than that of SUS304 and is superior to that of SUS201. Elongation at room temperature is 50% or more, and it has relatively good workability.
[0029]
On the other hand, No. 08 (equivalent to SUS201) and No. 09 of Comparative Examples do not show sufficient high-temperature oxidation resistance due to low Si content. Although No. 10 has high Si content, it is excellent in high-temperature oxidation resistance, but its elongation (workability) is inferior. No. 11 is SUS304 equivalent steel, and its high-temperature oxidation characteristics are better than SUS201, but it does not reach the steel material of the above-mentioned example of the present invention. Further, since the N content is small, the high temperature strength is greatly inferior to the steel material of the present invention. No. 12 is obtained by adding a large amount of Si to SUS202 series steel. However, since the Mn content is too much outside the scope of the present invention, the high temperature oxidation characteristics are not sufficiently improved.
[0030]
【The invention's effect】
According to the present invention, the high-temperature oxidation resistance of the high-Mn austenitic stainless steel material can be greatly improved, and a high-Mn austenitic stainless steel material that can be used in a high-temperature region of 900 ° C. or higher can be obtained.
[Brief description of the drawings]
FIG. 1 is a graph showing the effect of Si content on the increase in oxidation of Fe-17Cr-6Mn-4Ni-0.2N high Mn austenitic stainless steel after heating at 1000 ° C. or 1100 ° C. for 100 hours.
Claims (3)
C:0.1%以下,
Si:2.0%超え〜4.5%,
Mn:5.0%超え〜7.0%,
Ni:3.0〜5.0%,
Cr:15.0〜25.0%,
N:0.10〜0.25%,
Al:0〜2.5%(無添加を含む),
REM:0〜0.1%(無添加を含む)を含有し、残部がFeおよび不可避的不純物からなり、
1000 ℃× 100 時間の大気中連続加熱後の酸化増量が 0.1kg/m 2 未満, 1100 ℃× 100 時間の大気中連続加熱後の酸化増量が 0.2kg/m 2 以下,かつ 900 ℃における 0.2 %耐力が 90N/mm 2 以上である高Mnオーステナイト系ステンレス鋼材。% By mass
C: 0.1% or less,
Si: 2.0% to 4.5%,
Mn: over 5.0% to 7.0%,
Ni: 3.0-5.0%,
Cr: 15.0-25.0%,
N: 0.10 to 0.25%,
Al: 0 to 2.5% (including no additive),
REM: containing 0 to 0.1% (including no addition), Ri Do from the balance Fe and unavoidable impurities,
The increase in oxidation after continuous heating in the air at 1000 ° C for 100 hours is less than 0.1 kg / m 2, the increase in oxidation after continuous heating in the atmosphere at 1100 ° C for 100 hours is 0.2 kg / m 2 or less, and 0.2 % at 900 ° C High Mn austenitic stainless steel with a proof stress of 90 N / mm 2 or more .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP05773399A JP4245720B2 (en) | 1999-03-04 | 1999-03-04 | High Mn austenitic stainless steel with improved high temperature oxidation characteristics |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP05773399A JP4245720B2 (en) | 1999-03-04 | 1999-03-04 | High Mn austenitic stainless steel with improved high temperature oxidation characteristics |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000256797A JP2000256797A (en) | 2000-09-19 |
JP4245720B2 true JP4245720B2 (en) | 2009-04-02 |
Family
ID=13064133
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP05773399A Expired - Fee Related JP4245720B2 (en) | 1999-03-04 | 1999-03-04 | High Mn austenitic stainless steel with improved high temperature oxidation characteristics |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4245720B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7574008B2 (en) | 2004-09-17 | 2009-08-11 | Microsoft Corporation | Method and apparatus for multi-sensory speech enhancement |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4606113B2 (en) * | 2004-10-15 | 2011-01-05 | 日新製鋼株式会社 | Austenitic stainless steel with high proportional limit stress and manufacturing method |
DE102005024029B3 (en) * | 2005-05-23 | 2007-01-04 | Technische Universität Bergakademie Freiberg | Austenitic lightweight steel and its use |
-
1999
- 1999-03-04 JP JP05773399A patent/JP4245720B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7574008B2 (en) | 2004-09-17 | 2009-08-11 | Microsoft Corporation | Method and apparatus for multi-sensory speech enhancement |
Also Published As
Publication number | Publication date |
---|---|
JP2000256797A (en) | 2000-09-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3903855B2 (en) | Ferritic stainless steel that is soft at room temperature and excellent in high-temperature oxidation resistance | |
JPH03274245A (en) | Ferritic heat-resistant stainless steel excellent in low temperature toughness, weldability and heat resistance | |
JP5012243B2 (en) | Ferritic stainless steel with excellent high-temperature strength, heat resistance and workability | |
JP5540637B2 (en) | Ferritic stainless steel with excellent heat resistance | |
JPWO2002063056A1 (en) | Steel and air preheater with excellent sulfuric acid dew point corrosion resistance | |
JP5125600B2 (en) | Ferritic stainless steel with excellent high-temperature strength, steam oxidation resistance and workability | |
JP4427207B2 (en) | Steel excellent in cold workability, high temperature characteristics, and low temperature corrosion resistance, and its manufacturing method | |
JP2803538B2 (en) | Ferritic stainless steel for automotive exhaust manifold | |
JP5239089B2 (en) | Steel with excellent corrosion resistance against sulfuric acid and method for producing the same | |
JP3915717B2 (en) | Thin stainless steel sheet | |
JP4245720B2 (en) | High Mn austenitic stainless steel with improved high temperature oxidation characteristics | |
JP2005146345A (en) | Ferritic stainless steel with excellent oxidation resistance | |
JP4078881B2 (en) | Austenitic stainless steel sheet for heat exchanger | |
JP3410139B2 (en) | Al-containing oxidation-resistant austenitic stainless steel | |
JPH09324246A (en) | Austenitic stainless steel for heat exchangers with excellent high-temperature corrosion resistance | |
JP4154932B2 (en) | Ferritic stainless steel with excellent high-temperature strength, high-temperature oxidation resistance, and high-temperature salt damage resistance | |
JP2896077B2 (en) | Ferrite stainless steel with excellent high-temperature oxidation resistance and scale adhesion | |
JP3926492B2 (en) | Ferritic stainless steel sheet with oxide scale that has excellent high-temperature strength during intermittent heating and is difficult to peel off during intermittent heating | |
JP2019173117A (en) | Ferritic stainless steel sheet excellent in high temperature salt damage resistance and automobile exhaust system component | |
JP4259151B2 (en) | Heat resistant material | |
US3784373A (en) | Austenitic stainless steel | |
JP2006016669A (en) | Austenitic stainless steel for inner side of dual structure exhaust manifold | |
JP3381457B2 (en) | Austenitic stainless steel for high temperature with excellent weldability | |
JPH07116556B2 (en) | Austenitic heat resistant steel for processing | |
JPH11256287A (en) | Ferritic stainless steel excellent in high temperature oxidation resistance and scale adhesion |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060302 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080326 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20081007 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20081205 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090106 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090107 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120116 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130116 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130116 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140116 Year of fee payment: 5 |
|
LAPS | Cancellation because of no payment of annual fees |