JP4244124B2 - Non-resonant two-photon absorption material, non-resonant two-photon light-emitting material, non-resonant two-photon absorption induction method, and non-resonant two-photon emission generation method - Google Patents
Non-resonant two-photon absorption material, non-resonant two-photon light-emitting material, non-resonant two-photon absorption induction method, and non-resonant two-photon emission generation method Download PDFInfo
- Publication number
- JP4244124B2 JP4244124B2 JP2002251398A JP2002251398A JP4244124B2 JP 4244124 B2 JP4244124 B2 JP 4244124B2 JP 2002251398 A JP2002251398 A JP 2002251398A JP 2002251398 A JP2002251398 A JP 2002251398A JP 4244124 B2 JP4244124 B2 JP 4244124B2
- Authority
- JP
- Japan
- Prior art keywords
- resonant
- photon
- group
- photon absorption
- carbon atoms
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、非線形光学効果を発現する材料に関し、特に非共鳴2光子吸収断面積が大きく、非共鳴2光子吸収により生成した励起状態からの発光効率の大きな有機非線形光学材料に関するものである。
【0002】
【従来の技術】
一般に、非線形光学効果とは、印加する光電場の2乗、3乗あるいはそれ以上に比例する非線型な光学応答のことであり、印加する光電場の2乗に比例する2次の非線形光学効果としては、第二高調波発生(SHG),光整流、フォトリフラクティブ効果、ポッケルス効果、パラメトリック増幅、パラメトリック発振、光和周波混合、光差周波混合などが知られている。また印加する光電場の3乗に比例する3次の非線形光学効果としては第三高調波発生(THG)、光カー効果、自己誘起屈折率変化、2光子吸収などが挙げられる。
【0003】
これらの非線形光学効果を示す非線形光学材料としてはこれまでに多数の無機材料が見い出されてきた。ところが無機物においては、所望の非線形光学特性や、素子製造のために必要な諸物性を最適化するためのいわゆる分子設計が困難であることから実用するのは非常に困難であった。一方、有機化合物は分子設計により所望の非線形光学特性の最適化が可能であるのみならず、その他の諸物性のコントロールも可能であるため、実用の可能性が高く、有望な非線形光学材料として注目を集めている。
【0004】
近年、有機化合物の非線形光学特性の中でも3次の非線形光学効果が注目されており、その中でも特に、非共鳴2光子吸収および非共鳴2光子発光が注目を集めている。2光子吸収とは、化合物が2つの光子を同時に吸収して励起される現象であり、化合物の(線形)吸収帯が存在しないエネルギー領域で2光子の吸収が起こる場合を非共鳴2光子吸収という。また、非共鳴2光子発光とは、非共鳴2光子吸収により生成した励起分子が、その励起状態の輻射失活過程において発する発光をいう。なお、以下の記述において特に明記しなくても2光子吸収および2光子発光とは非共鳴2光子吸収および非共鳴2光子発光を指す。
ところで、非共鳴2光子吸収の効率は印加する光電場の2乗に比例する(2光子吸収の2乗特性)。このため、2次元平面にレーザーを照射した場合においては、レーザースポットの中心部の電界強度の高い位置のみで2光子の吸収が起こり、周辺部の電界強度の弱い部分では2光子の吸収は全く起こらない。一方、3次元空間においては、レーザー光をレンズで集光した焦点の電界強度の大きな領域でのみ2光子吸収が起こり、焦点から外れた領域では電界強度が弱いために2光子吸収が全く起こらない。印加された光電場の強度に比例してすべての位置で励起が起こる線形吸収に比べて、非共鳴2光子吸収では、この2乗特性に由来して空間内部の1点のみで励起が起こるため、空間分解能が著しく向上する。通常、非共鳴2光子吸収を誘起する場合には、化合物の(線形)吸収帯が存在する波長領域よりも長波でかつ吸収の存在しない、近赤外領域の短パルスレーザーを用いることが多い。化合物の(線形)吸収帯が存在しない、いわゆる透明領域の近赤外光を用いるため、励起光が吸収や散乱を受けずに試料内部まで到達でき、非共鳴2光子吸収の2乗特性のために試料内部の1点を極めて高い空間分解能で励起できるため、非共鳴2光子吸収および非共鳴2光子発光は生体組織の2光子造影や2光子フォトダイナミックセラピー(PDT)などの応用面で期待されている。また、非共鳴2光子吸収、2光子発光を用いると、入射した光子のエネルギーよりも高いエネルギーの光子を取り出せるため、波長変換デバイスという観点からアップコンバージョンレージングに関する研究も報告されている。
【0005】
効率良く2光子発光やアップコンバージョンレージングを示す有機化合物として、いわゆるスチルバゾリウム誘導体が知られている(非特許文献1、非特許文献2、非特許文献3、非特許文献4、非特許文献5、非特許文献6、及び非特許文献7参照)。また、ある特定の構造を有するスチルバゾリウム化合物の2光子発光を用いた種々の応用例は特許文献1に記載されている。
【0006】
【非特許文献1】
He,G.S.et al.,Appl.Phys.Lett.1995,67,3703
【非特許文献2】
He,G.S.et al.,Appl.Phys.Lett.1995,67,2433
【非特許文献3】
He,G.S.et al.,Appl.Phys.Lett.1996,68,3549
【非特許文献4】
He,G.S.et al.,J.Appl.Phys.1997,81,2529
【非特許文献5】
Prasad,P.N. et al.,Nonlinear Optics1999,21,39
【非特許文献6】
Ren,Y.et al.,J.Mater.Chem.2000,10,2025
【非特許文献7】
Zhou、G.et al.,Jpn.J.Appl.Phys.2001,40,1250
【特許文献1】
国際公開(WO)97/09043号パンフレット
【0007】
非共鳴2光子発光を利用して生体組織の造影、フォトダイナミックセラピー、アップコンバージョンレージング等の応用を行う場合、用いる有機化合物の2光子吸収効率(2光子吸収断面積)および2光子吸収により生じた励起状態からの発光効率は高いことが必要である。同一の有機化合物を用いて2倍の2光子発光強度を得るためには、2光子吸収の2乗特性のために4倍の励起光強度が必要になる。ところが、過度に強いレーザー光を照射すると、例えば生体組織の光損傷を招いたり、また2光子発光色素そのものが光劣化を起こしてしまう可能性が高くなるため望ましくない。従って、弱い励起光強度で強い2光子発光を得るためには、効率よく2光子吸収を行い2光子発光を発する有機化合物の開発が必要である。スチルバゾリウム誘導体の2光子発光効率は、実際的な使用に対しては未だ充分な性能を満たしていない。
【0008】
【発明が解決しようとする課題】
上に述べたように、非共鳴2光子吸収および非共鳴2光子発光を利用すると、極めて高い空間分解能を特徴とする種々の応用が可能であるが、現時点で利用可能な2光子発光化合物では、2光子吸収能が低く、また2光子発光効率も悪いため、2光子吸収および2光子発光を誘起する励起光源としては非常に高出力のレーザーが必要である。
【0009】
本発明の目的は、効率良く2光子を吸収する有機材料、すなわち2光子吸収断面積の大きな有機材料を提供すること、および発光強度の大きな2光子発光を示す有機材料を提供することである。
【0010】
【課題を解決するための手段】
本発明の発明者らの鋭意検討の結果、本発明の上記目的は、下記の手段により達成された。
(1)非共鳴2光子吸収を行う下記一般式(1−1)〜(1−6)で表される化合物を含むことを特徴とする非共鳴2光子吸収材料。
【化102】
(X1およびX2は同一でもそれぞれ異なってもよく、置換もしくは無置換のアリール基、または置換もしくは無置換のヘテロ環基を表す。但し、置換アリール基の置換基は炭素原子数1〜20の鎖状または環状アルキル基、炭素数6〜18の置換または無置換のフェニル基、ハロゲン原子、炭素数2〜20のアミノ基、シアノ基、ニトロ基、炭素数2〜10のアシル基、炭素数1〜20のアルコキシ基、及び炭素原子数2〜10のアルコキシカルボニル基から選ばれる。前記ヘテロ環基のヘテロ環はピリジン、ベンゾオキサゾール、ベンゾチアゾール、ベンゾインドレニン、カルバゾール、フェノチアジン、ジュロリジン、及びジベンゾフランから選ばれ、前記ヘテロ環基の置換基は炭素原子数1〜20の鎖状アルキル基である。)
【0011】
(2)上記一般式(1−1)〜(1−6)の構造を有する化合物を含むことを特徴とする非共鳴2光子発光材料。
【0012】
(3)上記一般式(1−1)〜(1−6)で表される化合物を含む非共鳴2光子吸収材料に、該化合物の有する線形吸収帯よりも長波長のレーザー光を照射して非共鳴2光子吸収を誘起することを特徴とする非共鳴2光子吸収誘起方法。
【0013】
(4)上記一般式(1−1)〜(1−6)で表される化合物を含む非共鳴2光子発光材料に、該化合物の有する線形吸収帯よりも長波長のレーザー光を照射して非共鳴2光子吸収を誘起し、生成した励起状態から発光を発生させることを特徴とする非共鳴2光子発光発生方法。
【0014】
【発明の実施の形態】
なお、本発明は「非共鳴2光子吸収を行う下記一般式(1−1)〜(1−6)で表される化合物を含むことを特徴とする非共鳴2光子吸収材料。
【化103】
(X 1 およびX 2 は同一であり、置換フェニル基、または置換もしくは無置換のヘテロ環基を表す。但し、置換フェニル基の置換基はハロゲン原子、炭素数2〜20のアミノ基、及び炭素数1〜20のアルコキシ基から選ばれる。前記ヘテロ環基のヘテロ環はカルバゾール、フェノチアジン、及びジュロリジンから選ばれ、前記ヘテロ環基の置換基は炭素原子数1〜20の鎖状アルキル基である。)」及び前記一般式(1−1)〜(1−6)で表される化合物を含む非共鳴2光子発光材料、該非共鳴2光子吸収材料を用いる非共鳴2光子吸収誘起方法、及び該非共鳴2光子発光材料を用いる非共鳴2光子発光発生方法に関するものであるが、その他の事項についても参考のため記載した。
以下に、下記一般式(1)で表される化合物について詳しく説明する。
一般式(1)
X2−(−CR4=CR3−)m−C(=O)−(−CR1=CR2−)n−X1
(X1およびX2は置換または無置換のアリール基、置換または無置換のヘテロ環基を表し、同一でもそれぞれ異なってもよく、R1、R2、R3およびR4はそれぞれ独立に、水素原子、または置換基を表し、R1、R2、R3およびR4 のうちのいくつかが互いに結合して環を形成してもよく、nおよびmが2以上の場合、複数個のR1、R2、R3およびR4は同一でもそれぞれ異なってもよく、nおよびmはそれぞれ独立に1〜4の整数を表す。)
【0015】
一般式(1)において、X1およびX2は置換または無置換のアリール基、置換または無置換のヘテロ環基を表す。
【0016】
一般式(1)のX1およびX2で表されるアリール基としては、フェニル、ナフチル、アントラセニル、またはフェナンスレニル等を挙げることができ、フェニルまたはナフチルが好ましく、特にフェニルが好ましい。
【0017】
一般式(1)のX1およびX2で表されるヘテロ環基としては、炭素数1〜15のヘテロ環基であり、更に好ましくは炭素数2〜12のヘテロ環基であり、ヘテロ原子として好ましいものは、窒素原子、酸素原子または硫黄原子である。
ヘテロ環の具体例としては、例えばピロリジン、ピペリジン、ピペラジン、モルホリン、チオフェン、セレノフェン、フラン、ピロール、イミダゾール、ピラゾール、ピリジン、ピラジン、ピリダジン、ピリミジン、トリアゾール、トリアジン、インドール、インダゾール、プリン、チアゾリン、チアゾール、チアジゾール、オキサゾリン、オキサゾール、オキサジアゾール、キノリン、イソキノリン、フタラジン、ナフチリジン、キノキサリン、キナゾリン、シンノリン、プテリジン、アクリジン、フェナントロリン、フェナジン、テトラゾール、ベンゾイミダゾール、ベンゾオキサゾール、ベンゾチアゾール、ベンゾトリアゾール、テトラザインデン、ベンゾインドレニン、カルバゾール、ジベンゾフラン、フェノチアジン、ジュロリジンおよび窒素原子が環を構成する場合には、その窒素原子が4級化された4級オニウムカチオン等が挙げられる。ヘテロ環として好ましくはピリジン、ピリミジン、ピラジン、インドール、チオフェン、チアゾール、オキサゾール、キノリン、アクリジン、ベンゾイミダゾール、ベンゾオキサゾール、ベンゾチアゾール、ベンゾインドレニン、カルバゾール、フェノチアジン、ジュロリジンおよび窒素原子が環を構成する場合にその窒素原子が4級化された4級オニウムカチオン等であり、より好ましくは、カルバゾール、フェノチアジン、ジュロリジンである。
【0018】
一般式(1)のX1およびX2は更に置換基を有しても良く、該置換基の例としては、例えば以下に記載のものを挙げることができる。炭素原子数1〜20の鎖状または環状アルキル基(例えば、メチル、エチル、n−プロピル、イソプロピル、n−ブチル)、炭素数6〜18の置換または無置換のアリール基(例えば、フェニル、クロロフェニル、アニシル、トルイル、1−ナフチル)、炭素数2〜20のアルケニル基(例えばビニル、2−メチルビニル)、炭素数2〜20のアルキニル基(例えば、エチニル、2−メチルエチニル、2−フェニルエチニル)、ハロゲン原子(例えば、F、Cl、Br、I)、炭素数2〜20のアミノ基(例えばジメチルアミノ、ジエチルアミノ、ジブチルアミノ、ジュロリジノ)、シアノ基、ヒドロキシル基、カルボキシル基、炭素数2〜10のアシル基(例えば、アセチル、ベンゾイル、サリチロイル、ピバロイル)、炭素数1〜20のアルコキシ基(例えば、メトキシ、ブトキシ、シクロヘキシルオキシ)、炭素数6〜18のアリールオキシ基(例えば、フェノキシ、1−ナフトキシ)、炭素数1〜20のアルキルチオ基(例えば、メチルチオ、エチルチオ)、炭素数6〜18のアリールチオ基(例えば、フェニルチオ、4−クロロフェニルチオ)、炭素数1〜20のアルキルスルホニル基(例えば、メタンスルホニル、ブタンスルホニル)、炭素数6〜18のアリールスルホニル基(例えば、ベンゼンスルホニル、パラトルエンンスルホニル)、炭素原子数1〜10のカルバモイル基、炭素原子数1〜10のアミド基、炭素原子数2〜12のイミド基、炭素原子数2〜10のアシルオキシ基、炭素原子数2〜10のアルコキシカルボニル基、ヘテロ環基(例えばピリジル、チエニル、フリル、チアゾリル、イミダゾリル、ピラゾリルなどの芳香族ヘテロ環、ピロリジン環、ピペリジン環、モルホリン環、ピラン環、チオピラン環、ジオキサン環、ジチオラン環などの脂肪族ヘテロ環)。
【0019】
一般式(1)において、X1およびX2の置換基として好ましいものは、炭素数1〜16の鎖状または環状のアルキル基、炭素数6〜14のアリール基、炭素数7〜15のアラルキル基、炭素数1〜16のアルコキシ基、炭素数6〜14のアリールオキシ基、炭素数2〜20のアミノ基、ハロゲン原子、炭素数2〜17のアルコキシカルボニル基、炭素数1〜10のカルバモイル基、炭素数1〜10のアミド基、ヘテロ環基であり、中でも好ましいものは、炭素数1〜10の鎖状または環状のアルキル基、炭素数7〜13のアラルキル基、炭素数6〜10のアリール基、炭素数1〜10のアルコキシ基、炭素数6〜10のアリールオキシ基、炭素数2〜10のアミノ基、塩素原子、臭素原子、炭素数2〜11のアルコキシカルボニル基、炭素数1〜7のカルバモイル基、炭素数1〜8のアミド基である。
【0020】
一般式(1)において、X1およびX2の置換基としてより好ましいものは、ハメットのσp値が負であるものである。なお、ハメットのσp値は、例えばChem. Rev. 1991, 91, 165に記載されている。
【0021】
一般式(1)において、R1、R2、R3およびR4はそれぞれ独立に、水素原子、または置換基を表し、R1、R2、R3およびR4のうちのいくつかが互いに結合して環を形成してもよい。
【0022】
一般式(1)においてR1,R2、R3およびR4で表される置換基としては、上述のX1およびX2で表される基の置換基として挙げた基を挙げることができる。
【0023】
一般式(1)においてR1,R2、R3およびR4で挙げた置換基のうちの任意の2つが互いに結合して環を形成してもよい。また、R1,R2、R3およびR4で挙げた置換基のうちの任意の2つが互いに結合して環を形成する場合には、一般式(1)に示された中心部分のカルボニル炭素原子に結合した炭素に結合しているR1およびR3が結合して環を形成することが好ましい。
【0024】
一般式(1)においてR1およびR3が結合して環を形成する場合には、形成する環が6員環、5員環または4員環であることが好ましく、5員環または4員環であることが更に好ましい。
【0025】
一般式(1)において、nおよびmが2以上の場合、複数個のR1、R2、R3およびR4は同一でもそれぞれ異なってもよい。
【0026】
一般式(1)において、nおよびmはそれぞれ独立に1〜5の整数を表し、その中でも2〜4が好ましい。
【0027】
本発明の化合物は、ケトン化合物とアルデヒド化合物とのアルドール縮合反応により合成した。
以下に、本発明で用いられる2光子吸収化合物および2光子発光化合物の好ましい具体例を挙げるが、本発明はこれらに限定されるものではない。
なお、本発明で対象となる化合物は化1〜化4、化7、化9、化10、及び化13に記載のものである。
【0028】
【化1】
【0029】
【化2】
【0030】
【化3】
【0031】
【化4】
【0032】
【化5】
【0033】
【化6】
【0034】
【化7】
【0035】
【化8】
【0036】
【化9】
【0037】
【化10】
【0038】
【化11】
【0039】
【化12】
【0040】
【化13】
【0041】
【化14】
【0042】
【化15】
【0043】
【化16】
【0044】
【化17】
【0045】
【実施例】
以下に、本発明の具体的な実施例について実験結果を基に説明する。
[化合物の合成]
【0046】
合成例1 化合物(1)の合成
p−(ジメチルアミノ)けい皮アルデヒド(17.5g、0.1mol)とシクロペンタノン(4.2g、0.05mol)をイソプロピルアルコール(2.4L )に溶解させ、ナトリウムメトキシドのメタノール溶液(1ml)を加え、40℃で1時間攪拌した。反応が進行するにともなって析出した結晶をろ過し、ろ別した結晶をクロロホルムに溶解させた後、メタノールを加え、析出した結晶をろ過した。濃赤色結晶11.0g(収率55%)。得られた化合物は1H NMRにより構造を確認した。
1H NMR(CDCl3−d1)
δ=2.86(2、4H、シクロペンタン環)、3.01(s、12H、ジメチルアミノ基)、6.67(d、4H、ベンゼン環)、7.39(d、4H、ベンゼン環)、6.76(t、2H、メチン鎖)、6.90(d、2H、メチン鎖)、7.24(d、2H,メチン鎖)
合成例2 化合物(17)の合成
合成例1に示したシクロペンタノンの替わりにアセトン(2.9g、0.05mol)を用いる以外は合成例1と同様にして化合物(17)を合成した。濃赤色結晶3.8g(収率20%)。得られた化合物は1H NMRにより構造を確認した。
1H NMR(CDCl3−d1)
δ=3.01(s、12H、ジメチルアミノ基)、6.67(d、4H、ベンゼン環)、7.38(d、4H、ベンゼン環)、6.46(d、2H、メチン鎖)、6.76(m、2H、メチン鎖)、6.90(d、2H,メチン鎖)、7.48(m、2H,メチン鎖)
合成例3 化合物(31)の合成
合成例1に示したシクロペンタノンの替わりに、シクロヘキサノン(4.9g、0.05mol)を用いる以外は合成例1と同様にして化合物(31)を合成した。濃赤色結晶7.2g(収率35%)。得られた化合物は1H NMRにより構造を確認した。
1H NMR(DMSO−d6)
δ=1.85(m、2H、シクロヘキサン環)、2.75(t、4H、シクロヘキサン環)、3.00(s、12H、ジメチルアミノ基)、6.66(d、4H、ベンゼン環)、7.39(d、4H、ベンゼン環)、6.89(m、4H、メチン鎖)、7.50(d、2H、メチン鎖)
本発明のその他の化合物についても、上記合成例の方法に従って容易に合成できる。
【0047】
[2光子吸収断面積の評価方法]
本発明の化合物の2光子吸収断面積の評価は、M. A. Albota et al., Appl. Opt. 1998, 37,7352.記載の方法を参考に行った。2光子吸収断面積測定用の光源には、Ti:sapphireパルスレーザー(パルス幅:100fs、繰り返し:80MHz、平均出力:1W、ピークパワー:100kW)を用い、700nmから1000nmの波長範囲で2光子吸収断面積を測定した。また、基準物質としてローダミンBおよびフルオレセインを測定し、得られた測定値をC. Xu et al., J. Opt. Soc. Am. B 1996, 13, 481.に記載のローダミンBおよびフルオレセインの2光子吸収断面積の値を用いて補正することで、各化合物の2光子吸収断面積を得た。2光子吸収測定用の試料には、1×10-2〜1×10-4Mの濃度で化合物を溶かした溶液を用いた。
【0048】
〔実施例1〕
本発明の化合物の2光子吸収断面積を上記方法にて測定し、得られた結果をGM単位で表1に示した(1GM = 1×10-50 cm4 s / photon)。なお、表中に示した値は測定波長範囲内での2光子吸収断面積の最大値である。
【0049】
〔比較例1〕
下記に示した構造を有する比較化合物1および比較化合物2の2光子吸収断面積を上記の方法で測定し、結果を表1に示した。
【0050】
【化18】
【0051】
【表1】
【0052】
[2光子発光強度の評価方法]
本発明の化合物をクロロホルムに溶解させ、Nd:YAGレーザーの1064nmのレーザーパルスを照射して得られる発光スペクトルを測定し、得られた発光スペクトルの面積から非共鳴2光子発光強度を求めた。
【0053】
〔実施例2〕
試料1:本発明に係る前記化合物(1)0.40gを100mLのクロロホルムに溶解させて1×10-2Mの溶液を調製した。
【0054】
試料2:本発明に係る前記化合物(31)0.41gを100mlのクロロホルムに溶解させて1×10-2Mの溶液を調製した。
【0055】
比較試料1:強い2光子発光を発する化合物として国際公開(WO)9709043号に記載の化合物(下記化合物)0.59gを100mLのアセトニトリルに溶解させて1×10-2Mの溶液を調製した。
【0056】
【化19】
【0057】
試料1、試料2および比較試料1に、それぞれNd:YAGレーザーの1064nmのレーザーパルスを同条件で照射し、非共鳴2光子発光スペクトルを測定した。得られた発光スペクトルの面積(非共鳴2光子発光強度)を、比較試料1の値を1としたときの相対比で表2に示した。
【0058】
【表2】
【0059】
表1に示したように、従来の材料をはるかに陵駕する良好な特性が得られた。
【0060】
〔実施例3〕
試料3:本発明に係る前期化合物(17)0.37gを100mlのクロロホルムに溶解させて1×10-2Mの溶液を調製した。
【0061】
比較試料2:上記比較試料1に用いたASPT0.59gを100mLのTHFに溶解させて1×10-2Mの溶液を調製した。
【0062】
実施例1に示した試料1および試料2と試料3および比較試料2に、それぞれNd:YAGレーザーの1064nmのレーザーパルスを照射し、非共鳴2光子発光スペクトルを測定した。得られた発光スペクトルの面積を、比較試料2の値を1としたときの相対比で表3に示した。
【0063】
【表3】
【0064】
表3に示したように、従来の材料をはるかに陵駕する良好な特性が得られた。
【0065】
【発明の効果】
本発明の化合物を用いることで、従来よりもはるかに強い非共鳴2光子発光を示す非共鳴2光子発光材料を得ることができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a material that exhibits a nonlinear optical effect, and more particularly to an organic nonlinear optical material that has a large non-resonant two-photon absorption cross-section and a large luminous efficiency from an excited state generated by non-resonant two-photon absorption.
[0002]
[Prior art]
In general, the nonlinear optical effect is a non-linear optical response proportional to the square of the applied photoelectric field, the third power or more, and a second-order nonlinear optical effect proportional to the square of the applied photoelectric field. For example, second harmonic generation (SHG), optical rectification, photorefractive effect, Pockels effect, parametric amplification, parametric oscillation, optical sum frequency mixing, optical difference frequency mixing, and the like are known. The third-order nonlinear optical effect proportional to the cube of the applied photoelectric field includes third harmonic generation (THG), optical Kerr effect, self-induced refractive index change, two-photon absorption, and the like.
[0003]
Many inorganic materials have been found so far as nonlinear optical materials exhibiting these nonlinear optical effects. However, inorganic materials are very difficult to put into practical use because so-called molecular design for optimizing desired nonlinear optical characteristics and various physical properties necessary for device fabrication is difficult. On the other hand, organic compounds can be optimized not only for the desired nonlinear optical properties by molecular design, but also for other physical properties, so they are highly practical and attract attention as promising nonlinear optical materials. Collecting.
[0004]
In recent years, the third-order nonlinear optical effect has attracted attention among the nonlinear optical characteristics of organic compounds, and among these, non-resonant two-photon absorption and non-resonant two-photon emission have attracted attention. Two-photon absorption is a phenomenon in which a compound is excited by simultaneously absorbing two photons, and the case where two-photon absorption occurs in an energy region where there is no (linear) absorption band of the compound is called non-resonant two-photon absorption. . In addition, non-resonant two-photon emission refers to light emitted by an excited molecule generated by non-resonant two-photon absorption in the process of radiation deactivation in its excited state. In the following description, two-photon absorption and two-photon emission refer to non-resonant two-photon absorption and non-resonant two-photon emission, unless otherwise specified.
By the way, the efficiency of non-resonant two-photon absorption is proportional to the square of the applied photoelectric field (square characteristic of two-photon absorption). For this reason, when a two-dimensional plane is irradiated with a laser, two-photon absorption occurs only at a position where the electric field strength is high in the central portion of the laser spot, and two-photon absorption is completely absent in a portion where the electric field strength is weak in the peripheral portion. Does not happen. On the other hand, in the three-dimensional space, two-photon absorption occurs only in the region where the electric field strength at the focal point where the laser light is collected by the lens is large, and no two-photon absorption occurs in the region outside the focal point because the electric field strength is weak. . Compared with linear absorption where excitation occurs at all positions in proportion to the intensity of the applied photoelectric field, non-resonant two-photon absorption results in excitation at only one point inside the space due to this square characteristic. , The spatial resolution is significantly improved. Usually, when inducing non-resonant two-photon absorption, a short-pulse laser in the near-infrared region, which is longer than the wavelength region in which the (linear) absorption band of the compound exists and does not have absorption, is often used. Because so-called transparent near-infrared light that does not have a (linear) absorption band of the compound is used, excitation light can reach the inside of the sample without being absorbed or scattered, and because of the square characteristic of non-resonant two-photon absorption In addition, since one point inside the sample can be excited with extremely high spatial resolution, non-resonant two-photon absorption and non-resonant two-photon emission are expected in applications such as two-photon contrast and two-photon photodynamic therapy (PDT) of biological tissues. ing. In addition, when non-resonant two-photon absorption and two-photon emission are used, a photon with an energy higher than the energy of the incident photon can be extracted. Therefore, research on upconversion lasing has been reported from the viewpoint of a wavelength conversion device.
[0005]
A so-called stilbazolium derivative is known as an organic compound that efficiently exhibits two-photon emission and upconversion lasing (Non-patent document 1, Non-patent document 2, Non-patent document 3, Non-patent document 4, Non-patent document 5, Non-patent document 5) (See Patent Literature 6 and Non-Patent Literature 7). Various application examples using two-photon emission of a stilbazolium compound having a specific structure are described in Patent Document 1.
[0006]
[Non-Patent Document 1]
He, G.G. S. et al. , Appl. Phys. Lett. 1995, 67, 3703
[Non-Patent Document 2]
He, G.G. S. et al. , Appl. Phys. Lett. 1995, 67, 2433
[Non-Patent Document 3]
He, G.G. S. et al. , Appl. Phys. Lett. 1996, 68, 3549
[Non-Patent Document 4]
He, G.G. S. et al. , J .; Appl. Phys. 1997, 81, 2529
[Non-Patent Document 5]
Prasad, P.A. N. et al. , Nonlinear Optics 1999, 21, 39
[Non-Patent Document 6]
Ren, Y. et al. et al. , J .; Mater. Chem. 2000, 10, 2025
[Non-Patent Document 7]
Zhou, G .; et al. , Jpn. J. et al. Appl. Phys. 2001, 40, 1250
[Patent Document 1]
International Publication (WO) No. 97/09043 Pamphlet [0007]
When non-resonant two-photon emission is used for imaging of biological tissue, photodynamic therapy, upconversion lasing, etc., it is caused by the two-photon absorption efficiency (two-photon absorption cross section) and two-photon absorption of the organic compound used. The luminous efficiency from the excited state needs to be high. In order to obtain the doubled two-photon emission intensity using the same organic compound, the excitation light intensity of four times is required due to the square characteristic of the two-photon absorption. However, excessively intense laser light irradiation is not desirable because, for example, there is a high possibility that the biological tissue will be damaged by light, or that the two-photon luminescent dye itself will be deteriorated by light. Therefore, in order to obtain strong two-photon emission with weak excitation light intensity, it is necessary to develop an organic compound that efficiently absorbs two-photons and emits two-photon emission. The two-photon emission efficiency of the stilbazolium derivative does not yet satisfy sufficient performance for practical use.
[0008]
[Problems to be solved by the invention]
As described above, non-resonant two-photon absorption and non-resonant two-photon emission can be used for various applications characterized by extremely high spatial resolution. Since the two-photon absorption ability is low and the two-photon emission efficiency is poor, a very high-power laser is required as an excitation light source for inducing two-photon absorption and two-photon emission.
[0009]
An object of the present invention is to provide an organic material that efficiently absorbs two photons, that is, an organic material having a large two-photon absorption cross-section, and an organic material that exhibits two-photon emission with a large emission intensity.
[0010]
[Means for Solving the Problems]
As a result of intensive studies by the inventors of the present invention, the above object of the present invention has been achieved by the following means.
(1) A non-resonant two-photon absorption material comprising a compound represented by the following general formulas (1-1) to (1-6) that performs non-resonant two-photon absorption.
Embedded image
(X 1 and X 2 may be the same or different and each represents a substituted or unsubstituted aryl group or a substituted or unsubstituted heterocyclic group, provided that the substituent of the substituted aryl group has 1 to 20 carbon atoms. A linear or cyclic alkyl group, substituted or unsubstituted phenyl group having 6 to 18 carbon atoms, halogen atom, amino group having 2 to 20 carbon atoms, cyano group, nitro group, acyl group having 2 to 10 carbon atoms, carbon Selected from an alkoxy group having a number of 1 to 20 and an alkoxycarbonyl group having a carbon number of 2 to 10. The heterocyclic ring of the heterocyclic group is pyridine, benzoxazole, benzothiazole, benzoindolenin, carbazole, phenothiazine, julolidine, and The substituent of the heterocyclic group selected from dibenzofuran is a chain alkyl group having 1 to 20 carbon atoms .
[0011]
(2) A non-resonant two-photon light-emitting material comprising a compound having the structure of the general formulas (1-1) to (1-6) .
[0012]
(3) A non-resonant two-photon absorption material containing the compounds represented by the general formulas (1-1) to (1-6) is irradiated with laser light having a wavelength longer than the linear absorption band of the compound. A non-resonant two-photon absorption inducing method, characterized by inducing non-resonant two-photon absorption.
[0013]
(4) A non-resonant two-photon light-emitting material containing the compounds represented by the general formulas (1-1) to (1-6) is irradiated with laser light having a wavelength longer than the linear absorption band of the compound. A method of generating non-resonant two-photon emission, which induces non-resonant two-photon absorption and generates light emission from the generated excited state.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
In addition, this invention contains the compound represented by the following general formula (1-1)-(1-6) which performs nonresonant two-photon absorption, The nonresonant two-photon absorption material characterized by the above-mentioned.
Embedded image
(X 1 and X 2 are the same and represent a substituted phenyl group or a substituted or unsubstituted heterocyclic group. However, the substituent of the substituted phenyl group is a halogen atom, an amino group having 2 to 20 carbon atoms, and carbon. The heterocyclic group is selected from alkoxy groups having 1 to 20. The heterocyclic group is selected from carbazole, phenothiazine, and julolidine, and the substituent of the heterocyclic group is a chain alkyl group having 1 to 20 carbon atoms. .) ”And a non-resonant two-photon light-emitting material comprising the compounds represented by the general formulas (1-1) to (1-6), a non-resonant two-photon absorption induction method using the non-resonant two-photon absorption material, and the non-resonant Although this relates to a method for generating non-resonant two-photon emission using a resonant two-photon luminescent material, other matters are also described for reference.
Hereinafter, the compound represented by the following general formula (1) will be described in detail.
General formula (1)
X 2 -(-CR 4 = CR 3- ) m -C (= O)-(-CR 1 = CR 2- ) n -X 1
(X 1 and X 2 represent a substituted or unsubstituted aryl group or a substituted or unsubstituted heterocyclic group, which may be the same or different, and R 1 , R 2 , R 3 and R 4 are each independently Represents a hydrogen atom or a substituent, and some of R 1 , R 2 , R 3 and R 4 may be bonded to each other to form a ring, and when n and m are 2 or more, a plurality of R 1 , R 2 , R 3 and R 4 may be the same or different, and n and m each independently represent an integer of 1 to 4.)
[0015]
In the general formula (1), X 1 and X 2 represent a substituted or unsubstituted aryl group or a substituted or unsubstituted heterocyclic group.
[0016]
Examples of the aryl group represented by X 1 and X 2 in the general formula (1) include phenyl, naphthyl, anthracenyl, phenanthrenyl, and the like. Phenyl or naphthyl is preferable, and phenyl is particularly preferable.
[0017]
The heterocyclic group represented by X 1 and X 2 in the general formula (1) is a heterocyclic group having 1 to 15 carbon atoms, more preferably a heterocyclic group having 2 to 12 carbon atoms, and a hetero atom Preferred as is a nitrogen atom, an oxygen atom or a sulfur atom.
Specific examples of the heterocyclic ring include, for example, pyrrolidine, piperidine, piperazine, morpholine, thiophene, selenophene, furan, pyrrole, imidazole, pyrazole, pyridine, pyrazine, pyridazine, pyrimidine, triazole, triazine, indole, indazole, purine, thiazoline, thiazole. , Thiadiazole, oxazoline, oxazole, oxadiazole, quinoline, isoquinoline, phthalazine, naphthyridine, quinoxaline, quinazoline, cinnoline, pteridine, acridine, phenanthroline, phenazine, tetrazole, benzimidazole, benzoxazole, benzothiazole, benzotriazole, tetrazaindene , Benzoindolenin, carbazole, dibenzofuran, phenothiazine, julolidi And when the nitrogen atom constituting the ring, quaternary onium cations such as the nitrogen atom is quaternized, and the like. As a heterocyclic ring, preferably pyridine, pyrimidine, pyrazine, indole, thiophene, thiazole, oxazole, quinoline, acridine, benzimidazole, benzoxazole, benzothiazole, benzoindolenin, carbazole, phenothiazine, julolidine, and a nitrogen atom form a ring A quaternary onium cation in which the nitrogen atom is quaternized, and more preferably carbazole, phenothiazine, and julolidine.
[0018]
X 1 and X 2 in the general formula (1) may further have a substituent, and examples of the substituent include those described below. A linear or cyclic alkyl group having 1 to 20 carbon atoms (for example, methyl, ethyl, n-propyl, isopropyl, n-butyl), a substituted or unsubstituted aryl group having 6 to 18 carbon atoms (for example, phenyl, chlorophenyl) , Anisyl, toluyl, 1-naphthyl), alkenyl group having 2 to 20 carbon atoms (for example, vinyl, 2-methylvinyl), alkynyl group having 2 to 20 carbon atoms (for example, ethynyl, 2-methylethynyl, 2-phenylethynyl) ), A halogen atom (eg, F, Cl, Br, I), an amino group having 2 to 20 carbon atoms (eg, dimethylamino, diethylamino, dibutylamino, julolidino), a cyano group, a hydroxyl group, a carboxyl group, or 2 to 2 carbon atoms. 10 acyl groups (for example, acetyl, benzoyl, salicyloyl, pivaloyl), having 1 to 20 carbon atoms Lucoxy group (for example, methoxy, butoxy, cyclohexyloxy), C6-C18 aryloxy group (for example, phenoxy, 1-naphthoxy), C1-C20 alkylthio group (for example, methylthio, ethylthio), carbon number 6-18 arylthio group (for example, phenylthio, 4-chlorophenylthio), C1-C20 alkylsulfonyl group (for example, methanesulfonyl, butanesulfonyl), C6-C18 arylsulfonyl group (for example, benzenesulfonyl) , Paratoluenesulfonyl), a carbamoyl group having 1 to 10 carbon atoms, an amide group having 1 to 10 carbon atoms, an imide group having 2 to 12 carbon atoms, an acyloxy group having 2 to 10 carbon atoms, and the number of carbon atoms 2 to 10 alkoxycarbonyl groups, heterocyclic groups (for example, pyridyl, Enyl, furyl, thiazolyl, imidazolyl, aromatic heterocyclic rings such as a pyrazolyl, pyrrolidine ring, piperidine ring, morpholine ring, pyran ring, thiopyran ring, dioxane ring, an aliphatic hetero ring such as dithiolane rings).
[0019]
In general formula (1), the preferred substituents for X 1 and X 2 are a linear or cyclic alkyl group having 1 to 16 carbon atoms, an aryl group having 6 to 14 carbon atoms, and an aralkyl having 7 to 15 carbon atoms. Group, an alkoxy group having 1 to 16 carbon atoms, an aryloxy group having 6 to 14 carbon atoms, an amino group having 2 to 20 carbon atoms, a halogen atom, an alkoxycarbonyl group having 2 to 17 carbon atoms, and a carbamoyl having 1 to 10 carbon atoms Group, an amide group having 1 to 10 carbon atoms, and a heterocyclic group, among which a chain or cyclic alkyl group having 1 to 10 carbon atoms, an aralkyl group having 7 to 13 carbon atoms, and 6 to 10 carbon atoms are preferable. Aryl group, C 1-10 alkoxy group, C 6-10 aryloxy group, C 2-10 amino group, chlorine atom, bromine atom, C 2-11 alkoxycarbonyl group, carbon number A carbamoyl group having 1 to 7 carbon atoms and an amide group having 1 to 8 carbon atoms.
[0020]
In the general formula (1), a more preferable substituent for X 1 and X 2 is one having a Hammett's σ p value being negative. Hammett's σ p value is described in, for example, Chem. Rev. 1991, 91, 165.
[0021]
In the general formula (1), R 1 , R 2 , R 3 and R 4 each independently represent a hydrogen atom or a substituent, and some of R 1 , R 2 , R 3 and R 4 are They may combine to form a ring.
[0022]
Examples of the substituent represented by R 1 , R 2 , R 3, and R 4 in the general formula (1) include the groups listed as the substituents for the groups represented by X 1 and X 2 described above. .
[0023]
In the general formula (1), any two of the substituents mentioned for R 1 , R 2 , R 3 and R 4 may be bonded to each other to form a ring. When any two of the substituents listed for R 1 , R 2 , R 3 and R 4 are bonded to each other to form a ring, the central carbonyl group represented by the general formula (1) is used. R 1 and R 3 bonded to carbon bonded to a carbon atom are preferably bonded to form a ring.
[0024]
In the general formula (1), when R 1 and R 3 are bonded to form a ring, the ring to be formed is preferably a 6-membered ring, a 5-membered ring or a 4-membered ring. More preferably, it is a ring.
[0025]
In the general formula (1), when n and m are 2 or more, a plurality of R 1 , R 2 , R 3 and R 4 may be the same or different.
[0026]
In General formula (1), n and m represent the integer of 1-5 each independently, and 2-4 are preferable among them.
[0027]
The compound of the present invention was synthesized by an aldol condensation reaction between a ketone compound and an aldehyde compound.
The preferred specific examples of the two-photon absorption compound and the two-photon light-emitting compound used in the present invention are listed below, but the present invention is not limited to these.
In addition, the compound used as object in this invention is a thing of Chemical formula 1-Chemical formula 4, Chemical formula 7, Chemical formula 9, Chemical formula 10, and Chemical formula 13.
[0028]
[Chemical 1]
[0029]
[Chemical formula 2]
[0030]
[Chemical 3]
[0031]
[Formula 4]
[0032]
[Chemical formula 5]
[0033]
[Chemical 6]
[0034]
[Chemical 7]
[0035]
[Chemical 8]
[0036]
[Chemical 9]
[0037]
Embedded image
[0038]
Embedded image
[0039]
Embedded image
[0040]
Embedded image
[0041]
Embedded image
[0042]
Embedded image
[0043]
Embedded image
[0044]
Embedded image
[0045]
【Example】
In the following, specific examples of the present invention will be described based on experimental results.
[Synthesis of compounds]
[0046]
Synthesis Example 1 Synthesis of Compound (1) p- (Dimethylamino) cinnaldehyde (17.5 g, 0.1 mol) and cyclopentanone (4.2 g, 0.05 mol) were dissolved in isopropyl alcohol (2.4 L). Sodium methoxide in methanol (1 ml) was added and stirred at 40 ° C. for 1 hour. Crystals deposited as the reaction progressed were filtered, and the crystals separated by filtration were dissolved in chloroform, methanol was added, and the precipitated crystals were filtered. 11.0 g of dark red crystals (55% yield). The structure of the obtained compound was confirmed by 1 H NMR.
1H NMR (CDCl 3 -d 1 )
δ = 2.86 (2, 4H, cyclopentane ring), 3.01 (s, 12H, dimethylamino group), 6.67 (d, 4H, benzene ring), 7.39 (d, 4H, benzene ring) ), 6.76 (t, 2H, methine chain), 6.90 (d, 2H, methine chain), 7.24 (d, 2H, methine chain)
Synthesis Example 2 Synthesis of Compound (17) Compound (17) was synthesized in the same manner as in Synthesis Example 1 except that acetone (2.9 g, 0.05 mol) was used instead of cyclopentanone shown in Synthesis Example 1. 3.8 g of dark red crystals (yield 20%). The structure of the obtained compound was confirmed by 1 H NMR.
1H NMR (CDCl 3 -d 1 )
δ = 3.01 (s, 12H, dimethylamino group), 6.67 (d, 4H, benzene ring), 7.38 (d, 4H, benzene ring), 6.46 (d, 2H, methine chain) 6.76 (m, 2H, methine chain), 6.90 (d, 2H, methine chain), 7.48 (m, 2H, methine chain)
Synthesis Example 3 Synthesis of Compound (31) Compound (31) was synthesized in the same manner as in Synthesis Example 1 except that cyclohexanone (4.9 g, 0.05 mol) was used instead of cyclopentanone shown in Synthesis Example 1. . 7.2 g of dark red crystals (35% yield). The structure of the obtained compound was confirmed by 1 H NMR.
1H NMR (DMSO-d 6)
δ = 1.85 (m, 2H, cyclohexane ring), 2.75 (t, 4H, cyclohexane ring), 3.00 (s, 12H, dimethylamino group), 6.66 (d, 4H, benzene ring) 7.39 (d, 4H, benzene ring), 6.89 (m, 4H, methine chain), 7.50 (d, 2H, methine chain)
Other compounds of the present invention can also be easily synthesized according to the method of the above synthesis example.
[0047]
[Method for evaluating two-photon absorption cross section]
The evaluation of the two-photon absorption cross section of the compound of the present invention was performed with reference to the method described in MA Albota et al., Appl. Opt. 1998, 37, 7352. Ti: sapphire pulse laser (pulse width: 100 fs, repetition rate: 80 MHz, average output: 1 W, peak power: 100 kW) is used as the light source for measuring the two-photon absorption cross section, and two-photon absorption is performed in the wavelength range from 700 nm to 1000 nm. The cross-sectional area was measured. In addition, rhodamine B and fluorescein were measured as reference substances, and the obtained measured values were calculated as 2 of rhodamine B and fluorescein described in C. Xu et al., J. Opt. Soc. Am. B 1996, 13, 481. The two-photon absorption cross section of each compound was obtained by correcting using the value of the photon absorption cross section. As a sample for two-photon absorption measurement, a solution in which a compound was dissolved at a concentration of 1 × 10 −2 to 1 × 10 −4 M was used.
[0048]
[Example 1]
The two-photon absorption cross section of the compound of the present invention was measured by the above method, and the obtained results are shown in Table 1 in GM units (1GM = 1 × 10 −50 cm 4 s / photon). The value shown in the table is the maximum value of the two-photon absorption cross section within the measurement wavelength range.
[0049]
[Comparative Example 1]
The two-photon absorption cross sections of Comparative Compound 1 and Comparative Compound 2 having the structures shown below were measured by the above method, and the results are shown in Table 1.
[0050]
Embedded image
[0051]
[Table 1]
[0052]
[Evaluation method of two-photon emission intensity]
The emission spectrum obtained by dissolving the compound of the present invention in chloroform and irradiating a laser pulse of 1064 nm of Nd: YAG laser was measured, and the nonresonant two-photon emission intensity was determined from the area of the obtained emission spectrum.
[0053]
[Example 2]
Sample 1: 0.40 g of the compound (1) according to the present invention was dissolved in 100 mL of chloroform to prepare a 1 × 10 −2 M solution.
[0054]
Sample 2: 0.41 g of the compound (31) according to the present invention was dissolved in 100 ml of chloroform to prepare a 1 × 10 −2 M solution.
[0055]
Comparative Sample 1: As a compound emitting strong two-photon emission, 0.59 g of a compound described in International Publication (WO) 997043 (the following compound) was dissolved in 100 mL of acetonitrile to prepare a 1 × 10 −2 M solution.
[0056]
Embedded image
[0057]
Sample 1, Sample 2 and Comparative Sample 1 were each irradiated with a 1064 nm laser pulse of Nd: YAG laser under the same conditions, and non-resonant two-photon emission spectra were measured. The area of the obtained emission spectrum (nonresonant two-photon emission intensity) is shown in Table 2 as a relative ratio when the value of Comparative Sample 1 is 1.
[0058]
[Table 2]
[0059]
As shown in Table 1, good characteristics far surpassing conventional materials were obtained.
[0060]
Example 3
Sample 3: 0.37 g of the previous compound (17) according to the present invention was dissolved in 100 ml of chloroform to prepare a 1 × 10 −2 M solution.
[0061]
Comparative sample 2: 0.59 g of ASPT used in the comparative sample 1 was dissolved in 100 mL of THF to prepare a 1 × 10 −2 M solution.
[0062]
Sample 1, sample 2, sample 3, and comparative sample 2 shown in Example 1 were each irradiated with a laser pulse of 1064 nm of Nd: YAG laser, and a non-resonant two-photon emission spectrum was measured. The area of the obtained emission spectrum is shown in Table 3 as a relative ratio when the value of Comparative Sample 2 is 1.
[0063]
[Table 3]
[0064]
As shown in Table 3, good characteristics far surpassing conventional materials were obtained.
[0065]
【The invention's effect】
By using the compound of the present invention, it is possible to obtain a non-resonant two-photon light emitting material that exhibits much stronger non-resonant two-photon light emission than before.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002251398A JP4244124B2 (en) | 2001-09-05 | 2002-08-29 | Non-resonant two-photon absorption material, non-resonant two-photon light-emitting material, non-resonant two-photon absorption induction method, and non-resonant two-photon emission generation method |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001-268991 | 2001-09-05 | ||
JP2001268991 | 2001-09-05 | ||
JP2002251398A JP4244124B2 (en) | 2001-09-05 | 2002-08-29 | Non-resonant two-photon absorption material, non-resonant two-photon light-emitting material, non-resonant two-photon absorption induction method, and non-resonant two-photon emission generation method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003183213A JP2003183213A (en) | 2003-07-03 |
JP4244124B2 true JP4244124B2 (en) | 2009-03-25 |
Family
ID=27615143
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002251398A Expired - Lifetime JP4244124B2 (en) | 2001-09-05 | 2002-08-29 | Non-resonant two-photon absorption material, non-resonant two-photon light-emitting material, non-resonant two-photon absorption induction method, and non-resonant two-photon emission generation method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4244124B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7432036B2 (en) * | 2002-10-07 | 2008-10-07 | Fujifilm Corporation | Non-resonant two-photon absorbing material, non-resonant two-photon emitting material, and method for inducing absorption or generating emission of non-resonant two photons by using the material |
JP4511126B2 (en) * | 2003-05-27 | 2010-07-28 | 富士フイルム株式会社 | Two-photon absorption coloring material and two-photon absorption coloring method |
JP5130514B2 (en) * | 2006-06-12 | 2013-01-30 | 国立大学法人山口大学 | Two-photon absorption compound |
CN109438265B (en) * | 2018-12-06 | 2020-05-08 | 四川大学 | Compound with affinity with brown adipose tissue and preparation method and application thereof |
-
2002
- 2002-08-29 JP JP2002251398A patent/JP4244124B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2003183213A (en) | 2003-07-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Meador et al. | Water-soluble NIR absorbing and emitting indolizine cyanine and indolizine squaraine dyes for biological imaging | |
Ogawa et al. | Water-soluble bis (imidazolylporphyrin) self-assemblies with large two-photon absorption cross sections as potential agents for photodynamic therapy | |
Zheng et al. | Synthesis and properties of substituted (p-aminostyryl)-1-(3-sulfooxypropyl) pyridinium inner salts as a new class of two-photon pumped lasing dyes | |
Yılmaz et al. | The effect of charge transfer on the ultrafast and two-photon absorption properties of newly synthesized boron-dipyrromethene compounds | |
WO2019153789A1 (en) | Photo-activated aggregation-induced emission probe having in situ generation capabilities, preparation thereof and application thereof | |
WO2021246066A1 (en) | Compound, non-linear optical material, recording medium, method for recording information, and method for reading information | |
EP2503389A2 (en) | Non-resonant two-photon absorbing material, non-resonant two-photon emitting material, and method for inducing absorption or generating emission of non-resonant two photon by using the material. | |
JP4244124B2 (en) | Non-resonant two-photon absorption material, non-resonant two-photon light-emitting material, non-resonant two-photon absorption induction method, and non-resonant two-photon emission generation method | |
Fahmy et al. | Laser induced fluorescence, photo-physical parameters and photo-stability of new fluorescein derivatives | |
Tian et al. | Two novel two-photon polymerization initiators with extensive application prospects | |
Liu et al. | Water-soluble two-photon absorption benzoxazole-based pyridinium salts with the planar cationic parts: crystal structures and bio-imaging | |
JP4486776B2 (en) | Non-resonant two-photon absorption material, non-resonant two-photon light-emitting material, and non-resonant two-photon absorption induction method and light emission generation method thereof | |
Yasin et al. | Meso-Zn (ii) porphyrins of tailored functional groups for intensifying the photoacoustic signal | |
JP4074824B2 (en) | Non-resonant two-photon absorption material, non-resonant two-photon light-emitting material, and non-resonant two-photon absorption induction method and light emission generation method thereby | |
JP4299985B2 (en) | Two-photon polymerizable composition and photopolymerization method thereof | |
JP2004250545A (en) | Nonresonant two-photon absorption material and nonresonant two-photon luminescent material, methods for inducing nonresonant two-photon absorption and luminescence using the materials, and methine compound | |
Dixit et al. | Synthesis and photophysical properties of near infra-red absorbing BODIPy derivatives and their nanoaggregates | |
US20040131969A1 (en) | Non-resonant two-photon absorbing material, non-resonant two-photon emitting material, method for inducing absorption of non-resonant two-photons and method for generating emission of non-resonant two-photons | |
JP5130514B2 (en) | Two-photon absorption compound | |
JP2004126441A (en) | Non-resonance two-photon absorption compound, non-resonance two-photon emission compound, and non-resonance two-photon absorption induction method and light emission generating method by non-resonance two photon absorption | |
Liu et al. | Two-photon AIEgen based on dicyanoisophorone derivative: Synthesis, characterization and cells imaging | |
JP2004279674A (en) | Nonresonant two-photon absorbing material, and induction method of nonresonant two-photon absorption using the same | |
JP4115308B2 (en) | Non-resonant two-photon absorption material, non-resonant two-photon light-emitting material, and non-resonant two-photon absorption induction method and light emission generation method thereby | |
CN103059834B (en) | multiphoton laser material | |
Liu et al. | Synthesis, optical properties and singlet oxygen generation of a phthalocyanine derivative containing strong two-photon-absorbing chromophores in the periphery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050208 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20060324 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20061124 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20071108 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20071115 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20071122 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080514 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080514 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080711 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20080806 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20081003 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20081114 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20081209 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20081225 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 4244124 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120116 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120116 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130116 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130116 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140116 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |