[go: up one dir, main page]

JP4243912B2 - Method for recovering crystals from slurry - Google Patents

Method for recovering crystals from slurry Download PDF

Info

Publication number
JP4243912B2
JP4243912B2 JP2000203772A JP2000203772A JP4243912B2 JP 4243912 B2 JP4243912 B2 JP 4243912B2 JP 2000203772 A JP2000203772 A JP 2000203772A JP 2000203772 A JP2000203772 A JP 2000203772A JP 4243912 B2 JP4243912 B2 JP 4243912B2
Authority
JP
Japan
Prior art keywords
slurry
vapor
solvent
cake
supplied
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000203772A
Other languages
Japanese (ja)
Other versions
JP2002020324A (en
Inventor
二三夫 大越
雅人 稲荷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mizushima Aroma Co Ltd
Mitsubishi Gas Chemical Co Inc
Toyobo Co Ltd
Original Assignee
Mizushima Aroma Co Ltd
Mitsubishi Gas Chemical Co Inc
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mizushima Aroma Co Ltd, Mitsubishi Gas Chemical Co Inc, Toyobo Co Ltd filed Critical Mizushima Aroma Co Ltd
Priority to JP2000203772A priority Critical patent/JP4243912B2/en
Priority to SG200103982A priority patent/SG90255A1/en
Priority to DE60110973T priority patent/DE60110973T2/en
Priority to EP01115419A priority patent/EP1170280B1/en
Priority to US09/897,610 priority patent/US6500347B2/en
Priority to TW090116234A priority patent/TWI225804B/en
Priority to MYPI20013163A priority patent/MY120871A/en
Priority to KR1020010039793A priority patent/KR100738737B1/en
Priority to CNB011224088A priority patent/CN1213984C/en
Publication of JP2002020324A publication Critical patent/JP2002020324A/en
Application granted granted Critical
Publication of JP4243912B2 publication Critical patent/JP4243912B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D33/00Filters with filtering elements which move during the filtering operation
    • B01D33/06Filters with filtering elements which move during the filtering operation with rotary cylindrical filtering surfaces, e.g. hollow drums
    • B01D33/073Filters with filtering elements which move during the filtering operation with rotary cylindrical filtering surfaces, e.g. hollow drums arranged for inward flow filtration
    • B01D33/09Filters with filtering elements which move during the filtering operation with rotary cylindrical filtering surfaces, e.g. hollow drums arranged for inward flow filtration with surface cells independently connected to pressure distributors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D33/00Filters with filtering elements which move during the filtering operation
    • B01D33/58Handling the filter cake in the filter for purposes other than for regenerating the filter cake remaining on the filtering element
    • B01D33/60Handling the filter cake in the filter for purposes other than for regenerating the filter cake remaining on the filtering element for washing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D33/00Filters with filtering elements which move during the filtering operation
    • B01D33/58Handling the filter cake in the filter for purposes other than for regenerating the filter cake remaining on the filtering element
    • B01D33/62Handling the filter cake in the filter for purposes other than for regenerating the filter cake remaining on the filtering element for drying
    • B01D33/66Handling the filter cake in the filter for purposes other than for regenerating the filter cake remaining on the filtering element for drying by gases or by heating
    • B01D33/663Handling the filter cake in the filter for purposes other than for regenerating the filter cake remaining on the filtering element for drying by gases or by heating by direct contact with a fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D37/00Processes of filtration
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/42Separation; Purification; Stabilisation; Use of additives
    • C07C51/43Separation; Purification; Stabilisation; Use of additives by change of the physical state, e.g. crystallisation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Filtration Of Liquid (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Description

【0001】
【産業上の利用分野】
本発明は結晶を含むスラリーから結晶を回収する方法に関するものであり、例えばパラキシレンを液相酸化してテレフタル酸を製造するプロセス等、各種の有機化学製品の製造プロセスにおいて用いられるものである。
【0002】
【従来の技術】
パラキシレンの液相酸化によってテレフタル酸を製造する場合、生成するテレフタル酸は母液中に結晶となって析出し、テレフタル酸の結晶を含むスラリーが生成する。このスラリーから結晶を回収すると、粗テレフタル酸が得られる。また、得られた粗テレフタル酸を溶解し、酸化処理、還元処理等の精製工程を経てテレフタル酸を析出させると、結晶を含むスラリーが得られる。
上記いずれの場合も、スラリーから結晶を回収する方法として、ロータリーバキュームフィルター(以下、RVFと云う)により吸引濾過、洗浄、吸引濾過、剥離を一操作で行なう方法が多く採用されている。
【0003】
【発明が解決しようとする課題】
RVFは円筒状の濾材を回転させながら吸引濾過、洗浄、吸引濾過、剥離を順次行なうものである。しかしながらこの方法においては、運転の継続によって濾材に目詰まりが発生するために、長期間の運転が困難である。
本発明の目的は、RVFを使用してスラリーから結晶を回収する際に、濾材の目詰まりを起こすことなく、長期間連続して結晶を回収できる方法を提案することである。
【0004】
【課題を解決するための手段】
発明者らは上記の如き課題を有するRVFについて鋭意検討した結果、RVFの剥離工程でケーキを剥離するために用いられるブロー用ガスに溶媒成分蒸気を供給することにより、濾材からのケーキの剥離が促進され、RVFを長期間連続して操作できるようになることを見出し、本発明に到達した。
【0005】
即ち本発明は、ロータリーバキュームフィルターに結晶と溶媒からなるスラリーを供給して、円筒状の濾材を回転させて吸引濾過、洗浄、吸引濾過、ケーキ剥離を連続的に行う方法において、ケーキを剥離するためのブロー用ガスに溶媒成分蒸気を供給することを特徴とするスラリーからの結晶回収方法である。
【0006】
【発明の実施の形態】
以下、本発明の方法を図により具体的に説明する。図1はRVFの断面図、図2は本発明の好ましい実施態様を示す結晶回収方法の系統図である。
図1の断面図において、RVF1 のケーシング2 内に横型円筒状の濾材3 が回転可能に設置されている。濾材3 の下部は、ケーシング2 下部に貯留されたスラリー4に浸る濾過域5 となっており、その内側には濾過液6 およびブロー用ガス7 を吸引する吸引部8 が形成されている。
【0007】
濾材3 の上部には対向してケーキ9 を洗浄する洗浄液管10が設けられ、これに対応して濾材3 は洗浄域11および脱液域12となっており、その内側には洗浄液を集める集液部13が形成されている。
濾材3の内側には、ケーキ9 を剥離するブロー部14およびシール部15が設けられ、これに対応して濾材3 は剥離域16となっており、その内側には窒素ガス等の非凝縮性ガスに溶媒蒸気を混じたブロー用ガスを供給するブロー用ガス供給管17が設置されている。
RVF1 において処理されるスラリーはスラリー供給部18から供給され、スラリー液面を保持するダム19が設置されている。ダムから溢れたスラリーはスラリー循環部20から排出され、ケーキがケーキ取出口21から排出される。
【0008】
図2の系統図において、処理されるスラリーはスラリー貯槽22からポンプ23によりRVF1 のスラリー供給部18に供給し、スラリー循環部20から排出され循環させる。集液部13の洗浄液はポンプ24により系外に排出される。
図1 の吸引部8 からの濾過液およびブロー用ガスは濾過液槽25に送られ、ポンプ26により濾過液が排出される。濾過液槽25の上部には冷却器27が設置されており、冷却されたガスは、ミストセパレーター28でミストを分離して真空ポンプ29により排出される。真空ポンプ29の吐出には封液セパレーター30とミストセパレーター36があり、真空ポンプ29から排出されたガスはRVFのブロー用ガスとして使用される。
RVF1 において剥離されたケーキは、図1 のケーキ取り出し部21からシャッター33およびシャッター34を経て取り出し、ドライヤー35でケーキを乾燥し、製品取り出し口36から結晶(製品)として回収する。
【0009】
結晶の回収方法は、スラリー貯槽22に貯槽されたスラリーをポンプ23でRVF1 の底部に供給し、濾材3 を回転させながら、順次、吸引濾過、洗浄、吸引濾過、剥離(ブロー)を行なう。以下具体的に説明する。
真空ポンプ29の作動によって、吸引部8 を経て回転ドラムの内側が負圧になる結果、RVF1 の底部に供給されたスラリーが回転する濾材3 で濾過され、スラリー4 中の結晶は濾材3 に捕捉されてケーキ9 になって上昇する。スラリー4 の一部はダム19をオーバーフローして、スラリー循環部20からスラリー貯槽22に循環する。
ケーキ9 は洗浄域11において、洗浄液管10から吹き付けられる洗浄液によって洗浄され、脱液域12において洗浄液を除去されて下降する。剥離域16ではブロー用ガス供給管17にブロー用ガスを供給してブロー部14から吹き付け、ケーキ9 を剥離する。ケーキ9 を剥離した濾材3 は更に下降して再び濾過域5 に到る。
吸引部8 から吸引された濾過液6 およびブロー用ガス7 は濾過液槽25に入 り、濾過液6 はポンプ26で系外に排出される。
剥離域16において剥離されたケーキ9 はケーキ取り出し部21からシャッター33およびシャッター34を経て取り出され、ドライヤー35で乾燥されて、製品取り出し口36から結晶(製品)として回収される。
【0010】
本発明の眼目は、ミストセパレーター31を出たブロー用ガスに溶媒蒸気供給ライン32を設置し、溶媒成分蒸気を供給することにある。溶媒成分蒸気とは、例えば、スラリー4の母液が水の場合には溶媒成分蒸気は当然水蒸気である。また、スラリー4の母液が含水酢酸の場合は母液組成に近い構成を有する含水酢酸蒸気が最適であるが、水蒸気あるいは酢酸蒸気でもよい。
通常のテレフタル酸製造装置の場合、スラリー貯槽22の上流には1段以上の晶析槽が設置されている。晶析槽では溶媒のフラッシュ蒸発でスラリー温度を下げる方式になっているので、そこで発生した蒸気を溶媒蒸気供給ライン32から供給するのが好都合である。
【0011】
溶媒成分の蒸気供給ライン32から溶媒成分の蒸気を供給することにより、結果として濾材の目詰まりが発生しなくり、長期間連続した運転ができるようになった。その理由はいまだに明確にはなっていないが、幾つかの複合的な硬化によるものと推定される。
第1の推定理由は、溶媒成分蒸気を供給することにより、ブロー用ガスの容量が増やすことができた。その結果、剥離域16での結晶の剥離を完璧に行うことが期待できる。溶媒成分蒸気供給ライン32から供給された溶媒成分蒸気は、ブロー用ガスとして使用された後、吸引部8 から濾過液槽25へ排出されるので、溶媒成分蒸気を供給することによってブロー用ガスの容量が増しても、真空ポンプ29での処理ガス量にはほとんど影響を与えないので好都合である。
第2の推定理由は、溶媒成分蒸気を供給することにより、ブロー用ガスの湿り度が増した。その結果、濾材に結晶が乾燥付着する減少の抑制が期待できる。加えて、ブロー用ガス中に存在している少量の溶媒成分ミストが濾材に付着残留している微小結晶を排除する効果が期待できる。
第3の推定理由は、溶媒成分蒸気を供給することにより、ブロー用ガスの温度が上昇した。温度上昇によってより完璧な剥離が期待できる。
実施例で示したように、ブロー用ガスに溶媒成分の蒸気を混じた結果、結晶取り出し部21の結晶中の湿分が低下した。これは当初全く予期しなかった効果である。
【0012】
溶媒蒸気供給ライン32から供給された溶媒成分蒸気は、ブロー用ガスとして使用された後、吸引部8から濾過液槽25へ排出されるので、溶媒成分蒸気を供給することによってブロー用ガスの容量が増しても、真空ポンプ29での処理ガス量に何等影響を与えない。
なお、溶媒成分蒸気を混じてからブロー部14に達するまでの間に温度が低下してミスト発生の危険性が考慮されたが、長期間の運転経験によれば格段の問題は発生しなかった。RVFに到るラインの保温を行なうことにより、溶媒成分蒸気温度の低下を小さく抑えることができる。
【0013】
本発明は、前述のように粗テレフタル酸および精製テレフタル酸の結晶を回収する場合に適しているが、他にイソフタル酸やナフタレンジカルボン酸などの、芳香族炭化水素を高温・高圧下、触媒成分を含む溶媒中で分子状酸素により酸化して芳香族カルボン酸を製造するプロセス等におけるスラリーから結晶を回収する工程に適用することができる。
【0014】
【実施例】
以下、本発明の実施例について説明する。但し本発明はこれらの実施例により制限されるものではない。
【0015】
実施例1
パラキシレンをコバルト、マンガン、臭素触媒の存在下、空気酸化して粗テレフタル酸を製造する商業的製造装置から得られたテレフタル酸/含水酢酸スラリー(テレフタル酸32重量%、温度89℃)を、図1および図2に示す方法により処理し、粗テレフタル酸を回収した。ブロー用ガスには窒素ガスを用い、スラリー貯槽22の上流に設置されているフラッシュ晶析槽で発生したフラッシュ蒸気(酢酸蒸気と水蒸気の混合蒸気)を、溶媒蒸気供給ライン32から780kg/h供給した。濾材3 が目詰まりするまでの時間は310時間であった。また、ケーキ取り出し部21から採取されたケーキを110℃で4時間乾燥したときの乾燥減量は9.8%であった。
【0016】
比較例1
実施例1において、溶媒蒸気供給ライン32からのフラッシュ蒸気供給を停止した。つまり、ブロー用ガスには窒素ガスだけを用いた。その結果、目詰まりするまでの時間は24時間となった。また、ケーキ取り出し部21から採取されたケーキを110℃で4時間乾燥したときの乾燥減量は11.3%であった。
【0017】
実施例2
メタキシレンをコバルト、マンガン、臭素触媒の存在下、空気酸化して粗イソフタル酸を製造する商業的製造装置から得られたイソフタル酸/含水酢酸スラリー(イソフタル酸30重量%、温度85℃)を、図1および図2に示す方法により処理し、粗イソフタル酸を回収した。ブロー用ガスには窒素ガスを用い、スラリー貯槽22の上流に設置されているフラッシュ晶析槽で発生したフラッシュ蒸気(酢酸蒸気と水蒸気の混合蒸気)を、溶媒蒸気供給ライン32から200kg/h供給した。濾材3 が目詰まりするまでの時間は230時間であった。また、ケーキ取り出し部21から採取されたケーキを110℃で4時間乾燥したときの乾燥減量は10.4%であった。
【0018】
比較例2
実施例2において、溶媒蒸気供給ライン32からのフラッシュ蒸気供給を停止した。つまり、ブロー用ガスには窒素ガスだけを用いた。その結果、目詰まりするまでの時間は18時間となった。また、ケーキ取り出し部21から採取されたケーキを110℃で4時間乾燥したときの乾燥減量は12.1%であった。
【0019】
【発明の効果】
以上の実施例からも明らかなように、本発明によれば、ケーキを剥離するブロー用ガスに溶媒成分蒸気を供給することによって、濾材の目詰まりが防止され、スラリーから効率よく長期にわたって結晶を回収することができる。
また、本発明で供給される溶媒成分蒸気は、ケーキを剥離するブロー用ガスとして使用された後、ガス吸引部から濾過液槽へ排出されるので、溶媒として回収使用され、ブロー用ガスの容量が増しても真空ポンプでの処理ガス量に何等影響を与えない。更に、ブロー用ガスの容量を増すことにより回収される結晶の品質が向上する。
本発明のスラリーからの結晶回収方法は、液相酸化による芳香族カルボン酸を製造するプロセス等の多くのプロセスに適用することができ、本発明の工業的意義は大きい。
【図面の簡単な説明】
【図1】本発明で用いられるロータリーバキュームフィルターの断面図である。
【図2】本発明の好ましい実施態様を示す結晶回収方法の系統図である。
【記号の説明】
1:RVF(ロータリーバキュームフィルター)
2:ケーシング
3:濾材
4:スラリー
5:濾過域
6:濾過液
7:ガス
8:吸引部
9:ケーキ
10:洗浄液管
11:洗浄域
12:脱液域
13:集液部
14:ブロー部
15:シール部
16:剥離域
17:ブロー用ガス供給管
18:スラリー供給部
19:ダム
20:スラリー循環部
21:ケーキ取り出し部
22:スラリー貯槽
23:ポンプ
24:ポンプ
25:濾過液槽
26:ポンプ
27:冷却器
28:ミストセパレーター
29:真空ポンプ
30:封液セパレーター
31:ミストセパレーター
32:溶媒蒸気供給ライン
33:シャッター
34:シャッター
35:ドライヤー
36:製品取り出し口
[0001]
[Industrial application fields]
The present invention relates to a method for recovering crystals from a slurry containing crystals, and is used in various organic chemical product manufacturing processes, such as a process for producing terephthalic acid by liquid phase oxidation of paraxylene.
[0002]
[Prior art]
When terephthalic acid is produced by liquid phase oxidation of para-xylene, the terephthalic acid produced is precipitated as crystals in the mother liquor, producing a slurry containing terephthalic acid crystals. When crystals are recovered from this slurry, crude terephthalic acid is obtained. Moreover, when the obtained crude terephthalic acid is dissolved and terephthalic acid is precipitated through purification steps such as oxidation treatment and reduction treatment, a slurry containing crystals is obtained.
In any of the above cases, as a method of recovering crystals from the slurry, a method of performing suction filtration, washing, suction filtration, and peeling in one operation with a rotary vacuum filter (hereinafter referred to as RVF) is often employed.
[0003]
[Problems to be solved by the invention]
The RVF sequentially performs suction filtration, washing, suction filtration, and peeling while rotating a cylindrical filter medium. However, in this method, since the filter medium is clogged by continuing the operation, it is difficult to operate for a long time.
An object of the present invention is to propose a method capable of continuously recovering crystals for a long period of time without causing clogging of a filter medium when recovering crystals from a slurry using RVF.
[0004]
[Means for Solving the Problems]
As a result of intensive studies on the RVF having the above-mentioned problems, the inventors have supplied the solvent component vapor to the blowing gas used for peeling the cake in the RVF peeling process, thereby removing the cake from the filter medium. As a result, the present inventors have found that the RVF can be operated continuously for a long period of time.
[0005]
That is, the present invention peels cakes in a method in which slurry comprising crystals and a solvent is supplied to a rotary vacuum filter, and a cylindrical filter medium is rotated to perform suction filtration, washing, suction filtration, and cake peeling continuously. A method for recovering crystals from a slurry, characterized in that a solvent component vapor is supplied to a blowing gas for the purpose.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the method of the present invention will be described in detail with reference to the drawings. FIG. 1 is a cross-sectional view of an RVF, and FIG. 2 is a system diagram of a crystal recovery method showing a preferred embodiment of the present invention.
In the sectional view of FIG. 1, a horizontal cylindrical filter medium 3 is rotatably installed in a casing 2 of RVF1. The lower part of the filter medium 3 is a filtration zone 5 immersed in the slurry 4 stored in the lower part of the casing 2, and a suction part 8 for sucking the filtrate 6 and the blowing gas 7 is formed inside thereof.
[0007]
A cleaning liquid pipe 10 for cleaning the cake 9 is provided on the upper part of the filter medium 3, and the filter medium 3 has a cleaning area 11 and a drainage area 12 corresponding to the cleaning liquid pipe 10. A liquid portion 13 is formed.
Inside the filter medium 3, there are provided a blow part 14 and a seal part 15 for peeling the cake 9, and the filter medium 3 has a peel zone 16 corresponding to the blow part 14 and non-condensable such as nitrogen gas. A blowing gas supply pipe 17 for supplying a blowing gas in which solvent vapor is mixed with gas is installed.
The slurry to be processed in RVF1 is supplied from a slurry supply unit 18, and a dam 19 is installed to hold the slurry liquid level. Slurry overflowing from the dam is discharged from the slurry circulating section 20, and the cake is discharged from the cake outlet 21.
[0008]
In the system diagram of FIG. 2, the slurry to be treated is supplied from the slurry storage tank 22 to the slurry supply unit 18 of the RVF 1 by the pump 23, discharged from the slurry circulation unit 20, and circulated. The cleaning liquid in the liquid collection unit 13 is discharged out of the system by the pump 24.
The filtrate and blowing gas from the suction unit 8 in FIG. 1 are sent to the filtrate tank 25, and the filtrate is discharged by the pump. A cooler 27 is installed in the upper part of the filtrate tank 25, and the cooled gas separates the mist with a mist separator 28 and is discharged by a vacuum pump 29. The discharge of the vacuum pump 29 includes a sealing liquid separator 30 and a mist separator 36, and the gas discharged from the vacuum pump 29 is used as an RVF blowing gas.
The cake peeled off at RVF1 is taken out from the cake take-out section 21 shown in FIG. 1 through the shutter 33 and the shutter 34, dried by the dryer 35, and collected as crystals (product) from the product take-out port 36.
[0009]
In the crystal recovery method, the slurry stored in the slurry storage tank 22 is supplied to the bottom of the RVF1 by the pump 23, and the filter medium 3 is rotated, and suction filtration, washing, suction filtration, and peeling (blowing) are sequentially performed. This will be specifically described below.
As a result of the vacuum pump 29 being operated, the inside of the rotating drum becomes negative pressure through the suction part 8, and as a result, the slurry supplied to the bottom of the RVF 1 is filtered by the rotating filter medium 3, and the crystals in the slurry 4 are captured by the filter medium 3. It becomes cake 9 and rises. A part of the slurry 4 overflows the dam 19 and circulates from the slurry circulation part 20 to the slurry storage tank 22.
The cake 9 is washed in the washing area 11 by the washing liquid sprayed from the washing liquid pipe 10, and the washing liquid is removed in the liquid removal area 12 and descends. In the peeling area 16, the blowing gas is supplied to the blowing gas supply pipe 17 and sprayed from the blowing unit 14 to peel the cake 9. The filter medium 3 from which the cake 9 has been peeled further descends and reaches the filtration zone 5 again.
The filtrate 6 and the blowing gas 7 sucked from the suction part 8 enter the filtrate tank 25, and the filtrate 6 is discharged out of the system by the pump 26.
The cake 9 peeled in the peeling area 16 is taken out from the cake take-out section 21 via the shutter 33 and the shutter 34, dried by the dryer 35, and collected as crystals (product) from the product take-out port 36.
[0010]
The eye of the present invention is to install a solvent vapor supply line 32 to the blowing gas exiting the mist separator 31 and supply solvent component vapor. For example, when the mother liquor of the slurry 4 is water, the solvent component vapor is naturally water vapor. Further, when the mother liquor of the slurry 4 is hydrous acetic acid, hydrous acetic acid vapor having a configuration close to the mother liquor composition is optimal, but water vapor or acetic acid vapor may be used.
In the case of a normal terephthalic acid production apparatus, one or more crystallization tanks are installed upstream of the slurry storage tank 22. Since the slurry temperature is lowered by flash evaporation of the solvent in the crystallization tank, it is convenient to supply the vapor generated there from the solvent vapor supply line 32.
[0011]
By supplying the solvent component vapor from the solvent component vapor supply line 32, the filter medium is not clogged as a result, and it has become possible to operate continuously for a long period of time. The reason is still unclear, but is presumed to be due to several complex cures.
The first estimation reason was that the capacity of the blowing gas could be increased by supplying the solvent component vapor. As a result, it can be expected that the crystal is completely peeled in the peeling region 16. After the solvent component vapor supplied from the solvent component vapor supply line 32 is used as a blowing gas, it is discharged from the suction unit 8 to the filtrate tank 25. Even if the capacity increases, it is advantageous because it hardly affects the amount of processing gas in the vacuum pump 29.
The second estimation reason was that the wetness of the blowing gas increased by supplying the solvent component vapor. As a result, it can be expected to suppress a decrease in the crystals adhering to the filter medium. In addition, it can be expected that a small amount of the solvent component mist present in the blowing gas will eliminate the fine crystals remaining on the filter medium.
The third estimation reason was that the temperature of the blowing gas was increased by supplying the solvent component vapor. More perfect peeling can be expected by increasing the temperature.
As shown in the example, as a result of mixing the vapor of the solvent component with the blowing gas, the moisture in the crystal of the crystal takeout part 21 was reduced. This is an unexpected effect at first.
[0012]
Since the solvent component vapor supplied from the solvent vapor supply line 32 is used as a blowing gas and then discharged from the suction unit 8 to the filtrate tank 25, the volume of the blowing gas is supplied by supplying the solvent component vapor. Even if it increases, there is no influence on the amount of processing gas in the vacuum pump 29.
In addition, although the temperature decreased between mixing the solvent component vapor and reaching the blow section 14, the risk of mist generation was considered, but according to long-term operation experience, no particular problem occurred . By keeping the temperature of the line reaching the RVF, the decrease in the solvent component vapor temperature can be kept small.
[0013]
Although the present invention is suitable for recovering crystals of crude terephthalic acid and purified terephthalic acid as described above, other catalyst components such as isophthalic acid and naphthalenedicarboxylic acid are used at high temperatures and pressures. It can be applied to a step of recovering crystals from a slurry in a process for producing an aromatic carboxylic acid by oxidation with molecular oxygen in a solvent containing.
[0014]
【Example】
Examples of the present invention will be described below. However, the present invention is not limited by these examples.
[0015]
Example 1
A terephthalic acid / hydrous acetic acid slurry (32% by weight of terephthalic acid, temperature 89 ° C.) obtained from a commercial production apparatus for producing crude terephthalic acid by air oxidation in the presence of cobalt, manganese and bromine catalysts, It processed by the method shown in FIG. 1 and FIG. 2, and collect | recovered crude terephthalic acids. Nitrogen gas is used as the blowing gas, and flash vapor (mixed vapor of acetic acid vapor and water vapor) generated in the flash crystallization tank installed upstream of the slurry storage tank 22 is supplied from the solvent vapor supply line 32 to 780 kg / h. did. The time until the filter medium 3 was clogged was 310 hours. Moreover, the drying loss when the cake collected from the cake take-out part 21 was dried at 110 ° C. for 4 hours was 9.8%.
[0016]
Comparative Example 1
In Example 1, the supply of the flash vapor from the solvent vapor supply line 32 was stopped. That is, only nitrogen gas was used as the blowing gas. As a result, the time until clogging was 24 hours. Moreover, the drying loss when the cake collected from the cake take-out part 21 was dried at 110 ° C. for 4 hours was 11.3%.
[0017]
Example 2
An isophthalic acid / hydrous acetic acid slurry (30 wt% isophthalic acid, temperature 85 ° C.) obtained from a commercial production apparatus for producing crude isophthalic acid by air oxidation in the presence of cobalt, manganese and bromine catalysts, It processed by the method shown in FIG. 1 and FIG. 2, and collect | recovered crude isophthalic acids. Nitrogen gas is used as the blow gas, and the flash vapor (mixed vapor of acetic acid vapor and water vapor) generated in the flash crystallization tank installed upstream of the slurry storage tank 22 is supplied from the solvent vapor supply line 32 to 200 kg / h. did. The time until the filter medium 3 was clogged was 230 hours. Further, the loss on drying when the cake collected from the cake take-out part 21 was dried at 110 ° C. for 4 hours was 10.4%.
[0018]
Comparative Example 2
In Example 2, the supply of the flash vapor from the solvent vapor supply line 32 was stopped. That is, only nitrogen gas was used as the blowing gas. As a result, the time until clogging was 18 hours. Moreover, the drying loss when the cake collected from the cake take-out part 21 was dried at 110 ° C. for 4 hours was 12.1%.
[0019]
【The invention's effect】
As is clear from the above examples, according to the present invention, by supplying the solvent component vapor to the blowing gas for peeling the cake, clogging of the filter medium is prevented, and crystals are efficiently produced from the slurry over a long period of time. It can be recovered.
Further, since the solvent component vapor supplied in the present invention is used as a blowing gas for peeling the cake and then discharged from the gas suction unit to the filtrate tank, it is recovered and used as a solvent, and the capacity of the blowing gas Even if it increases, it does not affect the amount of processing gas in the vacuum pump. Furthermore, the quality of the recovered crystal is improved by increasing the capacity of the blowing gas.
The method for recovering crystals from the slurry of the present invention can be applied to many processes such as a process for producing an aromatic carboxylic acid by liquid phase oxidation, and the industrial significance of the present invention is great.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a rotary vacuum filter used in the present invention.
FIG. 2 is a system diagram of a crystal recovery method showing a preferred embodiment of the present invention.
[Explanation of symbols]
1: RVF (rotary vacuum filter)
2: Casing 3: Filter medium 4: Slurry 5: Filtration zone 6: Filtrate 7: Gas 8: Suction unit 9: Cake 10: Washing liquid tube 11: Washing zone 12: Dewatering zone 13: Liquid collecting unit 14: Blow unit 15 : Sealing part 16: Stripping zone 17: Blowing gas supply pipe 18: Slurry supplying part 19: Dam 20: Slurry circulating part 21: Cake takeout part 22: Slurry storage tank 23: Pump 24: Pump 25: Filtrate tank 26: Pump 27: Cooler 28: Mist separator 29: Vacuum pump 30: Sealing separator 31: Mist separator 32: Solvent vapor supply line 33: Shutter 34: Shutter 35: Dryer 36: Product outlet

Claims (4)

ロータリーバキュームフィルターに結晶と溶媒からなるスラリーを供給して、円筒状の濾材を回転させて吸引濾過、洗浄、吸引濾過、ケーキ剥離を連続的に行う方法において、ケーキを剥離するためのブロー用ガスに溶媒成分蒸気を供給することを特徴とするスラリーからの結晶回収方法。Blowing gas used to peel cake in a method in which slurry consisting of crystals and solvent is supplied to a rotary vacuum filter and a cylindrical filter medium is rotated to perform continuous suction filtration, washing, suction filtration, and cake peeling. A method for recovering crystals from a slurry, characterized in that a solvent component vapor is supplied to the slurry. 溶媒を用いて加圧下で化学反応を行い、反応生成液を減圧する際に得られる溶媒成分のフラッシュ蒸気をケーキを剥離するためのブロー用ガスに供給する請求項1に記載のスラリーからの結晶回収方法。The crystal from the slurry according to claim 1, wherein a chemical reaction is performed under pressure using a solvent, and a flash vapor of a solvent component obtained when the reaction product liquid is decompressed is supplied to a blowing gas for peeling the cake. Collection method. 芳香族炭化水素を高温・高圧下、触媒成分を含む溶媒中で分子状酸素により酸化して芳香族カルボン酸を製造するプロセスにおいて、反応生成液を降温する晶析工程を経て、芳香族カルボン酸の結晶と溶媒からなるスラリーを生成し、該スラリーをロータリーバキュームフィルターを用いて芳香族カルボン酸の結晶を分離する際のケーキを剥離するためのブロー用ガスに溶媒成分蒸気を供給する請求項1または請求項2に記載のスラリーからの結晶回収方法。In the process of producing aromatic carboxylic acid by oxidizing aromatic hydrocarbon with molecular oxygen in a solvent containing catalyst components under high temperature and high pressure, the aromatic carboxylic acid is subjected to a crystallization step in which the reaction product is cooled. 2. A slurry comprising a crystal and a solvent is produced, and the solvent component vapor is supplied to a blowing gas for separating the cake when the aromatic carboxylic acid crystal is separated from the slurry using a rotary vacuum filter. Or the crystal | crystallization collection | recovery method from the slurry of Claim 2. パラキシレンを触媒成分を含む溶媒中で分子状酸素により酸化するプロセスにおいて、酸化反応の溶媒に含水酢酸を使用し、酸化反応液を減圧する際に得られるフラッシュ蒸気(酢酸蒸気と水蒸気の混合蒸気)をロータリーバキュームフィルターのブロー用ガスに供給する粗テレフタル酸の結晶回収を行う請求項3に記載のスラリーからの結晶回収方法。In the process of oxidizing para-xylene with molecular oxygen in a solvent containing a catalyst component, water vapor acetic acid is used as the solvent for the oxidation reaction, and flash vapor (mixed vapor of acetic acid vapor and water vapor) obtained when the oxidation reaction solution is depressurized. The method for recovering crystals from the slurry according to claim 3, wherein crystal recovery of crude terephthalic acid is supplied to the blow gas of the rotary vacuum filter.
JP2000203772A 2000-07-05 2000-07-05 Method for recovering crystals from slurry Expired - Fee Related JP4243912B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2000203772A JP4243912B2 (en) 2000-07-05 2000-07-05 Method for recovering crystals from slurry
SG200103982A SG90255A1 (en) 2000-07-05 2001-06-26 Process for recovering crystals from a slurry
EP01115419A EP1170280B1 (en) 2000-07-05 2001-06-27 Process for recovering crystals from a slurry
DE60110973T DE60110973T2 (en) 2000-07-05 2001-06-27 Process for recovering crystals from a slurry
US09/897,610 US6500347B2 (en) 2000-07-05 2001-07-03 Process for recovering crystals from a slurry
TW090116234A TWI225804B (en) 2000-07-05 2001-07-03 Process for recovering crystals from a slurry
MYPI20013163A MY120871A (en) 2000-07-05 2001-07-03 Process for recovering crystals from a slurry.
KR1020010039793A KR100738737B1 (en) 2000-07-05 2001-07-04 Process for recovering crystals from a slurry
CNB011224088A CN1213984C (en) 2000-07-05 2001-07-05 Method for recovering crystal from sludge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000203772A JP4243912B2 (en) 2000-07-05 2000-07-05 Method for recovering crystals from slurry

Publications (2)

Publication Number Publication Date
JP2002020324A JP2002020324A (en) 2002-01-23
JP4243912B2 true JP4243912B2 (en) 2009-03-25

Family

ID=18701140

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000203772A Expired - Fee Related JP4243912B2 (en) 2000-07-05 2000-07-05 Method for recovering crystals from slurry

Country Status (9)

Country Link
US (1) US6500347B2 (en)
EP (1) EP1170280B1 (en)
JP (1) JP4243912B2 (en)
KR (1) KR100738737B1 (en)
CN (1) CN1213984C (en)
DE (1) DE60110973T2 (en)
MY (1) MY120871A (en)
SG (1) SG90255A1 (en)
TW (1) TWI225804B (en)

Families Citing this family (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL360825A1 (en) * 2000-10-06 2004-09-20 Coöperatieve Verkoop- En Productievereniging Van Aardappelmeel En Derivaten Avebe B.A. Washing and dewatering of suspensions
US7404904B2 (en) * 2001-10-02 2008-07-29 Melvin Stanley Method and apparatus to clean particulate matter from a toxic fluid
AU2003292740A1 (en) * 2003-01-10 2004-08-10 Mitsubishi Chemical Corporation Process for producing aromatic carboxylic acid and process for producing terephthalic acid
EP1623088A1 (en) * 2003-04-15 2006-02-08 Cabot Corporation Method to recover brine from drilling fluids
US7589231B2 (en) 2004-09-02 2009-09-15 Eastman Chemical Company Optimized liquid-phase oxidation
US7572936B2 (en) 2004-09-02 2009-08-11 Eastman Chemical Company Optimized liquid-phase oxidation
US7507857B2 (en) 2004-09-02 2009-03-24 Eastman Chemical Company Optimized liquid-phase oxidation
US7683210B2 (en) 2004-09-02 2010-03-23 Eastman Chemical Company Optimized liquid-phase oxidation
US7399882B2 (en) 2004-09-02 2008-07-15 Eastman Chemical Company Optimized liquid-phase oxidation
US7495125B2 (en) 2004-09-02 2009-02-24 Eastman Chemical Company Optimized liquid-phase oxidation
US7692037B2 (en) 2004-09-02 2010-04-06 Eastman Chemical Company Optimized liquid-phase oxidation
US7568361B2 (en) 2004-09-02 2009-08-04 Eastman Chemical Company Optimized liquid-phase oxidation
US7482482B2 (en) 2004-09-02 2009-01-27 Eastman Chemical Company Optimized liquid-phase oxidation
US7572932B2 (en) 2004-09-02 2009-08-11 Eastman Chemical Company Optimized liquid-phase oxidation
US7504535B2 (en) 2004-09-02 2009-03-17 Eastman Chemical Company Optimized liquid-phase oxidation
US7910769B2 (en) 2004-09-02 2011-03-22 Eastman Chemical Company Optimized liquid-phase oxidation
US7741515B2 (en) 2004-09-02 2010-06-22 Eastman Chemical Company Optimized liquid-phase oxidation
US7390921B2 (en) 2004-09-02 2008-06-24 Eastman Chemical Company Optimized liquid-phase oxidation
US7586000B2 (en) 2004-09-02 2009-09-08 Eastman Chemical Company Optimized liquid-phase oxidation
US7381836B2 (en) 2004-09-02 2008-06-03 Eastman Chemical Company Optimized liquid-phase oxidation
US7608732B2 (en) 2005-03-08 2009-10-27 Eastman Chemical Company Optimized liquid-phase oxidation
US7361784B2 (en) 2004-09-02 2008-04-22 Eastman Chemical Company Optimized liquid-phase oxidation
US7582793B2 (en) 2004-09-02 2009-09-01 Eastman Chemical Company Optimized liquid-phase oxidation
US7692036B2 (en) 2004-11-29 2010-04-06 Eastman Chemical Company Optimized liquid-phase oxidation
US7608733B2 (en) 2004-09-02 2009-10-27 Eastman Chemical Company Optimized liquid-phase oxidation
US7371894B2 (en) 2004-09-02 2008-05-13 Eastman Chemical Company Optimized liquid-phase oxidation
US7563926B2 (en) 2004-09-02 2009-07-21 Eastman Chemical Company Optimized liquid-phase oxidation
JP4804776B2 (en) * 2005-03-22 2011-11-02 三井化学株式会社 Method for recovering crystals from slurry
US7884232B2 (en) 2005-06-16 2011-02-08 Eastman Chemical Company Optimized liquid-phase oxidation
US7358389B2 (en) 2006-01-04 2008-04-15 Eastman Chemical Company Oxidation system employing internal structure for enhanced hydrodynamics
US7355068B2 (en) 2006-01-04 2008-04-08 Eastman Chemical Company Oxidation system with internal secondary reactor
CN101318894B (en) * 2007-06-04 2012-05-09 中国纺织工业设计院 Method and device for separating and purifying terephthalic acid
RU2463096C2 (en) * 2007-12-20 2012-10-10 Хитачи Плант Текнолоджиз, Лтд. Method of crystalline suspension filtration
WO2009081458A1 (en) * 2007-12-20 2009-07-02 Hitachi Plant Technologies, Ltd. Method of filtering crystallization slurry
WO2009123350A1 (en) * 2008-04-04 2009-10-08 株式会社 城 Method and device for crystal filtration
US8309711B2 (en) * 2009-08-07 2012-11-13 Corn Products Development Inc. Filtration of corn starch followed by washing and collection of the resultant corn starch cake
KR101065034B1 (en) 2009-10-14 2011-09-19 네오텍스(주) Rotary filter device
JP5398847B2 (en) * 2009-12-26 2014-01-29 三菱化工機株式会社 Rotary single chamber filter
GB201008412D0 (en) 2010-05-20 2010-07-07 Davy Process Techn Ltd Process and system
EP2585430B1 (en) 2010-06-28 2019-04-17 Johnson Matthey Davy Technologies Limited Process and system for the separation of carboxylic acids (such as terephthalic acid) from a slurry
GB201011008D0 (en) 2010-06-30 2010-08-18 Davy Process Techn Ltd Process and system
US8956542B1 (en) * 2013-07-30 2015-02-17 Showa Freezing Plant Co., Ltd. Method for processing radioactively-contaminated water
CA2927961C (en) * 2013-11-08 2017-05-16 Hugues Wanlin Rotary vacuum and screen system and methods for separating solids and liquids
US10857490B2 (en) 2014-08-11 2020-12-08 Bp Corporation North America Inc. Separation process having improved capacity
GB201501436D0 (en) * 2015-01-28 2015-03-11 Invista Technologies S.�.R.L. Gas-driven rotary filter
CN107930235B (en) * 2017-11-30 2019-10-29 安徽工业大学 Fine catalyst efficiently separates and the device of automatic cycle during a kind of catalytic oxidation treatment sewage
EP3806975B1 (en) * 2018-06-13 2024-12-04 Cargill, Incorporated A filtration process
SE542326C2 (en) * 2018-06-21 2020-04-14 Valmet Oy Vacuum filter
WO2020027625A1 (en) 2018-08-02 2020-02-06 주식회사 포스코 Manufacturing apparatus for lithium sulfate and manufacturing method therefor
WO2021038391A1 (en) * 2019-08-28 2021-03-04 Invista North America S.A R.L Process for purifying terephthalic acid
CN112973212B (en) * 2021-02-22 2022-08-05 宜宾丝丽雅股份有限公司 Method for cleaning filter element for viscose production
CN113750618B (en) * 2021-09-22 2023-01-17 湖南恒光化工有限公司 Continuous filtration equipment of sulfamic acid crude

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4655937A (en) * 1984-03-29 1987-04-07 Basf Corporation Rotary drum vacuum filter for easily eroded cakes
JP2595657B2 (en) * 1988-05-27 1997-04-02 三井石油化学工業株式会社 How to recover crystals from a slurry
JPH06327915A (en) * 1993-05-24 1994-11-29 Mitsui Petrochem Ind Ltd Method for recovering crystal from slurry and device therefor
US5470473A (en) * 1994-02-17 1995-11-28 Baker Hughes Incorporated Rotary vacuum filtration drum with valved hopper cake treatment means

Also Published As

Publication number Publication date
CN1213984C (en) 2005-08-10
TWI225804B (en) 2005-01-01
KR20020003521A (en) 2002-01-12
DE60110973T2 (en) 2005-10-13
KR100738737B1 (en) 2007-07-12
SG90255A1 (en) 2002-07-23
EP1170280A3 (en) 2003-05-07
DE60110973D1 (en) 2005-06-30
MY120871A (en) 2005-11-30
JP2002020324A (en) 2002-01-23
US6500347B2 (en) 2002-12-31
EP1170280B1 (en) 2005-05-25
EP1170280A2 (en) 2002-01-09
CN1335296A (en) 2002-02-13
US20020003117A1 (en) 2002-01-10

Similar Documents

Publication Publication Date Title
JP4243912B2 (en) Method for recovering crystals from slurry
JP2595657B2 (en) How to recover crystals from a slurry
CN101903072B (en) Method of filtering crystallization slurry
JPH06506461A (en) Improved method for recovering purified terephthalic acid
EP1409445A2 (en) Process for the recovery of crude terephthalic acid (cta)
JPH07507291A (en) Method for the production of purified terephthalic acid
WO2010119484A1 (en) Method for recovering crystals from a crystallization slurry
WO2014049793A1 (en) Operation method for pressurized single-chamber rotary filtration device
JPH11343264A (en) Production of aromatic carboxylic acid
CN100509746C (en) Method of separating and purifying terephthalic acid
WO2007073658A1 (en) Process for separation of crude terephthalic acid
JPH11179115A (en) Method and apparatus for recovering crystal from slurry
JP4850904B2 (en) Crystal component recovery method and crystal component recovery system
CN1117714A (en) Separation process
JP5802115B2 (en) Method for purifying crude terephthalic acid
JP3864609B2 (en) Method for producing terephthalic acid
JP2004231636A (en) Method for producing aromatic carboxylic acid and method for producing terephthalic acid
JP3859178B2 (en) Method and apparatus for producing high-purity aromatic dicarboxylic acid
JP2005263653A (en) Method for producing aromatic carboxylic acid
WO2014049791A1 (en) Pressurized multi-chamber rotary filtration device and method for operating same
JP2004285022A (en) Method for separating crystal from slurry
RU2463096C2 (en) Method of crystalline suspension filtration
JP2004175797A (en) Method for producing terephthalic acid
EA038529B1 (en) Method for removing impurities from crude terephthalic acid particles
WO2004063135A1 (en) Process for producing aromatic carboxylic acid and process for producing terephthalic acid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070621

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081224

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081224

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120116

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120116

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130116

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140116

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees