JP4243449B2 - Alkaline primary battery - Google Patents
Alkaline primary battery Download PDFInfo
- Publication number
- JP4243449B2 JP4243449B2 JP2002039156A JP2002039156A JP4243449B2 JP 4243449 B2 JP4243449 B2 JP 4243449B2 JP 2002039156 A JP2002039156 A JP 2002039156A JP 2002039156 A JP2002039156 A JP 2002039156A JP 4243449 B2 JP4243449 B2 JP 4243449B2
- Authority
- JP
- Japan
- Prior art keywords
- positive electrode
- nickel oxyhydroxide
- ratio
- theoretical
- active material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- Y02E60/12—
Landscapes
- Battery Electrode And Active Subsutance (AREA)
- Primary Cells (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、正極合剤中にオキシ水酸化ニッケルを含むアルカリ一次電池に係わり、特に高容量化と高負荷特性の向上とを図る技術に関するものである。
【0002】
【従来の技術】
現在、高出力特性を有しているアルカリ一次電池としては、正極活物質に二酸化マンガンを、負極活物質に亜鉛を、電解液としてアルカリ水溶液をそれぞれ用いたアルカリマンガン電池が主流となっているが、近年にあっては、デジタルカメラや情報通信端末等をはじめとする携帯機器の高性能化に伴い、その電源として用いられているアルカリマンガン電池に対しても、高負荷特性の更なる向上、および高容量化の要求が増大してきている。
【0003】
そのような要求に応える有効な手段の一つに、活物質充填量の増加が挙げられる。特に負極充填量を増加することは、高負荷特性を高める手段として有効である。
【0004】
しかし、[負極理論容量/正極理論容量]で示される理論電気容量比を高くし過ぎると、すなわち正極充填量に対し負極充填量を高め過ぎると、過放電時において正極活物質が先に使い果たされることになる。そして、残った負極活物質による負極反応の対となる電気化学反応がガス発生を伴う場合には、電池内圧の上昇により漏液発生が起こる。これ故、電池の安全性・信頼性を保つためには理論電気容量比を一定値以下にする必要があり、負極充填量に制限をかけざるを得ない。このように、負極側の改善としての充填量増加による高容量化・高負荷特性向上には上限がある。
【0005】
また、もう一つの手段として、正極側の改善という点から、正極活物質にβ型やγ型のオキシ水酸化ニッケルを適用することが古くから注目され、アルカリ二次電池に適用することが検討されている(特開昭53−32347号公報、特開昭55−30133号公報等参照)。ここで、上記従来のβ型やγ型の従来のオキシ水酸化ニッケルは、高温下に長時間放置すると自己放電のために電池容量が減少してしまうという問題があり、当該自己放電による容量減少は一次電池にとっては、電池機能の消失を意味することになるため、アルカリ一次電池の正極材料としては採用し得ないものとされていた。
【0006】
そこで、本発明者等は、高温下に長時間放置した場合に生じる自己放電の改善を目的として、オキシ水酸化ニッケルに対して詳細な種々の実験などを行って研究開発を進め、検討を重ねた結果、コバルトと亜鉛とを同時にオキシ水酸化ニッケルに含有させることで、自己放電の抑制が図れて一次電池への適用が可能になることを知得し、当該コバルトと亜鉛とを含有させたオキシ水酸化ニッケルを正極材料に適用したアルカリ一次電池についての提案を既にしている。
【0007】
そして、上記の二つの手段、つまり負極の充填量を増加することと、正極活物質にオキシ水酸化ニッケルを使用することとを組み合わせることで、アルカリ一次電池のさらなる高容量化と高負荷特性の向上とを図ることが可能となる。
【0008】
【発明が解決しようとする課題】
ただし、上記両者で異なる点としては次のことが挙げられる。即ち、両者の放電反応を1電子反応とした場合の重量当たり理論容量は、二酸化マンガン:308mAh/g、オキシ水酸化ニッケル:292mAh/gとなる。しかし、実際に、亜鉛を負極活物質として用い、アルカリ一次電池として構成された場合には、二酸化マンガンの放電反応は1電子反応よりも大きくなり得る。一方、オキシ水酸化ニッケルの放電反応は1電子反応を超えることはない。よってオキシ水酸化ニッケルを用いる場合には、二酸化マンガンを用いる場合よりも理論電気容量比を低く抑える必要がある。
【0009】
ここで、従来検討されていたコバルトと亜鉛とを含有させていないオキシ水酸化ニッケルを正極活物質として構成した電池では、正極利用率、自己放電による正極容量減少などの問題から(特に高温保存された場合)、その正極容量減少分に見合うだけ負極充填量を抑えておく必要がある。
【0010】
以上の二つの理由から、正極活物質にオキシ水酸化ニッケルを用いた場合には、負極充填量の増加による高容量化・高負荷特性は抑えて、過放電時の安全性・信頼性を確保せざるを得なかった。
【0011】
即ち、従来検討されていたオキシ水酸化ニッケルを正極活物質として構成した電池では、正極利用率、自己放電による正極容量減少などの問題から、過放電時の安全性・信頼性を保つためには電池構成としての理論電気容量比を低く抑えなければならなかった。そのため負極活物質の充填量に制限がかかり、高容量化、高負荷特性などを十分に達成できないものであった。
【0012】
本発明は、上記のような従来の課題に鑑みてなされたものであり、その目的は、高容量化・高負荷特性の向上を図りつつ、過放電時の安全性・信頼性を確保し得る、コバルトと亜鉛とを含有させたオキシ水酸化ニッケルを用いたアルカリ一次電池を提供することにある。
【0013】
【課題を解決するための手段】
上記の目的を達成するために、請求項1に係る発明では、正極合剤中に正極活物質として、二酸化マンガンとオキシ水酸化ニッケルを含み、前記オキシ水酸化ニッケルはコバルトと亜鉛のみを含有し、前記二酸化マンガンと前記オキシ水酸化ニッケルとの割合[MnO2:NiOOH]が重量比で25:75〜50:50範囲で混合されたアルカリ一次電池を、その[負極理論容量/正極理論容量]で示される理論電気容量比を1.10から1.06として構成する。
【0015】
請求項2に係る発明では、正極合剤中に正極活物質として、二酸化マンガンとオキシ水酸化ニッケルを含み、前記オキシ水酸化ニッケルは下記のA群に挙げられた元素のうち少なくとも1種類とコバルトと亜鉛とを含有し、前記二酸化マンガンと前記オキシ水酸化ニッケルとの割合[MnO2:NiOOH]が重量比で25:75〜50:50範囲で混合されたアルカリ一次電池を、その[負極理論容量/正極理論容量]で示される理論電気容量比を1.10から1.06として構成する。
{A群:Al,Ca,Mg,Ti,Sc,Fe,Mn,Y,Yb,Er}
【0017】
即ち、本発明では、コバルトと亜鉛、若しくは更にAl,Ca,Mg,Ti,Sc,Fe,Mn,Y,Yb,Erのうちの少なくともいずれか1つを含有させてなるオキシ水酸化ニッケルをアルカリ一次電池の正極活物質に用いることで、正極の利用率の向上と自己放電率の低減化とを図りつつ、従来のコバルトと亜鉛等とを含有させていないオキシ水酸化ニッケルを用いる場合よりも理論電気容量比を高めることができ、しかも当該高容量化・高負荷特性の改善を図った電池構成としても、過放電時の安全性・信頼性を確保することが可能となる。つまり、理論電気容量比には安全性・信頼性を確保できる上限値があるが、この上限値は用いる活物質に依存し、コバルトと亜鉛とを含有させたオキシ水酸化ニッケルの方が、従来のコバルトと亜鉛とを含有させていないオキシ水酸化ニッケルよりも上限値が高く、この上限値が高い分だけ高負荷特性を向上させることができる。
【0018】
また、既存のアルカリ電池に対し、正極の二酸化マンガンにオキシ水酸化ニッケルを混合することで高負荷特性を増大させることが可能である。その場合には正極の総理論容量は充填した二酸化マンガンとオキシ水酸化ニッケルの各理論容量の和となる。その際に、本発明のように、コバルトと亜鉛、若しくは更にA群(A群:Al,Ca,Mg,Ti,Sc,Fe,Mn,Y,Yb,Er)のうちの少なくともいずれか1つの元素を含有させたオキシ水酸化ニッケルを用いることで、従来のコバルトと亜鉛等とを含有させていないオキシ水酸化ニッケルを用いた場合よりも、理論電気容量比を高めることが可能となり、このことはオキシ水酸化ニッケルの正極中での割合が増すにつれて、すなわち高性能化を進めるにつれて、顕著となる。
【0019】
即ち、前述もしたように、理論電気容量比には安全性・信頼性を確保できる上限値があり、当該上限値はいかなる状況でも守らねばならないのであるが、従来のコバルト、亜鉛及びA群の元素を含有させていないオキシ水酸化ニッケルを正極活物質として用いた場合には、作製直後において理論電気容量比の上限値は守っていても、高温で保存されると、その高温保存中に正極の自己放電によって正極理論容量が減少するので、高温保存後にはその正極理論容量が減少した分だけ理論電気容量比が高くなってしまい、当該高温保存後の理論電気容量比が上限値を超えると安全性・信頼性が損なわれてしまうことになる。よって、電池作製時には、高温保存後にもその理論電気容量比が上限値を超えないように、高負荷特性を犠牲にしてでも正極理論容量を低く抑えておく必要があった。
【0020】
ところが、本発明で用いるコバルトと亜鉛、若しくは更にA群(A群:Al,Ca,Mg,Ti,Sc,Fe,Mn,Y,Yb,Er)のうちの少なくともいずれか1つの元素を含有させたオキシ水酸化ニッケルでは、従来のコバルトと亜鉛とを含有させていないオキシ水酸化ニッケルに比較して、正極利用率の向上と自己放電率の低減化が図れるため、高温保存による理論電気容量比の変化が少なくなり、もって従来のコバルトと亜鉛とを含有させていないオキシ水酸化ニッケルの場合ほど、当初から理論気容量比を低く抑えておく必要はなく、高負荷特性を向上させたアルカリ一次電池が得られるようになる。このようにして、放電特性などの高性能化を図りながらも、過放電時の安全性・信頼性を確保したアルカリ一次電池を提供することが可能になる。
【0021】
【発明の実施の形態】
以下に、本発明に係るアルカリ一次電池の好適な実施形態例について、参考形態例とともに説明する。
【0022】
《第1参考形態》
===正極の作製===
ニッケルとコバルトと亜鉛との原子量比率が所定の比率となるように硫酸ニッケルと硫酸コバルトと硫酸亜鉛とを混合した混合溶液1000mlを、30℃に保持した状態の反応槽中で、更に水酸化ナトリウム水溶液を加えて攪拌する。1時間程度攪拌した後、生成した沈殿物をろ過して取り出した後、水洗により洗浄を行う。洗浄後、常温で真空乾燥させて粉体サンプルを得る。
【0023】
次いで、10モル/lの水酸化ナトリウム水溶液に上記の粉体サンプルを100g加えて攪拌し、溶液温度を30℃〜60℃に保つ。前記溶液を攪拌しながら、10重量%の次亜塩素酸ナトリウム水溶液500mlを加えていき1時間程度攪拌を行った後、沈殿物をろ過により取り出し、水洗により洗浄を行った後、60℃以下の温度にて真空乾燥を行う。
【0024】
合成したオキシ水酸化ニッケルは、プラズマ発光分光分析装置(セイコー電子工業製 SPS4000)を用いて定量分析を実施し所定の組成であることを確認した。
【0025】
上記手法で得たコバルトと亜鉛のみを含有させたオキシ水酸化ニッケルでなる正極活物質と、導電剤(黒鉛粉末)、並びに電解液(40重量% 水酸化カリウム水溶液)とを重量比100:10:5の割合で混合して、混合物を作製し、加圧成型を行うことで中空状の円筒体を作製して正極とする。
【0026】
===負極の作製===
負極活物質として、亜鉛粉末と、酸化亜鉛を飽和状態で含む水酸化カリウム水溶液と、アクリル酸樹脂とを重量比60:40:1の割合で混合して、ゲル状の負極とする。
【0027】
===電池の作製===
図1に示すように、上記正極成形体2を有底筒体状の電池缶4内に密着させた状態で挿入配置するとともに、その正極成形体2の内側に、ポリプロピレン系不織布を底側を閉じて円筒状に加工したセパレータ6を挿入配置し、次に電解液として、40重量%K0H水溶液を注液した後、このセパレータ6の内側の中心部分に負極8を注入充填する。
【0028】
上記電池缶4の開口は、集電子10、ガスケット12、負極蓋14が一体化された負極端子16を用いて密閉し、目的とする単三サイズのアルカリ電池をインサイドアウト型に作製する。
【0029】
そして、参考例1としてCoを5モル%、Znを8モル%含有させたオキシ水酸化ニッケルを正極活物質として用いたものを、また参考例2としてCo,Znをそれぞれ5モル%ずつ含有させたオキシ水酸化ニッケルを正極活物質として用いたものをそれぞれ作製した。
【0030】
なお、その際に比較例1として、Co,Znを含有させていないオキシ水酸化ニッケルを正極活物質として用いたものも作製した。
【0031】
ここで、正極充填量(重量)は一定とし、負極活物質の充填量(重量)を変えて理論電気容量比を変更した。即ち、当該理論電気容量比は、比較例1では1.19,1.10,1.00,0.97,0.95の5種に設定し、参考例1と参考例2とは1.19,1.15,1.10,1.06の4種にそれぞれ設定して作製した。
【0032】
そして、このように作製した各電池について、放電特性評価、過放電時の安全性・信頼性評価を行った。その結果を下表1、2、3に示す。
【0033】
【表1】
【表2】
【表3】
注1)(−/+)比は理論電気容量比を示した。
注2)1WCP放電は、1W定電力放電持続時間(終止電圧1V)について、比較例1 (−/+)比0.95の場合を100とした相対的数値であり、n=3の平均値を示した。
注3)過放電は10Ω定抵抗1週間連続放電後漏液なしの場合は○、漏液発生の場合は×で示した。
注4〉理論電気容量比はオキシ水酸化ニッケルの重量当たり理論電気容量を292mAh/g、亜鉛の重量当たり理論容量を820mAh/gとして算出した。
【0034】
上記の表1〜3にて明らかなように、比較例1では理論電気容量比が1.00でも、過放電時に漏液が発生するものが見られているが、参考例1および参考例2では1.10まで安全性・信頼性が保たれている。また、放電特性においては、比較例1、参考例1,2ともに理論電気容量比が高くなるにつれて良くなるものであった。
【0035】
従って、正極合剤中に、正極活物質としてコバルトと亜鉛のみを含有させたオキシ水酸化ニッケルを含み、その理論電気容量比を1.10以下となした本発明の第1参考形態のアルカリ一次電池にあっては、正極の利用率の向上と自己放電率の低減化とを図りつつ、従来のコバルトと亜鉛とを含有させていないオキシ水酸化ニッケルを用いる場合よりも、理論電気容量比を高めることができ、しかも当該高容量化・高負荷特性の改善を図った電池構成としても、過放電時の安全性・信頼性を確保することができるようになる。
【0036】
《第2参考形態》
第1参考形態の参考例1における正極活物質を、一般組成Ni0.89Co0.05Zn0.05A0.01OOHとして表記されるオキシ水酸化ニッケルに置き換えた単三サイズのアルカリ電池を、第2参考形態として作製した。ここで、Aは{A1,Ca,Mg,Ti,Sc,Fe,Mn,Y,Yb,Er}の10種から選ばれる元素であり、Aの各元素に対応させて参考例3〜12を作製し、かつ各参考例3〜12毎に、理論電気容量比を1.19,1.15,1.10の3種に設定したものを用意した。電池構成は用いる正極活物質を変更した以外は第1参考形態の参考例1と同様とした。ここで、正極充填量(重量)は一定とし、負極活物質の充填量(重量)を変えて理論電気容量比を変更した。また比較対象として第1参考形態の説明で示した比較例1、及び参考例2を用いた。
【0037】
なお、当該第2参考形態では、正極は以下のようにして作製した。即ち、上記Aのいずれかの元素とニッケル、コバルト、亜鉛とのそれぞれの原子量比率が所定の比率となるようにA元素の硫酸塩と硫酸ニッケルと硫酸コバルトと硫酸亜鉛とを混合した混合溶液1000mlを、30℃に保持した状態の反応槽中で、更に水酸化ナトリウム水溶液を加えて攪拌する。1時間程度攪拌した後、生成した沈殿物をろ過して取り出し、水洗による洗浄後、常温で真空乾燥させて粉体サンプルを作製する。次いで、10モル/lの水酸化ナトリウム水溶液に上記粉体サンプルを100g加えて攪拌し、溶液温度を30℃〜60℃に保ちつつ当該溶液を攪拌しながら、10重量%の次亜塩素酸ナトリウム水溶液500mlを加えていき1時間程度攪拌を行った後、沈殿物をろ過により取り出し、水洗により洗浄を行った後、60℃以下の温度にて真空乾燥を行う。そして、上記手法で得たA元素とコバルトと亜鉛とを含有させたオキシ水酸化ニッケルでなる正極活物質と、導電剤(黒鉛粉末)、並びに電解液(40重量% 水酸化カリウム水溶液)とを重量比100:10:5の割合で混合して、混合物を作製し、加圧成型を行うことで中空状の円筒体を作製して正極とした。
【0038】
このようにして作製した各電池について、放電特性評価、過放電時の安全性・信頼性評価を行った。その結果を下表4に示す。
【0039】
【表4】
注1)(−/+)比は理論電気容量比を示した。
注2)1W CP放電は1W定電力放電持続時間(終止電圧1V〉について、従来例1の場合を100とした相対的数値であり、(−/+)比1.10の場合のn=3での平均値を示した。
注3)過放電は10Ω定抵抗1週間連続放電後漏液なしの場合は○、漏液発生の場合は×で示した。
注4)理論電気容量比はオキシ水酸化ニッケルの重量当たり理論容量を292 mAh/g、亜鉛の重量当たり理論容量を820mAh/gとして算出した。
【0040】
上記の表4から明らかなように、当該第2参考形態に係る構成の参考例3〜12のアルカリ一次電池では、前述の第1参考形態に係る構成の参考例2に比較して、放電特性の向上が見られて出力特性が良くなっており、しかも過放電時についても参考例2と同様に、理論容量比を1.10まで高めても安全性は確保されていた。
【0041】
《第1実施形態》
第1実施形態では、Co,Znをそれぞれ5モル%ずつ含有させたオキシ水酸化二ッケルと二酸化マンガンとの割合[NiOOH:MnO2]を重量比50:50で混合したものを正極活物質に用いた実施例1と、その割合[NiOOH:MnO2]を重量比75:25で混合したものを正極活物質に用いた実施例2とを作製した。電池構成としては、用いる正極活物質に二酸化マンガンを更に加えて変更した点以外は、第1参考形態と同様にして、単三サイズのアルカリ電池を作製した。
【0042】
その際に、Co,Znを含有させていないオキシ水酸化ニッケルと二酸化マンガンとを重量比0:100で混合した正極活物質(つまり二酸化マンガンのみ)を用いたものを比較例2として作製し、また重量比50:50で混合したものを比較例3として作製し、さらに重量比75:25で混合したものを比較例4として作製した。
【0043】
また、正極充填量は一定とし、負極活物質の充填量を変えて理論電気容量比を変更した。ここで、当該理論電気容量比は、比較例2では1.30,1.25,1.20,1.15の4種に、比較例3と実施例1では1.20,1.15,1.12,1.08の4種に、比較例4と実施例2では1.17,1.12,1.05,1.00の4種にそれぞれ設定した。
【0044】
そして、このように作製した各電池について、放電特性評価、過放電時の安全性・信頼性評価を行った。その結果を下表5、6、7に示す。
【0045】
【表5】
*)放電特性は、1W定電力放電持続時問(終止電圧1V)について、
比較例2(−/+)比1.15の場合を100とした相対的数値であり、
n=3の平均値を示した。
【0046】
【表6】
*)放電特性は、1W定電力放電持続時間〈終止電圧1V)について、比較例3(−/+)比1.08の場合を100とした相対的数値であり、n=3の平均値を示した。
【0047】
【表7】
*)放電特性は、1W定電力放電持続時間〈終止電圧1V)について、比較例4(−/+)比1.00の場合を100とした相対的数値であり、n=3の平均値を示した。
注1)(−/+)比は理論電気容量比を示した。
注2)過放電は10Ω定抵抗1週間連続放電後に漏液なしの場合は○、漏液発生の場合は×を示した。
注3)理論電気容量比はオキシ水酸化ニッケルの重量当たり理論電気容量を292mAh/g、二酸化マンガンの重量当たり理論容量を308mAh/g、亜鉛の重量当たり理論容量を820mAh/gとして算出した。
【0048】
上記の表5〜7にて明らかなように、当該第1実施形態の構成に係るアルカリ一次電池の実施例1,2はともに、前述の第1参考形態の参考例1と同様に、比較例3,4では過放電時に漏液が発生するような高い理論電気容量比であっても、過放電時の安全性・信頼性が保たれている。また、放電特性においては、両実施例1,2ともに理論電気容量比が大きくなるにつれて良くなっていた。
【0049】
《第2実施形態》
単三サイズのアルカリ電池を作製した。その際に一般組成Ni0.89Co0.05Zn0.05A0.01OOHとして表記されるオキシ水酸化ニッケルと二酸化マンガンを重量比50:50で混合したものを正極活物質に用いたものを、実施例3〜12として作製した。ここで、Aは{Al,Ca,Mg,Ti,Sc,Fe,Mn,Y,Yb,Er}の10種から選ばれる元素である。また比較対象として第1実施形態で示した比較例3と実施例1とを用いた。第2実施形態の電池構成としては、用いる正極活物質に二酸化マンガンを更に加えて変更した点以外は、第2参考形態と同様とした。また、正極充填量(重量)は一定とし、負極活物質の充填量(重量)を変えて理論電気容量比を変更した。ここで、当該理論電気容量比は、1.20,1.15,1.12,の3種にそれぞれ設定した。
【0050】
そして、このように作製した各電池について、放電特性評価、過放電時の安全性・信頼性評価を行った。その結果を下表8に示す。
【0051】
【表8】
注1)(−/+)比は理論電気容量比を示した。
注2)1W CP放電は、1W定電力放電持続時間(終止電圧1V)について、比較例3の場合を100とした相対的数値であり、(−/+)比1.15の場合のn=3での平均値を示した。
注3〉過放電は10Ω定抵抗1週間連続放電後漏液なしの場合は○、漏液発生の場合は×で示した。
注4)理論電気容量比はオキシ水酸化ニッケルの重量当たり理論電気容量を292mAh/g、亜鉛の重量当たり理論容量を820mAh/g、二酸化マンガンの重量当たり理論容量を308mAh/gとして算出した。
【0052】
上記の表8にて明らかなように、当該第2実施形態の構成に係るアルカリ一次電池の実施例3〜12では、第1実施形態の実施例1に比較して、放電特性の更なる向上が見られて出力特性が良くなっており、しかも過放電時についても、実施例1と同様に理論容量比を1.15まで高めても安全性は確保されていた。
【0053】
なお、上記各参考例1〜12と実施例1〜12及び比較例1〜4において、理論電気容量比を変更するにあたっては、正極合剤の充填量(重量)を一定にして負極材料の充填量(重量)を変更するようにしているが、具体的には以下のような手法により理論電気容量比の調節を行った。
【0054】
即ち、正極合剤の充填量(重量)と配合組成から、正極活物質であるオキシ水酸化ニッケル、二酸化マンガンのそれぞれの充填量(重量)Wng,Wmgを求める。求めた充填量(重量)と重量当たり理論容量から(オキシ水酸化ニッケル:292mAh/g、二酸化マンガン:308mAh/gとして)充填されたオキシ水酸化ニッケルと二酸化マンガンの各理論容量を求め、その和を正極の総理論容量とする。そして、この正極の総理論容量に対して負極理論容量、つまり負極充填量(重量)を調節して理論電気容量比を所望値に合致させることになる。即ち、正極理論容量と所望の理論電気容量比から負極理論容量が決定される。この負極理論容量と亜鉛の重量当たり理論容量から(820mAh/gとして)、亜鉛充填量(重量)が決定される。さらに亜鉛充填量(重量)と負極配合組成から負極ゲル充填量(重量)が決定され、当該負極ゲル重量を充填することになる。
【0055】
【発明の効果】
以上に説明したように、本発明によればコバルトと亜鉛、若しくは更にAl,Ca,Mg,Ti,Sc,Fe,Mn,Y,Yb,Erのうちのいずれか1つを含有させてなるオキシ水酸化ニッケルをアルカリ一次電池の正極活物質に用いることで、正極の利用率の向上と自己放電率の低減化とを図りつつ、従来のコバルトと亜鉛等とを含有させていないオキシ水酸化ニッケルを用いる場合よりも理論電気容量比を高めることができ、しかも当該高容量化・高負荷特性の改善を図った電池構成としても、過放電時の安全性・信頼性を確保することが可能となる。
【0056】
また、既存のアルカリ電池に対し、正極の二酸化マンガンにオキシ水酸化ニッケルを混合することで高負荷特性を向上させることが可能になり、この場合には、正極の総理論容量は充填した二酸化マンガンとオキシ水酸化ニッケルの各理論容量の和となる。
【図面の簡単な説明】
【図1】本発明に係るアルカリ一次電池の縦断面図である。
【符号の説明】
2 正極成形体
4 電池缶
6 セパレータ
8 負極
10 集電子
12 ガスケット
14 負極蓋
16 負極端子[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an alkaline primary battery including nickel oxyhydroxide in a positive electrode mixture, and particularly relates to a technique for increasing capacity and improving high load characteristics.
[0002]
[Prior art]
Currently, alkaline manganese batteries using high-power characteristics are mainly alkaline manganese batteries using manganese dioxide as the positive electrode active material, zinc as the negative electrode active material, and an alkaline aqueous solution as the electrolyte. In recent years, with the improvement in performance of portable devices such as digital cameras and information communication terminals, further improvement in high load characteristics for alkaline manganese batteries used as its power source, And the demand for higher capacity is increasing.
[0003]
One effective means for meeting such demand is to increase the amount of active material filling. In particular, increasing the negative electrode filling amount is effective as a means for improving high load characteristics.
[0004]
However, if the theoretical capacity ratio represented by [negative electrode theoretical capacity / positive electrode theoretical capacity] is excessively increased, that is, if the negative electrode filling amount is excessively increased with respect to the positive electrode filling amount, the positive electrode active material is used up first in overdischarge. Will be. And when the electrochemical reaction which becomes a pair of the negative electrode reaction by the remaining negative electrode active material is accompanied by gas generation | occurrence | production, a leak generation | occurrence | production occurs by the raise of a battery internal pressure. Therefore, in order to maintain the safety and reliability of the battery, it is necessary to set the theoretical electric capacity ratio to a certain value or less, and the negative electrode filling amount must be limited. As described above, there is an upper limit to the increase in capacity and the improvement in the high load characteristics due to the increase in the filling amount as an improvement on the negative electrode side.
[0005]
As another means, from the viewpoint of improving the positive electrode side, the application of β-type or γ-type nickel oxyhydroxide to the positive electrode active material has long attracted attention, and application to alkaline secondary batteries has been studied. (See JP-A-53-32347, JP-A-55-30133, etc.). Here, the conventional β-type and γ-type conventional nickel oxyhydroxides have a problem that the battery capacity decreases due to self-discharge when left at high temperature for a long time, and the capacity is reduced due to the self-discharge. for primary batteries, because that would mean the loss of cell function, as a cathode material cost alkaline primary battery has been assumed to not be employed.
[0006]
Accordingly, the present inventors have conducted research and development on various nickel oxyhydroxides for the purpose of improving self-discharge that occurs when left at high temperatures for a long period of time. As a result, it was learned that by adding cobalt and zinc to nickel oxyhydroxide at the same time, self-discharge can be suppressed and application to a primary battery becomes possible, and the cobalt and zinc were contained. already proposed for alkaline primary battery according to the nickel oxyhydroxide cathode material cost.
[0007]
Further, by combining the above two means, that is, increasing the filling amount of the negative electrode and using nickel oxyhydroxide as the positive electrode active material, it is possible to further increase the capacity and load characteristics of the alkaline primary battery. It is possible to improve.
[0008]
[Problems to be solved by the invention]
However, the following points are mentioned as differences between the two. That is, the theoretical capacity per weight when the two discharge reactions are one-electron reactions is manganese dioxide: 308 mAh / g and nickel oxyhydroxide: 292 mAh / g. However, when zinc is actually used as the negative electrode active material and configured as an alkaline primary battery, the discharge reaction of manganese dioxide can be larger than the one-electron reaction. On the other hand, the discharge reaction of nickel oxyhydroxide does not exceed the one-electron reaction. Therefore, when using nickel oxyhydroxide, it is necessary to keep the theoretical capacity ratio lower than when using manganese dioxide.
[0009]
Here, in the case of a battery in which nickel oxyhydroxide not containing cobalt and zinc, which has been studied in the past, is used as a positive electrode active material, due to problems such as a positive electrode utilization rate and a decrease in positive electrode capacity due to self-discharge (particularly stored at high temperature) ), It is necessary to suppress the negative electrode filling amount to meet the decrease in the positive electrode capacity.
[0010]
For the above two reasons, when nickel oxyhydroxide is used as the positive electrode active material, high capacity and high load characteristics due to an increase in the filling amount of the negative electrode are suppressed, ensuring safety and reliability during overdischarge. I had to do it.
[0011]
In other words, in the case of a battery constructed using nickel oxyhydroxide as a positive electrode active material, which has been studied in the past, in order to maintain safety and reliability during overdischarge due to problems such as positive electrode utilization rate and decrease in positive electrode capacity due to self-discharge. The theoretical electrical capacity ratio as a battery configuration had to be kept low. For this reason, the amount of filling of the negative electrode active material is limited, and high capacity and high load characteristics cannot be sufficiently achieved.
[0012]
The present invention has been made in view of the conventional problems as described above, and the object thereof is to ensure safety and reliability during overdischarge while improving capacity and load characteristics. Another object of the present invention is to provide an alkaline primary battery using nickel oxyhydroxide containing cobalt and zinc.
[0013]
[Means for Solving the Problems]
To achieve the above object, the invention according to claim 1, as a positive electrode active material in the positive electrode mixture includes manganese dioxide and nickel oxyhydroxide, the nickel oxyhydroxide contains only cobalt and zinc Then, an alkaline primary battery in which the ratio [MnO 2 : NiOOH] of the manganese dioxide and the nickel oxyhydroxide is mixed in a weight ratio of 25:75 to 50:50 is expressed as [negative electrode theoretical capacity / positive electrode theoretical capacity]. ] Is set as 1.10 to 1.06.
[0015]
In the invention according to
{Group A: Al, Ca, Mg, Ti, Sc, Fe, Mn, Y, Yb, Er}
[0017]
That is, in the present invention, nickel oxyhydroxide containing at least one of cobalt and zinc, or Al, Ca, Mg, Ti, Sc, Fe, Mn, Y, Yb, and Er is alkalinized. By using it as the positive electrode active material of the primary battery, while improving the positive electrode utilization rate and reducing the self-discharge rate, the conventional nickel oxyhydroxide containing no cobalt and zinc is used. It is possible to increase the theoretical electric capacity ratio and to ensure the safety and reliability during overdischarge even in the battery configuration in which the capacity is increased and the load characteristics are improved. In other words, the theoretical capacity ratio has an upper limit that can ensure safety and reliability, but this upper limit depends on the active material used, and nickel oxyhydroxide containing cobalt and zinc is more conventional. The upper limit value is higher than that of nickel oxyhydroxide containing no cobalt and zinc, and the high load characteristic can be improved by the amount of the upper limit value being higher.
[0018]
Moreover, it is possible to increase a high load characteristic with respect to the existing alkaline battery by mixing nickel oxyhydroxide with the manganese dioxide of a positive electrode. In that case, the total theoretical capacity of the positive electrode is the sum of the theoretical capacity of the filled manganese dioxide and nickel oxyhydroxide. At that time, as in the present invention, at least one of cobalt and zinc, or group A (group A: Al, Ca, Mg, Ti, Sc, Fe, Mn, Y, Yb, Er) is used. By using nickel oxyhydroxide containing elements, it is possible to increase the theoretical capacity ratio compared to the case of using nickel oxyhydroxide that does not contain conventional cobalt and zinc. Becomes more prominent as the proportion of nickel oxyhydroxide in the positive electrode increases, that is, as performance increases.
[0019]
That is, as described above, the theoretical capacity ratio has an upper limit value that can ensure safety and reliability, and the upper limit value must be observed under any circumstances. When nickel oxyhydroxide that does not contain any element is used as the positive electrode active material, even if the upper limit of the theoretical electric capacity ratio is observed immediately after fabrication, if it is stored at high temperatures, Since the theoretical capacity of the positive electrode decreases due to self-discharge, the theoretical capacity ratio increases after the storage at high temperature, and the theoretical capacity ratio after storage at high temperature exceeds the upper limit. Safety and reliability will be impaired. Therefore, when manufacturing the battery, it was necessary to keep the positive electrode theoretical capacity low even at the expense of high load characteristics so that the theoretical electric capacity ratio does not exceed the upper limit even after storage at high temperature.
[0020]
However, it contains cobalt and zinc used in the present invention, or at least one element of group A (group A: Al, Ca, Mg, Ti, Sc, Fe, Mn, Y, Yb, Er). Compared to conventional nickel oxyhydroxide that does not contain cobalt and zinc, the nickel oxyhydroxide can improve the positive electrode utilization rate and reduce the self-discharge rate. As compared with the conventional nickel oxyhydroxide that does not contain cobalt and zinc, there is no need to keep the stoichiometric ratio low from the beginning, and the alkali primary with improved high load characteristics. A battery can be obtained. In this manner, it is possible to provide an alkaline primary battery that ensures safety and reliability during overdischarge while improving performance such as discharge characteristics.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of the alkaline primary battery according to the present invention will be described together with reference embodiments .
[0022]
<< First Reference Form >>
=== Production of Positive Electrode ===
Sodium hydroxide is further added in a reaction vessel in which 1000 ml of a mixed solution in which nickel sulfate, cobalt sulfate, and zinc sulfate are mixed so that the atomic weight ratio of nickel, cobalt, and zinc is a predetermined ratio is maintained at 30 ° C. Add aqueous solution and stir. After stirring for about 1 hour, the generated precipitate is filtered out and washed with water. After washing, vacuum dry at room temperature to obtain a powder sample.
[0023]
Next, 100 g of the above powder sample is added to a 10 mol / l aqueous sodium hydroxide solution and stirred, and the solution temperature is kept at 30 ° C to 60 ° C. While stirring the solution, 500 ml of a 10% by weight sodium hypochlorite aqueous solution was added and the mixture was stirred for about 1 hour, and then the precipitate was taken out by filtration and washed with water. Vacuum drying at temperature.
[0024]
The synthesized nickel oxyhydroxide was quantitatively analyzed using a plasma emission spectroscopic analyzer (SPS4000 manufactured by Seiko Denshi Kogyo Co., Ltd.) and confirmed to have a predetermined composition.
[0025]
The positive electrode active material made of nickel oxyhydroxide containing only cobalt and zinc obtained by the above method, the conductive agent (graphite powder), and the electrolytic solution (40 wt% potassium hydroxide aqueous solution) in a weight ratio of 100: 10 : Mixing at a ratio of 5 to produce a mixture, and then performing pressure molding to produce a hollow cylindrical body as a positive electrode.
[0026]
=== Production of Negative Electrode ===
As a negative electrode active material, zinc powder, a potassium hydroxide aqueous solution containing zinc oxide in a saturated state, and an acrylic acid resin are mixed at a weight ratio of 60: 40: 1 to obtain a gelled negative electrode.
[0027]
=== Production of Battery ===
As shown in FIG. 1, the positive electrode molded
[0028]
The opening of the battery can 4 is sealed using a
[0029]
Then, as Reference Example 1, nickel oxyhydroxide containing 5 mol% Co and 8 mol% Zn as a positive electrode active material was used, and as Reference Example 2, 5 mol% Co and Zn were respectively contained. Each of these was prepared using nickel oxyhydroxide as the positive electrode active material.
[0030]
At that time, as Comparative Example 1, a nickel oxyhydroxide containing no Co or Zn was used as a positive electrode active material.
[0031]
Here, the positive electrode filling amount (weight) was constant, and the theoretical electric capacity ratio was changed by changing the filling amount (weight) of the negative electrode active material. That is, the theoretical electric capacity ratio is set to five kinds of 1.19, 1.10, 1.00, 0.97, and 0.95 in the comparative example 1, and the reference example 1 and the reference example 2 are 1. It was prepared by setting four types of 19, 1.15, 1.10, and 1.06, respectively.
[0032]
And about each battery produced in this way, discharge characteristic evaluation and the safety | security and reliability evaluation at the time of an overdischarge were performed. The results are shown in Tables 1, 2, and 3 below.
[0033]
[Table 1]
[Table 2]
[Table 3]
Note 1) The (-/ +) ratio indicates the theoretical capacitance ratio.
Note 2) 1WCP discharge is a relative numerical value with respect to 1W constant power discharge duration (end voltage 1V) as 100 in the case of Comparative Example 1 (− / +) ratio 0.95, and average value of n = 3 showed that.
Note 3) Overdischarge is indicated by ○ when there is no leakage after continuous discharge for 10 Ω constant resistance for 1 week, and × when leakage occurs.
Note 4> The theoretical electric capacity ratio was calculated based on a theoretical electric capacity per weight of nickel oxyhydroxide of 292 mAh / g and a theoretical capacity per weight of zinc of 820 mAh / g.
[0034]
As is apparent from Tables 1 to 3 above, in Comparative Example 1, even though the theoretical capacitance ratio is 1.00, liquid leakage occurs during overdischarge, but Reference Example 1 and Reference Example 2 Therefore, safety and reliability are maintained up to 1.10. Further, in the discharge characteristics, both Comparative Example 1 and Reference Examples 1 and 2 were improved as the theoretical electric capacity ratio was increased.
[0035]
Thus, the positive electrode mixture contains nickel oxyhydroxide which contains only cobalt and zinc as a positive active material, an alkaline one primary first reference embodiment of the present invention without the theoretical electric capacity ratio 1.10 or less In the battery, while improving the utilization rate of the positive electrode and reducing the self-discharge rate, the theoretical capacitance ratio is more than when using conventional nickel oxyhydroxide that does not contain cobalt and zinc. In addition, even with a battery configuration that can improve the capacity and load characteristics, safety and reliability during overdischarge can be ensured.
[0036]
<< Second Reference Form >>
AA size alkaline battery in which the positive electrode active material in Reference Example 1 of the first reference form is replaced with nickel oxyhydroxide expressed as a general composition Ni 0.89 Co 0.05 Zn 0.05 A 0.01 OOH is produced as a second reference form. did. Here, A is an element selected from 10 types of {A1, Ca, Mg, Ti, Sc, Fe, Mn, Y, Yb, Er}, and Reference Examples 3 to 12 are made corresponding to each element of A. For each of Reference Examples 3 to 12, prepared were those having a theoretical electric capacity ratio set to three kinds of 1.19, 1.15 and 1.10. The battery configuration was the same as in Reference Example 1 of the first reference embodiment except that the positive electrode active material used was changed. Here, the positive electrode filling amount (weight) was constant, and the theoretical electric capacity ratio was changed by changing the filling amount (weight) of the negative electrode active material. Moreover, the comparative example 1 and the reference example 2 which were shown by description of 1st reference form were used as a comparison object.
[0037]
In the second reference embodiment, the positive electrode was produced as follows. That is, 1000 ml of a mixed solution in which an element A sulfate, nickel sulfate, cobalt sulfate, and zinc sulfate are mixed so that the atomic weight ratio of each of the elements A to nickel, cobalt, and zinc is a predetermined ratio. In a reaction vessel maintained at 30 ° C., an aqueous sodium hydroxide solution is further added and stirred. After stirring for about 1 hour, the produced precipitate is filtered out, washed with water, and vacuum dried at room temperature to prepare a powder sample. Next, 100 g of the above powder sample was added to a 10 mol / l aqueous sodium hydroxide solution and stirred, and the solution was kept at 30 ° C. to 60 ° C. while stirring the solution, and 10 wt% sodium hypochlorite. After adding 500 ml of an aqueous solution and stirring for about 1 hour, the precipitate is taken out by filtration, washed with water, and then vacuum dried at a temperature of 60 ° C. or lower. Then, a positive electrode active material made of nickel oxyhydroxide containing element A, cobalt and zinc obtained by the above method, a conductive agent (graphite powder), and an electrolytic solution (40 wt% potassium hydroxide aqueous solution). A mixture was prepared by mixing at a weight ratio of 100: 10: 5, and a hollow cylindrical body was produced by pressure molding to obtain a positive electrode.
[0038]
Each battery produced in this way was evaluated for discharge characteristics and safety / reliability during overdischarge. The results are shown in Table 4 below.
[0039]
[Table 4]
Note 1) The (-/ +) ratio indicates the theoretical capacitance ratio.
Note 2) 1 W CP discharge is a relative numerical value with respect to 1 W constant power discharge duration (end voltage 1 V) as 100 in the case of Conventional Example 1, and n = 3 when the (− / +) ratio is 1.10. The average value was shown.
Note 3) Overdischarge is indicated by ○ when there is no leakage after continuous discharge for 10 Ω constant resistance for 1 week, and × when leakage occurs.
Note 4) The theoretical electric capacity ratio was calculated based on a theoretical capacity per weight of nickel oxyhydroxide of 292 mAh / g and a theoretical capacity per weight of zinc of 820 mAh / g.
[0040]
As apparent from Table 4 above, in the alkaline primary batteries of Reference Examples 3 to 12 having the configuration according to the second reference embodiment, the discharge characteristics are compared with those of Reference Example 2 having the configuration according to the first reference embodiment. As a result, the output characteristics were improved, and even during overdischarge, safety was ensured even when the theoretical capacity ratio was increased to 1.10, as in Reference Example 2.
[0041]
<< First Embodiment >>
In the first embodiment, a mixture of nickel oxyhydroxide and manganese dioxide containing 5 mol% of Co and Zn at a weight ratio of 50:50 [NiOOH: MnO 2 ] is used as the positive electrode active material. Example 1 was prepared, and Example 2 in which the ratio [NiOOH: MnO 2 ] was mixed at a weight ratio of 75:25 was used as the positive electrode active material. As the battery configuration, an AA alkaline battery was produced in the same manner as in the first embodiment except that manganese dioxide was further added to the positive electrode active material to be used.
[0042]
At that time, a comparative example 2 was prepared using a positive electrode active material in which nickel oxyhydroxide not containing Co and Zn and manganese dioxide were mixed at a weight ratio of 0: 100 (that is, only manganese dioxide). Moreover, what was mixed by weight ratio 50:50 was produced as Comparative Example 3, and what was further mixed by weight ratio 75:25 was produced as Comparative Example 4.
[0043]
Moreover, the positive electrode filling amount was constant, and the theoretical electric capacity ratio was changed by changing the filling amount of the negative electrode active material. Here, the theoretical capacitance ratio is 1.30, 1.25, 1.20, 1.15 in Comparative Example 2, and 1.20, 1.15 in Comparative Example 3 and Example 1 . It was set to 4 types of 1.12 and 1.08, and 4 types of 1.17, 1.12, 1.05 and 1.00 in Comparative Example 4 and Example 2 , respectively.
[0044]
And about each battery produced in this way, discharge characteristic evaluation and the safety | security and reliability evaluation at the time of an overdischarge were performed. The results are shown in Tables 5, 6, and 7 below.
[0045]
[Table 5]
*) Discharge characteristics for 1W constant power discharge duration (end voltage 1V)
Comparative Example 2 (− / +) is a relative value with the ratio of 1.15 as 100,
The average value of n = 3 was shown.
[0046]
[Table 6]
*) Discharge characteristics are relative numerical values with respect to 1 W constant power discharge duration <end voltage 1 V), with the case of Comparative Example 3 (− / +) ratio 1.08 being 100, and the average value of n = 3 Indicated.
[0047]
[Table 7]
*) Discharge characteristics are relative numerical values with respect to 1 W constant power discharge duration <end voltage 1 V), with the case of Comparative Example 4 (− / +) ratio 1.00 being 100, and the average value of n = 3 Indicated.
Note 1) The (-/ +) ratio indicates the theoretical capacitance ratio.
Note 2) Overdischarge is indicated by ○ when there is no leakage after continuous discharge for 10 Ω constant resistance for 1 week, and × when leakage occurs.
Note 3) The theoretical electric capacity ratio was calculated assuming that the theoretical electric capacity per weight of nickel oxyhydroxide was 292 mAh / g, the theoretical capacity per weight of manganese dioxide was 308 mAh / g, and the theoretical capacity per weight of zinc was 820 mAh / g.
[0048]
As apparent from Tables 5 to 7, Examples 1 and 2 of the alkaline primary battery according to the configuration of the first embodiment are both comparative examples as in Reference Example 1 of the first reference embodiment. In 3 and 4, safety and reliability at the time of overdischarge are maintained even at a high theoretical electric capacity ratio in which leakage occurs at the time of overdischarge. Further, in the discharge characteristics, both Examples 1 and 2 were improved as the theoretical capacitance ratio was increased.
[0049]
<< Second Embodiment >>
AA size alkaline batteries were prepared. At that time, a mixture of nickel oxyhydroxide and manganese dioxide expressed as a general composition Ni 0.89 Co 0.05 Zn 0.05 A 0.01 OOH in a weight ratio of 50:50 was used as the positive electrode active material. As produced. Here, A is an element selected from 10 types of {Al, Ca, Mg, Ti, Sc, Fe, Mn, Y, Yb, Er}. Moreover, the comparative example 3 and Example 1 which were shown by 1st Embodiment were used as a comparison object. The battery configuration of the second embodiment was the same as that of the second reference embodiment except that the positive electrode active material used was further changed by adding manganese dioxide. Moreover, the positive electrode filling amount (weight) was constant, and the theoretical electric capacity ratio was changed by changing the filling amount (weight) of the negative electrode active material. Here, the theoretical electric capacity ratio was set to three kinds of 1.20, 1.15, 1.12.
[0050]
And about each battery produced in this way, discharge characteristic evaluation and the safety | security and reliability evaluation at the time of an overdischarge were performed. The results are shown in Table 8 below.
[0051]
[Table 8]
Note 1) The (-/ +) ratio indicates the theoretical capacitance ratio.
Note 2) 1 W CP discharge is a relative numerical value with respect to 1 W constant power discharge duration (end voltage 1 V), with the case of Comparative Example 3 being 100, and n = in the case of (− / +) ratio 1.15 The average value at 3 is shown.
Note 3> Overdischarge is indicated by ○ when there is no leakage after continuous discharge for 10 Ω constant resistance for 1 week, and × when leakage occurs.
Note 4) The theoretical electric capacity ratio was calculated assuming that the theoretical electric capacity per weight of nickel oxyhydroxide was 292 mAh / g, the theoretical capacity per weight of zinc was 820 mAh / g, and the theoretical capacity per weight of manganese dioxide was 308 mAh / g.
[0052]
As apparent from Table 8 above, in Examples 3 to 12 of the alkaline primary battery according to the configuration of the second embodiment, the discharge characteristics are further improved as compared with Example 1 of the first embodiment. The output characteristics were improved, and safety was ensured even during overdischarge even when the theoretical capacity ratio was increased to 1.15 as in Example 1 .
[0053]
In each of the above Reference Examples 1 to 12, Examples 1 to 12, and Comparative Examples 1 to 4, when changing the theoretical capacitance ratio, filling the negative electrode material with the positive electrode mixture filling amount (weight) constant. Although the amount (weight) was changed, specifically, the theoretical capacitance ratio was adjusted by the following method.
[0054]
That is, the filling amount of the positive electrode mixture from the blending composition (weight), determined nickel oxyhydroxide as a positive electrode active material, each of the loading of manganese dioxide (wt) Wn g, the Wm g. From the obtained filling amount (weight) and the theoretical capacity per weight (as nickel oxyhydroxide: 292 mAh / g, manganese dioxide: 308 mAh / g), the respective theoretical capacities of the filled nickel oxyhydroxide and manganese dioxide were determined, and the sum Is the total theoretical capacity of the positive electrode. Then, by adjusting the negative electrode theoretical capacity, that is, the negative electrode filling amount (weight) with respect to the total theoretical capacity of the positive electrode, the theoretical electric capacity ratio is matched with a desired value. That is, the negative electrode theoretical capacity is determined from the positive electrode theoretical capacity and a desired theoretical electric capacity ratio. From the theoretical capacity of the negative electrode and the theoretical capacity per weight of zinc (as 820 mAh / g), the zinc filling amount (weight) is determined. Further, the negative electrode gel filling amount (weight) is determined from the zinc filling amount (weight) and the negative electrode blend composition, and the negative electrode gel weight is filled.
[0055]
【The invention's effect】
As described above, according to the present invention, cobalt and zinc, or an oxy-containing further one of Al, Ca, Mg, Ti, Sc, Fe, Mn, Y, Yb, and Er. By using nickel hydroxide as the positive electrode active material for alkaline primary batteries, nickel oxyhydroxide that does not contain conventional cobalt and zinc, etc. while improving the positive electrode utilization rate and reducing the self-discharge rate It is possible to increase the theoretical capacity ratio compared to the case of using a battery, and also to ensure safety and reliability during overdischarge even with a battery configuration that achieves higher capacity and higher load characteristics. Become.
[0056]
In addition, it is possible to improve the high load characteristics by mixing nickel oxyhydroxide with manganese dioxide of the positive electrode compared to existing alkaline batteries. In this case, the total theoretical capacity of the positive electrode is the charged manganese dioxide. And the sum of the theoretical capacities of nickel oxyhydroxide.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of an alkaline primary battery according to the present invention.
[Explanation of symbols]
2 Positive electrode molded body 4 Battery can 6
Claims (2)
{A群:Al,Ca,Mg,Ti,Sc,Fe,Mn,Y,Yb,Er}As a positive electrode active material in the positive electrode mixture, manganese dioxide and nickel oxyhydroxide are contained, and the nickel oxyhydroxide contains at least one of elements listed in the following group A, cobalt and zinc, The ratio [MnO 2 : NiOOH] of manganese dioxide and nickel oxyhydroxide is mixed in a weight ratio in the range of 25:75 to 50:50, and the theoretical electric capacity ratio represented by [negative electrode theoretical capacity / positive electrode theoretical capacity]. Alkaline primary battery characterized in that is from 1.10 to 1.06 .
{Group A: Al, Ca, Mg, Ti, Sc, Fe, Mn, Y, Yb, Er}
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002039156A JP4243449B2 (en) | 2002-02-15 | 2002-02-15 | Alkaline primary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002039156A JP4243449B2 (en) | 2002-02-15 | 2002-02-15 | Alkaline primary battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003242990A JP2003242990A (en) | 2003-08-29 |
JP4243449B2 true JP4243449B2 (en) | 2009-03-25 |
Family
ID=27780269
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002039156A Expired - Lifetime JP4243449B2 (en) | 2002-02-15 | 2002-02-15 | Alkaline primary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4243449B2 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4322472B2 (en) | 2002-05-31 | 2009-09-02 | 東芝電池株式会社 | Sealed nickel zinc primary battery |
JP2005327564A (en) * | 2004-05-13 | 2005-11-24 | Matsushita Electric Ind Co Ltd | Alkaline battery, and manufacturing method of cathode activator for the same |
JP2006004900A (en) * | 2004-05-20 | 2006-01-05 | Sony Corp | Alkaline dry battery |
WO2006001210A1 (en) * | 2004-06-24 | 2006-01-05 | Matsushita Electric Industrial Co., Ltd. | Alkaline cell |
EP1811593A4 (en) * | 2004-10-15 | 2010-12-08 | Panasonic Corp | ALKALINE BATTERY |
JP2007328997A (en) * | 2006-06-07 | 2007-12-20 | Matsushita Electric Ind Co Ltd | Alkaline primary cell |
JP2008198411A (en) * | 2007-02-09 | 2008-08-28 | Matsushita Electric Ind Co Ltd | Manganese dry cell |
-
2002
- 2002-02-15 JP JP2002039156A patent/JP4243449B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2003242990A (en) | 2003-08-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3866884B2 (en) | Alkaline battery | |
US6620549B2 (en) | Alkaline storage battery | |
US5405714A (en) | Method for activating an alkaline storage cell employing a non-sintered type nickel positive electrode | |
JP4243449B2 (en) | Alkaline primary battery | |
JP3568408B2 (en) | Positive electrode active material for alkaline secondary batteries and alkaline secondary batteries | |
KR100386874B1 (en) | Alkaline storage battery and method for charging battery | |
CA2533075C (en) | Nickel-manganese battery comprising manganese dioxide and nickel oxyhydroxide | |
JP2000067910A (en) | Sealed alkaline zing storage battery | |
JP3552194B2 (en) | Alkaline battery | |
KR20060123627A (en) | Alkaline battery | |
JPH11111330A (en) | Nickel-hydrogen storage battery | |
JPH09115543A (en) | Alkaline storage battery | |
JP3663071B2 (en) | Sealed alkaline zinc storage battery | |
CN100511782C (en) | Alkaline secondary battery positive electrode material and alkaline secondary battery | |
JP3550838B2 (en) | Alkaline storage battery | |
JP2001297758A (en) | Positive electrode active material for alkaline storage battery, method for producing the same, and alkaline storage battery using the same | |
JP2003257425A (en) | Nickel-metal hydride storage battery and method of manufacturing the same | |
JP3902351B2 (en) | Sealed alkaline storage battery | |
JP2000106184A (en) | Nickel hydroxide electrode for alkaline storage battery, and the alkaline storage battery using this electrode | |
JPH11339846A (en) | Sealed alkaline zinc storage battery | |
JPH1125962A (en) | Nickel positive electrode for alkaline storage battery | |
JP3482478B2 (en) | Nickel-metal hydride storage battery | |
JP2000251925A (en) | Sealed alkaline zinc storage battery | |
JP2004119328A (en) | Alkaline primary battery | |
JP2006139993A (en) | Method of manufacturing nickel zinc primary cell and nickel zinc primary cell |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20040917 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040929 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070425 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20071218 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080218 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20080218 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20080218 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080624 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080820 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080930 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20081007 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20081209 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090105 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120109 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4243449 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120109 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130109 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130109 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140109 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |